WorldWideScience

Sample records for primary aluminum smelter

  1. Exposure to Fluoride in Smelter Workers in a Primary Aluminum Industry in India

    Directory of Open Access Journals (Sweden)

    AK Susheela

    2013-04-01

    Full Text Available Background: Fluoride is used increasingly in a variety of industries in India. Emission of fluoride dust and fumes from the smelters of primary aluminum producing industries is dissipated in the work environment and poses occupational health hazards. Objective: To study the prevalence of health complaints and its association with fluoride level in body fluids of smelter workers in a primary aluminum producing industry. Methods: In an aluminum industry, health status of 462 smelter workers, 60 supervisors working in the smelter unit, 62 non-smelter workers (control group 1 and 30 administration staff (control group 2 were assessed between 2007 and 2009. Their health complaints were recorded and categorized into 4 groups: 1 gastro-intestinal complaints; 2 non-skeletal manifestations; 3 skeletal symptoms; and (4 respiratory problems. Fluoride level in body fluids, nails, and drinking water was tested by an ion selective electrode; hemoglobin level was tested using HemoCue. Results: The total complaints reported by study groups were significantly higher than the control groups. Smelter workers had a significantly (p<0.001 higher urinary and serum fluoride level than non-smelter workers; the nail fluoride content was also higher in smelter workers than non-smelter workers (p<0.001. The smelter workers with higher hemoglobin level had a significantly (p<0.001 lower urinary fluoride concentration and complained less frequently of health problems. Only 1.4% of the smelter workers were consuming water with high fluoride concentrations. A high percentage of participants was using substances with high fluoride contents. Conclusions: Industrial emission of fluoride is not the only important sources of fluoride exposure—consumption of substance with high levels of fluoride is another important route of entry of fluoride into the body. Measurement of hemoglobin provides a reliable indicator for monitoring the health status of employees at risk of fluorosis.

  2. Exposure to fluoride in smelter workers in a primary aluminum industry in India.

    Science.gov (United States)

    Susheela, A K; Mondal, N K; Singh, A

    2013-04-01

    Fluoride is used increasingly in a variety of industries in India. Emission of fluoride dust and fumes from the smelters of primary aluminum producing industries is dissipated in the work environment and poses occupational health hazards. To study the prevalence of health complaints and its association with fluoride level in body fluids of smelter workers in a primary aluminum producing industry. In an aluminum industry, health status of 462 smelter workers, 60 supervisors working in the smelter unit, 62 non-smelter workers (control group 1) and 30 administration staff (control group 2) were assessed between 2007 and 2009. Their health complaints were recorded and categorized into 4 groups: 1) gastro-intestinal complaints; 2) non-skeletal manifestations; 3) skeletal symptoms; and (4) respiratory problems. Fluoride level in body fluids, nails, and drinking water was tested by an ion selective electrode; hemoglobin level was tested using HemoCue. The total complaints reported by study groups were significantly higher than the control groups. Smelter workers had a significantly (pworkers; the nail fluoride content was also higher in smelter workers than non-smelter workers (pworkers with higher hemoglobin level had a significantly (pworkers were consuming water with high fluoride concentrations. A high percentage of participants was using substances with high fluoride contents. Industrial emission of fluoride is not the only important sources of fluoride exposure--consumption of substance with high levels of fluoride is another important route of entry of fluoride into the body. Measurement of hemoglobin provides a reliable indicator for monitoring the health status of employees at risk of fluorosis.

  3. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    Science.gov (United States)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  4. Aluminum smelter-derived polycyclic aromatic hydrocarbons and flatfish health in the Kitimat marine ecosystem, British Columbia, Canada.

    Science.gov (United States)

    Johnson, Lyndal L; Ylitalo, Gina M; Myers, Mark S; Anulacion, Bernadita F; Buzitis, Jon; Collier, Tracy K

    2015-04-15

    From 2000-2004 a monitoring study was conducted to evaluate the impacts of aluminum smelter-derived polycyclic aromatic hydrocarbons (PAHs) on the health of fish in the marine waters of Kitimat, British Columbia, Canada. These waters are part of the historical fishing grounds of the Haisla First Nation, and since the 1950s the Alcan Primary Metal Company has operated an aluminum smelter at the head of the Kitimat Arm embayment. As a result, adjacent marine and estuarine sediments have been severely contaminated with a mixture of smelter-associated PAHs in the range of 10,000-100,000 ng/g dry wt. These concentrations are above those shown to cause adverse effects in fish exposed to PAHs in urban estuaries, but it was uncertain whether comparable effects would be seen at the Kitimat site due to limited bioavailability of smelter-derived PAHs. Over the 5-year study we conducted biennial collections of adult English sole (Parophrys vetulus) and sediment samples at the corresponding capture sites. Various tissue samples (e.g. liver, kidney, gonad, stomach contents) and bile were taken from each animal to determine levels of exposure and biological effects, and compare the uptake and toxicity of smelter-derived PAHs with urban mixtures of PAHs. Results showed significant intersite differences in concentrations of PAHs. Sole collected at sites nearest the smelter showed increased PAH exposure, as well as significantly higher prevalences of PAH-associated liver disease, compared to sites within Kitimat Arm that were more distant from the smelter. However, measures of PAH exposure (e.g., bile metabolites) were surprisingly high in sole from the reference sites outside of Kitimat Arm, though sediment and dietary PAHs at these sites were low, and fish from the areas showed no biological injury. PAH uptake, exposure, and biological effects in Kitimat English sole were relatively lower when compared to English sole collected from urban sites contaminated with PAH mixtures from

  5. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  6. A solidification/stabilization process for wastewater treatment sludge from a primary copper smelter

    Directory of Open Access Journals (Sweden)

    Ivšić-Bajčeta Dragana

    2013-01-01

    Full Text Available Wastewater treatment sludge from primary copper smelter is characterized as hazardous waste that requires treatment prior disposal due to significant amount of heavy metals and arsenic. The aim of the presented study was to investigate the feasibility and the effectiveness of solidification/stabilization process of the sludge using fly ash and lime as binders. The effectiveness of the process was evaluated by Unconfined Compressive Strength (UCS testing, leaching tests (EN 12457-4 and Toxicity Characteristic Leaching Procedure (TCLP and Acid Neutralization Capacity (ANC test. All samples reached target UCS of 0.35 MPa. Calcium to silicon concentration ratio (cCa/cSi, determined by X-Ray Fluorescence (XRF analysis, was identified as main factor governing strength development. Inductively coupled plasma-optical emission spectrometry (ICP-OES analyses of solutions after leaching tests showed excellent stabilization of Cu, Ni, Pb and Zn (above 99 % and arsenic (above 90 % in samples with high Ca(OH2 content. Results of ANC test indicated that buffering capacity of solidified material linearly depended on Ca concentration in FA and lime. Sample with 20 % of binder heaving 50 % of FA and 50 % of lime met all requirements to be safely disposed. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  7. 40 CFR Appendix A to Part 57 - Primary Nonferrous Smelter Order (NSO) Application

    Science.gov (United States)

    2010-07-01

    .... Background information on the firm's organizational structure and its associated accounting and financial.... Interim control waiver requests based on the smelter's projected inability to earn adequate income after installation of interim pollution control equipment will be subject to the permanent waiver test. 1.2.3...

  8. GHG emissions from primary aluminum production in China: Regional disparity and policy implications

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Hang, Wen

    2016-01-01

    Highlights: • GHG emissions from primary aluminum production in China were accounted. • The impact of regional disparity of power generation was considered for this study. • GHG emissions factor of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013. • Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013. - Abstract: China is the world-leading primary aluminum production country, which contributed to over half of global production in 2014. Primary aluminum production is power-intensive, for which power generation has substantial impact on overall Greenhouse Gas (GHG) emissions. In this study, we explore the impact of regional disparity of China’s power generation system on GHG emissions for the sector of primary aluminum production. Our analysis reveals that the national GHG emissions factor (GEF) of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013, with province-level GEFs ranging from 8.2 to 21.7 t CO_2e/t Al ingot. There is a high coincidence of provinces with high aluminum productions and high GEFs. Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013, approximately accounting for 4% of China’s total GHG emissions. Under the 2020 scenario, GEF shows a 13.2% reduction compared to the 2013 level, but total GHG emissions will increase to 551 mt CO_2e. Based on our analysis, we recommend that the government should further promote energy efficiency improvement, facilitate aluminum industry redistribution with low-carbon consideration, promote secondary aluminum production, and improve aluminum industry data reporting and disclosure.

  9. Human dietary exposure and levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (DL-PCBs) and non-dioxin-like polychlorinated biphenyls (NDL-PCBs) in free-range eggs close to a secondary aluminum smelter, Northern Italy

    International Nuclear Information System (INIS)

    Squadrone, S.; Brizio, P.; Nespoli, R.; Stella, C.; Abete, M.C.

    2015-01-01

    PCDD/Fs and PCBs are environmentally persistent substances that have been associated with adverse effects on human health. Contamination of soils, animal feed and pastures leads to their bioaccumulation of in food products of animal origin, which are considered the major source of intake of these contaminants in humans. We analyzed eggs from free-range hens, sampled from small farms, located within a distance of 4.5 km from a secondary aluminum smelter in Northern Italy. The concentrations of PCDD/Fs, DL-PCBs and NDL-PCBs were higher in eggs from locations close to the plant, and strongly exceeded the limits set by EU Regulation 1259/2011 (2.5 pg WHO TEQ fat g"−"1 for PCDD/Fs, 5.0 pg WHO TEQ g"−"1 for PCDD/Fs and DL-PCBs L, 40 ng g"−"1 for NDL-PCBs). Consuming contaminated eggs may pose a risk for human health, especially for children (≤9 years) and infants (≤3 years), due to the 2-fold excess of the current exposure limits. - Highlights: • We analyzed free-range eggs from farms close to a secondary aluminum smelter (ALS). • Concentrations of dioxins and PCBs strongly exceeded the limit set by EU Regulation. • Concentrations decrease at increasing distances from the plant. • Consuming contaminated eggs may pose a health risk for humans. - Concentrations of PCDD/Fs, DL-PCBs and NDL-PCBs are of concern in free-range eggs close to a secondary aluminum smelter.

  10. Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance

    Directory of Open Access Journals (Sweden)

    Olof Forsén

    2017-10-01

    Full Text Available The primary production of sulfide concentrates includes smelting to copper matte or blister copper, conversion of matte to blister copper, and refining to copper. Smelting, converting, and fire-refining can use a limited amount of secondary materials. Molten copper can effectively dissolve many metals, from valuable noble metals to harmful impurities such as bismuth. However, some of the impurity metals in copper are valuable in other applications. In this paper, we outline the main material flows in copper smelting and electrorefining and describe how minor metals can be recovered from secondary raw materials using copper as a carrier material. We will use a system integrated approach to define the factors that affect the recovery of different metals and copper quality. Metals typical in copper production are used as examples, like noble metals, As, Bi, Se, and Te, including metals in the EU critical raw materials list like PGM and Sb.

  11. CO_2 emission trends of China's primary aluminum industry: A scenario analysis using system dynamics model

    International Nuclear Information System (INIS)

    Li, Qiang; Zhang, Wenjuan; Li, Huiquan; He, Peng

    2017-01-01

    China announced its promise on CO_2 emission peak. When and what level of CO_2 emission peak China's primary aluminum industry will reach is in suspense. In this paper, a system dynamic model is established, with five subsystems of economy development, primary aluminum production, secondary aluminum production, CO_2 emission intensity and policies making involved. The model is applied to examine potential CO_2 emission trends of China's primary aluminum industry in next fifteen years with three scenarios of “no new policies”, “13th five-year plan” and “additional policies”. Simulation results imply that: merely relying on rapid expansion of domestic scarps recycling and reuse could not mitigate CO_2 emission continuously. Combination of energy-saving technology application and electrolytic technology innovation, as well as promoting hydropower utilization in primary aluminum industry are necessary for long term low-carbon development. From a global prospective, enhancing international cooperation on new primary aluminum capacity construction in other countries, especially with rich low-carbon energy, could bring about essential CO_2 emission for both China's and global primary aluminum industry. - Highlights: • A system dynamic model is established for future CO_2 emission trend of China's primary aluminum industry. • Three potential policy scenarios are simulated. • The impacts of potential policies implication on the CO_2 emission trend are discussed.

  12. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  13. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    Science.gov (United States)

    2011-12-06

    ... Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene...). The rule is applicable to facilities with affected sources associated with the production of aluminum... are subject to the requirements of this NESHAP: 14 primary aluminum production plants and one carbon...

  14. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  15. Primary Aluminum Reduction Industry - National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    National emission standards for each new or existing potline, paste production operation, and anode bake furnace associated with a primary aluminum reduction plant. Includes rule history, implementation information and additional resources.

  16. Feasibility study of a portable smelter for scrap metals

    International Nuclear Information System (INIS)

    Cavendish, J.H.

    1976-06-01

    The use of a portable smelter to process uranium-contaminated scrap metals was studied. Objectives were to convert scrap metal located at many diverse sites into a form which would be suitable for unlicensed sale and reduce the problems associated with storing the scrap. The Foundry Design Company study indicated the portable smelter concept was feasible from an equipment and transportation standpoint. Capital costs for a 5-ton/hour (steel) nominal capacity unit were estimated to be $2,349,000. Technical evaluation indicates that all the common metals considered, i.e., iron, nickel, copper, and aluminum, are amenable to uranium decontamination by smelting except aluminum. An economic evaluation of the processing of the 30,000 tons of steel scrap to be generated by the Cascade Improvement Program by a portable smelter was made based upon information supplied by Foundry Design Company, plus the assumption that the product metal could be sold for $120.00 per ton. This evaluation indicated a net return of $2,424,000 to the government could be realized. The Health and Safety study indicated no major problems of this nature would be encountered in operating a portable smelter. The legal review indicated the proposed operation fell within the authority of existing regulations. Consideration of possible conflicts with regard to competition with the private sector was suggested

  17. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  18. Biogeochemical studies of lead isotopes near a smelter

    International Nuclear Information System (INIS)

    Landrigan, P.J.; Baker, E.L. Jr.; Earl, J.L.; Chow, T.J.

    1975-01-01

    Ninety-nine percent of 1 to 9 year-old children living within 1 mile of a primary lead smelter in Idaho were found to have whole blood lead levels equal to or greater than 40μg/100 ml, a level indicative of excess lead absorption. To define the sources of this lead, isotope ratios were determined in lead from human and environmental samples obtained near the smelter; determinations were performed using a 30-cm radius, solid-source mass spectrometer with an electron multiplier. The Idaho ore is a pre-Cambrian lead deposit with 206 Pb/ 204 Pb = 16.43, 206 Pb = 1.0543 and 206 Pb/ 208 Pb = 0.4518. An ingot smelted in 1974 showed isotope ratios of 206 Pb/ 204 Pb = 17.66, 206 Pb/ 207 Pb = 1.1312 and 206 Pb/ 208 Pb = 0.4694, indicating a mixture of ore sources. Three surface soil samples from within 2 miles of the smelter had lead ratios similar to those in the ingot. A fourth soil sample from beside an interstate highway 32 miles east of the smelter showed different ratios: 206 Pb/ 204 Pb = 18.47, 206 Pb/ 207 Pb = 1.1826 and 206 Pb/ 208 Pb = 0.4823. Aerosol samples collected from October 4, 1974, to February 1, 1975, near the smelter showed considerable variation in ratios; these variations resulted from smelting of ores from differing sources

  19. Energy conservation in the primary aluminum and chlor-alkali industries

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  20. More evidence of unpublished industry studies of lead smelter/refinery workers

    Science.gov (United States)

    2015-01-01

    Background Lead smelter/refinery workers in the US have had significant exposure to lead and are an important occupational group to study to understand the health effects of chronic lead exposure in adults. Recent research found evidence that studies of lead smelter/refinery workers have been conducted but not published. This paper presents further evidence for this contention. Objectives To present further evidence of industry conducted, unpublished epidemiologic studies of lead smelter/refinery workers and health outcomes. Methods Historical research relying on primary sources such as internal industry documents and published studies. Results ASARCO smelter/refinery workers were studied in the early 1980s and found to have increased risk of lung cancer and stroke in one study, but not in another. Conclusions Because occupational lead exposure is an on-going concern for US and overseas workers, all epidemiologic studies should be made available to evaluate and update occupational health and safety standards. PMID:26070220

  1. [The unbearable lightness of aluminum: the social and environmental impacts of Brazil's insertion in the primary aluminum global market].

    Science.gov (United States)

    Henriques, Alen Batista; Porto, Marcelo Firpo Souza

    2013-11-01

    This article assesses aluminum production in Brazil and its social, environmental and public health impacts. The effects of the aluminum production chain challenge the idea of sustainable growth affirmed by business groups that operate in the sector. This article upholds the theory that the insertion of Brazil in the global aluminum market is part of a new configuration of the International Division of Labor (IDL), the polluting economic and highly energy dependent activities of which - as is the case of aluminum - have been moving to peripheral nations or emerging countries. The laws in such countries are less stringent, and similarly the environmental movements and the claims of the affected populations in the territories prejudiced in their rights to health, a healthy environment and culture are less influential. The competitiveness of this commodity is guaranteed in the international market, from the production of external factors such as environmental damage, deforestation, emissions of greenhouse gases and scenarios of environmental injustice. This includes undertakings in the construction of hydroelectric dams that expose traditional communities to situations involving the loss of their territories.

  2. Comparative results of copper flotation from smelter slag and granulated smelter slag

    OpenAIRE

    Milanović, Dragan; Stanujkić, Dragiša; Ignjatović, Miroslav R.

    2013-01-01

    Smelter slag is obtained in the process of metallurgical converting of copper concentrate in the Smelter Plant in Bor, Serbia. Today, the reserves of this material are evaluated at about more of a year, with the average copper content of 0.6-0.9%. Production of copper concentrate by flotation of smelter slag has started in 2001. Flotation concentrate goes to the Copper Smelter once more for production of copper cathodes and the rough flotation tailings go to the flotation tailing dump. Copper...

  3. Achieving Carbon Neutrality in the Global Aluminum Industry

    Science.gov (United States)

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  4. Primary and secondary creep in aluminum alloys as a solid state transformation

    Science.gov (United States)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  5. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  6. Bioavailability and uptake of smelter emissions in freshwater zooplankton in northeastern Washington, USA lakes using Pb isotope analysis and trace metal concentrations.

    Science.gov (United States)

    Child, A W; Moore, B C; Vervoort, J D; Beutel, M W

    2018-07-01

    The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Measurement of tritium activity in the aluminum pipe of JRR-2 heavy water primary cooling system using imaging plate

    International Nuclear Information System (INIS)

    Motoishi, Shoji; Kobayashi, Katsutoshi

    2000-12-01

    JRR-2 is the heavy water cooling type nuclear reactor, which has been operated for 36 years (1960-1976) and in the process of decommissioning at present. For this reason, evaluation of tritium quantity permeated into the pipe and apparatus of the primary coolant heavy water circulating system is important. In the Radioisotope Production Division, activity of tritium in aluminum pipe was measured with imaging plate (IP), liquid scintillation analyzer and high purity germanium detector (HPGe). After acrylic paints was applied for the region except for tritium contamination on the surface of aluminum pipe, only the oxidized contaminated part was dissolved by 1.5%(1.21M) HF for 3 minutes, and measured with IP. As a result, the tritium was found to permeate in the depth of 25 μm. Moreover, 90% of it was found to be distributed within 7 μm. (author)

  8. Effects of zinc smelter emissions on farms and gardens at Palmerton, PA

    Science.gov (United States)

    Chaney, R.L.; Beyer, W.N.; Gifford, C.H.; Sileo, L.

    1988-01-01

    In 1979, before the primary Zn smelter at Palmerton was closed due to excessive Zn and Cd emissions and change in the price of Zn, we were contacted by a local veterinarian regarding death of foals (young horses) on farms near the smelter. To examine whether Zn or Cd contamination of forage or soils could be providing potentially toxic levels of Zn or other elements in the diets of foals, we measured metals in forages, soils, and feces of grazing livestock on two farms near Palmerton. The farms were about 2.5 and about 10 km northeast of the East stack. Soils, forages, and feces were greatly increased in Zn and Cd. Soil, forage, and fecal Zn were near 1000 mg/kg and Cd, 10-20 mg/kg at farm A (2.5 km) compared to normal background levels of 43 mg Zn and 0.2 mg Cd/kg, respectively. Liver and kidney of cattle raised on Farm A were increased in Zn and Cd, indicating that at least part of the Zn and Cd in smelter contaminated forages was bioavailable. During the farm sampling, we obtained soil from one garden in Palmerton within 200 m of the primary (West) smelter. The Borough surrounds the smelter facility in a valley. Because soil Cd was near 100 mg/kg, we sampled garden soils and vegetables from over 40 gardens in 6 randomly selected blocks and in rural areas at different distances from the smelter during September, 1980. All homes were contacted on each sampled block. Nearly all homes had some garden, while at least 2 appeared to grow over 50% of their annual vegetable and potato consumption. Palmerton garden soils averaged 76 mg Cd/kg and 5830 mg Zn/kg. Gardeners had been taught to add limestone and organic fertilizers to counteract yield reduction and chlorosis due to the excessive soil Zn. Gardens with over 5000 mg Zn/kg were nearly allover pH 7, and many were calcareous. Because the smelter had not yet ceased operations in 1980, crops could have been polluted by aerosol Zn and Cd emitted by the smelter. Crop Zn and Cd were extremely high, about 100 times normal

  9. Impact of Site Elevation on Mg Smelter Design

    Science.gov (United States)

    Baker, Phillip W.

    Site elevation has many surprising and significant impacts on the engineering design of metallurgical plant of all types. Electrolytic magnesium smelters maybe built at high elevation for a variety of reasons including availability of raw material, energy or electric power. Because of the unit processes they typically involve, Mg smelters can be extensively impacted by site elevation. In this paper, generic examples of the design changes required to adapt a smelter originally designed for sea level to operate at 2700 m are presented. While the examples are drawn from a magnesium plant design case, these changes are generically applicable to all industrial plants utilizing similar unit processes irrespective of product.

  10. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Shuxiao; Wu Qingru; Meng Yang; Yang Hai; Wang Fengyang; Hao Jiming

    2012-01-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09–2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45–88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70–97% of the mercury was removed from the flue gas to the waste water and 1–17% to the sulfuric acid product. Totally 0.3–13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies. - Highlights: ► Acid plants in smelters provide significant co-benefits for mercury removal (over 99%). ► Most of the mercury in metal concentrates for smelting ended up in waste water. ► Previously published emission factors for Chinese metal smelters were probably overestimated. - Acid plants in smelters have high mercury removal efficiency, and thus mercury emission factors for Chinese non-ferrous metal smelters were probably overestimated.

  11. 75 FR 66798 - Ormet Primary Aluminum Corporation Including On-Site Temporary Workers, Hannibal, OH; Notice of...

    Science.gov (United States)

    2010-10-29

    ... supplied additional information regarding overall United States production, consumption, and importation of... and obtained current aggregate data on aluminum production and imports through 2009 which was not..., reaching a level well over 100 percent in 2009. This increased reliance on aggregate imports of aluminum...

  12. Lead exposure in children living in a smelter community in region Lagunera, Mexico.

    Science.gov (United States)

    García Vargas, G G; Rubio Andrade, M; Del Razo, L M; Borja Aburto, V; Vera Aguilar, E; Cebrián, M E

    2001-03-23

    Industrial growth has created the potential for environmental problems in Mexico, since attention to environmental controls and urban planning has lagged behind the pace of industrialization. The aim of this cross-sectional study was to assess lead exposure in children aged 6-9 yr attending 3 primary schools and living in the vicinity of the largest smelter complex in Mexico. One of the schools is located 650 m distant from a smelter complex that includes a lead smelter (close school); the second is located 1750 m away from the complex and at the side of a heavy traffic road (intermediate school) in Torreon, Coahuila. The third school is located in Comez Palacio, Durango, 8100 m away from the smelter complex and distant from heavy vehicular traffic or industrial areas (remote school). Lead was measured in air, soil, dust, and well water. Lead in blood (PbB) was determined in 394 children attending the above mentioned schools. Determinations were performed by atomic absorption spectrometry. Diet, socioeconomic status, hygienic habits, and other variables were assessed by questionnaire. Median (range) PbB values were 7.8 microg/dl (3.54-29.61) in the remote school, 21.8 microg/dl (8.37-52.08) in the intermediate school and 27.6 microg/dl (7.37-58.53) in children attending the close school. The percentage of children with PbB > 15 microg/dl was 6.80%, 84.9%, and 92.1% respectively. In this order, the geometric means (range) of Pb concentrations in air were 2.5 microg/m3 (1.1-7.5), 5.8 microg/m3 (4.3-8.5), and 6.1 microg/m3 (1.6-14.9). The Pb concentrations in dust from playgrounds areas in the intermediate and close school settings ranged from 1,457 to 4,162.5 mg/kg. Pb concentrations in drinking water were less than 5 microg/L. Soil and dust ingestion and inhalation appear to be the main routes of exposure. Our results indicate that environmental contamination has resulted in an increased body burden of Pb, suggesting that children living in the vicinity of the

  13. 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys

    Science.gov (United States)

    Adam, Khaled; Zöllner, Dana; Field, David P.

    2018-04-01

    Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.

  14. Safety and immunogenicity of a primary series of Sabin-IPV with and without aluminum hydroxide in infants.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Weldon, William C; Oberste, M Steven; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2014-09-03

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle-income countries in the context of the global polio eradication initiative. Safety and immunogenicity of Sabin-IPV (sIPV) was evaluated in a double-blind, randomized, controlled, dose-escalation trial in the target population. Healthy infants (n=20/group) aged 56-63 days, received a primary series of three intramuscular injections with low-, middle- or high-dose sIPV with or without aluminum hydroxide or with the conventional IPV based on wild poliovirus strains (wIPV). Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after three vaccinations. The incidence of local and systemic reactions was comparable with the wIPV. Seroconversion rates after three vaccinations were 100% for type 2 and type 3 polioviruses (both Sabin and wild strains) and 95-100% for type 1 polioviruses. Median titers were high in all groups. Titers were well above the log2(titer) correlated with protection (=3) for all groups. Median titers for Sabin-2 were 9.3 (range 6.8-11.5) in the low-dose sIPV group, 9.2 (range 6.8-10.2) in the low-dose adjuvanted sIPV group and 9.8 (range 5.5-15.0) in the wIPV group, Median titers against MEF-1 (wild poliovirus type 2) were 8.2 (range 4.8-10.8) in the low-dose sIPV group, 7.3 (range 4.5-10.2) in the low-dose adjuvanted Sabin-IPV group and 10.3 (range 8.5-17.0) in the wIPV group. For all poliovirus types the median titers increased with increasing dose levels. sIPV and sIPV adjuvanted with aluminum hydroxide were immunogenic and safe at all dose levels, and comparable with the wIPV. EudraCTnr: 2011-003792-11, NCT01709071. Copyright © 2014. Published by Elsevier Ltd.

  15. Using microtherm microporous insulation in smelter applications

    Science.gov (United States)

    MacKenzie, Iain

    2000-02-01

    Microtherm is effective in reducing shell temperatures in confined spaces where compression is severe and much insulation is required. This material can prove beneficial for applications such as cement and lime rotary kiln transition and hot zones; copper converters and anode furnaces; steel and iron ladles, tundishes, RH vessels, and blast furnaces; and aluminum filter boxes, runners, and metal transporters.

  16. Selecting an oxygen plant for a copper smelter modernization

    Science.gov (United States)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  17. 76 FR 64943 - Proposed Cercla Administrative Cost Recovery Settlement; ACM Smelter and Refinery Site, Located...

    Science.gov (United States)

    2011-10-19

    ... Settlement; ACM Smelter and Refinery Site, Located in Cascade County, MT AGENCY: Environmental Protection... projected future response costs concerning the ACM Smelter and Refinery NPL Site (Site), Operable Unit 1..., Helena, MT 59626. Mr. Sturn can be reached at (406) 457-5027. Comments should reference the ACM Smelter...

  18. Hydrometallurgical treatment of copper smelter dusts. Desarsenification of leaching solutions

    International Nuclear Information System (INIS)

    Alguacil, F.J.; Magne, L.; Navarro, P.; Simpson, J.

    1996-01-01

    Copper smelter dusts contain along with this metal, which is amenable for its recovery, a number of other metals (especially arsenic) which are considered as toxic. Different alternatives have been proposed for the treatment of such metallurgical residues and among them Hydrometallurgy shows good perspectives for its application in this field. In the present work different hydrometallurgical processes proposed for the treatment of copper smelter dusts are described and evaluated together with different alternatives given for the Desarsenification of the leaching solutions. (Author) 36 refs

  19. Some effects of smelter pollution northeast of Falconbridge, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, E

    1960-01-01

    A study along a line northwest from the metal smelter at Falconbridge, Ontario, reveals that strong sulphate accumulation in the surface soil occurs only within about one mile of the chimneys emitting sulphur dioxide pollution while effects upon the soil drainage waters are marked to a distance of nearly two miles, and still clearly evident 10 or more miles away. The number of species present in the flora declines sharply within about four miles of the smelter, but certain species (e.g. Pinus strobus, Vaccinium myrtilloides) disappear at much greater distances. Among the most tolerant species are Acer rubrum, Quercus rubra, Sambucus pubens, and Polygonum cilinode.

  20. Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea.

    Science.gov (United States)

    Kim, Yong-Dae; Eom, Sang-Yong; Yim, Dong-Hyuk; Kim, In-Soo; Won, Hee-Kwan; Park, Choong-Hee; Kim, Guen-Bae; Yu, Seung-Do; Choi, Byung-Sun; Park, Jung-Duck; Kim, Heon

    2016-04-01

    Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urinary arsenic (As) level did not decrease according to the distance from the smelter, regardless of gender and working history in smelters and mines. However, in subjects who had no occupational exposure to toxic metals, blood lead (Pb) and cadmium (Cd) and urinary Cd decreased according to the distance from the smelter, both in men and women. Additionally, the distance from the smelter was a determinant factor for a decrease of As, Pb, and Cd in multiple regression models, respectively. On the other hands, urinary Cd was a risk factor for renal tubular dysfunction in populations living near the smelter. These results suggest that Janghang copper smelter was a main contamination source of As, Pb, and Cd, and populations living near the smelter suffered some adverse health effects as a consequence. The local population should be advised to make efforts to reduce exposure to environmental contaminants, in order to minimize potential health effects, and to pay close attention to any health problems possibly related to toxic metal exposure.

  1. Arsenic pollution in the Yellowknife area from gold smelter activities

    International Nuclear Information System (INIS)

    Hutchinson, T.C.; Aufreiter, S.; Hancock, R.G.V.

    1982-01-01

    Gold mined at Yelloknife in the North West Territories of Canada is associated with arsenopyrite ores which necessitates the oxidation of the arsenic and sulphur by roasting at two Yellowknife smelters. As 2 O 3 and SO 2 are emitted into the atmosphere, and despite improvements in emission control, significant emissions still occur. In order to asses the arsenic contamination in the local environment and the potential exposures to man, soil samples and samples of the native vegetation were collected in and around Yellowknife and the two smelters. Arsenic and antimony analyses were done by instrumental neutron activation analysis using the SLOWPOKE facility at University of Toronto. Zinc, copper, lead and cadmium analyses were done by atomic adsorption spectrophotometry. Arsenic was found to be accumulated in the soils in the vicinity of the two smelters to levels of several thousand ppm. Antimony levels were about 10% of arsenic and were highly correlated with arsenic. Zinc occured to 500 ppm around the smelters. Soil arsenic levels are sufficiently high to inhibit root growth in soils over a very extensive area. (author)

  2. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  3. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  4. Improved dust handling at Inco's Copper Cliff smelter

    International Nuclear Information System (INIS)

    Dutton, A.; Warner, A.E.M.; Humphris, M.J.

    1989-01-01

    The Cooper Cliff Smelter Complex comprises three major production departments - a Nickel Smelter for the processing of nickel concentrated to a low iron, nickel - copper sulphide (Bessemer) matte; a Matte Processing plant for the separation of matte sulphides and the production of market nickel oxides and refinery feeds and a Copper Smelter to process copper concentrates to blister copper. Annual production is currently -114,000 tonnes of copper as blister and -110,000 tonnes of nickel. The nickel concentrate (11-13% Ni, 2-3% Cu) is roasted in multi-hearth roasters, smelted in oxy-fuel fired reverberatory furnaces to a 30-35% CuNiCo matte and converted to Bessemer matte (75% CuNiCo) in Peirce-Smith converters. The Bessemer matte is slow cooled and crushed for subsequent separation by mineral dressing techniques in the Matte Processing plant into nickel (sulphide and metallic) concentrates and a copper (chalcocite) concentrate. Nickel sulphides are further processed in fluid bed reactors to oxide market product or refinery feedstock. The copper concentrate (29-30% Cu, 0.9% No.) is dried in fluid bed driers, smelted to a 40-50% copper matte in an Inco oxygen flash furnace and converted to blister copper in Peirce-Smith converters. The chalcocite concentrate from the matte separation stage is flash converted to a semi-blister (3-4% S, 4-5% Ni) and then finished to lighter conventionally. A schematic process flowsheet of the Smelter Complex is shown in this paper

  5. 76 FR 17548 - Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR...

    Science.gov (United States)

    2011-03-30

    ...; (vi) Primary aluminum ore reduction plants; (vii) Primary copper smelters; (viii) Municipal... acid plants; (x) Petroleum refineries; (xi) Lime plants; (xii) Phosphate rock processing plants; (xiii... smelters; (e) Iron and steel mills; (f) Primary aluminum ore reduction plants; (g) Primary copper smelters...

  6. Cancer risk among workers of a secondary aluminium smelter.

    Science.gov (United States)

    Maltseva, A; Serra, C; Kogevinas, M

    2016-07-01

    Cancer risk in secondary aluminium production is not well described. Workers in this industry are exposed to potentially carcinogenic agents from secondary smelters that reprocess aluminium scrap. To evaluate cancer risk in workers in a secondary aluminium plant in Spain. Retrospective cohort study of male workers employed at an aluminium secondary smelter (1960-92). Exposure histories and vital status through 2011 were obtained through personal interviews and hospital records, respectively. Standardized mortality (SMRs) and incidence ratios (SIRs) were calculated. The study group consisted of 98 workers. We found increased incidence and mortality from bladder cancer [SIR = 2.85, 95% confidence interval (CI) 1.23-5.62; SMR = 5.90, 95% CI 1.58-15.11]. Increased incidence was also observed for prostate cancer and all other cancers but neither were statistically significant. No increased risk was observed for lung cancer. Results of this study suggest that work at secondary aluminium smelters is associated with bladder cancer risk. Identification of occupational carcinogens in this industry is needed. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    International Nuclear Information System (INIS)

    Andrade Lima, L.R.P. de; Bernardez, L.A.

    2011-01-01

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe 2 O 3 (28.10), CaO (23.11), SiO 2 (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al 2 O 3 (3.56), C (2.26), MnO (1.44), Na 2 O (0.27), S (0.37), K 2 O (0.26), and TiO 2 (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  8. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Lima, L.R.P. de, E-mail: lelo@ufba.br [Department of Materials Science and Technology, Federal University of Bahia, C.P. 6974, Salvador, BA 41810-971 (Brazil); Bernardez, L.A. [Ingenium Consultoria em Engenharia Ltda (Brazil)

    2011-05-30

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe{sub 2}O{sub 3} (28.10), CaO (23.11), SiO{sub 2} (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al{sub 2}O{sub 3} (3.56), C (2.26), MnO (1.44), Na{sub 2}O (0.27), S (0.37), K{sub 2}O (0.26), and TiO{sub 2} (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  9. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  10. EMERGING TECHNOLOGY BULLETIN: RECLAMATION OF LEAD FROM SUPERFUND WASTE MATERIAL USING SECONDARY LEAD SMELTERS

    Science.gov (United States)

    This process involves incorporating lead-contaminated Superfund waste with the regular feed to a secondary lead smelter. Since secondary lead smelters already recover lead from recycled automobile batteries, it seems likely that this technology could be used to treat waste from ...

  11. Assessment of secondary aluminum reserves of nations

    DEFF Research Database (Denmark)

    Maung, Kyaw Nyunt; Yoshida, Tomoharu; Liu, Gang

    2017-01-01

    aluminum resources are accumulated in landfill sites. Understanding the sizes of primary and secondary aluminum reserves enables us to extend knowledge of efficient raw material sourcing from a narrow perspective of primary reserves alone to a broader perspective of both primary and secondary reserves...

  12. Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas

    Energy Technology Data Exchange (ETDEWEB)

    Ettler, Vojtěch, E-mail: ettler@natur.cuni.cz [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Johan, Zdenek [BRGM, Avenue Claude Guillemin, 45082 Orléans Cedex 2 (France); Kříbek, Bohdan; Veselovský, František [Czech Geological Survey, Geologická 6, 152 00 Praha 5 (Czech Republic); Mihaljevič, Martin [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Vaněk, Aleš; Penížek, Vít [Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 (Czech Republic); Majer, Vladimír [Czech Geological Survey, Geologická 6, 152 00 Praha 5 (Czech Republic); Sracek, Ondra [Department of Geology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Mapani, Ben; Kamona, Fred [Department of Geology, Faculty of Science, University of Namibia, Private Bag 13301, Windhoek (Namibia); Nyambe, Imasiku [University of Zambia, School of Mines, P. O. Box 32 379, Lusaka (Zambia)

    2016-09-01

    Soluble sulphates and arsenolite from primary smelter dusts not detected in soils • Higher metal availability and greater weathering of particles in subtropical soils • Complex Ca–Cu–Pb arsenates efficiently control mobility of metal(loids).

  13. Metal contamination in wildlife living near two zinc smelters

    Science.gov (United States)

    Beyer, W.N.; Pattee, O.H.; Sileo, L.; Hoffman, D.J.; Mulhern, B.M.

    1985-01-01

    Wildlife in an oak forest on Blue Mountain was studied 10 km upwind (Bake Oven Knob site) and 2 km downwind (Palmerton site) of two zinc smelters in eastern Pennsylvania, USA. Previous studies at sites near these smelters had shown changes in populations of soil microflora, lichens, green plants and litter-inhabiting arthropods. The 02 soil litter horizon at Palmerton was heavily contaminated with Pb (2700 mg kg-1), Zn (24000 mg kg-1), and Cd (710 mg kg-1), and to a lesser extent with Cu (440 mg kg-1). Various kinds of invertebrates (earthworms, slugs and millipedes) that feed on soil litter or soil organic matter were rare at, or absent from, the Palmerton site. Those collected at Bake Oven Knob tended to have much higher concentrations of metals than did other invertebrates. Frogs, toads and salamanders were very rare at, or absent from, the Palmerton site, but were present at Bake Oven Knob and at other sites on Blue Mountain farther from the smelters. Metal concentrations (dry wt) in different organisms from Palmerton were compared. Concentrations of Pb were highest in shrews (110 mg kg-1), followed by songbirds (56 mg kg-1), leaves (21 mg kg-1), mice (17 mg kg-1), carrion insects (14 mg kg-1), berries (4.0 mg kg-1), moths (4,3 mg kg-1) and fungi (3.7 mg kg-1). Concentrations of Cd, in contrast, were highest in carrion insects (25 mg kg-1 ),followed by fungi (9.8 mg kg-1), leaves (8.1 mg kg-1), shrews (7.3 mg kg-I), moths (4.9 mg kg-1), mice (2.6 mg kg -1), songbirds (2.5 mg kg -1) and berries (1.2 mg kg-1). Concentrations of Zn and Cu tended to be highest in the same organisms that had the highest concentrations of Cd. Only a small proportion of the metals in the soil became incorporated into plant foliage, and much of the metal contamination detected in the biota probably came from aerial deposition. The mice from both sites seemed to be healthy. Shrews had higher concentrations of metals than did mice, and one shrew showed evidence of Pb poisoning; its red

  14. The combined effect of titanic carbide and aluminum phosphide on the refinement of primary silicon in Al-50Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Hongshang [Key Lab. of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong Univ., Jinan (China); Liu Xiangfa [Key Lab. of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong Univ., Jinan (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou, SD (China)

    2008-12-15

    Two refinement methods for Al-50Si alloy are presented in this article: one way is using a newly developed Si-20P alloy at 1573 K: another technique is using the Si-20P alloy in company with Al-TiO{sub 2}-C mixture powder at 1473 K. Compared to the first method, the second one not only has better refinement effect on primary Si but also lower refinement temperature. These results are due to the combined effect of TiC and AlP on the refinement process, and the duplex TiC/AlP nucleus of primary silicon has been demonstrated using electron probe micro-analysis. Moreover, the reaction of Al-TiO{sub 2}-C mixture powder with increasing temperature was investigated using differential scanning calorimetry, which shows that the TiC particles are produced at about 1473 K. AlP particles combine with the in-situ TiC particles in the melt, which is the main reason for the formation of a duplex nucleus, and the disregistry between TiC and AlP in low-index planes is also discussed. (orig.)

  15. Economic cost of electricity sold to new aluminium smelters

    International Nuclear Information System (INIS)

    Belanger, G.; Bernard, J.T.

    2008-01-01

    Low cost electricity was a key factor for establishing an aluminium industry in Quebec. Smelters in the province use 50 terawatt hours of electricity per year, which represents 25 per cent of the total consumed in Quebec. This article assessed the profitability of new industrial projects that require large quantities of electricity at a time when the cost of new power plants is increasing. However, electricity is being sold below cost and the difference is subsidized by the government. The investment is justified by the government because these new projects create high paying jobs. The authors presented cases of 2 new aluminium plants, and concluded that they represented a very high economic cost for the province. 1 tab

  16. Smelters as Analogs for a Volcanic Eruption at Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, Benjamin

    2004-01-01

    The distribution of trace radionuclides in secondary metal smelters provides an analog for spent fuel released from packages during a volcanic eruption. The fraction of the inventory of a radionuclide that would be released into the air in a volcanic eruption is called the dust partitioning factor. In consequence analyses of a volcanic eruption at Yucca Mountain, a value of one has been used for this parameter for all elements. This value is too high for the refractory elements. Reducing the dust partitioning factor for refractory elements to a value equal to the fraction of the magma that becomes ash would still yield conservative estimates of how much radioactivity would be released in an eruption

  17. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vakylabad, Ali Behrad, E-mail: alibehzad86@yahoo.co.uk [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Engineers of Nano and Bio Advanced Sciences Company (ENBASCo.), ATIC, Mohaghegh University (Iran, Islamic Republic of); Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Manafi, Zahra [Sarcheshmeh Copper Complex, National Iranian Copper Industry Company (Iran, Islamic Republic of); Darezereshki, Esmaeel [Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center (EERC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Flotation concentrate and smelter dust were sampled and combined. Black-Right-Pointing-Pointer Copper bioleaching from the combined was investigated. Black-Right-Pointing-Pointer Two bio-reactors were investigated and optimized: stirred and airlift. Black-Right-Pointing-Pointer STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu{sub 2}S, CuS, and Cu{sub 5}FeS{sub 4}.Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  18. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    International Nuclear Information System (INIS)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-01-01

    Highlights: ► Flotation concentrate and smelter dust were sampled and combined. ► Copper bioleaching from the combined was investigated. ► Two bio-reactors were investigated and optimized: stirred and airlift. ► STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu 2 S, CuS, and Cu 5 FeS 4 .Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  19. 76 FR 38024 - Standards of Performance for New Stationary Sources

    Science.gov (United States)

    2011-06-29

    ... January 20, 1983. O Sewage Treatment Plants X X P Primary Copper Smelters X X Q Primary Zinc Smelters X X R Primary Lead Smelters X X S Primary Aluminum Reduction Plants X X T Phosphate Fertilizer Industry: X X Wet Process Phosphoric Acid Plants. U Phosphate Fertilizer Industry: X X Superphosphoric Acid...

  20. 78 FR 25185 - Delegation of New Source Performance Standards and National Emission Standards for Hazardous Air...

    Science.gov (United States)

    2013-04-30

    ... Sewage Treatment Plants X X X X P Primary Copper Smelters X X X X Q Primary Zinc Smelters X X X X R Primary Lead Smelters X X X X S Primary Aluminum Reduction Plants.... X X X X T Phosphate Fertilizer Industry: Wet X X X X Process Phosphoric Acid Plants. U Phosphate Fertilizer Industry: X X X X...

  1. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand

    International Nuclear Information System (INIS)

    Wilson, N.J.; Craw, D.; Hunter, K.

    2004-01-01

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb 2 S 3 ) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS 2 ). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb 2 O 3 ). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 μg/l) and As (ca. 7 μg /l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. - High levels of antimony in primitive smelter soils remain largely immobile on the metre scale

  2. Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia

    International Nuclear Information System (INIS)

    Adventini, N; Santoso, M; Lestiani, D D; Syahfitri, W Y N; Rixson, L

    2017-01-01

    A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in C f index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia. (paper)

  3. Stability and leaching of cobalt smelter fly ash

    DEFF Research Database (Denmark)

    Vítková, Martina; Hyks, Jiri; Ettler, Vojtěch

    2013-01-01

    The leaching behaviour of fly ash from a Co smelter situated in the Zambian Copperbelt was studied as a function of pH (5–12) using the pH-static leaching test (CEN/TS 14997). Various experimental time intervals (48h and 168h) were evaluated. The leaching results were combined with the ORCHESTRA...... modelling framework and a detailed mineralogical investigation was performed on the original FA and leached solid residues. The largest amounts of Co, Cu, Pb and Zn were leached at pH 5, generally with the lowest concentrations between pH 9 and 11 and slightly increased concentrations at pH 12. For most...... detected using SEM/EDS and/or TEM/EDS. The leaching of metals was mainly attributed to the dissolution of metallic particles. Partial dissolution of silicate and glass fractions was assumed to significantly influence the release of Ca, Mg, Fe, K, Al and Si as well as Cu, Co and Zn. The formation of illite...

  4. Alcan Kitimat smelter modernization project remedial action scheme functional requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-09

    This paper identified remedial actions for reducing islanding and voltage collapse at the Alcan Kitimat smelter modernization project. The study was conducted after an earlier study indicated that the proposed project significantly increased electricity loads and stresses on Alcan's power system. Remedial actions included shedding the appropriate number of Kemano (KMO) generators; reducing Kitimat potline loads by de-saturating saturable reactors and lowering tap changers; and shedding potlines to preserve the Kitimat auxiliary load and facilitate power restoration. Power flow and transient stability studies were conducted to evaluate the impact of the remedial actions on the KMO generators and the transmission system. Results showed that fast load reduction improved power system response. Load reduction by changing the converter transformer tap reduced significant amounts of loads, but was too slow to be effective during fast voltage collapse. The study showed that although the remedial action scheme (RAS) reduced the impact of various contingencies on the Alcan system, performance was degraded due to the significant load increase. Fast load shedding capability was also reduced. It was concluded that further research is needed to develop and implement the RAS. 3 tabs., 7 figs.

  5. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  6. Arsenic exposure to smelter workers. Clinical and neurophysiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Blom, S.; Lagerkvist, B.; Linderholm, H.

    1985-08-01

    Forty-seven copper smelter workers, exposed to airborne arsenic for 8-40 years, were examined clinically with electromyography, and the motor and sensory conduction velocities in their arms and legs were determined. Fifty age-matched industrial workers not exposed to arsenic formed a reference group. The level of arsenic in the air at the smeltery was estimated to be below 500 micrograms/mT before 1975 and approximately 50 micrograms/mT thereafter. Urine analyses of arsenic showed a mean value of 71 micrograms/l (1 mumol/l) in the exposed group; this value is lower than that found in earlier studies reporting clinically detectable neuropathy. A slightly reduced nerve conduction velocity in two or more peripheral nerves was more common among the arsenic workers than the referents, and a statistically significant correlation between cumulative exposure to arsenic and reduced nerve conduction velocity in three peripheral motor nerves was found. This occurrence was interpreted as a sign of slight subclinical neuropathy. In conclusion the risk of clinically significant neuropathy is small when exposure is kept below 50 micrograms/mT in workroom air. The subclinical findings may be of interest in relation to the prevention of early adverse health effects from arsenic exposure.

  7. Immunogenicity of aluminum-adsorbed hepatitis A vaccine (Havrix®) administered as a third dose after primary doses of Japanese aluminum-free hepatitis A vaccine (Aimmugen®) for Japanese travelers to endemic countries.

    Science.gov (United States)

    Fukushima, Shinji; Kiyohara, Tomoko; Ishii, Koji; Nakano, Takashi; Hamada, Atsuo

    2017-11-07

    Hepatitis A vaccination is recommended for travelers to endemic countries. Several inactivated aluminum-adsorbed hepatitis A vaccines are available worldwide, but only one licensed hepatitis A vaccine is available in Japan. This vaccine is a lyophilized inactivated aluminum-free hepatitis A vaccine (Aimmugen®). The standard schedule of Aimmugen® is three doses (at 0, 2-4 weeks, and 6 months). Japanese people will go abroad after receiving 2 doses of Aimmugen®. Some long-term travelers will receive the third dose of hepatitis A vaccine at their destination, at 6-24 months after 2 doses of Aimmugen®. Aimmugen® is not available in countries other than Japan. They receive inactivated aluminum-adsorbed hepatitis A vaccine instead of a third dose of Aimmugen®. This study was undertaken to determine whether the booster vaccination with an aluminum-adsorbed hepatitis A vaccine is effective following two doses of Aimmugen®. Subjects were healthy Japanese adults aged 20 years or older who had received two doses of Aimmugen®. Subjects received a booster dose of Havrix®1440 intramuscularly as the third dose. Serology samples for hepatitis A virus antibody titers were taken 4-6 weeks later. Anti-hepatitis A virus antibody titers were measured by an inhibition enzyme-linked immunosorbent assay. Subjects were 20 healthy Japanese adults, 6 men and 14 women. The mean age ± standard deviation was 37.2 ± 13.3. The seroprotection rate (SPR, anti-hepatitis A virus antibody titer ≥10 mIU/mL) was 85% at enrollment, and increased to 100% after vaccination with Havrix®. The geometric mean anti-hepatitis A virus antibody titer increased from 39.8 mIU/mL to 2938.2 mIU/mL. The three scheduled doses consisting of two doses of Aimmugen® plus a third dose with Havrix® is more immunogenic than using only two doses of Aimmugen®. The vaccination with Havrix® could be allowed to be used instead of a third dose of Aimmugen®. (UMIN000009351). Copyright © 2017 Elsevier Ltd. All

  8. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter

    Energy Technology Data Exchange (ETDEWEB)

    Sedumedi, Hilda N. [Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, Pretoria (South Africa); Mandiwana, Khakhathi L., E-mail: MandiwanaKL@tut.ac.za [Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, Pretoria (South Africa); Ngobeni, Prince; Panichev, Nikolay [Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, Pretoria (South Africa)

    2009-12-30

    The impact of ferrochrome smelter on the contamination of its environment with toxic hexavalent chromium, Cr(VI), was assessed by analyzing smelter dusts, soil, grass and tree barks. For the separation of Cr(VI) from Cr(III), solid samples were treated with 0.1 M Na{sub 2}CO{sub 3} and filtered through hydrophilic PDVF 0.45 {mu}m filter prior to the determination of Cr(VI) by electrothermal atomic absorption spectrometry (ET-AAS). Ferrochrome smelter dust was found to contain significant levels of Cr(VI), viz. 43.5 {mu}g g{sup -1} (cyclone dust), 2710 {mu}g g{sup -1} (fine dust), and 7800 {mu}g g{sup -1} (slimes dust) which exceeded the maximum acceptable risk concentration (20 {mu}g g{sup -1}). The concentration of Cr(VI) in environmental samples of grass (3.4 {+-} 0.2), soil (7.7 {+-} 0.2), and tree bark (11.8 {+-} 1.2) collected in the vicinity of the chrome smelter were higher as compared with the same kind of samples collected from uncontaminated area. The results of the investigation show that ferrochrome smelter is a source of environmental pollution with contamination factors of Cr(VI) ranging between 10 and 50.

  9. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter.

    Science.gov (United States)

    Sedumedi, Hilda N; Mandiwana, Khakhathi L; Ngobeni, Prince; Panichev, Nikolay

    2009-12-30

    The impact of ferrochrome smelter on the contamination of its environment with toxic hexavalent chromium, Cr(VI), was assessed by analyzing smelter dusts, soil, grass and tree barks. For the separation of Cr(VI) from Cr(III), solid samples were treated with 0.1M Na(2)CO(3) and filtered through hydrophilic PDVF 0.45 microm filter prior to the determination of Cr(VI) by electrothermal atomic absorption spectrometry (ET-AAS). Ferrochrome smelter dust was found to contain significant levels of Cr(VI), viz. 43.5 microg g(-1) (cyclone dust), 2710 microg g(-1) (fine dust), and 7800 microg g(-1) (slimes dust) which exceeded the maximum acceptable risk concentration (20 microg g(-1)). The concentration of Cr(VI) in environmental samples of grass (3.4+/-0.2), soil (7.7+/-0.2), and tree bark (11.8+/-1.2) collected in the vicinity of the chrome smelter were higher as compared with the same kind of samples collected from uncontaminated area. The results of the investigation show that ferrochrome smelter is a source of environmental pollution with contamination factors of Cr(VI) ranging between 10 and 50.

  10. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter

    International Nuclear Information System (INIS)

    Sedumedi, Hilda N.; Mandiwana, Khakhathi L.; Ngobeni, Prince; Panichev, Nikolay

    2009-01-01

    The impact of ferrochrome smelter on the contamination of its environment with toxic hexavalent chromium, Cr(VI), was assessed by analyzing smelter dusts, soil, grass and tree barks. For the separation of Cr(VI) from Cr(III), solid samples were treated with 0.1 M Na 2 CO 3 and filtered through hydrophilic PDVF 0.45 μm filter prior to the determination of Cr(VI) by electrothermal atomic absorption spectrometry (ET-AAS). Ferrochrome smelter dust was found to contain significant levels of Cr(VI), viz. 43.5 μg g -1 (cyclone dust), 2710 μg g -1 (fine dust), and 7800 μg g -1 (slimes dust) which exceeded the maximum acceptable risk concentration (20 μg g -1 ). The concentration of Cr(VI) in environmental samples of grass (3.4 ± 0.2), soil (7.7 ± 0.2), and tree bark (11.8 ± 1.2) collected in the vicinity of the chrome smelter were higher as compared with the same kind of samples collected from uncontaminated area. The results of the investigation show that ferrochrome smelter is a source of environmental pollution with contamination factors of Cr(VI) ranging between 10 and 50.

  11. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr

    2018-06-01

    Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Heavy metals in the atmosphere coming from a copper smelter in Chile

    Science.gov (United States)

    Romo-Kröger, C. M.; Morales, J. R.; Dinator, M. I.; Llona, F.; Eaton, L. C.

    The Chilean mine El Teniente is the world's largest underground copper mine. It operates a giant smelter at Caletones (34° 7' S, 70° 27' W) and we have found it is the major source of air contamination in the region. In August 1991 a special circumstance occurred due to a labor strike, with total cessation of activities. A time series analysis of airborne particles collected at a site about 13 km from the smelter was performed in a period including the strike. The PIXE method and other techniques were used to analyse fine (Elemental characterization of soil samples by radioactive source analysis demonstrated that this group of elements did not come from airborne soil dust. Cluster analyses of the interelement correlation matrices, resulting from PIXE data, showed one group (Si, K, Ca, Fe) with main origin in soil and another group (S, Cu, Zn, As) coming from the copper smelter.

  13. Generic assessment of radiation exposures to workers in a portable smelter and to the surrounding population

    International Nuclear Information System (INIS)

    Randolph, M.L.; Watson, A.P.; O'Donnell, F.R.

    1978-10-01

    A scenario for operation of a proposed portable smelter has been developed by National Lead Company of Ohio to recycle radioactively contaminated ferrous scrap arising from modifications at nuclear facilities of the Department of Energy. The current generic study complements that work by developing tables of radiation dose conversion factors for estimation of external whole-body doses and 50-year whole-body internal dose commitments to routine workers in the smelter and to the public within 50 miles of the smelter. Applications of the tables to specific cases require site-specific source terms consisting of amounts of radionuclides present in scrap metal, separation efficiency for radionuclides, concentration of contaminated airborne particulates, ingested amount of contaminated material, and amount of metal released through the stack. Equations relating doses to tabular values and these source terms are developed, and hypothetical sample calculations are given. Assumptions, approximations, and limitations of the methods are discussed as well as nonroutine operations and nonradioactive hazards

  14. Heavy metals in white-tailed deer living near a zinc smelter in Pennsylvania

    Science.gov (United States)

    Sileo, Louis; Beyer, W. Nelson

    1985-01-01

    White-tailed deer (Odocoileus virginianus (Zimmermann)) shot within 20 km of the zinc smelters in the Palmerton, Pennsylvania area contained extremely high renal concentrations of cadmium (372 ppm dry weight (dw)) and zinc (600 ppm dw). The deer with the highest renal zinc concentration was shot 4 km from the smelters and had joint lesions similar to those seen in zinc-poisoned horses from the same area. The highest concentrations of lead in both hard and soft tissues were relatively low, 10.9 ppm dw in a sample of teeth, 17.4 ppm dw in a metacarpus, and 4.9 ppm dw in a kidney.

  15. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...... electrolytes. The book is an updated review of the technological advances in the fields of electrolytic production and refining of metals, electroplating, anodizing and other electrochemical surface treatments, primary and secondary batteries, electrolytic capacitors; corrosion and protection and others....

  16. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical

  17. Metal pollution around an iron smelter complex in northern Norway at different modes of operation

    International Nuclear Information System (INIS)

    Steinnes, E.; Sjoebakk, T.E.; Frontas'eva, M.V.; Varskog, P.

    2003-01-01

    The moss biomonitoring technique was employed to study the atmospheric deposition in and around the town of Mo i Rana, northern Norway, before and after closing an iron smelter and establishing alternative ferrous metal industries. Samples of Hylocomium splendens were collected from the same sites in 1989 and 1993. A combination of instrumental neutron activation analysis (INAA) and atomic absorption spectrometry was used to obtain data for 38 elements in these moss samples, and the analytical data were subjected to factor analysis. In general, the deposition was higher when the iron smelter was still in operation, in particular for Fe and for many elements normally associated with crustal matter. For Cr there was a substantially increased deposition due to the operation of a new ferrochrome smelter. Also for Ni and Au an increased deposition was observed, whereas for metals such as Mn, Co, Ag, Sb, and W there was no appreciable change. INAA proved to be a powerful tool for this kind of study. The regional distribution of pollutants was strongly dependent on the local topography. Samples of natural surface soils collected simultaneously with the first moss series showed clear signs of contamination with a number of metals from atmospheric deposition. The approach described in this work could be advantageously used to study atmospheric deposition of heavy metals around iron smelters in Russia and elsewhere

  18. Patterns of insect communities along a stress gradient following decommissioning of a Cu-Ni smelter

    International Nuclear Information System (INIS)

    Babin-Fenske, Jennifer; Anand, Madhur

    2011-01-01

    The diversity, estimated richness and abundance of terrestrial insect communities were examined along a stress gradient of past pollution in the region of Sudbury, Ontario, Canada. This gradient represents the natural recovery and lingering effects of a decommissioned copper-nickel smelting complex. Ant genera and sixteen higher taxonomic groups (family and order) had the highest abundance at the sites with intermediate stress. Eight families increased in abundance with distance from the decommissioned source of pollution and eleven families decreased reflecting a complex response of diversity to pollution. Carabid beetles show an increase in diversity further from the smelter; however, examination of the species composition reveals a distinct carabid community closest to the smelter, emphasizing the unique habitat created by severe pollution. Although almost forty years since decomissioning of the smelter complex, the terrestrial insect community in the vicinity remains significantly impacted suggesting slow recovery. - Highlights: → Several taxonomic groups had highest abundance at intermediate stress. → Eight families increased in abundance with distance from the source of pollution. → Eleven families decreased in abundance with distance. → Species composition reveals a distinct carabid community closest to the smelter. → Terrestrial insect community still significantly impacted suggesting slow recovery. - Our study finds both unexpected and expected responses of insect communities to a landscape gradient of past pollution suggesting the emergence of novel ecosystems.

  19. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals

    NARCIS (Netherlands)

    Grift, B. van der; Griffioen, J.

    2008-01-01

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic

  20. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  1. Patterns of insect communities along a stress gradient following decommissioning of a Cu-Ni smelter

    Energy Technology Data Exchange (ETDEWEB)

    Babin-Fenske, Jennifer [Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada); Anand, Madhur, E-mail: manand@uoguelph.ca [School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2011-10-15

    The diversity, estimated richness and abundance of terrestrial insect communities were examined along a stress gradient of past pollution in the region of Sudbury, Ontario, Canada. This gradient represents the natural recovery and lingering effects of a decommissioned copper-nickel smelting complex. Ant genera and sixteen higher taxonomic groups (family and order) had the highest abundance at the sites with intermediate stress. Eight families increased in abundance with distance from the decommissioned source of pollution and eleven families decreased reflecting a complex response of diversity to pollution. Carabid beetles show an increase in diversity further from the smelter; however, examination of the species composition reveals a distinct carabid community closest to the smelter, emphasizing the unique habitat created by severe pollution. Although almost forty years since decomissioning of the smelter complex, the terrestrial insect community in the vicinity remains significantly impacted suggesting slow recovery. - Highlights: > Several taxonomic groups had highest abundance at intermediate stress. > Eight families increased in abundance with distance from the source of pollution. > Eleven families decreased in abundance with distance. > Species composition reveals a distinct carabid community closest to the smelter. > Terrestrial insect community still significantly impacted suggesting slow recovery. - Our study finds both unexpected and expected responses of insect communities to a landscape gradient of past pollution suggesting the emergence of novel ecosystems.

  2. Controls on Metal Leaching from Secondary Pb Smelter Air-Pollution-Control Residues

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Šebek, O.; Grygar, Tomáš; Klementová, Mariana; Bezdička, Petr

    2008-01-01

    Roč. 42, č. 21 (2008), s. 7878-7884 ISSN 0013-936X Institutional research plan: CEZ:AV0Z40320502 Keywords : lead smelter * waste incineration * soils Subject RIV: CA - Inorganic Chemistry Impact factor: 4.458, year: 2008

  3. Influence of smelter fumes on the growth of white pine in the Sudbury region

    Energy Technology Data Exchange (ETDEWEB)

    Linzon, S N

    1958-01-01

    An additional study was started in 1949 to determine the effects on neighboring white pine forests of sulfur fumes discharged from large smelters operated by two mining companies in the Sudbury district of Ontario. A number of sample timber areas, near to, farther removed, and remote from the sources of the fumes, were placed under observation. Approximately 7000 white pine trees in the vigorous age class of 50 to 90 years had been examined annually by 1954. Foliage on the white pine trees located less than 25 miles northeast of Sudbury showed more extensive injuries every year than foliage on trees located at greater distances from the smelters. Studies of diameter increment showed that there was a gradual decline in the annual growth of white pine in the areas near to the smelters, whereas a constant pattern was maintained in areas located farther from the sources of smoke. Further, in the areas close to the smelters, the volume of white pine lost through excessive tree mortality of all crown class sizes exceeded the volume added by the surviving trees. However, at distances beyond 25 to 30 miles northeast of Sudbury in the direction of the prevailing wind the condition of white pine improved remarkably. It is indicated that the combination of concentration frequency, and duration of atmospheric sulfur dioxide visitations has here declined to a threshold value for the inhibition of growth of white pine. 25 references, 25 figures, 23 tables.

  4. Socio-demographic characteristics of traditional gold smelters in Makassar, south Sulawesi, Indonesia

    Science.gov (United States)

    Habo Abbas, Hasriwiani; Sakakibara, Masayuki; Hakim Arma, Lukmanul; Hardi Yanti, Iva

    2017-06-01

    The traditional gold smelting in Makassar, South Sulawesi, Indonesia, is an informal work with the manufacture of gold jewelry as the core activity. Stages of the gold processing include panning, smelting, and refining with mercury. In the current study, we used a social demography analysis to classify the traditional gold smelter workers in this region. Data (e.g. sex, age, education level, time working, and income) were obtained from a questionnaire survey of 58 smelter workers in the Wajo and Tallo Sub-districts of Makassar. Results showed that 84.5% of the workers were males aged from 21 to 50 years with on the average 15 year of work. The gold smelter were last educated in elementary school (31.0%), junior high school (36.2%), and senior high school (27.6%) levels whereas 5.1% have no education. We found that the monthly income of an un-skilled worker was ∼Rp. 2 million (USD 147.0) whereas that of a skilled worker was between Rp. 2.5 million (USD 183.76) and Rp. 5 million (USD 367.51). An owner could earn over Rp. 5 million (USD 367.51) per month. The result suggested that the traditional gold smelting used rudimentary technique and attracted young people with a low education level. This business continues to exist because the worker earn sufficient income and may higher through mastering gold smelter proficiency.

  5. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.

    Science.gov (United States)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-11-30

    To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment

    Czech Academy of Sciences Publication Activity Database

    Jarošíková, A.; Ettler, V.; Mihaljevič, M.; Penížek, V.; Matoušek, Tomáš; Culka, A.; Drahota, P.

    2018-01-01

    Roč. 237, JUN (2018), s. 83-92 ISSN 0269-7491 Institutional support: RVO:68081715 Keywords : arsenic * smelter dust * soil Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 5.099, year: 2016

  7. Effective radium concentration in topsoils contaminated by lead and zinc smelters

    Energy Technology Data Exchange (ETDEWEB)

    Girault, Frédéric, E-mail: girault@ipgp.fr [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France. (France); Perrier, Frédéric; Poitou, Charles; Isambert, Aude [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France. (France); Théveniaut, Hervé; Laperche, Valérie [Bureau de Recherches Géologiques et Minières, Orléans, France. (France); Clozel-Leloup, Blandine [Bureau de Recherches Géologiques et Minières, Villeurbanne, France. (France); Douay, Francis [Laboratoire Génie Civil et géo Environnement, ISA Lille, Lille, France. (France)

    2016-10-01

    Trace elements (TE) are indicative of industrial pollution in soils, but geochemical methods are difficult to implement in contaminated sites with large numbers of samples. Therefore, measurement of soil magnetic susceptibility (MS) has been used to map TE pollutions, albeit with contrasted results in some cases. Effective radium concentration (EC{sub Ra}), product of radium concentration by the emanation factor, can be measured in a cost-effective manner in the laboratory, and could then provide a useful addition. We evaluate this possibility using 186 topsoils sampled over about 783 km{sup 2} around two former lead and zinc smelters in Northern France. The EC{sub Ra} values, obtained from 319 measurements, range from 0.70 ± 0.06 to 12.53 ± 0.49 Bq·kg{sup −1}, and are remarkably organized spatially, away from the smelters, in domains corresponding to geographical units. Lead-contaminated soils, with lead concentrations above 100 mg·kg{sup −1} < 3 km from the smelters, are characterized on average by larger peak EC{sub Ra} values and larger dispersion. At large scales, away from the smelters, spatial variations of EC{sub Ra} correlate well with spatial variations of MS, thus suggesting that, at distance larger than 5 km, variability of MS contains a significant natural component. Larger EC{sub Ra} values are correlated with larger fine fraction and, possibly, mercury concentration. While MS is enhanced in the vicinity of the smelters and is associated with the presence of soft ferrimagnetic minerals such as magnetite, it does not correlate systematically with metal concentrations. When multiple industrial and urban sources are present, EC{sub Ra} mapping, thus, can help in identifying at least part of the natural spatial variability of MS. More generally, this study shows that EC{sub Ra} mapping provides an independent and reliable assessment of the background spatial structure which underlies the structure of a given contamination. Furthermore, EC{sub Ra

  8. Effective radium concentration in topsoils contaminated by lead and zinc smelters

    International Nuclear Information System (INIS)

    Girault, Frédéric; Perrier, Frédéric; Poitou, Charles; Isambert, Aude; Théveniaut, Hervé; Laperche, Valérie; Clozel-Leloup, Blandine; Douay, Francis

    2016-01-01

    Trace elements (TE) are indicative of industrial pollution in soils, but geochemical methods are difficult to implement in contaminated sites with large numbers of samples. Therefore, measurement of soil magnetic susceptibility (MS) has been used to map TE pollutions, albeit with contrasted results in some cases. Effective radium concentration (EC_R_a), product of radium concentration by the emanation factor, can be measured in a cost-effective manner in the laboratory, and could then provide a useful addition. We evaluate this possibility using 186 topsoils sampled over about 783 km"2 around two former lead and zinc smelters in Northern France. The EC_R_a values, obtained from 319 measurements, range from 0.70 ± 0.06 to 12.53 ± 0.49 Bq·kg"−"1, and are remarkably organized spatially, away from the smelters, in domains corresponding to geographical units. Lead-contaminated soils, with lead concentrations above 100 mg·kg"−"1 < 3 km from the smelters, are characterized on average by larger peak EC_R_a values and larger dispersion. At large scales, away from the smelters, spatial variations of EC_R_a correlate well with spatial variations of MS, thus suggesting that, at distance larger than 5 km, variability of MS contains a significant natural component. Larger EC_R_a values are correlated with larger fine fraction and, possibly, mercury concentration. While MS is enhanced in the vicinity of the smelters and is associated with the presence of soft ferrimagnetic minerals such as magnetite, it does not correlate systematically with metal concentrations. When multiple industrial and urban sources are present, EC_R_a mapping, thus, can help in identifying at least part of the natural spatial variability of MS. More generally, this study shows that EC_R_a mapping provides an independent and reliable assessment of the background spatial structure which underlies the structure of a given contamination. Furthermore, EC_R_a may provide a novel index to identify soils

  9. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Johan, Zdenek; Kribek, Bohdan; Sebek, Ondrej; Mihaljevic, Martin

    2009-01-01

    Three types of smelting slags originating from historically different smelting technologies in the Tsumeb area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu-Pb smelter (1907-1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963-1970) and (iii) granulated Cu smelting slags (1980-2000). Bulk chemical analyses of slags were combined with detailed mineralogical investigation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97-18.4 wt.%), Cu (0.49-12.2 wt.%), Zn (2.82-12.09 wt.%), Cd (12-6940 mg/kg), As (930-75,870 mg/kg) and Sb (67-2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu-Fe and Cu-Cr oxides, delafossite-mcconnellite phases and Ca-Pb arsenates. The presence of arsenates indicates that these slags underwent long-term alteration. More recent slags are composed of high-temperature phases: Ca-Fe alumosilicates (olivine, melilite), Pb- and Zn-rich glass, spinel oxides and small sulphide/metallic inclusions embedded in glass. XRD and SEM/EDS were used to study secondary alteration products developed on the surface of slags exposed for decades to weathering on the dumps. Highly soluble complex Cu-Pb-(Ca) arsenates (bayldonite, lammerite, olivenite, lavendulan) associated with litharge and hydrocerussite were detected. To determine the mineralogical and geochemical parameters governing the release of inorganic contaminants from slags, two standardized short-term batch leaching tests (European norm EN 12457 and USEPA TCLP), coupled with speciation-solubility modelling using PHREEQC-2 were performed. Arsenic in the leachate exceeded the EU regulatory limit for hazardous waste materials (2.5 mg/L). The toxicity limits defined by USEPA for the TCLP test were exceeded for Cd, Pb and As. The PHREEQC-2 calculation predicted that

  10. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  11. Preliminary studies of airborne particulate emmisions from the Ampellum S.A. copper smelter, Zlatna, Romania

    Directory of Open Access Journals (Sweden)

    Ben J. Williamson

    2003-04-01

    Full Text Available Preliminary studies have been carried on the characterization of particulate emissions from the Ampellum S.A. copper smelter in the town of Zlatna, Romania. The particulates studied were collected on polycarbonate filters using air pump apparatus and on the surfaces of lichens. Mass of total suspended particulates (TSP and PM10 varied from 19 to 230 μg/m3 and 3 to 146 μg/m3, respectively (PM10/TSP = 0.14 to 1.0, depending on wind direction and proximity to the smelter. Particulates on collection filters from a site directly downwind from the smelter have a mean equivalent spherical diameter (ESD of 0.94 μm (s.d. 1.1 and are dominantly made up of material with the composition of anglesite (PbSO4. The remainder of the material is a heterogeneous mixture of silicates and Fe-, Pb- and Cu-bearing phases. Particulates > 5 μm ESD are rare on the TSP filters, mainly due to the restricted sampling durations possible with the equipment used (<3 hours. Particulates have therefore been studied in the lichen Acarospora smaragdula, which was growing on posts downwind from the smelter and which was found to contain high levels and a broader range of particulates compared with the filters (<5 to 100 μm in diameter. Larger particles include 20-30 μm diameter Fe-rich spherules, which occasionally have Pb- and S-rich encrustations on their surfaces. The nature and possible health effects of the particulates are discussed and recommendations made for future studies.

  12. Metal Pollution Around an Iron Smelter Complex in Northern Norway at Different Modes of Operation

    CERN Document Server

    Steinnes, E; Eidhammer-Sjobakk, T; Varskog, P

    2003-01-01

    The moss biomonitoring technique was employed to study the atmospheric deposition in and around the town of Mo i Rana, northern Norway, before and after closing an iron smelter and establishing alternative ferrous metal industries. Samples of Hylocomium splendens were collected from the same sites in 1989 and 1993. A combination of instrumental neutron activation analysis (INAA) and atomic absorption spectrometry was used to obtain data for 38 elements in these moss samples, and the analytical data were subjected to factor analysis. In general, the deposition was higher when the iron smelter was still in operation, in particular for Fe and for many elements normally associated with crustal matter. For Cr there was a substantially increased deposition due to the operation of a new ferrochrome smelter. Also for Ni and Au an increased deposition was observed, whereas for metals such as Mn, Co, Ag, Sb, and W there was no appreciable change. INAA proved to be a powerful tool for this kind of study. The regional di...

  13. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan.

    Science.gov (United States)

    Bhat, Nagesh; Jain, Sandeep; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan

    2015-10-01

    As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 - 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 - 1.5 ppm and 1.8 - 1.9 ppm respectively. The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter.

  14. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  15. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies

    International Nuclear Information System (INIS)

    Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, Conrad K.; Hao, J.M.

    2010-01-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t -1 of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting. - Modern scale production equipped with acid plant and Hg reclaiming tower will significantly reduce Hg emissions from zinc smelters in China.

  16. Catchment liming creates recolonization opportunity for sensitive invertebrates in a smelter impacted landscape

    Directory of Open Access Journals (Sweden)

    John M. Gunn

    2016-04-01

    Full Text Available The response of a sensitive indicator species to the effects of catchment liming was assessed in a lake severely impacted by atmospheric emissions from a metal smelter in Sudbury, Canada. The lake chemistry recovered following the closure of the local smelter and major reductions (approximately 95% in acid and metal emissions from other area smelters, leading to recolonization of the lake with fish and other biota. However, the littoral macrobenthos community remain severely impoverished. The catchment liming sustained improved stream water quality for 20 years after the initial aerial treatment and created a littoral zone hot spot for the recolonization of Hyalella azteca. Colonization at delta sites of untreated catchment drainage areas, in the same lake, were low and highly variable, and these sites appeared to be impacted from soil erosion and episodic release of acid and metals. This study demonstrated the need to both reduce air pollutants and to conduct land reclamation in severely damaged watersheds, before lake ecosystems themselves can be fully recovered.

  17. New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.

    Science.gov (United States)

    Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao

    2015-03-17

    The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.

  18. Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Arnaud R., E-mail: arnaud.schneider@univ-reims.fr [GEGENAA, EA 3795, Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 2 esplanade Roland Garros, 51100 Reims (France); Cancès, Benjamin; Ponthieu, Marie [GEGENAA, EA 3795, Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 2 esplanade Roland Garros, 51100 Reims (France); Sobanska, Sophie [Laboratoire de Spectrochimie IR et Raman, UMR-CNRS 8516, Bât. C5 Université de Lille I, 59655 Villeneuve d' Ascq Cedex (France); Benedetti, Marc F. [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154, CNRS, F-75005 Paris (France); Pourret, Olivier [HydrISE, Institut Polytechnique LaSalle Beauvais, FR-60000 Beauvais (France); Conreux, Alexandra; Calandra, Ivan; Martinet, Blandine; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice [GEGENAA, EA 3795, Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 2 esplanade Roland Garros, 51100 Reims (France)

    2016-10-15

    Smelting activities are one of the most common sources of trace elements in the environment. The aim of this study was to determine the lead distribution in upper horizons (0–5 and 5–10 cm) of acidic soils in the vicinity of a lead-acid battery recycling plant in northern France. The combination of chemical methods (sequential extractions), physical methods (Raman microspectroscopy and scanning electron microscopy with an energy dispersive spectrometer) and multi-surface complexation modelling enabled an assessment of the behaviour of Pb. Regardless of the studied soil, none of the Pb-bearing phases commonly identified in similarly polluted environments (e.g., anglesite) were observed. Lead was mainly associated with organic matter and manganese oxides. The association of Pb with these soil constituents can be interpreted as evidence of Pb redistribution in the studied soils following smelter particle deposition. - Highlights: • Lead behavior was studied in smelter impacted soils. • A combination of experimental methods and modelling was employed. • Pb was mainly associated with organic matter and to a lesser degree with Mn oxides. • Pb was redistributed in soils after smelter particle deposition.

  19. Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches

    International Nuclear Information System (INIS)

    Schneider, Arnaud R.; Cancès, Benjamin; Ponthieu, Marie; Sobanska, Sophie; Benedetti, Marc F.; Pourret, Olivier; Conreux, Alexandra; Calandra, Ivan; Martinet, Blandine; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice

    2016-01-01

    Smelting activities are one of the most common sources of trace elements in the environment. The aim of this study was to determine the lead distribution in upper horizons (0–5 and 5–10 cm) of acidic soils in the vicinity of a lead-acid battery recycling plant in northern France. The combination of chemical methods (sequential extractions), physical methods (Raman microspectroscopy and scanning electron microscopy with an energy dispersive spectrometer) and multi-surface complexation modelling enabled an assessment of the behaviour of Pb. Regardless of the studied soil, none of the Pb-bearing phases commonly identified in similarly polluted environments (e.g., anglesite) were observed. Lead was mainly associated with organic matter and manganese oxides. The association of Pb with these soil constituents can be interpreted as evidence of Pb redistribution in the studied soils following smelter particle deposition. - Highlights: • Lead behavior was studied in smelter impacted soils. • A combination of experimental methods and modelling was employed. • Pb was mainly associated with organic matter and to a lesser degree with Mn oxides. • Pb was redistributed in soils after smelter particle deposition.

  20. Tissue metal levels in Muskrat (Ondatra zibethica) collected near the Sudbury (Ontario) ore-smelters; prospects for biomonitoring marsh pollution

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.H

    2004-05-01

    An examination of tissue metal levels in Sudbury-area muskrat (Ondatra zibethica) revealed that animals collected in the vicinity of the local ore-smelters contained elevated burdens of Cd and Ni in their liver and kidneys. Respective tissue concentrations averaged 2-fold and 3- to 6-fold higher than background values and are believed to reflect accumulations resulting from food chain contamination in regional marshes, including that reportedly characterizing Typha latifolia stands--their primary food source--and adherent sediments which may be consumed inadvertently while feeding. No evidence of site-influence or enhanced tissue metal levels was seen for Cu, Pb or Zn. While Cd : Ni accumulations were positively correlated in both the liver (r=0.78) and the kidneys (r=0.65), between-tissue comparisons indicated that hepatic : renal burdens were significantly correlated (r=0.75) only in the case of Ni. With the exception of 30-35% lower hepatic Zn levels in females relative to males within the Sudbury population, tissue metal levels did not vary according to sex or age class at either site. Our findings substantiate the potential of muskrat to serve as useful bioindicators/monitors of metal pollution in semi-aquatic environments. - Muskrats appear to be useful bioindicators of metal pollution in semi-aquatic environments.

  1. Tissue metal levels in Muskrat (Ondatra zibethica) collected near the Sudbury (Ontario) ore-smelters; prospects for biomonitoring marsh pollution

    International Nuclear Information System (INIS)

    Parker, G.H.

    2004-01-01

    An examination of tissue metal levels in Sudbury-area muskrat (Ondatra zibethica) revealed that animals collected in the vicinity of the local ore-smelters contained elevated burdens of Cd and Ni in their liver and kidneys. Respective tissue concentrations averaged 2-fold and 3- to 6-fold higher than background values and are believed to reflect accumulations resulting from food chain contamination in regional marshes, including that reportedly characterizing Typha latifolia stands--their primary food source--and adherent sediments which may be consumed inadvertently while feeding. No evidence of site-influence or enhanced tissue metal levels was seen for Cu, Pb or Zn. While Cd : Ni accumulations were positively correlated in both the liver (r=0.78) and the kidneys (r=0.65), between-tissue comparisons indicated that hepatic : renal burdens were significantly correlated (r=0.75) only in the case of Ni. With the exception of 30-35% lower hepatic Zn levels in females relative to males within the Sudbury population, tissue metal levels did not vary according to sex or age class at either site. Our findings substantiate the potential of muskrat to serve as useful bioindicators/monitors of metal pollution in semi-aquatic environments. - Muskrats appear to be useful bioindicators of metal pollution in semi-aquatic environments

  2. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  3. Ammonia leaching of copper smelter dust and precipitation as copper sulphide; Lixiviacion amoniacal de polvos de fundicion de cobre y precipitacion como sulfuro de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.; Hevia, J. F.; Cifuentes, G.

    2009-07-01

    The effect of ammonia on the leaching of copper smelter dust and copper precipitation from these solutions as sulphide using sulfur and sulfur dioxide was studied. The precipitation was done in ammoniacal media because this solution produced more satisfactory results at room temperature that a sulphuric media. A solid was precipitated containing 60 % of copper of the dust smelter. The other waste generated contained around 80 % of the arsenic of the original copper smelter dust. Based on the preliminary results obtained in this work it will propose a procedure for the recovery of copper as sulphide from copper smelter dust with parallel confinement of arsenic. (Author) 14 refs.

  4. Performance of constructed evaporation ponds for disposal of smelter waste water: a case study at Portland Aluminum, Victoria, Australia.

    Science.gov (United States)

    Salzman, S A; Allinson, G; Stagnitti, F; Coates, M; Hill, R J

    2001-06-01

    The construction of evaporative ponds and wetlands for the disposal of waste water high in ionic concentrations is a waste disposal strategy currently considered by many industries. However, the design, construction and management of these ponds and wetlands are not straightforward as complex chemical interactions result in both spatial and temporal changes in water quality. The effects of evaporation and drainage on the water quality in two constructed ponds, an adjacent man-made wetland and local groundwater at Portland Aluminium were investigated. The minimum volume of water entering the ponds during the study period was 0.96 +/- 0.16 ML per month. The predicted theoretical evaporative capacity of the two ponds was calculated to be 0.30 +/- 0.07 ML per month. More water enters the ponds than it is theoretically possible to evaporate under the ambient weather conditions at Portland, yet the ponds do not overflow, suggesting percolation through the pond lining. No spatial differences in solute concentrations (fluoride, sulphate, bicarbonate, carbonate, sodium, potassium, calcium, and magnesium ions) were found within the waters of either pond, although temporal differences were apparent. The results support the conclusion that the ponds are not impermeable, and that much of the waste water entering the ponds is being lost through seepage. The impacts on local groundwater chemistry of this seepage are addressed. Significant correlations exist between solute presence within and between the ponds. wetland and groundwater. Fluoride and sulphate concentrations were significantly higher in pond waters throughout the duration of the experiment. Pond sediments revealed a high degree of spatial and temporal heterogeneity in the concentration of all monitored ions resulting from the chemical heterogeneity of the material making up the pond linings. Adsorption isotherms for fluoride indicate that the adsorption capacity of the pond linings remains high for this ion. Implications for the management of waste water by this strategy are discussed.

  5. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Sandstrom, Mary M.; Jorgensen, Betty S.; Mang, Joseph T.; Smith, Bettina L.; Son, Steven F.

    2004-01-01

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  6. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  7. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  8. Interpreting major industrial landscapes: Social follow-up on meanings, the case of two aluminium smelters, Alcan (Alma, Canada) and Pechiney (Dunkirk, France)

    International Nuclear Information System (INIS)

    Fortin, Marie-Jose; Gagnon, Christiane

    2006-01-01

    Landscape is becoming an object of growing social concern and, as such, an object of mediation between major industrial producers and local communities. The question of the capacity of environmental assessment to address this issue is thus raised. Until now, landscape studies have focused on visual aspects, although subjective dimensions such as perceptions and meanings have been recognised. The research in this article concerns the subjective dimensions, and is presented with a view to further the understanding of the process of the social interpretation of landscape as it relates to heavy industrial sites. Within a socioconstructivist perspective, two case studies (a longitudinal follow-up and an ex-post) of two aluminum smelters, one in Alma (Quebec, Canada) and the other in Dunkirk (France) were conducted. The results show that nearby residents' interpretations of landscape varied according to three sets of factors related to 1) the dynamics of regional development and the historical place of industry in the community, 2) the relationship between residents and the industry and local governance capacities, and 3) the social impacts experienced. To conclude, three ways of using qualitative methodologies for social and environmental follow-up in a socioconstructivist approach to landscape are proposed

  9. Impact of mercury mine and smelter St. Ana – Podljubelj on spatial distribution of chemical elements in soil

    Directory of Open Access Journals (Sweden)

    Tamara Teršič

    2005-06-01

    Full Text Available The objective of the research project was to establish the extension of Hg pollution as a consequence of mining and smelting activities in a narrow Alpine valley. The St. Ana mine was first exploited as early as in 1557 and was finally abandoned in 1902. The entire operating period yielded about 110.000 tons of ore, from which 360 tons of Hg was produced. By soil sampling it was established that on about 9 ha the Hg contents in soil exceed the Slovenian critical values for soil (10 mg/kg. The estimated mercury mean for the studied area is 1.3 mg/kg (0.17 – 718 mg/kg. The highest contents of mercury in soilswere found in the area of the mercury smelter.That is a consequence of former atmospheric emissions and technological losses. High values of Hg were found also in soil on the mine and smelter waste dump. The highest determined contents of Hg (108 mg/kg in this area are almost 7-times lower than thecontents of Hg in the area of the smelter. Mercury in soils generally decrease with depth and distance from the mine and smelter. Apart from the area around the former mine and smelter, mercury appear in higher concentrations also along the road that runs along thevalley, which is due to the use of Hg bearing mine tailings in road construction.

  10. Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China: Levels and contamination in topsoils

    International Nuclear Information System (INIS)

    Yin Xuebin; Yao Chunxia; Song Jing; Li Zhibo; Zhang Changbo; Qian Wei; Bi De; Li Chenxi; Teng Ying; Wu Longhua; Wan Hongdong; Luo Yongming

    2009-01-01

    In the present study, we aim to investigate the extent of soil contamination by Hg, particularly by anthropogenic Hg, and tentatively estimate the total Hg (Hg T ) accumulation in topsoils (0-15 cm) in Fuyang, Zhejiang Province-a secondary Cu smelter of China. The results show that the levels of soil Hg in the vicinity of the smelters have been substantially elevated following local smelting activities. The spatial distribution of soil Hg in this area reveals a rapid decrease as the distance from the smelter reaches 1.5 km, which is probably due to the quick deposition process of particulate Hg and reactive gaseous Hg emitted from the smelters. The total accumulation of Hg T in the topsoils of the study area of 10.9 km 2 is approximately 365-561 kg and of which 346-543 kg might be contributed by anthropogenic emission alone with an annual emission of 17.3-27.2 kg Hg to the topsoils. - Secondary copper smelters in Fuyang release a considerable amount of mercury into topsoils.

  11. Integrating science and business models of sustainability for environmentally-challenging industries such as secondary lead smelters: a systematic review and analysis of findings.

    Science.gov (United States)

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Wallace, S; Rinder, M

    2010-09-01

    Secondary lead smelters (SLS) represent an environmentally-challenging industry as they deal with toxic substances posing potential threats to both human and environmental health, consequently, they operate under strict government regulations. Such challenges have resulted in the significant reduction of SLS plants in the last three decades. In addition, the domestic recycling of lead has been on a steep decline in the past 10 years as the amount of lead recovered has remained virtually unchanged while consumption has increased. Therefore, one may wonder whether sustainable development can be achieved among SLS. The primary objective of this study was to determine whether a roadmap for sustainable development can be established for SLS. The following aims were established in support of the study objective: (1) to conduct a systematic review and an analysis of models of sustainable systems with a particular emphasis on SLS; (2) to document the challenges for the U.S. secondary lead smelting industry; and (3) to explore practices and concepts which act as vehicles for SLS on the road to sustainable development. An evidence-based methodology was adopted to achieve the study objective. A comprehensive electronic search was conducted to implement the aforementioned specific aims. Inclusion criteria were established to filter out irrelevant scientific papers and reports. The relevant articles were closely scrutinized and appraised to extract the required information and data for the possible development of a sustainable roadmap. The search process yielded a number of research articles which were utilized in the systematic review. Two types of models emerged: management/business and science/mathematical models. Although the management/business models explored actions to achieve sustainable growth in the industrial enterprise, science/mathematical models attempted to explain the sustainable behaviors and properties aiming at predominantly ecosystem management. As such

  12. Strategies for implementing zero discharge in an industrial smelter : 1. Managing fluroide in groundwater

    Science.gov (United States)

    Stagnitti, F.; Salzman, S.; Thwaites, L.; Allinson, G.; Le Blanc, M.; Hill, J.; Doerr, S.; de Rooij, G.

    2003-04-01

    The Portland Aluminium smelter produces approximately 75 ML of process wastewater each year. This is combined with storm water runoff from the site to give an annual production of 715 ML. In common with many other smelters, this wastewater stream is currently discharged to the ocean. However, although the quality of the water Portland Aluminium discharges currently meets all Australian Environmental Protection Agency license requirements, this mode of release is unlikely to be acceptable in the near future, and alternative disposal options for the water are required. The Portland smelter has developed strategies which will enable it to achieve zero-discharge within 5 years. These strategies include separating process water from storm water, recycling storm water, construction of evaporation ponds to receive process water, irrigation of process water and storm water on lands within the site and maintenance of important wetland functions. The poster presents a summary of the management strategies currently being trialed and in particular focuses on modeling the spatial and temporal variations of fluoride found in the shallow groundwater and the implications of achieving zero-discharge. The poster also discusses the possible impacts on the distribution of fluoride and other solutes in the vadose zone by the irrigation of treated process water on blue-gum plantations. Computer simulations indicate that irrigation of process water (either treated or untreated) on the land poses no significant long-term threat to regional or surficial groundwater. However the impacts of increased solute transport through the vadose zone on changes in soil structure and nutrition require further investigation.

  13. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties

    International Nuclear Information System (INIS)

    Klumpp, Andreas; Hintemann, Therese; Santana Lima, Josanidia; Kandeler, Ellen

    2003-01-01

    A field study near the copper smelter of a large industrial complex examined air pollution effects on vegetation and soil parameters in Camacari (northeast Brazil). Close to the smelter, soil pH-value was lower and total acidity as well as organic carbon contents were higher compared with a site far from the source and two reference sites. The acidification of top soil particularly and the drastically enhanced plant-available copper concentrations were caused by atmospheric deposition. High sulphur and copper deposition significantly reduced microbial biomass and altered functional diversity of soil microorganisms (arylsulphatase and xylanase). Large accumulations of sulphur, arsenic and copper were detected in mango leaves (Mangifera indica) growing downwind from the smelter suggesting potential food chain-mediated risk. - Atmospheric emissions in northeast Brazil have transformed soil pH, accumulated in soil and plants as sulphur and heavy metals, and affected the functional diversity of soil microorganisms

  14. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, Andreas; Hintemann, Therese; Santana Lima, Josanidia; Kandeler, Ellen

    2003-12-01

    A field study near the copper smelter of a large industrial complex examined air pollution effects on vegetation and soil parameters in Camacari (northeast Brazil). Close to the smelter, soil pH-value was lower and total acidity as well as organic carbon contents were higher compared with a site far from the source and two reference sites. The acidification of top soil particularly and the drastically enhanced plant-available copper concentrations were caused by atmospheric deposition. High sulphur and copper deposition significantly reduced microbial biomass and altered functional diversity of soil microorganisms (arylsulphatase and xylanase). Large accumulations of sulphur, arsenic and copper were detected in mango leaves (Mangifera indica) growing downwind from the smelter suggesting potential food chain-mediated risk. - Atmospheric emissions in northeast Brazil have transformed soil pH, accumulated in soil and plants as sulphur and heavy metals, and affected the functional diversity of soil microorganisms.

  15. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  16. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  17. The environmental rules of economic development: Governing air pollution from smelters in Chuquicamata and La Oroya

    OpenAIRE

    Orihuela, José Carlos

    2015-01-01

    Why and how do societies transform the environmental rules of economic development, or fail to do so? This article compares the experiences of Chile and Peru in the regulation of smelting activities between 1990 and 2010. Air pollution from smelters in  Chuquicamata  and  La Oroya, each emblematic of the two countries’ mining industries, did not give rise to nationally destabilising protest. Nevertheless, despite the absence of pressing discontent with pollution, the environmental rules for m...

  18. Effects of air pollution on landscape and land-use around Norwegian aluminium smelters

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, O L

    1975-01-01

    Investigations around three aluminium smelters in Norway revealed that air pollution emanating from the works was affecting landscape and land-use for a distance of several kilometers. A zonal pattern of damage to the total flora is described in sufficient detail to act as a field guide for the recognition of this type of fume damage. Reasons for believing the observed effects to be due to fluorides are given and the visual and ecological consequences discussed. It is important that when expansion of the aluminium producing industry occurs this is undertaken in full realization of the possible consequences.

  19. The structure of spruce-fir tree stands mortality under impact of the Middle Ural copper smelter emissions

    Directory of Open Access Journals (Sweden)

    I. E. Bergman

    2015-04-01

    Full Text Available The influence of industrial pollution on mortality values (dead fallen wood and dead standing trees and its distribution by degrees of decomposition were investigated in spruce-fir forest stands in the vicinity of the Middle Ural copper smelter (the city of Revda, Sverdlovsk region. The total mortality and mortality in each size category did not depend on the distance to the source of pollution. At the same time, the amount of dead fallen wood was significantly greater (1.9 times in the polluted area (2 and 4 km from the smelter as compared with the background territory (30 km from the smelter. Mortality proportion out of the total number of the trees (both live and dead did not differ significantly between the sites, although this parameter tended to increase nearer the smelter. The distribution of mortality by size categories revealed significant differences between background territory and site with average level of contamination, as well as background territory and highly contaminated site. Observed differences are associated with an increased proportion of lesser mortality near the smelter (by 15 % and 12 % as compared with areas of background and middle levels of contamination, respectively, as well as because of double-declining of medium- and large-sized mortality near the smelter. The distribution of the living tree stands by size categories also has a connection with level of contamination. The average diameters of the living tree stand and the elements of coarse woody debris (dead fallen wood and dead standing trees do not differ significantly between sites with different levels of contamination. For the small-sized dead fallen wood, the proportion of weakly decomposed stems increased with the level of pollution, while proportion of strongly decomposed stems decreased. The distribution of medium- and large-sized dead fallen wood on the stages of decomposition does not vary between sites with different levels of pollution.

  20. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    totaling 1.549 million lbs. for only thirteen of the twenty three primary smelters then in operation in the US. The research work described in the body of this report (the doctoral dissertation of Dr. Autumn M. Fjeld) had as its objective the improvement of gas fluxing technology to reduce emissions while still maintaining fluxing unit metal throughput. A second objective was a better understanding of the splashing and droplet emission that occurs during fluxing at high gas throughput rates. In the extreme such droplets can form undesired accretions on the walls and gas exit lines of the fluxing unit. Consequently, the productivity of a fluxing unit is sometimes limited by the need to avoid such spraying of droplets produced as gas bubbles break at the metal surface. The approach used was a combination of experimental work in laboratories at UC Berkeley and at the Alcoa Technical Center. The experimental work was mostly on a bubble probe that could be used to determine the extent of dispersion of gas bubbles in the fluxing unit (a parameter affecting the utilization of the injected chlorine). Additionally a high speed digital movie camera was used to study droplet formation due to gas bubbles bursting at the surface of a low melting point alloy. The experimental work was supported by mathematical modeling. In particular, two FLUENT? base mathematical models were developed to compute the metal flow and distribution of the gas within a fluxing unit. Results from these models were then used in a third model to compute emissions and the progress of impurity removal as a function of parameters such as rotor speed. The project was successful in demonstrating that the bubble probe could detect bubbles in a gas fluxing unit at the Alcoa technical Center outside Pittsburgh, PA. This unit is a commercial sized one and the probe, with its associated electronics, was subjected to the hostile molten aluminum, electrical noise etc. Despite this the probes were, on several occasions

  1. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  2. Heavy metal content of lichens in relation to distance from a nickel smelter in Sudbury, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Nieboer, E; Ahmed, H M; Puckett, K J; Richardson, D H.S.

    1972-01-01

    The Sudbury region of Ontario has large deposits of nickel, iron, and copper, and thus a number of smelting plants which produce sulfur dioxide and heavy metal pollution. Since lichens are good indicators of SO/sub 2/ pollution levels, the pattern of heavy metal content in lichen species in the area of a copper smelter in Sudbury was correlated with distance from the smelter to ascertain whether lichens might also be good indicators of the amount of heavy metal fallout. The lichens were analyzed qualitatively and quantitatively. All seven species of lichens contained copper, iron, zinc, nickel, manganese, and lead. Cadmium and cobalt were detected in two species. Neither gold nor silver could be identified in lichen material with the tests used. A pollution model was developed and compared to field results. The simple dilution of the stack effluent was consistent with the fact that the lichen metal content was related to the reciprocal of the distance from the pollution source. The lichens from the area could tolerate simultaneously high concentrations of several heavy metals that are known to be toxic to other plants. The mechanism of metal uptake was not clearly established. The study showed that lichens and other epiphytes are potentially the most useful indicators of heavy metal fallout around industrial plants.

  3. Environmental impact of active and abandoned mines and metal smelters in Slovenia

    Directory of Open Access Journals (Sweden)

    Tomaž Budkovič

    2003-06-01

    Full Text Available Slovenia has long been known for its numerous mines and ore processing. From the times of the Roman Empire to now, 49 mines and open pits were opened, four of them were large (Idrija, Mežica – Topla, Litija and Žirovski vrh. There were also 25 oreprocessing plants and smelters, which were operating mostly in the vicinity of larger mines (Idrija, Žerjav, Celje. Due to the lack of written sources, we probably haven succeeded in making a complete list of them. There were 33 iron works operating in the vicinity ofmines and open pits, three large ones have further developed and are still operating (Jesenice, Ravne na Koroškem and Štore. As the ore processing capacities have far exceeded the capacities of the Slovenian mining, ore has long been imported and only processed in Slovenia. On the basis of the results of our investigations in the vicinity of larger mines and smelters we estimated that in Slovenia the areas in which critical limit for heavy metal content is exceeded sums up to about 80 km2.

  4. Treatment of metallurgical wastes : recovery of metal values from smelter slags by pressure oxidative leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Perederiy, I.; Papangelakis, V.G. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    2008-07-01

    Vast quantities of slag are produced and dumped as waste by-products during the production of base metals by smelting operations. These slags contain large amounts of valuable metals which lead to a decrease in metal yield and, combined with the entrapped sulphur, pose a danger to the environment. The dissolution of fayalite is important for the selective recovery of valuable metals and the cleanup of slags in high pressure oxidative leaching. The nature of base metals and iron in solidified slag must be investigated in order to understand the mechanism of the process. This paper discussed the application of powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) for the characterization of a smelter slag microstructure. The study used leaching tests with the same smelter slag to measure and monitor the results of leaching, including metal extraction levels, the extent of iron dissolution as well as impurity contents. The paper provided information on the experiment with particular reference to slag leaching, chemical analysis, and characterization. It was concluded that slag consists of several solid phases with base metal sulfide and oxide droplets entrapped in the fayalite matrix or silica regions. Therefore, nickel, copper, cobalt, and zinc need to be exposed either chemically or mechanically to promote their recovery. 21 refs., 4 tabs., 5 figs.

  5. Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Stafilov, Trajce; Sajn, Robert; Pancevski, Zlatko; Boev, Blazo; Frontasyeva, Marina V.; Strelkova, Lyudmila P.

    2010-01-01

    The results of a first systematic study of spatial distribution of different elements in surface soil over the Veles region (50 km 2 ) known for its lead and zinc industrial activity in the recent past are reported. A total of 201 soil samples were collected according to a dense net in urban area and less dense net in rural area. The total of 42 elements were analyzed by epithermal neutron activation analysis (ENAA) and by atomic absorption spectrometry (AAS). The content of elements such as As, Au, Cd, Cu, Hg, In, Pb, Sb, Se, Zn in soil samples around the lead and zinc smelter and in the adjacent part of the town of Veles has appeared to be much higher than in those collected in the surrounding areas due to the pollution from the plant. Thus, the content of Cd (three times); Pb and Zn (two times) is even higher than the corresponding intervention (critical) values according to the Dutch standards. The results obtained by two complementary analytical techniques, AAS and ENAA, are discussed in terms of multivariate statistics. GIS technology was applied to depict the areas most affected by contamination from the lead and zinc smelter.

  6. Lead isotopes in soils near five historic American lead smelters and refineries

    International Nuclear Information System (INIS)

    Rabinowitz, Michael B.

    2005-01-01

    This survey of soil lead in the vicinity of old industrial sites examines how the stable isotope patterns vary among the sites according to the sources of the lead ore processed at each site. Lead smelters and refineries, which closed down decades ago, are the basis of this investigation. Samples were taken from near five old factory sites in Collinsville and Alton (Illinois), Ponderay (Idaho), East Chicago (Indiana) and Omaha (Nebraska). Historical records were searched for accounts of the sources of the lead. Lead concentrations were measured by atomic absorption flame spectrophotometry, and stable isotopic analysis was done by plasma ionization mass spectrometry. At every site visited, remnants of the old factories, in terms of soil lead pollution, could be found. In spite of potential complications of varying smelter feedstock sourced from mines of different geological age, it was possible to match the isotopic patterns in the soils with the documented sources of the ores. The Collinsville and Alton sites resembled Missouri lead. The Ponderay value was higher than major Bunker Hill, Idaho deposits, but closer to the minor, nearby Oreille County, Washington ores. Mostly Utah ore was used in East Chicago. The Omaha soil reflects lead from Mexico, Colorado and Montana

  7. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  8. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  9. Influences of smelter fumes upon the chemical composition of lake waters near Sudbury, Ontario, and upon the surrounding vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, E; Gordon, A G

    1960-01-01

    Analyses for sulphate, calcium, and pH have been made on surface waters from 102 lakes and ponds in the Sudbury metal-smelting district, and data are presented for 35 of these. Sulphur pollution is frequently high within about 5 miles of the three smelters, many ponds exhibiting more than three times the sulphate concentration normal for this area, and three waters more than 10 times this level. Outside about 15 miles distance the influence of smelter pollution upon sulphate concentrations in surface waters is negligible. As expected, many of the most polluted waters are strongly acid, with pH values going as low as 3.3. Sulphuric acid from air pollution has also led to increased weathering of calcium from soils and rocks, so that this ion tends to rise in concentration not only in waters above pH 6 (as expected) but also in those below pH 5. Damage to terrestrial vegetation is frequently marked within about 5 miles of the smelters, while it is seldom obvious to the untrained eye beyond this distance. Severe damage occurs chiefly within about 2 miles of the smelters.

  10. Mercury deposition/accumulation rates in the vicinity of a lead smelter as recorded by a peat deposit

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Navrátil, Tomáš; Mihaljevič, M.; Rohovec, Jan; Zuna, M.; Šebek, O.; Strnad, L.; Hojdová, Maria

    2008-01-01

    Roč. 42, č. 24 (2008), s. 5968-5977 ISSN 1352-2310 R&D Projects: GA ČR GP526/07/P170 Institutional research plan: CEZ:AV0Z30130516 Keywords : mercury * deposition * Pb Smelter, * peat * historical record Subject RIV: DD - Geochemistry Impact factor: 2.890, year: 2008

  11. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China.

    Science.gov (United States)

    Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang

    2017-05-01

    A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Detection and removal of fluorine in the waste gases of a steel smelter and measuring air quality in its surroundings

    Energy Technology Data Exchange (ETDEWEB)

    Graue, G; Nagel, H

    1968-01-01

    Plant damage in the Duisburg area was attributed to the action of fluoride supposedly originating in industrial waste gases, particularly of steel smelters. Air quality measurements were taken near a large steel smelter for a period of three years. After eliminating errors the total concentration of fluoride in the course of 3 years was established as between 2 and 6 mg/m/sup 2/ per day. Clearly, no free fluorine is emitted by steel smelters, although gaseous fluoride compounds can occur. Downstream from metallurgical furnaces, particularly where brown smoke is emitted, this fluoride is almost completely adsorbed by the dust. Ores and other raw materials in steel smelters are liable to contain fluorides, usually in the form of fluorite. Only a small proportion of this is liberated on the sintering band. However, since the sintering waste gases are acid, less fluoride is adsorbed by dust at this point and separated during dust collection. The use of desulfurization units downstream of the sintering bands could solve this problem. If, for the time being, nothing is done in this direction, it is because the fluoride contents of these gases do not play a significant role, due to the height of the stacks in use. This is supported by the results of extensive air purity measurements in the Duisburg region, in which fluoride levels between 1 and 3 ..mu..g were found per m/sup 3/ STP of air.

  13. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China.

    Science.gov (United States)

    Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai

    2015-03-01

    Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability

    International Nuclear Information System (INIS)

    Morrison, Anthony L.; Swierczek, Zofia; Gulson, Brian L.

    2016-01-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6–22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN"®) to “map” the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (−3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. - Highlights: • QEMSCAN"® allowed determination of access to infiltrating fluids to Pb in smelter slags. • Pb and associated

  15. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  16. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  17. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  18. 76 FR 52604 - Approval and Promulgation of Implementation Plans; State of Kansas Regional Haze State...

    Science.gov (United States)

    2011-08-23

    ... smelters, (6) Iron and steel mill plants, (7) Primary aluminum ore reduction plants, (8) Primary copper...) Hydrofluoric, sulfuric, and nitric acid plants, (11) Petroleum refineries, (12) Lime plants, (13) Phosphate...

  19. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  20. Multiple causes of anaemia amongst children living near a lead smelter in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F M; Barreto, M L; Silvany-Neto, A M; Waldron, H A; Tavares, T M

    1984-04-05

    A prevalence study of anaemia was carried out amongst children, aged one to nine years, living near a lead smelter in Santo Amaro City, Northeast Brazil. It was found that the variation in haemoglobin levels was significantly associated with malnutrition and with the interaction between malnutrition and iron deficiency, but not with lead poisoning, iron deficiency, or hookworm infection, having allowed for the effects of age, area of residence, family per capita income and race. The effect of the interaction between malnutrition and iron deficiency on haemoglobin levels was most prominent amongst children aged one year and amongst those living in the most deprived area. The lack of demonstrable interaction between lead poisoning and iron deficiency in the causation of anaemia amongst these children is discussed.

  1. Plant reactions as indicators of air pollution in the vicinity of a copper smelter

    Directory of Open Access Journals (Sweden)

    Jerzy Fabiszewski

    2014-01-01

    Full Text Available Several higher plant species and epiphytic lichen Hypogymnia physodes (L. Nyl. were examined in the vicinity of a copper smelter. The investigations included field experiments. Ecological surveys of some biotests and bioreactions using exposure of higher plants and transplanted lichens were critically appraised. Such basic processes of plants as photosynthesis and respiration, as well as the quantitative composition of chlorophyll pigments were used as biotests. The results indicate that the photosynthesis intensity is the most useful measure for the estimation of the effect of both heavy metal and SO2 pollutants. The degrees of chlorophyll degradation were in keeping with visual symptoms of injuries. For the ecological monitoring the measurement of respiration intensity, especially in lichens is not recommended. All applied biotests are presented in maps illustrating the degree of degradation of the area examined.

  2. Arsenic accumulation in people working with and living near a gold smelter

    International Nuclear Information System (INIS)

    Jervis, R.E.; Tiefenbach, B.; Toronto Univ., Ontario

    1979-01-01

    The processing of arsenic-containing ores for the recovery of metals such as gold, copper or lead can cause both an occupational health hazard to smelter workers and an environmental health problem to persons living downwind from the refineries. The study reported is a follow-up to preliminary investigations of possible arsenic ingestion by native children living near a gold refinery at Yellowknife, N.W.T., Canada and of a few mine-mill workers. Instrumental neutron activation of lake water and melted snow used as drinking water as well as of scalp hair gave evidence of appreciable intake of arsenic and some mercury. A further set of 67 hair samples was obtained from most of the smelter workers and from children in a native settlement who were considered most vulnerable, augmented by a set of 26 control samples from steel workers and children living in a comparable (but arsenic-free) northern area about 1000 km distance at Whitehorse, Yukon. Hair arsenic levels were consistently elevated above the controls, ranging to 280 ppm in one worker. The water supplies ranged up to 3 ppm, well above the 0.05 ppm MPC for drinking water. A larger epidemiological study of the area and of Hay River, N.W.T. controls, done in association with electromyography, was just completed and involved a further 414 children and workers from Yellowknife and 105 from the control area. The mean hair arsenic of 6.7 ppm for the former was quite different from a result of 0.33 ppm for the Hay River group, and 33% of the Yellowknife subjects were elevated above 1 ppm but none of the controls were above this concentration. Four workers were above 100 ppm, ranging as high as 620 ppm hair arsenic

  3. Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Barriga, F.; Santos, M.A.; Mejia, J.J.; Batres, L.; Yanez, L.; Carrizales, L.; Vera, E.; del Razo, L.M.; Cebrian, M.E. (Universidad Autonoma de San Luis Potosi (Mexico))

    1993-08-01

    The main purpose of this study was to assess environmental contamination by arsenic and cadmium in a smelter community (San Luis Potosi City, Mexico) and its possible contribution to an increased body burden of these elements in children. Arsenic and cadmium were found in the environment (air, soil, and household dust, and tap water) as well as in the urine and hair from children. The study was undertaken in three zones: Morales, an urban area close to the smelter complex; Graciano, an urban area 7 km away from the complex; and Mexquitic, a small rural town 25 km away. The environmental study showed that Morales is the most contaminated of the zones studied. The range of arsenic levels in soil (117-1396 ppm), dust (515-2625 ppm), and air (0.13-1.45 micrograms/m3) in the exposed area (Morales) was higher than those in the control areas. Cadmium concentrations were also higher in Morales. Estimates of the arsenic ingestion rate in Morales (1.0-19.8 micrograms/kg/day) were equal to or higher than the reference dose of 1 microgram/kg/day calculated by the Environmental Protection Agency. The range of arsenic levels in urine (69-594 micrograms/g creatinine) and hair (1.4-57.3 micrograms/g) and that of cadmium in hair (0.25-3.5 micrograms/g) indicated that environmental exposure has resulted in an increased body burden of these elements in children, suggesting that children living in Morales are at high risk of suffering adverse health effects if exposure continues.

  4. The impact of a copper smelter on adjacent soil zinc and cadmium fractions and soil organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ling; Wu Longhua; Luo Yongming [Key Lab. of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, NJ (China); Zhang Changbo [Shanghai Academy of Environmental Sciences, SH (China); Jiang Yugen; Qiu Xiya [Soils and Fertilisers Div., Fuyang City Agricultural Bureau, Hangzhou, ZJ (China)

    2010-07-15

    Purpose: We investigated the chemical fractions of Zn, Cd and Cu in soils collected from positions at different distances from a copper smelter and studied the relationships between distribution patterns of Zn, Cd and Cu, fractions and soil organic carbon (SOC), especially ''black carbon'' (BC), in contaminated soils. The relationships between soil particle size and concentrations of Zn and Cd in contaminated soil were also examined. Materials and methods: Soil samples were collected from field sites at different distances from the copper smelter, air-dried and passed through 0.25-mm and 0.149-mm nylon mesh sieves. The SOC and BC were determined. Aqua regia and sequentially extracted Zn, Cd and Cu fractions in soil and the different sizes of soil particles, and metal concentrations (Zn, Cd and Cu) in BC were also determined. Results and discussion: The soils were heavily contaminated by fly ash from the copper smelter. Concentrations of Zn, Cd and Cu in soil and SOC decreased with increasing distance from the smelter. Concentrations of Zn and Cd in the surface soil (0-15 cm) decreased from 27,017 to 892 mg kg{sup -1} and from 18.7 to 1.04 mg kg{sup -1}, respectively. Soil BC and concentrations of Zn, Cd and Cu in the BC fraction showed significant and positive relationships with the corresponding aqua regia metal concentrations in soil. Soil Zn and Cd occurred predominantly in the exchangeable and reducible fractions, but residual and oxidisable fractions of Cu that were not considered mobile or bioavailable were predominant (>60%). Concentrations of Zn and Cd in the soil particle size fractions tended to increase with decreasing particle size. Conclusions: The Cd and Zn and BC were all derived from the fly ash of the smelter. Concentrations of Zn and Cd and BC in the soil decreased significantly with increasing distance from the smelter. Zinc and Cd in contaminated soils increased as particle size decreased, and were mainly in highly available

  5. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  6. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  7. Heavy metal tolerance in Agropyron repens (L. P. Bauv. populations from the Legnica copper smelter area, Lower Silesia

    Directory of Open Access Journals (Sweden)

    Teresa Brej

    2014-01-01

    Full Text Available The copper smelter "Legnica" is one of the oldest plants in Lower Silesia. Among the few weed species spontaneously migrating to the area around the emitter there is couch grass (Agropyron repens (L. P. Bauv.. The purpose of this study was to analyse whether the local couch grass populations, growing at various distances from the smelter, differ in tolerance to heavy metals occurring in this area. The populations were tested for tolerance to five metals (Cu, Zn, Pb, Cd, Ni using the root elongation method. The highest tolerance to Pb developed in two populations localized nearest the smelter. Similarly, all populations of couch grass from the vicinity of the smelter show a high tolerance to copper, particularly the plants from the most contaminated site. The IT for the latter population is almost 1509r, even at the highest dose of Cu. For Zn a nearing IT as for Cu was obtained. Comparing the shape of IT curves for Cd, special emphasis is put on the fact that a fixed tolerance to cadmium occurs only in the population localized closest to the emitter. The analysis of Ni-tolerance curves, of which the content in local soil is minimal, does not confirm the thesis on possibility of development of co-tolerance in the surveyed populations. It appeared that stress conditions existing near the smelter do not inhibit seed production in couch grass, but prevent a successful course of their germination on polluted soil. The improvement of soil even by 50% (addition of unpolluted soil does not improve the poor process of germination in couch grass growing nearest to the smelter. Of importance is the fact that the highest number of seeds germinated on their own, polluted soil. The need of metals' content for plant germination in populations most distant from the smelter is evidenced by an almost 30% reduction of germination ability of local seeds after addition of unpolluted soil. Another significant observation was the fact that, in spite of a poor

  8. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead–zinc smelter

    Science.gov (United States)

    Garcia-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Silbergeld, Ellen K.; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acién, Ana; Guallar, Eliseo

    2016-01-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world’s fourth largest lead–zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12–15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6–14.7 µg/dl) and urine cadmium (0.18–1.14 µg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28–0.93 µg/g creatinine) and uranium (0.07–0.13 µg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods. PMID:24549228

  9. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  10. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  11. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  12. Effects of emission reductions from the smelters in Sudbury on recovery of lakes within the metal deposition zone

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.; Heneberry, J.; Clark, M.; Malette, M.; Gunn, J. [Laurentian Univ., Sudbury, ON (Canada) Dept. of Biology

    1999-07-01

    Recent trends are examined in the chemistry of Sudbury lakes for evidence of further chemical recovery, as well as some of the biological characteristics of recovering Sudbury lakes. Preliminary results are provided from studies investigating physical, chemical and biological factors that may influence the lake recovery process with a focus on the lakes close to Sudbury that were historically the most severely affected. Smelter emission reductions in the Sudbury area have led to substantial changes in the water quality of area lakes, and decreases in acidity, sulfate, and copper and nickel concentrations followed the substantial decreases in emissions during the 1970s and similar trends are continuing after the implementation of large additional smelter emission reductions in the 1990s. Some of the most highly affected lakes close to the Sudbury smelters have showed very dramatic reductions in acidity and metal concentrations during the 1990s. Evaluation of the direct effects of the recent emissions reductions is confounded by the potential continuing effects of previous emission reductions and the effects of weather variations on chemistry time trends in Sudbury lakes. Continued monitoring of Sudbury lakes is essential to evaluate the ultimate effect of emission reduction programs, to develop an understanding of the recovery process, and to determine the need for any additional emission reduction requirements. 38 refs., 7 figs.

  13. Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia.

    Science.gov (United States)

    Williamson, B J; Udachin, V; Purvis, O W; Spiro, B; Cressey, G; Jones, G C

    2004-11-01

    Airborne total suspended particulates (TSP), dusts from smelter blast furnace and converter stacks, and filtrates of snow melt waters have been characterised in the Cu smelter and former mining town of Karabash, Russia. TSP was collected at sites up- and downwind of the smelter and large waste and tailings dumps (Oct. 2000 and July 2001). Methods for particle size, mineralogical and elemental determinations have been tested and described, and a new PSD-MicroSOURCE XRD technique developed for the mineralogical analysis of microsamples on filter substrates. TSP in downwind samples has a mean equivalent spherical diameter of 0.5 microm (s.d. = 0.2) and was found to be 100% respirable. The main element of human health/environmental concern, above Russian maximum permitted levels (1 microg m(-3), average over any time period), was Pb which was measured at 16-30 microg m(-3) in downwind samples. Individual particulates mainly consisted of complex mixtures of anglesite (PbSO4), Zn2SnO4 and poorly ordered Zn sulphates. From experimental and theoretical considerations, a high proportion of contained Pb, Zn, Cd and As in this material is considered to be in a readily bioavailable form. Chemical and mineralogical differences between the TSP, stack dusts and snow samples are discussed, as well as the implications for human and regional environmental health.

  14. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Jeffrey R. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)]. E-mail: j.bacon@macaulay.ac.uk; Dinev, Nikolai S. [N Poushkarov Institute of Soil Science and Agroecology, Sofia (Bulgaria)

    2005-03-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg{sup -1}, respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg{sup -1}, respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for {sup 206}Pb/{sup 207}Pb), the samples could be differentiated into three distinct groups: ores ({sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead.

  15. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China

    International Nuclear Information System (INIS)

    Cai Qiu; Long Meili; Zhu Ming; Zhou Qingzhen; Zhang Ling; Liu Jie

    2009-01-01

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. - Cd and Pb from lead-zinc smelters contaminate the environment and accumulate in bovine tissues.

  16. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    International Nuclear Information System (INIS)

    Bacon, Jeffrey R.; Dinev, Nikolai S.

    2005-01-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg -1 , respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg -1 , respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for 206 Pb/ 207 Pb), the samples could be differentiated into three distinct groups: ores ( 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead

  17. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  18. Fluxless aluminum brazing

    Science.gov (United States)

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  19. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  20. Aluminum concentration in hydrangeas

    International Nuclear Information System (INIS)

    Yanagawa, M.; Haruyama, Y.; Saito, M.

    2008-01-01

    We have been trying to measure concentration of aluminum in Ajisai, Hydrangea macrophylla for these days. But due to bad luck, we have encountered detector trouble for two years in a low. Thus, we have few data to analyze and obtained quite limited results. (author)

  1. Composition and fate of mine- and smelter-derived particulates in soils from humid subtropical and semiarid areas

    Science.gov (United States)

    Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku

    2017-04-01

    Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science

  2. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    International Nuclear Information System (INIS)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-01-01

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  3. Comparison of two indices of exposure to polycyclic aromatic hydrocarbons in a retrospective aluminium smelter cohort

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, M.C.; Demers, P.A.; Spinelli, J.J.; Lorenzi, M.F.; Le, N.D. [University of British Columbia, Vancouver, BC (Canada)

    2007-04-15

    The association between coal tar-derived substances, a complex mixture of polycyclic aromatic hydrocarbons, and cancer is well established. However, the specific aetiological agents are unknown. The paper compares the dos-response relationships for two common measures of coal tar-derived substances, benzene-soluble material (BSM) and benzo (a) pyrene (BaP), and to evaluate which among these is more strongly related to the health outcomes. The study population consisted of 6423 men with {gt} 3 years of work experience at an aluminium smelter (1954 - 97). Three health outcomes identified from national mortality and cancer databases were evaluated: incidence of bladder cancer (n = 90), incidence of lung cancer (n = 147) and mortality due to acute myocardial infarction (AMI, n = 184). The shape, magnitude and precision of the dose - response relationships and cumulative exposure levels for BSM and BaP were evaluated. Two model structures were assessed, where 1n (relative risk) increased with cumulative exposure (log-linear model) or with log- transformed cumulative exposure (log-log model). It was found that BaP and BSM were both strongly associated with bladder and lung cancer and modestly associated with AMI. Similar conclusions regarding the associations could be made regardless of the exposure metric.

  4. Local survival of pied flycatcher males and females in a pollution gradient of a Cu smelter

    International Nuclear Information System (INIS)

    Eeva, T.; Hakkarainen, H.; Belskii, E.

    2009-01-01

    Survival is one of the most central population measures when the effects of the pollution are studied in natural bird populations. However, only few studies have actually measured rigorous survival estimates on adult birds. In recent years there has been a methodological advance in survival analyses by mark-recapture models. We modelled local survival (including mortality and emigration) with the program MARK in a population of a small insectivorous passerine bird, the pied flycatcher (Ficedula hypoleuca), around a point source of heavy metals. The local survival of females in the polluted area was about 50% lower than in the other areas. Males, however, survived relatively well in the heavily polluted area, but showed somewhat lower survival in the moderately polluted area. Different pollution effects between two sexes might be due to pollution-related differences in reproductive effort in females and males, and/or more intensive uptake of heavy metals by laying females. - Female pied flycatchers (Ficedula hypoleuca) show decreased local survival around a copper smelter.

  5. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  6. The influence of the intensity of smoking and years of work in the metallurgy on pro-oxidant/antioxidant balance in the blood of smelters.

    Science.gov (United States)

    Bizon, Anna; Antonowicz-Juchniewicz, Jolanta; Andrzejak, Ryszard; Milnerowicz, Halina

    2013-03-01

    The aim of this study was to investigate the effect of cigarette smoking and occupational exposure to heavy metals on the degree of pro-oxidant/antioxidant imbalance in smelters. The investigations were performed on the blood and urine of 400 subjects: 300 male copper smelters and 100 nonexposed male subjects. Biological material was divided into three groups: nonsmokers, those who smoked less than 20 cigarettes a day and those who smoked more than 20 cigarettes a day. The results showed a significant increase in the concentration of lead, cadmium and arsenic in the blood and urine of smelters, while smoking more than 20 cigarettes a day caused a further increase in the concentration of these metals. The level of malondialdehyde was approximately twofold higher in the plasma of the smelters compared to the control group. We have observed a disturbance in the level of antioxidants in erythrocyte lysate manifested by an increase in metallothionein and glutathione concentrations as well as superoxide dismutase and glutathione peroxidase activities and the decrease in glutathione S-transferase activity. Cigarette smoking, years of work in metallurgy and age of smelters were additional factors significantly affecting the pro-oxidant/antioxidant balance.

  7. Mapping airborne lead contamination near a metals smelter in Derbyshire, UK: spatial variation of Pb concentration and 'enrichment factor' for tree bark.

    Science.gov (United States)

    Bellis, D; Cox, A J; Staton, I; McLeod, C W; Satake, K

    2001-10-01

    Samples of tree bark, collected over an area of 4 km2 near a small non-ferrous metals smelter in Derbyshire, UK, were analysed for Pb and Al by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Analyte concentrations varied from 100 to over 25,000 mg kg-1 and 5 to 1000 mg kg-1, respectively. While an inverse relationship between the Pb content of bark and distance from the smelter was observed, concentrations fluctuated, indicating a variability in sample collection efficiency and problems in standardization. To overcome these effects, the Pb/Al ratio was calculated and subsequently normalized to the average Pb/Al ratio in continental crust (0.00015). On the assumption that the time-averaged concentration of airborne Al in this area is relatively constant and derived principally from wind-blown soil, the measurement represents an anthropogenic 'enrichment factor' (PbEF). PbEF varied from 10,000 to over 1,000,000, and showed a consistent reduction with distance from the smelter. Isolines of equal PbEF were subsequently defined on a map of the sampled area. Pb contamination was greatest in the vicinity of the smelter, and preferential transport along the NW-SE axis of the valley (in which the smelter is situated) was observed. The use of enrichment factors thus proved valuable in defining the relative level of airborne-derived Pb pollution.

  8. Analysis of Aluminum Resource Supply Structure and Guarantee Degree in China Based on Sustainable Perspective

    Directory of Open Access Journals (Sweden)

    Shaoli Liu

    2016-12-01

    Full Text Available Aluminum is a strategic mineral resource, and China’s aluminum production and consumption is fairly large. However, its supply guarantee is uncertain because of a high dependency on external raw materials. This uncertainty may expand, so finding a way to reduce the uncertainty of aluminum resource supply is especially important. This paper applies the SFA method to analyze the aluminum flows in mainland China from 1996 to 2014, and establishes a supply structure model to measure its supply guarantee degree. The results claim that: (1 China’s aluminum production can satisfy demand and even create a surplus; (2 Domestic self-productive primary and secondary aluminum increased at an annual rate of 12% and 24%; (3 The proportion of self-productive secondary aluminum in the supply structure increased from 7.7% in 1996 to 12.8% in 2014, while that of primary aluminum decreased from 79.6% to 42.8%; (4 The total supply guarantee degree decreased from 87.3% to 55.6% in this period. These results provide a feasible way to solve this plight: the proportion of secondary aluminum in the supply structure should be enhanced, and an efficient aluminum resource recycling system needs to be established as soon as possible to ensure its sustainable supply.

  9. Phases in lanthanum-nickel-aluminum alloys

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi 5 -phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified

  10. Aluminum recycling—An integrated, industrywide approach

    Science.gov (United States)

    Das, Subodh K.; Green, John A. S.; Kaufman, J. Gilbert; Emadi, Daryoush; Mahfoud, M.

    2010-02-01

    The aluminum industry is a leading proponent of global sustainability and strongly advocates the use of recycled metal. As the North American primary aluminum industry continues to move offshore to other geographic areas such as Iceland and the Middle East, where energy is more readily available at lower cost, the importance of the secondary (i.e., recycled metal) market in the U.S. will continue to increase. The purpose of this paper is to take an integrated, industry-wide look at the recovery of material from demolished buildings, shredded automobiles, and aging aircraft, as well as from traditional cans and other rigid containers. Attempts will be made to assess how the different alloys used in these separate markets can be recycled in the most energy-efficient manner.

  11. Natural environment in the area of copper smelter plants. Trend of changes

    Directory of Open Access Journals (Sweden)

    Łucja Strzelec

    2012-06-01

    Full Text Available Findings of air quality are brought forward in the area of copper industry impact with particular attention paid to copper smelter plants located in Legnica and Głogów area covering the period from 1980 to 2010. The paper identifies occurring changes and trends in the course of years. Lowering of dust-gaseous emissions from the most crucial sources in the area of LegnicaGłogów Copper Mining Region improved air quality in this region in the significant way. The fact is also of some importance that emission of pollutants from big sources combusting fuels for energy generation was reduced either by rundown of production or liquidation of some plants. Based on the conducted state environmental monitoring it is concluded that at present emission of pollutants from industrial sources affects air quality to a lesser degree. There are still problems of air protection waiting to be solved which are connected with: – emission of gaseous-dust pollutants from domestic-municipal sector i. e. so called low emission from individual heating of dwellings. The sources are low emitters where often coal is combusted together with various types of waste. Therefore after starting the period of centrally heated dwellings air quality monitoring stations recorded evidently the increase of dust and gaseous pollutants including benzo (a pirene. – pollutants emission from road transport which is the cause of high concentration of nitrogen oxides, carbon monoxide and hydrocarbons particularly in the vicinity of roads and streets of big road traffic density. Materials and methods: The base of the study were findings obtained from District Inspectorate of Environmental Protection in Legnica in the framework of carried out since 1991 the state environmental monitoring in national, regional and local network. In the period from 1980 till 1990 the studies performed Research Centre of Environmental Control in Legnica.

  12. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability.

    Science.gov (United States)

    Morrison, Anthony L; Swierczek, Zofia; Gulson, Brian L

    2016-03-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6-22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN(®)) to "map" the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (-3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    Science.gov (United States)

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area.

    Science.gov (United States)

    Cejpková, Jaroslava; Gryndler, Milan; Hršelová, Hana; Kotrba, Pavel; Řanda, Zdeněk; Synková, Iva; Borovička, Jan

    2016-11-01

    Ectomycorrhizal (ECM) fungi contribute to the survival of host trees on metal-rich soils by reducing the transfer of toxic metals into roots. However, little is known about the ability of ECM fungi to accumulate elements in ectomycorrhizae (ECMs). Here we report Ag, As, Cd, Cl, Cu, Sb, V, and Zn contents in wild-grown Norway spruce ECMs collected in a smelter-polluted area at Lhota near Příbram, Czech Republic. The ECMs data were compared with the element concentrations determined in the corresponding non-mycorrhizal fine roots, soils, and soil extracts. Bioaccumulation factors were calculated to differentiate the element accumulation ability of ECMs inhabited by different mycobionts, which were identified by ITS rDNA sequencing. Among the target elements, the highest contents were observed for Ag, Cl, Cd, and Zn; Imleria badia ECMs showed the highest capability to accumulate these elements. ECMs of Amanita muscaria, but not of other species, accumulated V. The analysis of the proportions of I. badia and A. muscaria mycelia in ECMs by using species-specific quantitative real-time PCR revealed variable extent of the colonization of roots, with median values close to 5% (w/w). Calculated Ag, Cd, Zn and Cl concentrations in the mycelium of I. badia ECMs were 1 680, 1 510, 2 670, and 37,100 mg kg -1 dry weight, respectively, indicating substantial element accumulation capacity of hyphae of this species in ECMs. Our data strengthen the idea of an active role of ECM fungi in soil-fungal-plant interactions in polluted environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Long term insight into biodiversity of a smelter wasteland reclaimed with biosolids and by-product lime.

    Science.gov (United States)

    Siebielec, Sylwia; Siebielec, Grzegorz; Stuczyński, Tomasz; Sugier, Piotr; Grzęda, Emilia; Grządziel, Jarosław

    2018-09-15

    Smelter wastelands containing high amounts of zinc, lead, cadmium, and arsenic constitute a major problem worldwide. Serious hazards for human health and ecosystem functioning are related to a lack of vegetative cover, causing fugitive dust fluxes, runoff and leaching of metals, affecting post-industrial ecosystems, often in heavily populated areas. Previous studies demonstrated the short term effectiveness of assisted phytostabilisation of zinc and lead smelter slags, using biosolids and liming. However, a long term persistence of plant communities introduced for remediation and risk reduction has not been adequately evaluated. The work was aimed at characterising trace element solubility, plant and microbial communities of the top layer of the reclaimed zinc and lead smelter waste heaps in Piekary Slaskie, Poland, 20 years after the treatment and revegetation. The surface layer of the waste heaps treated with various rates of biosolids and the by-product lime was sampled for measuring chemical and biochemical parameters, which are indicative for metals bioavailability as well as for microorganisms activity. Microbial processes were characterised by enzyme activities, abundance of specific groups of microorganisms and identification of N fixing bacteria. Plant communities of the area were characterised by a percent coverage of the surface and by a composition of plant species and plant diversity. The study provides a strong evidence that the implemented remediation approach enables a sustainable functioning of the ecosystem established on the toxic waste heaps. Enzyme activities and the count of various groups of microorganisms were the highest in areas treated with both biosolids and lime, regardless their rates. A high plant species diversity and microbial activities are sustainable after almost two decades from the treatment, which is indicative of a strong resistance of the established ecosystem to a metal stress and a poor physical quality of the

  16. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  17. Evidence-based integrated environmental solutions for secondary lead smelters: Pollution prevention and waste minimization technologies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Genaidy, A.M., E-mail: world_tek_inc@yahoo.com [University of Cincinnati, Cincinnati, Ohio (United States); Sequeira, R. [University of Cincinnati, Cincinnati, Ohio (United States); Tolaymat, T. [U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio (United States); Kohler, J. [US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington DC (United States); Rinder, M. [WorldTek Inc, Cincinnati (United States)

    2009-05-01

    An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization practices and technologies that meet the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and (c) strong industry interest (i.e., industry would consider implementing projects with higher payback periods). The following specific aims are designed to achieve the study objectives: Aim 1 - To describe the recycling process of recovering refined lead from scrap; Aim 2 - To document pollution prevention and waste management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead product life cycle; Aim 3 - To explore improved practices and technologies which are employed by other organizations with an emphasis on the aforementioned criteria; Aim 4 - To demonstrate the economic and environmental costs and benefits of applying improved technologies and practices to existing US smelting operations; and Aim 5 - To evaluate improved environmental technologies and practices using an algorithm that integrates quantitative and qualitative criteria. The process of identifying relevant articles and reports was documented. The description of evidence was presented for current practices and technologies used by US smelters as well as improved practices and technologies. Options for integrated environmental solutions for secondary smelters were introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production increases, energy and flux savings, and reduction of SO2 and slag). An example was provided to demonstrate the utility of the algorithm by detailing the costs and

  18. Evidence-based integrated environmental solutions for secondary lead smelters: pollution prevention and waste minimization technologies and practices.

    Science.gov (United States)

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M

    2009-05-01

    An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization practices and technologies that meet the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and (c) strong industry interest (i.e., industry would consider implementing projects with higher payback periods). The following specific aims are designed to achieve the study objectives: Aim 1 - To describe the recycling process of recovering refined lead from scrap; Aim 2 - To document pollution prevention and waste management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead product life cycle; Aim 3 - To explore improved practices and technologies which are employed by other organizations with an emphasis on the aforementioned criteria; Aim 4 - To demonstrate the economic and environmental costs and benefits of applying improved technologies and practices to existing US smelting operations; and Aim 5 - To evaluate improved environmental technologies and practices using an algorithm that integrates quantitative and qualitative criteria. The process of identifying relevant articles and reports was documented. The description of evidence was presented for current practices and technologies used by US smelters as well as improved practices and technologies. Options for integrated environmental solutions for secondary smelters were introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production increases, energy and flux savings, and reduction of SO(2) and slag). An example was provided to demonstrate the utility of the algorithm by detailing the costs and

  19. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  20. Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea.

    Science.gov (United States)

    Yun, Sung-Wook; Baveye, Philippe C; Kim, Dong-Hyeon; Kang, Dong-Hyeon; Lee, Si-Young; Kong, Min-Jae; Park, Chan-Gi; Kim, Hae-Do; Son, Jinkwan; Yu, Chan

    2018-07-01

    Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y 0  + αe -βx ). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  2. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  3. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  4. The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils

    International Nuclear Information System (INIS)

    Brougham, Kate M.; Roberts, Stephen R.; Davison, Alan W.; Port, Gordon R.

    2013-01-01

    Although a great deal is known about the deposition of fluoride on vegetation, and the hazards associated with uptake by grazing herbivores, little is known about what happens to the concentration of fluoride in vegetation and soil at polluted sites once deposition ceases. The closure of Anglesey Aluminium Metals Ltd smelter, in September 2009, provided a unique opportunity to study fluoride loading once deposition stopped. Fluoride was monitored in plants and soil within 1 km of the former emission source. Fluoride concentrations in a range of plant material had decreased to background levels of 10 mg F kg −1 after 36 weeks. Concentrations of fluoride in mineral-rich soils decreased steadily demonstrating their limited potential to act as contaminating sources of fluoride for forage uptake. There were significant differences in the rate of decline of fluoride concentrations between plant species. -- Highlights: •The impact of aluminium smelter closure on fluoride concentrations was investigated. •Concentrations in forage decreased rapidly to safe levels for livestock grazing. •The concentrations in some species declined to background levels within a year. •Significant interspecies differences in fluoride decline are described. •Mineral-rich soils have limited potential as contaminating sources for forage. -- Fluoride is hazardous to grazing herbivores, but when deposition stops, F-levels in plants and soil fall rapidly, some returning to background concentrations within a year

  5. Impacts of landscape remediation on the heavy metal pollution dynamics of a lake surrounded by non-ferrous smelter waste

    International Nuclear Information System (INIS)

    Blake, William H.; Walsh, Rory P.D.; Reed, Jane M.; Barnsley, Michael J.; Smith, Jamie

    2007-01-01

    Heavy metal concentrations and potential bioavailability are reported for sediment in a shallow flood detention lake surrounded by reclaimed, smelter-contaminated land. A range of sediment column proxy indicators is used to explore changes in pollution dynamics with remediation. Sediment concentrations of Pb and Zn are high at ∼600 and 20 000 mg kg -1 , respectively. Less than 7% of total Pb is potentially bioavailable following sequential extraction as opposed to 47% of Zn. Metal transfer mechanisms to lake sediment include detrital inputs, scavenging by particulates and biogeochemical precipitation. Sedimentary evidence indicates that detrital inputs to the lake declined following land reclamation after which it is proposed that dissolved inputs increased with leaching of reworked waste material. Whilst downcore metal profiles may be subject to post-depositional change, diatom analysis suggests more recent improvements in water quality. The potential for post-remediation pollution episodes relating to metal release from historic sedimentary stores should be considered in future remediation strategies. - The contaminant hydrology of reworked smelter spoil is complex

  6. Impacts of landscape remediation on the heavy metal pollution dynamics of a lake surrounded by non-ferrous smelter waste

    Energy Technology Data Exchange (ETDEWEB)

    Blake, William H. [Department of Geography, University of Wales, Swansea SA2 8PP (United Kingdom)]. E-mail: william.blake@plymouth.ac.uk; Walsh, Rory P.D. [Department of Geography, University of Wales, Swansea SA2 8PP (United Kingdom); Reed, Jane M. [Department of Geography, University of Hull, Cottingham Road, Hull HU6 7RX (United Kingdom); Barnsley, Michael J. [Department of Geography, University of Wales, Swansea SA2 8PP (United Kingdom); Smith, Jamie [Department of Geography, University of Wales, Swansea SA2 8PP (United Kingdom)

    2007-07-15

    Heavy metal concentrations and potential bioavailability are reported for sediment in a shallow flood detention lake surrounded by reclaimed, smelter-contaminated land. A range of sediment column proxy indicators is used to explore changes in pollution dynamics with remediation. Sediment concentrations of Pb and Zn are high at {approx}600 and 20 000 mg kg{sup -1}, respectively. Less than 7% of total Pb is potentially bioavailable following sequential extraction as opposed to 47% of Zn. Metal transfer mechanisms to lake sediment include detrital inputs, scavenging by particulates and biogeochemical precipitation. Sedimentary evidence indicates that detrital inputs to the lake declined following land reclamation after which it is proposed that dissolved inputs increased with leaching of reworked waste material. Whilst downcore metal profiles may be subject to post-depositional change, diatom analysis suggests more recent improvements in water quality. The potential for post-remediation pollution episodes relating to metal release from historic sedimentary stores should be considered in future remediation strategies. - The contaminant hydrology of reworked smelter spoil is complex.

  7. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  8. Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile

    International Nuclear Information System (INIS)

    Ginocchio, Rosanna; Carvallo, Gaston; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepulveda, Nancy

    2004-01-01

    Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A 0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability. - Metal availability was different under shrub canopies than in open spaces

  9. Studying of metals distribution in the Pinus Sylvestris bark and needles in a zone of influence the gradient polluted air stream from Cu-smelter

    International Nuclear Information System (INIS)

    Aminov, P.G.; Lonshchakova, G.F.

    2008-01-01

    In the paper the features of accumulation for heavy metals by pine needles and bark in the gradient dispersion area of technogenic elements and using of the bark as the bioindicator to establish influencing zones of smelter on environment are represented

  10. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  11. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  12. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    Science.gov (United States)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  13. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    International Nuclear Information System (INIS)

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-01-01

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil

  14. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  15. Leaching Behavior of Slags from AN Old Lead Smelter in Chihuahua, Mexico: Metals, Chlorides, Nitrates, Sulfates and Tds Analyses

    Science.gov (United States)

    Espejel-Garcia, D.; Wenglas-Lara, G.; Villalobos-Aragon, A.; Espejel-Garcia, V. V.

    2013-05-01

    Waste materials (such as, smelter slags, waste glass, tires, plastics, rubbish, ashes, etc.), have a large potential to substitute natural materials, reducing costs, especially for the construction industry. Smelter slags are resistant and have better compression strength values in comparison to natural aggregates, and generally are far beyond of what the standard ratios need to qualify a material as a good one for construction. But this material has a big problem within it: the existence of toxic elements and compounds in high concentrations, which means that water and soil contamination can be present after water infiltrates through this material; so we perform leaching experiments to characterize and measure the possible contamination under controlled conditions. To perform the slags-leaching experiments, we used an EA-NEN-7375-2004 tank test standard from Netherlands. This test was selected because to our knowledge it is the only one which allows the use of coarse material, as the one utilized in construction. The leaching experiments sampling was performed at different times: 6, 24, 168 and 360 hours, to compare the leachate concentration at the two different pH's values (5 and 8) selected to simulate real conditions. For the leaching experiments, the slags were mixed with natural road base material (gravel-sands from volcanic rocks) at different proportions of 30% and 50%. In order to understand the slags' leaching behavior, other experiments were carried out with the pure material, for both (slags and natural aggregates). After analyses by ICP-OES , the slags from this smelter in Chihuahua contain Pb (0.5 - 4 wt.%), Zn (15-35 wt.%) and As (0.6 wt.%), as well such as: bicarbonates, chlorides, nitrates, sulfates, Mg, K, Na, Ca and TDS. Based on the results of the leaching analyses, via atomic absorption technique, we conclude that Pb and As concentrations are provided by the slags, meanwhile, the bicarbonates, chlorides, Na and Ca are contributed by the road

  16. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  17. Aluminum hydroxide issue closure package

    International Nuclear Information System (INIS)

    Bergman, T.B.

    1998-01-01

    Aluminum hydroxide coatings on fuel elements stored in aluminum canisters in K West Basin were measured in July and August 1998. Good quality data was produced that enabled statistical analysis to determine a bounding value for aluminum hydroxide at a 99% confidence level. The updated bounding value is 10.6 kg per Multi-Canister Overpack (MCO), compared to the previously estimated bounding value of 8 kg/MCO. Thermal analysis using the updated bounding value, shows that the MCO generates oxygen concentrate that are below the lower flammability limits during the 40-year interim storage period and are, therefore, acceptable

  18. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  19. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  20. Heated Aluminum Tanks Resist Corrosion

    Science.gov (United States)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  1. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    Science.gov (United States)

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  2. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  3. Metallic aluminum in combustion; Metalliskt aluminium i foerbraenningen

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Rainer; Berg, Magnus; Bostroem, Dan; Hirota, Catherine; Oehman, Marcus; Oehrstroem, Anna

    2007-06-15

    Although aluminum is easily oxidized and melts at temperatures lower than those common in combustion, it can pass through the combustion chamber almost unscathed. If one performs calculations of thermodynamic equilibriums, conditions under which this could happen are extreme in comparison to those generally found in a furnace. Metallic aluminum may yet be found in rather large concentrations in fly ashes. There are also indications that metallic aluminum is present in deposits inside the furnaces. The objectives for the present investigation are better understanding of the behavior of the metallic aluminum in the fuel when it passes through an incinerator and to suggest counter/measures that deal with the problems associated with it. The target group is primary incineration plants using fuel that contains aluminum foil, for example municipal waste, industrial refuse or plastic reject from cardboard recycling. Combustion experiments were performed in a bench scale reactor using plastic reject obtained from the Fiskeby Board mill. First the gas velocity at which a fraction of the reject hovers was determined for the different fuel fractions, yielding a measure for their propensity to be carried over by the combustion gases. Second fractions rich in aluminum foils were combusted with time, temperature and gas composition as parameters. The partially combusted samples were analyzed using SEM/EDS. The degree of oxidation was determined using TGA/DTA. Reference material from full scale incinerators was obtained by collecting fly ash samples from five plants and analyzing them using XRD and SEM/EDS. The results show that thin aluminum foils may easily be carried over from the furnace. Furthermore, it was very difficult to fully oxidize the metallic flakes. The oxide layer on the surface prevents further diffusion of oxygen to the molten core of the flake. The contribution of these flakes to the build of deposits in a furnace is confirmed by earlier investigations in pilot

  4. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  5. "Ripples" in an Aluminum Pool?

    Science.gov (United States)

    Rohr, James; Wang, Si-Yin; Nesterenko, Vitali F.

    2018-05-01

    Our motivation for this article is for students to realize that opportunities for discovery are all around them. Discoveries that can still puzzle present day researchers. Here we explore an observation by a middle school student concerning the production of what appears to be water-like "ripples" produced in aluminum foil when placed between two colliding spheres. We both applaud and explore the student's reasoning that the ripples were formed in a melted aluminum pool.

  6. Preliminary analysis of levels of arsenic and other metalic elements in PM10 sampled near Copper Smelter Bor (Serbia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2010-09-01

    Full Text Available In this paper, the levels of twenty one elements (Ag, Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Se, Sr and Zn in PM10 are presented, as well as SO2 concentration, measured at the sampling site in an urban area of the town of Bor (40,000 inhabitants in eastern Serbia. The sampling site was located in a densely populated city center about 0.65 km away from one of the largest copper mines and copper smelters in Europe. For the first time PM10 was collected using the European standard sampler, during a preliminary campaign in duration of 7 days in early spring 2009. PM10 were sampled on PTFE membrane filters and element concentrations were quantified by GF AAS and ICP AES. Concentration levels and correlations within trace elements, PM10 and SO2 indicated that industrial activities underpinned with meteorological conditions of low wind speed (calm are the main factors that influence air pollution in a densely populated area. It was evident that both PM10 mass concentration and SO2 concentration once exceeded the daily limit values during a measuring period of seven days. Strong relationship was found between PM10 and Mn, Mg, Ca and B daily average concentrations. On the other hand, SO2 correlated strongly with As, Pb, Cd, Cu and S daily average concentrations. These results confirm the relationship between emissions of SO2 from the Copper Smelter Bor and calm meteorological conditions (wind speed less than 0.5 m/sec with the concentration levels of carcinogenic substances of arsenic, lead and cadmium in ambient air.

  7. Alteration of podzolized tills by acid load near Ni-Cu smelters at Monchegorsk, Kola Peninsula, Russia

    Directory of Open Access Journals (Sweden)

    Räisänen, M.L.

    1994-06-01

    Full Text Available Mineralogy and geochemistry of podzolized tills was studied in the area of dieback forest near the Ni-Cu smelters at Monchegorsk, and less extensively forest damage near by Apatity and Kirovsk in the Russian Kola Peninsula. The abundances of main elements (Si, Al, Fe, Mg, Ca, K, Na in the <64 μm fraction were determined by the hot aqua regia digestion method and inductively coupled plasma spectrometry. The clay mineralogy of the silt plus clay fraction was examined by X-ray diffraction after selective extraction and heating treatments. At all study sites, trioctahedral mica and chlorite were totally weathered from the silt and clay fraction (<64 μm of the eluvial layer, leaving behind interstratified mica-vermiculite-smectite clays. In general, the mixed-layer clay of the eluvial layer had low levels of hydroxy interlayering. Illuviated layers were characterized by hydroxy interlayered vermiculite-chlorite. The abundance of chlorite and mica was greater, and the degree of interlayering lower, in parent tills than in the overlying illuviated layers. Regardless of differences in bedrock and till geochemistry, the weathering sequence throughout the podzolized till profile was coherent at most of the sampling sites. Exceptionally, in a few profiles sampled at the totally destroyed forest site, the swelling mixed-layer clay of the eluvial layer displayed a neochloritized structure. On the basis of XRD patterns and geochemistry of the samples, it was inferred that a short-term decomposition of plagioclase had promoted, via inputs of Al-hydroxides, the transformation of mica-vermiculite-smectite to a poorly crystalline interstratification of chlorite-aluminous montmorillonite. The accelerated weathering occurring occasionally in exposed places was probably activated by the strongly acidic load in the vicinity of the smelters and the city of Monchegorsk.

  8. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  9. The aluminum smelting process and innovative alternative technologies.

    Science.gov (United States)

    Kvande, Halvor; Drabløs, Per Arne

    2014-05-01

    The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. This article is based on a study of the extensive chemical and medical literature on primary aluminum production. At present, there are two main technological challenges for the process--to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future.

  10. The Aluminum Smelting Process and Innovative Alternative Technologies

    Science.gov (United States)

    Drabløs, Per Arne

    2014-01-01

    Objective: The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. Methods: This article is based on a study of the extensive chemical and medical literature on primary aluminum production. Results: At present, there are two main technological challenges for the process—to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Conclusions: Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future. PMID:24806723

  11. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  12. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  13. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  14. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  15. Decreasing emissions of a secondary lead smelter by installation of a battery breaker. Emissionsminderung einer Sekundaerbleihuette durch Integration einer Akkuschrott-Aufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, K F

    1986-11-01

    Dust and lead emissions of a secondary lead smelter mainly from the area of stockyards, handling, transport, charge preparing as well as the further treatment in rotary furnaces. A 60% decrease is obtained by compact assembling of covered battery stockyard, battery breaker and charge preparation and direct connection to the existing smelter area. The breaker itself contains a wet screen trommel and a filter press for separation of paste. The heavy-media sink-float-system has been replaced by dynamic water separation, which results in cleaner qualities of all fractions. In spite of a 100% wet separation plant, a bagfilter can be used with expected clean gas dust contents below 5 mg/m{sup 3} and below 2.5 mg Pb/m{sup 3}. Over a 2 years-period, dust and lead contents have been below 1 mg/m{sup 3}. (orig.) With 5 refs., 2 flowsheets, 10 figs.

  16. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... are discussed and compared with results from an earlier study1 covering the recrystallization behavior of commercial aluminum of the same purity deformed at higher degrees of deformation (50 to 90 pct reduction in thickness by cold-rolling)....

  17. The Impact of a Nickel-Copper Smelter on Concentrations of Toxic Elements in Local Wild Food from the Norwegian, Finnish, and Russian Border Regions.

    Science.gov (United States)

    Hansen, Martine D; Nøst, Therese H; Heimstad, Eldbjørg S; Evenset, Anita; Dudarev, Alexey A; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V; Jagodic, Marta; Christensen, Guttorm N; Anda, Erik E; Brustad, Magritt; Sandanger, Torkjel M

    2017-06-28

    Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013-2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study.

  18. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  19. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  20. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  1. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  2. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  3. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  4. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  5. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  6. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  7. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  8. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  9. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: Batch, pot and field experiments

    International Nuclear Information System (INIS)

    Friesl, W.; Friedl, J.; Platzer, K.; Horak, O.; Gerzabek, M.H.

    2006-01-01

    Metal contaminated crops from contaminated soils are possible hazards for the food chain. The aim of this study was to find practical and cost-effective measures to reduce metal uptake in crops grown on metal contaminated soils near a former metal smelter in Austria. Metal-inefficient cultivars of crop plants commonly grown in the area were investigated in combination with in-situ soil amendments. A laboratory batch experiment using 15 potential amendments was used to select 5 amendments to treat contaminated soil in a pot study using two Barley (Hordeum vulgare L.) cultivars that differed in their ability to accumulate cadmium. Results from this experiment identified 3 of these amendments for use in a field trial. In the pot experiment a reduction in ammonium nitrate extractable Cd (<41%) and Pb (<49%) compared to the controls was measured, with a concurrent reduction of uptake into barley grain (Cd < 62%, Pb < 68%). In the field extractable fractions of Cd, Pb, and Zn were reduced by up to 96%, 99%, and 99%, respectively in amended soils. - Gravel sludge and red mud, combined with metal-excluding cultivars, can improve contaminated land

  10. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities

    Science.gov (United States)

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Ma, Fang; Li, Ronghua; Shen, Feng; Wang, Ping; Zhang, Zengqiang

    2017-04-01

    Anthropogenic activities, such as industrial expansion, smelting, mining and agricultural practices, have intensified the discharge of potentially toxic trace elements (PTEs) into the environment, threatening human health and other organisms. To assist phytoremediation by sorghum in soil contaminated by smelters/mines in Feng County (FC), a pot experiment was performed to examine the phytoremediation potential of Streptomyces pactum (Act12) + biochar. The results showed that root uptake of Zn and Cd was reduced by 45 and 22%, respectively, while the uptake of Pb and Cu increased by 17 and 47%, respectively. The shoot and root dry weight and chlorophyll content improved after Act12 inoculation. β-glucosidase, alkaline phosphatase and urease activities in soil improved and antioxidant activities (POD, PAL, PPO) decreased after application of Act12 + biochar due to a reduction in stress from PTEs. BCF, TF and MEA confirmed the role of Act12 in the amelioration and translocation of PTEs. PCA analysis showed a correlation between different factors that affect the translocation of PTEs. Overall, Act12 promoted the phytoremediation of PTEs. Field experiments on Act12 + biochar may provide new insights into the rehabilitation and restoration of soils contaminated by mines.

  11. Urban quality of life and industrial project management: the case of Alcan aluminium smelter in Alma, Quebec, Canada

    International Nuclear Information System (INIS)

    Simard, M.

    2003-01-01

    This quality-of-life study involving the population of Alma (30 126 inhabitants) is part of a five-year, multidisciplinary research program entitled 'Modelisation du suivi des impacts sociaux de l'aluminerie Alma'. The goal of this research program is to document the social impacts arising from the establishment of the Alcan industrial mega-complex in Alma (see Map 1). The Alma smelter began operation in 2001. It employs 865 people and has a production capacity of 407 000 MT of aluminium ingots. The research program is being carried out in parallel with the project, rather than retroactively. Thus, various thematic reports have been published on topics such as the project's economic spin-off and changes in the housing and transportation sectors. More specifically, this study aims to gauge the perceptions of Alma residents regarding their quality of life as stakeholders. In order to ensure that the study produced a more accurate indication of the community's evolution and to tie the study in with the various phases of the implementation of this industrial mega-project, it was conducted in three parts, i.e., in 1998, 2000 and 2002, corresponding to the planning, construction and operation phases. (author)

  12. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  13. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    Science.gov (United States)

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  14. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.

    Science.gov (United States)

    Poot-Poot, Wilberth; Hernandez-Sotomayor, Soledad M Teresa

    2011-10-01

    An early response of plants to environmental signals or abiotic stress suggests that the phospholipid signaling pathway plays a pivotal role in these mechanisms. The phospholipid signaling cascade is one of the main systems of cellular transduction and is related to other signal transduction mechanisms. These other mechanisms include the generation of second messengers and their interactions with various proteins, such as ion channels. This phospholipid signaling cascade is activated by changes in the environment, such as phosphate starvation, water, metals, saline stres, and plant-pathogen interactions. One important factor that impacts agricultural crops is metal-induced stress. Because aluminum has been considered to be a major toxic factor for agriculture conducted in acidic soils, many researchers have focused on understanding the mechanisms of aluminum toxicity in plants. We have contributed the last fifteen years in this field by studying the effects of aluminum on phospholipid signaling in coffee, one of the Mexico's primary crops. We have focused our research on aluminum toxicity mechanisms in Coffea arabica suspension cells as a model for developing future contributions to the biotechnological transformation of coffee crops such that they can be made resistant to aluminum toxicity. We conclude that aluminum is able to not only generate a signal cascade in plants but also modulate other signal cascades generated by other types of stress in plants. The aim of this review is to discuss possible involvement of the phospholipid signaling pathway in the aluminum toxicity response of plant cells. Copyright © 2011 Wiley Periodicals, Inc.

  15. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  16. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  17. System dynamics analysis of strategies to reduce energy use in aluminum-intensive sectors

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca J.; Nicholson, Scott; 25-29 June 2017, Carpenter, Alberta

    2017-07-13

    Aluminum is one of the most widely used materials in industry, with applications in buildings, vehicles, aircraft, and consumer products. Its ubiquity is also on the rise: aluminum is beginning to supplant steel in lightweight vehicles and aircraft, and is used in many green or LEED-certified buildings. Although aluminum tends to be highly recycled, particularly by manufacturers of aluminum products, the sector as a whole is still far from a closed system. As a result, the increase in aluminum consumption also means an increase in primary aluminum production-an energy-intensive process-and an increase in consumption of the raw material bauxite, which in the U.S. is almost entirely imported. Our objectives for this study are to identify and analyze aluminum sector technologies and practices that reduce the energy required to manufacture aluminum products and reduce U.S. dependence on imported aluminum and bauxite. To accomplish these objectives, we will develop a system dynamics (SD) model of aluminum production, use and recycling in key application areas, including aerospace, ground vehicles and consumer products. The model will cover the entire aluminum supply chain as it exists in the U.S., from bauxite importing and refining, to the manufacture of products, to the product use phase and end-of-life processing steps. Aluminum flows throughout the model will be determined by the annual domestic demand for each application area as well as demand projections that extend to 2030. Energy consumption will be tracked based on the flows of aluminum through each step of the supply chain. Using the SD model, we will evaluate several technologies and practices that have the potential to reduce energy consumption and reliance on imported bauxite. These include implementation of advanced primary aluminum production technologies, increased recycling within and between application areas, increased material efficiency and increased product lifetimes. Each of these strategies

  18. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness.

    Science.gov (United States)

    Zhang, Yunya; Li, Xiaodong

    2017-11-08

    Nacre, commonly referred to as nature's armor, has served as a blueprint for engineering stronger and tougher bioinspired materials. Nature organizes a brick-and-mortar-like architecture in nacre, with hard bricks of aragonite sandwiched with soft biopolymer layers. However, cloning nacre's entire reinforcing mechanisms in engineered materials remains a challenge. In this study, we employed hybrid graphene/Al 2 O 3 platelets with surface nanointerlocks as hard bricks for primary load bearer and mechanical interlocking, along with aluminum laminates as soft mortar for load distribution and energy dissipation, to replicate nacre's architecture and reinforcing effects in aluminum composites. Compared with aluminum, the bioinspired, graphene/Al 2 O 3 doubly reinforced aluminum composite demonstrated an exceptional, joint improvement in hardness (210%), strength (223%), stiffness (78%), and toughness (30%), which are even superior over nacre. This design strategy and model material system should guide the synthesis of bioinspired materials to achieve exceptionally high strength and toughness.

  19. Use of catchment liming for the improvement of drainage water quality from smelter-impacted lands near Coniston, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, J.M.; Sein, R.; Keller, B. [Laurentian Univ., Sudbury, ON (Canada) Dept. of Biology

    1999-07-01

    A study was carried out to test whether INCO Ltd.'s aerial land liming program, designed solely for revegetation purposes, was improving water quality from the treated sites in an area affected by air pollution from acidic nickel and copper smelters. A wetland application mehod was tested as a potentially improved technique of drainage water treatment. A summary is included of the results of water quality assessment and bioassay toxicity testing for the experimental catchments during the study period 1991-1997. There were immediate spin-off benefits from the stream monitoring study that were rapidly applied to the larger land reclamation effort. The identified effectivess of the coarse limestone led to testing and adoption of new methods of aerial liming in which finer pelletized materials were used both reducing the application rate and the associated costs. The decline in Cu and Ni during 1991-1994 indicated that the metal contamination of the site was declining even before the first limestone treatment. The occurrence of a brief pulse in metal concentrations immediately after the wetland liming treatments is consistent with an earlier occurrence and supports the hypothesis that liming may temporarily increase metal concentrations in stream water through displacement of metal cations at the soil exchange sites by the added Ca. The presence of acidic groundwater proved to be a confounding factor that reduced the effectiveness of soil and wetland treatments at the site. In spite of surprises, the catchment treatments, particularly the wetland applications, proved to be very effective at improving water quality in much of the catchment stream. 14 refs., 2 figs., 1 tab.

  20. The effect of the hemochromatosis (HFE genotype on lead load and iron metabolism among lead smelter workers.

    Directory of Open Access Journals (Sweden)

    Guangqin Fan

    Full Text Available Both an excess of toxic lead (Pb and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking.To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure.Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted.Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin.No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  1. The effect of the hemochromatosis (HFE) genotype on lead load and iron metabolism among lead smelter workers.

    Science.gov (United States)

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  2. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. SEASONAL IMPACT ANALYSIS ON POPULATION DUE TO CONTINUOUS SULPHUR EMISSIONS FROM SEVERONIKEL SMELTERS OF THE KOLA PENINSULA

    Directory of Open Access Journals (Sweden)

    Alexander Mahura

    2018-01-01

    Full Text Available This study is devoted to investigation of total deposition and loading patterns for population of the North-West Russia and Scandinavian countries due to continuous emissions (following “mild emission scenario” of sulphates from the Cu-Ni smelters (Severonikel enterprise, Murmansk region, Russia. The Lagrangian long-range dispersion model (Danish Emergency Response Model for Atmosphere was run in a long-term mode to simulate atmospheric transport, dispersion and deposition over the Northern Hemispheric’s domain north of 10°N, and results were integrated and analyzed in the GIS environment. Analysis was performed on annual and seasonal scales, including depositions, impact on urban areas and calculating individual and collective loadings on population in selected regions ofRussiaand Scandinavian countries.It was found that wet deposition dominates, and it is higher in winter. The North-West Russia is more influenced by the Severonikel emissions compared with the Scandinavian countries. Among urban areas, the Russian cities ofMurmansk(due to its proximity to the source andArkhangelsk(due to dominating atmospheric flows are under the highest impact. The yearly individual loadings on population are the largest (up to 120 kg/person for theMurmanskregion; lower (15 kg/person for territories of the northernNorway, and the smallest (less than 5 kg/person for the easternFinland,KareliaRepublic, andArkhangelskregion. These loadings have distinct seasonal variability with a largest contribution during winter-spring for Russia, spring – for Norway, and autumn – for Finland and Sweden; and the lowest during summer (i.e. less than 10 and 1 kg/person for the Russia and Scandinavian countries, respectively. The yearly collective loadings for population living on the impacted territories inRussia,Finland,Norway, and Swedenare 2628, 140.4, 13, and 10.7 tonnes, respectively.

  4. Effect of Tritium on Cracking Threshold in 7075 Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Morgan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-28

    The effect of long-term exposure to tritium gas on the cracking threshold (KTH) of 7075 Aluminum Alloy was investigated. The alloy is the material of construction for a cell used to contain tritium in an accelerator at Jefferson Laboratory designed for inelastic scattering experiments on nucleons. The primary safety concerns for the Jefferson Laboratory tritium cell is a tritium leak due to mechanical failure of windows from hydrogen isotope embrittlement, radiation damage, or loss of target integrity from accidental excessive beam heating due to failure of the raster or grossly mis-steered beam. Experiments were conducted to investigate the potential for embrittlement of the 7075 Aluminum alloy from tritium gas.

  5. Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission

    Science.gov (United States)

    Vorobeichik, E. L.; Kaigorodova, S. Yu.

    2017-08-01

    The 23-year-long dynamics of actual acidity (pHwater) and acid-soluble heavy metals (Cu, Pb, Cd, Zn) in the forest litter and humus horizon of soils in spruce-fir forests were studied in the area subjected to the long-term (since 1940) pollution with atmospheric emissions from the Middle Ural Copper Smelter (Revda, Sverdlovsk oblast). For this purpose, 25 permanent sample plots were established on lower slopes at different distances from the enterprise (30, 7, 4, 2, and 1 km; 5 plots at each distance) in 1989. The emissions from the smelter have decreased since the early 1990s. In 2012, the emissions of sulfur dioxide and dust decreased by 100 and 40 times, respectively, as compared with the emissions in 1980. Samples of litter and humus horizons were collected on permanent plots in 1989, 1999, and 2012. The results indicate that the pH of the litter and humus horizons restored to the background level 10 and 23 years after the beginning of the reduction in emissions, respectively. However, these characteristics in the impact zone still somewhat differ from those in the background area. In 2012, the content of Cu in the litter decreased compared to 1989 on all the plots; the content of Cu in the humus horizon decreased only in the close vicinity of the smelter. The contents of other metals in the litter and humus horizons remain constant or increased (probably because of the pH-dependent decrease in migration capacity). The absence of pronounced removal of metals from soils results in the retention of high contamination risk and the conservation of the suppressed state of biota within the impact zone.

  6. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    Science.gov (United States)

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  7. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  8. Multi-criteria Analysis of Air Pollution with SO(2) and PM(10) in Urban Area Around the Copper Smelter in Bor, Serbia.

    Science.gov (United States)

    Nikolić, Djordje; Milošević, Novica; Mihajlović, Ivan; Zivković, Zivan; Tasić, Viša; Kovačević, Renata; Petrović, Nevenka

    2010-02-01

    This work presents the results of 4 years long monitoring of concentrations of SO(2) gas and PM(10) in the urban area around the copper smelter in Bor. The contents of heavy metals Pb, Cd, Cu, Ni, and As in PM(10) were determined and obtained values were compared to the limit values provided in EU Directives. Manifold excess concentrations of all the components in the atmosphere of the urban area of the townsite Bor were registered. Through application of a multi-criteria analysis by using PROMETHEE/GAIA method, the zones were ranked according to the level of pollution.

  9. Health and Safety Laboratory environmental quarterly, March 1, 1977--June 1, 1977. [Air pollution in environs of Cu smelter and fallout radionuclides in food chains

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1977-07-01

    This report presents current information from the HASL environmental programs, The Technical University of Wroclaw, Poland, and the Radiological and Environmental Research Division of Argonne National Laboratory. The initial section consists of interpretive reports and notes on environmental levels of lead and mercury in the area of a copper smelter, radionuclide uptake by cultivated dusts in crops, and fallout strontium-90 in diet through 1976. Subsequent sections include tabulations of radionuclide concentrations in stratospheric air, radionuclide and stable lead concentrations in surface air, strontium-90 in deposition, milk, diet, and tapwater and cesium-137 in diet and tapwater. A bibliography of recent publications related to environmental studies is also presented.

  10. Use of neutron activation analysis to determine arsenic and antimony concentrations in creosote bushes collected near a lead smelter in El Paso, Texas

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.; Tiemann, K.J.; Parsons, J.G.; Landsberger, S.; O'Kelly, D.

    2001-01-01

    It his been found that some soils adjacent to a lead smelter in El Paso, Texas possess lead and copper concentrations as high as 5,067 mg/kg (parts per million) and 4,955 mg/kg, respectively. These concentrations are at least one order of magnitude higher than naturally occurring levels. The objective of this work is to determine the amount of metal accumulation within creosote bush, as it is found naturally growing in metal contaminated soils through analysis of soil and plant tissue samples. (R.P.)

  11. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  12. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  13. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  14. Gut: An underestimated target organ for Aluminum.

    Science.gov (United States)

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  16. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  17. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  18. Assessment of a remediation technique using the replacement of contaminated soils in kitchen gardens nearby a former lead smelter in Northern France.

    Science.gov (United States)

    Douay, F; Roussel, H; Pruvot, C; Loriette, A; Fourrier, H

    2008-08-15

    Vegetables cultivated in kitchen gardens that are strongly contaminated by heavy metals (Pb, Cd) may represent to consumers a means of exposure to these metals. This exposure is more problematic for those families that include a large quantity of home-grown vegetables in their diet. Researchers have shown that the majority of vegetables produced in kitchen gardens in the vicinity of the Metaleurop Nord smelter (Northern France) do not conform to European regulations. This study was carried out in three of these kitchen gardens. The concentrations of Cd and Pb in the topsoils were up to 24 and 3300 mg kg(-1) respectively. The method consisted of delineating a surface area of about 50 to 100 m(2) for each garden, then removing the contaminated soil and replacing it with a clean one. Seven species of vegetables were cultivated from 2003 to 2005 in the original contaminated soils and the remediated ones. The data showed a clear improvement of the quality of the vegetables cultivated in remediated soils, although 17% of them were still over the European legislative limits for foodstuffs. This suggested that there was a foliar contamination due to contaminated dust fallout coming from the closed smelter site and the adjacent polluted soils. In addition, the measurement of the Cd and Pb concentrations in the dust fallout showed that the substantial rise in metal concentrations in the remediated soil was not only due to atmospheric fallout. These results raise questions about possible technical, economic and sociological problems associated with this kind of remediation.

  19. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  20. Investigation of thermal conductivity and oxidation behaviour of reaction bonded aluminum nitride (RBAN) ceramics

    International Nuclear Information System (INIS)

    Salahi, E; Moztarzadeh, F.; Margoosian, V.; Heinrich, J. G.

    2003-01-01

    AlN samples have been produced by reaction bonding process using AlN and aluminum powders as starting materials. Different aluminum nitride and aluminum powders ratios were mixed in ethanol media, dried, isostatically and nitrided in (N 2 )atmosphere. Results showed that conversion of to AlN depends strongly on the amount of aluminum starting powder and decreased with increasing after a maximum at 25 Al wt %. Changing the particle size and morphology of the aluminum starting powder leads to change in the conversion ratio and microstructure of RBAN ceramics. Typical scanning electron micrographs of RBAN sample indicating primary and secondary aluminum nitride morphology and pore structure. The oxidation behavior of RABN samples showed the weight gain depends on the average particle size, morphology and amount of Al in starting mixture and pore structure. Samples have been manufactured with equi-axed morphology of Al starting powder have thermal conductivity higher than the samples have been manufactured with flake-like morphology. These differences were directly related to the different microstructure of RBAN samples

  1. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  2. Controlling harmful algae blooms using aluminum-modified clay.

    Science.gov (United States)

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Aluminum alloy and associated anode and battery

    International Nuclear Information System (INIS)

    Tarcy, G.P.

    1990-01-01

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy

  4. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  5. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  6. Aluminum low temperature smelting cell metal collection

    Science.gov (United States)

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  7. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  8. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  9. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    identified as the primary factor that accelerates dross formation specifically in the transition from two phases to three phase growth. Limiting magnesium oxidation on the surface of molten aluminum therefore becomes the key to minimizing melt loss, and technology was developed to prevent magnesium oxidation on the aluminum surface. This resulted in a lot of the work being focused on the control of Mg oxidation. Two potential molten metal covering agents that could inhibit dross formation during melting and holding consisting of boric acid and boron nitride were identified. The latter was discounted by industry as it resulted in Boron pick up by the melt beyond that allowed by specifications during plant trials. The understanding of the kinetics of dross formation by the industry partners helped them understand how temperature, alloy chemistry and furnace atmosphere (burner controls--e.g. excess air) effected dross formation. This enables them to introduce in their plant process changes that reduced unnecessary holding at high temperatures, control burner configurations, reduce door openings to avoid ingress of air and optimize charge mixes to ensure rapid melting and avoid excess oxidation.

  10. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  11. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  12. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  13. Recrystallization resistance in aluminum alloys containing zirconium

    International Nuclear Information System (INIS)

    Ranganathan, K.

    1991-01-01

    Zirconium forms a fine dispersion of the metastable β' (Al 3 Zr) phase that controls recrystallization by retarding the motion of high-angle boundaries. The primary material chosen for this research was aluminum alloy 7150 containing zinc, magnesium, and copper as the major solute elements and zirconium as the dispersoid-forming element. The size, distribution, and the volume fraction of β' was controlled by varying the alloy composition and preheat practices. Preheated ingots were subjected to a specific sequence of hot-rolling operations to evaluate the resistance to recrystallization of the different microstructures. Optical and transmission electron microscopy (TEM) techniques were used to investigate the influence of dispersoid morphology resulting from the thermal treatments and deformation processing on the recrystallization behavior of the alloy. Studies were conducted to determine the influence of the individual solute elements present in 7150 on the precipitation of β' and consequently on the recrystallization behavior of the material. These studies were done on compositional variants of commercial 7150

  14. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  15. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  16. A naturalização da identidade social precarizada na indústria do alumínio primário paraense The acknowledgment of the precarious social identity in the primary aluminum industry in the state of Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Attila Magno e Silva Barbosa

    2010-04-01

    Full Text Available O objetivo deste trabalho é analisar em que medida o processo de terceirização em uma indústria de alumínio primário no município de Barcarena, no estado do Pará, produz diferenciações nas identidades sociais dos trabalhadores diretos e dos terceirizados. Como se sabe, os terceirizados possuem estatuto diferenciado no espaço de trabalho, o que os exclui da rede de benefícios oferecida pelas empresas. Nesse sentido, a sociedade passa a conviver não apenas com a fragilidade presente na relação salarial, mas também com o desmoronamento dos princípios reguladores da sociabilidade entre os trabalhadores. A hipótese levantada é a de que os estatutos mais precários que fundamentam a condição dos terceirizados se estendem por toda a constituição da vida social destes e lhes confere uma identidade social distinta. Foram realizadas 15 entrevistas com cada grupo de trabalhadores e duas entrevistas com dirigentes sindicais, também analisamos o acordo coletivo dos trabalhadores diretos com a empresa e os relatórios anuais desta desde o ano de 2003.This study intends to examine to what extent the outsourcing process in an industry of primary aluminum, in the city of Barcarena, Pará, results in differentiation in the social identities of direct and outsourced workers. Outsourced workers have a different status in the workplace, which excludes them from the benefits offered by the companies. As a result, society has to deal not only with the fragility of the wage relationship, but also with the collapse of the principles that regulate sociability among workers. The hypothesis is that the precarious statutes responsible for the conditions of outsourced workers are extended throughout their social lives, which gives them a distinct social identity. Fifteen interviews were conducted with each group of workers; two union leaders were also interviewed. Furthermore, the article examines the collective agreement between the direct workers

  17. DART model for thermal conductivity of U3Si2 Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    2004-01-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminum dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values. (author)

  18. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  19. Oxidation dynamics of aluminum nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Chemical Engineering and Materials Science, Department of Computer Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2015-02-23

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation.

  20. Trail smelter question

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M; McCallium, A W

    1937-01-01

    Under conditions existing at Summerland, B.C., trees growing under irrigation are definitely more susceptible to injury by sulfur dioxide than trees growing in natural habitat. In order of susceptibility to injury by sulfur dioxide the species used in these experiments rank as follows: larch, Douglas fir, Engelmann spruce, white pine, yellow pine, cedar, lodgepole pine, silver fir, and white fir. The conclusions drawn from the experiments carried out in 1931 on conifers in regard to seasonal variation in susceptibility were corroborated by the present work, it being shown that trees are very susceptible to injury during the early part of the growing season and very resistant during the fall and early winter. Lareh is extremely sensitive to injury, a fumigation of 0.30 ppM for six hours at an average humidity of 67 per cent causing injury at the end of May. Larch leaves growing on wood produced during the current year are much more susceptible to injury than are leaves produced on wood formed in previous years. Many larches which sustained severe injury to the foliage on wood of the current year made rapid growth subsequent to the fumigation, the injury seeming to have but slight effect upon growth. 10 figures, 17 tables.

  1. Decontamination and reuse of ORGDP aluminum scrap

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF 6 . This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible

  2. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  3. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  4. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  5. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  6. 49 CFR 178.505 - Standards for aluminum drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  7. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  8. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its... the aluminum cargo tank must meet the steel structural standards of the American Bureau of Shipping...

  9. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  10. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  11. Aluminum exclusion and aluminum tolerance in woody plants.

    Science.gov (United States)

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  12. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  13. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Science.gov (United States)

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of aluminum...

  14. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  15. Electrometallurgical treatment of aluminum-based fuels

    International Nuclear Information System (INIS)

    Willit, J. L.

    1998-01-01

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining

  16. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  17. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  18. Interpretation of aluminum-alloy weld radiography

    Science.gov (United States)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  19. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  20. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  1. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  2. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  3. Corrosion of aluminum components and remedial measures

    International Nuclear Information System (INIS)

    Sheikh, S.T.; Khalique, A.; Malik, F.A.

    2006-01-01

    Aluminum has versatile physical properties, mechanical strength, corrosion resistance, and is used in special applications like aerospace, automobiles and other strategic industries. The outdoor exposed structural components of aluminum have very good corrosion resistance due to the thick oxide layer (0.2 -0.4 micro). This study involves the corrosion of aluminum based components, though aluminum is protected by an oxide layer but due to extreme weather and environmental conditions the oxide layer was damaged. The corroded product was removed, pits or cavities formed due to the material removal were filled with epoxy resins and acrylic-based compounds containing fibreglass as reinforcement. Optimum results were obtained with epoxy resins incorporated with 5% glass fibers. The inner surface of the components was provided further protection with a cellulose nitrate compound. (author)

  4. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  5. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: Leachability of lead, cadmium and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Chrastny, Vladislav, E-mail: vladislavchrastny@seznam.cz [University of South Bohemia, Faculty of Science, Studentska 13, 370 05 Ceske Budejovice (Czech Republic); Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamycka 129, 165 21 Prague 6 (Czech Republic); Vanek, Ales [Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamycka 129, 165 21 Praha 6 (Czech Republic); Komarek, Michael [Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamycka 129, 165 21 Prague 6 (Czech Republic); Farkas, Juraj [Czech Geological Survey, Geologicka 6, 152 00 Praha 5 (Czech Republic); Drabek, Ondrej; Vokurkova, Petra [Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamycka 129, 165 21 Praha 6 (Czech Republic); Nemcova, Jana [University of South Bohemia, Faculty of Agriculture, Studentska 13, 370 05 Ceske Budejovice (Czech Republic)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Pb smelter fly ash was incubated in forest soil horizons to assess metal mobility. Black-Right-Pointing-Pointer The metal mobilization depends on pH and the ratio of humic/fulvic acids to SOM. Black-Right-Pointing-Pointer The lowest mobilization of Pb, Zn and Cd took place in horizon H (coniferous forest). Black-Right-Pointing-Pointer A huge amount of Cd was found to have leached in the horizon F (deciduous forest). Black-Right-Pointing-Pointer More vulnerable to metal leaching from APC residues is soil from deciduous forest. - Abstract: The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues.

  6. A test of the stability of Cd, Cu, Hg, Pb and Zn profiles over two decades in lake sediments near the Flin Flon Smelter, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Percival, J.B.; Outridge, P.M., E-mail: outridge@nrcan.gc.ca

    2013-06-01

    Lake sediments are valuable archives of atmospheric metal deposition, but the stability of some element profiles may possibly be affected by diagenetic changes over time. In this extensive case study, the stability of sedimentary Cd, Cu, Hg, Pb and Zn profiles was assessed in dated sediment cores that were collected in 2004 from four smelter-affected lakes near Flin Flon, Manitoba, which had previously been cored in 1985. Metal profiles determined in 1985 were in most cases clearly reproduced in the corresponding sediment layers in 2004, although small-scale spatial heterogeneity in metal distribution complicated the temporal comparisons. Pre-smelter (i.e. pre-1930) increases in metal profiles were likely the result of long-range atmospheric metal pollution, coupled with particle mixing at the 1930s sediment surface. However, the close agreement between key inflection points in the metal profiles sampled two decades apart suggests that metals in most of the lakes, and Hg and Zn in the most contaminated lake (Meridian), were stable once the sediments were buried below the surface mixed layer. Cadmium, Cu and Pb profiles in Meridian Lake did not agree as well between studies, showing evidence of upward remobilization over time. Profiles of redox-indicator elements (Fe, Mn, Mo and U) suggested that the rate of Mn oxyhydroxide recycling within sediment was more rapid in Meridian Lake, which may have caused the Cd, Cu and Pb redistribution. - Highlights: • Sedimentary Cd, Cu, Hg, Pb and Zn profiles in four lakes were mostly unchanged over 19 years. • In one lake, Cd, Cu and Pb profiles were offset relative to the originals. • The offset could indicate diagenetic upcore dispersal of these metals.

  7. Development of an online sulfide analysis at the waste water treatment plant of a primary lead smelter; Entwicklung einer Online-Sulfidanalytik in der Abwasserbehandlungsanlage einer Primaerbleihuette

    Energy Technology Data Exchange (ETDEWEB)

    Steckenborn, Anja; Meurer, Urban [BERZELIUS Stolberg GmbH, Stolberg (Germany)

    2011-09-15

    In wastewater treatment of heavy metal containing fluids it is common practice to use soluble sulfides as precipitants. To run a stable system and ensure a complete reaction it is necessary to control the excess of sulfide continuously. There are diverse analytical methods to determine sulfide in aqueous solutions. Most of these techniques require a calibration or show a serious dependency on matrix effects. An argentometric precipitation titration is proved to be the best choice for the adverse ambience of high salts and solid containing fluids at an online analysis. The modular online System Metrohm ADI 2040 was tailored to the particular needs. The detection system is based on a combined platinum electrode with pH reference working in alkaline ammonia buffer. The system turns out to be unsusceptible to most matrix influences such as high concentrations of diverse anions and cat ions, flocking agents or up to a certain particle content. Below 3 mg/L the bigger part of results lies outside of {+-}20 % of the reference value. The accuracy enhances with increasing concentration. Solutions up to 10 mg/L sulfide show good reproducibility and analytical results. (orig.)

  8. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  9. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  10. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2010-01-01

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  11. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  12. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  13. Scientific Background for Processing of Aluminum Waste

    Directory of Open Access Journals (Sweden)

    Kononchuk Olga

    2017-01-01

    of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  14. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  15. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  16. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  17. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  18. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  19. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  20. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  1. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  2. Aluminum bioavailability from tea infusion.

    Science.gov (United States)

    Yokel, Robert A; Florence, Rebecca L

    2008-12-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer (26)Al. (26)Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous (27)Al infusion. Oral Al bioavailability (F) was calculated from the area under the (26)Al, compared to (27)Al, serum concentration x time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F=0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F=0.1-0.3%), but greater than acidic SALP in a biscuit (F=0.1%). Time to maximum serum (26)Al concentration was 1.25, 1.5, 8 and 4.8h, respectively. These results of oral Al bioavailability x daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water.

  3. Understanding of radiation effect on sink in aluminum base structure materials

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun

    2014-01-01

    In case of aluminum, a slightly different approach is needed for the evaluation of radiation damage. Unlikely other structure materials such as zirconium alloy and iron based alloy, aluminum generate not only matrix defect but also much transmutation. Quantitative analysis of radiation damage of aluminum have been done in two research method. First research method is calculation of radiation damage quantity in the matrix. In this research, quantity of transmutation and matrix damage are evaluated by KMC simulation from ENDF database of IAEA. Most recently, radiation damage such as defect and transmutation are calculated in the MNSR reactor environment. The second research method is evaluation of sink morphology change by irradiation, which research method focus on accumulating behavior of radiation defects. Matrix defect and transmutation are clustering or dissolved by thermal diffusion and energy statue. These clustering defect such as dislocation loop, void and bubble directly affect mechanical properties. In this research area, it is hard to using deterministic method because it should describe envious and various reaction module in detail. However, in case of probabilistic method, it could be explained without detail reaction module. Most recently, there was KMC modeling about vacancy and helium cluster. From this cluster modeling, transmutation is quantitatively analyzed. After that cluster effect on swelling are explained. Unfortunately, silicon, which is another transmutation of aluminum, effect are neglected. Also primary cluster, which is generated by cascade, effect are neglected. For the fundamental understanding of radiation effect on aluminum alloy, it is needed that more various parameter such as alloy element and primary cluster effect should be researched. However, until now there was not general modeling which include alloy element and primary cluster effect on aluminum. However, there was not specified KMC platform for the quantitative analysis of

  4. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Golden, J.L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  5. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  6. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  7. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  8. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    Science.gov (United States)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  9. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  10. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  11. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  12. Determination of aluminum by four analytical methods

    International Nuclear Information System (INIS)

    Hanson, T.J.; Smetana, K.M.

    1975-11-01

    Four procedures have been developed for determining the aluminum concentration in basic matrices. Atomic Absorption Spectroscopy (AAS) was the routine method of analysis. Citrate was required to complex the aluminum and eliminate matrix effects. AAS was the least accurate of the four methods studied and was adversely affected by high aluminum concentrations. The Fluoride Electrode Method was the most accurate and precise of the four methods. A Gran's Plot determination was used to determine the end point and average standard recovery was 100% +- 2%. The Thermometric Titration Method was the fastest method for determining aluminum and could also determine hydroxide concentration at the same time. Standard recoveries were 100% +- 5%. The pH Electrode Method also measures aluminum and hydroxide content simultaneously, but is less accurate and more time consuming that the thermal titration. Samples were analyzed using all four methods and results were compared to determine the strengths and weaknesses of each. On the basis of these comparisons, conclusions were drawn concerning the application of each method to our laboratory needs

  13. Characterization of acoustic cavitation in water and molten aluminum alloy.

    Science.gov (United States)

    Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay

    2013-03-01

    High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  15. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  16. Diffusionless bonding of aluminum to Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.

    1965-04-01

    Aluminum can be bonded to zirconium without difficulty even when a thin layer of oxide is present on the surface of the zirconium . No detectable diffusion takes place during the bonding process. The bond layer can be stretched as much. as 8% without affecting the bond. The bond can be heated for 1000 hours at 260 o C (500 o F), and can be water quenched from 260 o C (500 o F) without any noticeable change in the bond strength. An extrusion technique has been devised for making transition sections of aluminum bonded to zirconium which can then be used to join these metals by conventional welding. Welding can be done close to the bond zone without seriously affecting the integrity of the bond. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 26, 1965. (author)

  17. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  18. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  19. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Zhan Shichang; Li Baoxing; Yang Jiansong

    2007-01-01

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n - m Al m clusters

  20. Study on Explosive Forming of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    H Iyama

    2016-09-01

    Full Text Available Now, the aluminum alloy is often used as auto parts, for example, body, engine. For example, there are the body, a cylinder block, a piston, a connecting rod, interior, exterior parts, etc. These are practical used the characteristic of a light and strong aluminum alloy efficiently. However, although an aluminum alloy is lighter than steel, the elongation is smaller than that. Therefore, in press forming, some problems often occur. We have proposed use of explosive forming, in order to solve this problem. In the explosive forming, since a blank is formed at high speed, a strain rate effect becomes large and it can be made the elongation is larger. Then, in order to clarify this feature, we carried out experimental research and numerical analysis. In this paper, these contents will be discussed.

  1. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  2. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  3. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  4. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  5. Coupling geochemical, mineralogical and microbiological approaches to assess the health of contaminated soil around the Almalyk mining and smelter complex, Uzbekistan

    International Nuclear Information System (INIS)

    Shukurov, Nosir; Kodirov, Obidjon; Peitzsch, Mirko; Kersten, Michael; Pen-Mouratov, Stanislav; Steinberger, Yosef

    2014-01-01

    This study describes the impact of airborne pollution resulting from mining and smelting activities on the soils of the Almalyk mining and industrial area (NE Uzbekistan). Samples were collected along a transect downwind of the industrial area. Enriched contents of some metals were found in the upper soil layers near the metallurgical complex (Zn ≤ 3010 mg kg −1 , Pb ≤ 630 mg kg −1 , Cd ≤ 30 mg kg −1 ) which suggests that these metals were derived from local stack emissions. The morphology and internal microstructure of metal-bearing spherical particles found in the heavy mineral fraction suggest that these particles were probably a result of inefficient flue gas cleaning technique of the smelter. The highest metal concentrations were found also in soil solutions and exchangeable solid fractions from the first three locations, and decreased with increasing distance from the pollution source along transect. Thermodynamic equilibrium calculations suggest that the mobile metal pool in the contaminated soil is mainly controlled by dissolution of metal carbonates formed as weathering product of the metalliferous particles. The health of the microbiological soil ecosystem was assessed by measurements of basal respiration, nematode abundance, biomass-related C and N content, and microbial metabolic quotient qCO 2 . Significant correlations were found between the dissolved metal content and the microbiological health parameters, a negative one for C mic /C org ratio, and a positive one for qCO 2 . A negative correlation was found between the amount of nematodes and the metal contents suggesting that the contaminated soil has significant impact on the functioning of the microbiological community. A better understanding of the spatial variations in the whole ecosystem functioning due to airborne impact could be very useful for establishing suitable land use and best management practices for the polluted areas. - Highlights: • Soil samples were collected along a

  6. Coupling geochemical, mineralogical and microbiological approaches to assess the health of contaminated soil around the Almalyk mining and smelter complex, Uzbekistan

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Nosir; Kodirov, Obidjon; Peitzsch, Mirko [Geosciences Institute, Johannes Gutenberg University, Mainz 55099 (Germany); Kersten, Michael, E-mail: kersten@uni-mainz.de [Geosciences Institute, Johannes Gutenberg University, Mainz 55099 (Germany); Pen-Mouratov, Stanislav; Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2014-04-01

    This study describes the impact of airborne pollution resulting from mining and smelting activities on the soils of the Almalyk mining and industrial area (NE Uzbekistan). Samples were collected along a transect downwind of the industrial area. Enriched contents of some metals were found in the upper soil layers near the metallurgical complex (Zn ≤ 3010 mg kg{sup −1}, Pb ≤ 630 mg kg{sup −1}, Cd ≤ 30 mg kg{sup −1}) which suggests that these metals were derived from local stack emissions. The morphology and internal microstructure of metal-bearing spherical particles found in the heavy mineral fraction suggest that these particles were probably a result of inefficient flue gas cleaning technique of the smelter. The highest metal concentrations were found also in soil solutions and exchangeable solid fractions from the first three locations, and decreased with increasing distance from the pollution source along transect. Thermodynamic equilibrium calculations suggest that the mobile metal pool in the contaminated soil is mainly controlled by dissolution of metal carbonates formed as weathering product of the metalliferous particles. The health of the microbiological soil ecosystem was assessed by measurements of basal respiration, nematode abundance, biomass-related C and N content, and microbial metabolic quotient qCO{sub 2}. Significant correlations were found between the dissolved metal content and the microbiological health parameters, a negative one for C{sub mic}/C{sub org} ratio, and a positive one for qCO{sub 2}. A negative correlation was found between the amount of nematodes and the metal contents suggesting that the contaminated soil has significant impact on the functioning of the microbiological community. A better understanding of the spatial variations in the whole ecosystem functioning due to airborne impact could be very useful for establishing suitable land use and best management practices for the polluted areas. - Highlights: • Soil

  7. Laser microprobe mass analysis (LAMMA) of aluminum and lead in fine roots and their ectomycorrhizal mantles of Norway spruce (Picea abies (L.) Karst.).

    Science.gov (United States)

    Eeckhaoudt, S; Vandeputte, D; Van Praag, H; Van Grieken, R; Jacob, W

    1992-03-01

    Fine roots and ectomycorrhizal root tips were sampled in a Norway spruce (Picea abies (L.) Karst.) stand in the eastern part of the Belgian Ardennes. The cellular and partly subcellular localizations of aluminum and lead were identified by the micro-analytical laser microprobe mass analysis (LAMMA) technique. In fine roots with secondary structure, localization of aluminum was limited to the peripheral cell layers. Lead was found in the outer layers, and also in the primary phloem. Aluminum penetrated the mycorrhizal mantle, but lead was seldom detected in ectomycorrhizae.

  8. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  9. Evaluation of aluminum migration into foodstuffs from aluminium cookware

    Directory of Open Access Journals (Sweden)

    M Radi

    2014-05-01

    Full Text Available Nowadays, the existence of aluminum in human diet as a food contaminant has attracted the concerns of many researchers. It seems that the cooking pans are common sources of aluminum exposure through foodstuffs in Iran. The aim of this study was to evaluate the migration of aluminum from cooking containers into foodstuffs. For this purpose, solutions with different concentrations of citric acid, sodium chloride, fat, protein and sugar were prepared and migration of aluminum into these solutions was measured using atomic absorption spectrometry. Results showed that salt and citric acid concentrations could enhance aluminum migration; whereas, acid concentration was more effective than salt due to its corrosive effect. The intensity of heat processing and the duration of heat treatment had direct relation with aluminum migration. The aluminum content of cooked foods in aluminum cooking pans was also significantly more than control samples.

  10. Low Mass, Aluminum NOFBX Combustion Chamber Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our team proposes to define a diffusion bonding process for aluminum as an enabling step to ultimately develop an innovative, lightweight, long life, aluminum...

  11. Exploration the extrudability of aluminum matrix composite (LM6/TIC ...

    African Journals Online (AJOL)

    Aluminum matrix composites (LM6/TiC) is a mix of excellent properties of aluminum ... ABAQUS/CAE software has been successfully employed for Modeling and ... Experimental results show that, many mechanical properties are improved and ...

  12. Effect of the aluminum flow pattern on the bonding of aluminum to oxidized Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.; Lambert, J.P.

    1965-04-01

    The bonds produced when hot aluminum is allowed to flow smoothly from an extrusion die to the oxidized surface of a heated tube of Zircaloy-2 are consistently inferior to those produced with back-extruded flow. The difference is believed to be due to the reduction in, or elimination of, the oxide layer on the aluminum that comes in contact with the surface of the Zircaloy-2. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 1965. (author)

  13. Estimates of the cost and energy consumption of aluminum-air electric vehicles

    Science.gov (United States)

    Cooper, J. F.

    1980-11-01

    Economic costs and primary energy consumption are estimated for general purpose electric vehicles using aluminum-air propulsion batteries within the time frame of the 1990's (earliest possible date of introduction). For an aluminum-air fuel economy of 36 tonne/km/kg-Al (optimized low-gallium alloys), a total refueling cost of 5.6 cents/km (1979$) was estimated for a 1.27 tonne vehicle. This is equivalent to $2 to 3/gal for automobiles of the same weight with fuel economies of 13.5 to 19.3 tonne-km/liter. The total primary energy consumption was estimated to be 1.3 to 1.7 kWh/km (coal) for the electric vehicle, which corresponds roughly to the energy cost of the automobiles using liquid fuels synthesized from coal. The energy consumption is 30 to 70 percent greater than the reference automobile using petroleum-derived gasoline.

  14. Transition of hydrated oxide layer for aluminum electrolytic capacitors

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Jeong, Yongsoo; Ahn, Hong-Joo; Lee, Jong-Ho; Kim, Jung-Gu; Lee, Jun-Hee; Jang, Kyung-Wook; Oh, Han-Jun

    2007-01-01

    A hydrous oxide film for the application as dielectric film is synthesized by immersion of pure aluminum in hot water. From a Rutherford backscattering analysis, the ratio of aluminum to oxygen atoms was found to be 3:2 in the anodized aluminum oxide film, and 2:1 in the hydrous oxide layer. Anodization of the hydrous oxide layer was more effective for the transition of amorphous anodic oxides to the crystalline aluminum oxides

  15. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  16. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    Science.gov (United States)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  17. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  18. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  19. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  20. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  1. Passivation of aluminum with alkyl phosphonic acids for biochip applications

    Science.gov (United States)

    Attavar, Sachin; Diwekar, Mohit; Linford, Matthew R.; Davis, Mark A.; Blair, Steve

    2010-09-01

    Self-assembly of decylphosphonic acid (DPA) and octadecylphosphonic acid (ODPA) was studied on aluminum films using XPS, ToF-SIMS and surface wettability. Modified aluminum films were tested for passivation against silanization and subsequent oligonucleotide attachment. Passivation ratios of at least 450:1 compared to unprotected aluminum were obtained, as quantified by attachment of radio-labeled oligos.

  2. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  3. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  4. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  5. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  6. Bearing capacity check of aluminum profiles

    Directory of Open Access Journals (Sweden)

    Cristian Grigoraşenco

    2013-06-01

    Full Text Available Because of suspended ceiling options to be customizable they are the choice for implementation in spaces like offices buildings, schools, hospitals and commercial premises. Recent problems with suspended gypsum ceilings falling in some commercial premises led to verification by tensile test and flexural bearing capacity of 5 types of aluminum elements used to suspend the ceilings.

  7. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  8. Aluminum Solubility in Complex Electrolytes - 13011

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01

    Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

  9. Chemical Reduction Synthesis of Iron Aluminum Powders

    Science.gov (United States)

    Zurita-Méndez, N. N.; la Torre, G. Carbajal-De; Ballesteros-Almanza, L.; Villagómez-Galindo, M.; Sánchez-Castillo, A.; Espinosa-Medina, M. A.

    In this study, a chemical reduction synthesis method of iron aluminum (FeAl) nano-dimensional intermetallic powders is described. The process has two stages: a salt reduction and solvent evaporation by a heat treatment at 1100°C. The precursors of the synthesis are ferric chloride, aluminum foil chips, a mix of Toluene/THF in a 75/25 volume relationship, and concentrated hydrochloric acid as initiator of the reaction. The reaction time was 20 days, the product obtained was dried at 60 °C for 2 h and calcined at 400, 800, and 1100 °C for 4 h each. To characterize and confirm the obtained synthesis products, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques were used. The results of morphology and chemical characterization of nano-dimensional powders obtained showed a formation of agglomerated particles of a size range of approximately 150 nm to 1.0 μm. Composition of powders was identified as corundum (Al2O3), iron aluminide (FeAl3), and iron-aluminum oxides (Fe0. 53Al0. 47)2O3 phases. The oxide phases formation were associated with the reaction of atmospheric concentration-free oxygen during synthesis and sintering steps, reducing the concentration of the iron aluminum phase.

  10. Corrosion of Graphite Aluminum Metal Matrix Composites

    Science.gov (United States)

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  11. Electrometallurgical treatment of aluminum-matrix fuels

    International Nuclear Information System (INIS)

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-01-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum

  12. Strong, corrosion-resistant aluminum tubing

    Science.gov (United States)

    Reed, M. W.; Adams, F. F.

    1980-01-01

    When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment.

  13. Explosion hazards of aluminum finishing operations

    NARCIS (Netherlands)

    Taveau, J.R.; Hochgreb, Simone; Lemkowitz, S.M.; Roekaerts, D.J.E.M.

    2018-01-01

    Metal dust deflagrations have become increasingly common in recent years. They are also more devastating than deflagrations involving organic materials, owing to metals' higher heat of combustion, rate of pressure rise, explosion pressure and flame temperature. Aluminum finishing operations offer

  14. Explosion hazards of aluminum finishing operations

    NARCIS (Netherlands)

    Taveau, J.; Hochgreb, S.; Lemkowitz, S.M.; Roekaerts, D.J.E.M.

    2018-01-01

    Metal dust deflagrations have become increasingly common in recent years. They are also more devastating than deflagrations involving organic materials, owing to metals' higher heat of combustion, rate of pressure rise, explosion pressure and flame temperature. Aluminum finishing operations offer a

  15. The use of aluminum dome tank roofs

    International Nuclear Information System (INIS)

    Morovich, G.L.

    1992-01-01

    Since the late 1970's the aluminum dome tank roof has gained wide usage for both new and retrofit applications. The increased application for the structure results from a need for maintenance reduction, environmental considerations, concern for product quality and economics. The American Petroleum Institute (API) has approved Standard API 650, Appendix G - Structurally Supported Aluminum Dome Roofs for publication. The aluminum dome was originally used as weather cover for retrofiting external floating roof tanks. The roof was considered for the reduction of maintenance related to draining water from the external floating roofs and problems resulting from freezing of drain lines and snow accumulation. This paper reports that environmental concerns have expanded the value of aluminum dome roofs. Rainwater bypassing the seals of an external floating roof became classified as a hazardous material requiring special and expensive disposal procedures. The marketing terminal facilities typically do not have the capacity for proper treatment of contaminated bottom water. With new fuel additives being water soluble, water contamination not only created a hazardous waste disposal problem, but resulted in reduced product quality

  16. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  17. Radiation corrosion in aluminum alloy bellows

    International Nuclear Information System (INIS)

    Konno, Osamu

    1987-01-01

    Testing was carried out in which materials for vacuum devices (Al, Ti, Cu, SUS) are exposed to electron beams (50 MeV, average current 80 μA) to determine the changes in the quantity, partial pressure and composition of the gases released from the materials. The test appratus used are made of Al alloys alone. During the test, vacuum leak is found in the Al alloy bellows used in the drive device. The leak is found to result from corrosion caused by water. The surface structure is analyzed by SEM, EPMA, ESCA and IMA. It is confirmed that the Al alloy used as material for the bellows if highly resistant to corrosion. It is concluded that it is necessary to use high purity cooling water to prevent the cooling water from causing corrosion. It has been reported that high purity aluminum is very high in resistance to corrosion. Based on these measurements and considerations, it is suggested that when aluminum is to be used as material for vacuum devices in an accelerator, it is required to provide protection film on its surface to prevent corrosion or to use cooling water pipes cladded with pure aluminum and an aluminum alloy. In addition, the temperature of the cooling water should be set after adequately considering the environmental conditions in the room. (Nogami, K.)

  18. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  19. Reinforcement of Aluminum Castings with Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  20. Analysis of copper losses throughout weak acid effluent flows generated during off-gas treatment in the New Copper Smelter RTB Bor

    Directory of Open Access Journals (Sweden)

    Dragana Ivšić-Bajčeta

    2013-09-01

    Full Text Available The previous inadequate treatment of off-gas in RTB Bor in Serbia has resulted in serious pollution of the environment and the possibly high losses of copper through the effluent flows. The project of New Copper Smelter RTB Bor, besides the new flash smelting furnace (FSF and the reconstruction of Pierce-Smith converter (PSC, includes more effective effluent treatment. Paper presents an analysis of the new FSF and PSC off-gas treatment, determination of copper losses throughout generated wastewaters and discussion of its possible valorization. Assumptions about the solubility of metals phases present in the FSF and PSC off-gas, obtained by the treatment process simulation, were compared with the leaching results of flue dusts. Determined wastewaters characteristics indicate that the PSC flow is significantly richer in copper, mostly present in insoluble metallic/sulfide form, while the FSF flow has low concentration of copper in the form of completely soluble oxide/sulfate. The possible scenario for the copper valorization, considering arsenic and lead as limiting factors, is the separation of the FSF and PSC flows, return of the metallic/sulfide solid phase to the smelting process and recovery from the sulfate/oxide liquid phase.

  1. Thyroid function in smelters after long-term exposure to heavy metals; Funkcja tarczycy u hutnikow dlugoletnio narazonych na metale ciezkie

    Energy Technology Data Exchange (ETDEWEB)

    Andrzejak, R.; Antonowicz, J.; Bolanowska, B.; Kabacinska-Knapik, D.; Hebdzinski, L.; Smolik, R. [Przychodnia Przyzakladowa Huty Miedzi `Legnica`, Legnica (Poland)

    1996-12-31

    In the year 1995 in a group of 93 male workers of a copper smelter (mean age = 40.7 years, exposure time = 8.5 years) following parameters were measured: blood levels of: lead and cadmium; serum levels of copper, zinc, calcium and magnesium-with use of atomic absorption spectrophotometry; FEP -with Piomelli`s method; and T3, T4 and TSH in serum with radioimmunometric method. Mean blood lead level was 38.2 micrograms/dl, and concentrations of other metals and hormones were within norm limits. Mean level of FEP was slightly above norm (FEP = 106.5 micrograms/100 ml E). We found no correlation between investigated hormones (T3, T4 and TSH) and age, length of exposure nor blood lead level. We found a significant inverse correlation between FEP and TSH (r = -0.207; p < 0.047). This correlation could point to the fact that lead burden (expressed not in the actual blood level but in the FEP concentration) could negatively influence endocrine functions through hypothalamic-pituitary axis. (author). 18 refs, 1 fig., 1 tab.

  2. Use of an in vitro digestion method to estimate human bioaccessibility of Cd in vegetables grown in smelter-impacted soils: the influence of cooking.

    Science.gov (United States)

    Pelfrêne, Aurélie; Waterlot, Christophe; Guerin, Annie; Proix, Nicolas; Richard, Antoine; Douay, Francis

    2015-08-01

    Metal contamination of urban soils and homegrown vegetables has caused major concern. Some studies showed that cadmium (Cd) was among the most significant hazards in kitchen garden soils and prolonged exposure to this metal could cause deleterious health effects in humans. In general, most risk assessment procedures are based on total concentrations of metals in vegetables. The present study assesses human bioaccessibility of Cd in vegetables cultivated in smelter-impacted kitchen garden soils. Seven vegetables (radish, lettuce, French bean, carrot, leek, tomato, and potato) were considered. Using the UBM protocol (unified BARGE bioaccessibility method), the bioaccessibility of Cd was measured in raw/cooked vegetables. A considerable amount of Cd was mobilized from raw vegetables during the digestion process (on average 85% in the gastric phase and 69% in the gastrointestinal phase), which could be attributed to a high uptake of Cd during the growth of the vegetables. Most Cd is accumulated in the vacuoles of plant cells, except what is absorbed by the cell wall, allowing Cd to be released from plant tissues under moderate conditions. Cooking by the steaming process generally increased the bioaccessibility of Cd in French bean, carrot, and leek. For potato, few or no significant differences of Cd bioaccessibility were observed after the steaming process, while the frying process strongly decreased bioaccessibility in both phases. The estimation of metal bioaccessibility in vegetables is helpful for human health risk assessment.

  3. Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material.

    Science.gov (United States)

    Li, Yuan-Cheng; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liu, De-Gang

    2018-02-15

    A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: leachability of lead, cadmium and zinc.

    Science.gov (United States)

    Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana

    2012-03-30

    The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Heavy Metal Atmospheric Deposition Study Around the Lead and Copper-Zinc Smelters in Baia Mare, Romania, Employing the Moss Biomonitoring Technique, ENAA and FAAS

    CERN Document Server

    Culicov, O A; Steinnes, E; Okina, O S; Santa, Z; Todoran, R

    2001-01-01

    The mosses Pleurozium schreberi, Pseudoscleropodium purum and Rhytidiadelphus squarrosus were used as biomonitors to study the atmospheric deposition of metals around the lead and copper-zinc smelters in Baia Mare. Samples representing the last three years' growth of moss or its green part, collected on the ground at 28 sites located 2-20 km from the source area, were analyzed by instrumental neutron activation analysis using epithermal neutrons (ENAA) and by flame atomic absorption spectrometry (FAAS). A total of 30 elements were determined, including most of the heavy metals known to be released into the air from this kind of industry. Obtained concentrations for As and Cu are comparable with those observed in Karabash, South Ural Mountains, one of the most polluted regions in Europe. Besides, these two elements correlate very well with each other. The mean values for Zn (136 ppm) and Pb (41 ppm) are substantially higher than those normally found in the literature. The highest value for Pb (175 ppm) was obs...

  6. A mass spectrographic investigation of the methods for obtaining quantitative analyses for the mass balance of P and B through a submerged arc silicon smelter

    International Nuclear Information System (INIS)

    Rogers, D.E.C.; Jones, D.S.; Wegman, J.W.; Brain, L.; Van Wamelen, J.

    1983-11-01

    Mass spectrographic analyses of silica, silicon and silica reducing agents have been made using an arc discharge mass spectrograph. Analyses of certified standards and standard mixtures are given. An evaluation of doping techniques shows that the solid doping technique is satisfactory and that the liquid doping technique leads to significant errors. The amount of liquid dopant absorbed onto the substrate matrix varied from one compound to another and from one matrix to another. Comparison of analyses of solid-doped and undoped certified standards shows that all of the solid dopant is taken up by the sample. Analysis of silica reducing agents used in the arc reduction furnace shows that the major source of contamination by B and P is likely to be the coal and wood. Silica contains 0.4 ppm of B and 4 ppm of P and is a minor source of contamination. The levels in silicon are about 10 ppm for B and 20 ppm for P. A mass balance on P cannot be made and the missing amount is larger than the inaccuracy of the analysis. For analyses of feedstocks where the smelter outlet fumes are not sampled an accuracy of analysis to a factor of two is sufficient for the analysis of the coal and wood chips

  7. Possible use of electron beam treatment for removal of SO2 in off-gases from copper smelters. Preliminary tests results

    International Nuclear Information System (INIS)

    Villanueva, L.; Ahumanda, L.; Chmielewski, A.; Zimek, A.; Budka, S.; Licki, J.

    1996-01-01

    The Chilean Nuclear Energy Commission is currently performing a previous feasibility study concerning possible utilization of electron-beam process for removal of SO 2 from different types of sulfurous streams from copper smelters. First part of the project was related to verify, in a experimental line at Institute of Nuclear Chemistry and Technology, INCT, Poland, the behaviour of the process for simulated off-gases with very high SO 2 content, between 5% to 15% by volume. Tests were performed at laboratory stage and with flowrate of 5 Nm 3 /hr, using an ILU-6 electron accelerator, with the following results: High removal efficiencies of SO 2 , up to 90% were achieved for simulated off-gases containing up to 15% of SO 2 ; Required dose was in the range 5 to 8 kGy; Big influence of NH 3 stoichiometry and gas humidity on SO 2 removal efficiency; Rapid generation of sub-micron solid by-product, in great amount, that causes deposits on ducts and filtration units. This work presents the experimental results and discuss is technical projections in the field of interest. (author)

  8. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    Science.gov (United States)

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    Science.gov (United States)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  10. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  11. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  12. Amenorrhea - primary

    Science.gov (United States)

    ... of periods - primary Images Primary amenorrhea Normal uterine anatomy (cut section) Absence of menstruation (amenorrhea) References Bulun SE. The physiology and pathology of the female reproductive axis. In: ...

  13. Estimation of aluminum and argon activation sources in the HANARO coolant

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul; Kim, Myong Seop

    2010-01-01

    The activation products of aluminum and argon are key radionuclides for operational and environmental radiological safety during the normal operation of open-tank-in-pool type research reactors using aluminum-clad fuels. Their activities measured in the primary coolant and pool surface water of HANARO have been consistent. We estimated their sources from the measured activities and then compared these values with their production rates obtained by a core calculation. For each aluminum activation product, an equivalent aluminum thickness (EAT) in which its production rate is identical to its release rate into the coolant is determined. For the argon activation calculation, the saturated argon concentration in the water at the temperature of the pool surface is assumed. The EATs are 5680, 266 and 1.2 nm, respectively, for Na-24, Mg-27 and Al-28, which are much larger than the flight lengths of the respective recoil nuclides. These values coincide with the water solubility levels and with the half-lives. The EAT for Na-24 is similar to the average oxide layer thickness (OLT) of fuel cladding as well; hence, the majority of them in the oxide layer may be released to the coolant. However, while the average OLT clearly increases with the fuel burn-up during an operation cycle, its effect on the pool-top radiation is not distinguishable. The source of Ar-41 is in good agreement with the calculated reaction rate of Ar-40 dissolved in the coolant

  14. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  15. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  16. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  17. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  18. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  19. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    Science.gov (United States)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  20. 78 FR 33409 - Proposed Information Collection Request; Comment Request; See Item Specific ICR Titles Provided...

    Science.gov (United States)

    2013-06-04

    ... Production (40 CFR Part 60, Subpart M), Primary Copper Smelters (40 CFR Part 60, Subpart P), Primary Zinc... bronze production facilities, primary copper smelters, primary zinc smelters, primary lead smelters... ID Number: EPA-HQ-OECA-2013-0314; Title: NSPS for Phosphate Rock Plants (40 CFR Part 60, Subpart NN...

  1. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  2. Generation and structural characterization of aluminum cyanoacetylide

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Carlos; Peña, Isabel; Alonso, José L., E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, Paseo de Belén 5, 47011 Valladolid (Spain); Barrientos, Carmen; Largo, Antonio, E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid (Spain); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Cernicharo, José [Group of Molecular Astrophysics, ICMM C/Sor Juana Ines de la Cruz N3 Cantoblanco, 28049 Madrid (Spain)

    2014-09-14

    Combined spectroscopy measurements and theoretical calculations bring to light a first investigation of a metallic cyanoacetylide, AlC{sub 3}N, using laser ablation molecular beam Fourier transform microwave spectroscopy. This molecule was synthesized in a supersonic expansion by the reaction of aluminum vapour with C{sub 3}N, produced from solid aluminum rods and BrCCCN in a newly constructed ablation-heating nozzle device. A set of accurate rotational and {sup 27}Al and {sup 14}N nuclear quadrupole coupling constants have been determined from the analysis of the rotational spectrum and compared with those predicted in a high-level ab initio study, conducting to the assignment of the observed species to linear AlCCCN. We have searched for this species towards the carbon-rich evolved star IRC + 10216 but only an upper limit to its abundance has been obtained.

  3. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  4. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  5. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  6. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  7. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  8. Preparation and characterization of aluminum stearate

    Directory of Open Access Journals (Sweden)

    Lončar Eva S.

    2003-01-01

    Full Text Available Preparation of aluminum stearate by the precipitation method was examined under various conditions of stearic acid saponification with sodium hydroxide. It was proved that the most favorable ratio of acid/alkali was 1:1.5 and that the obtained soap was very similar to the commercial product. Endothermic effects determined by differential scanning calorimetry and also the other parameters showed that the soaps consisted mono-, di-, tristearates and non-reacted substances, where distearate was the dominant form.

  9. Thermoelectric charge imbalance in superconducting aluminum

    International Nuclear Information System (INIS)

    Heidel, D.F.; Garland, J.C.

    1981-01-01

    The charge imbalance voltage produced in superconducting aluminum by the presence of a temperature gradient and an electric current has been studied over the temperature range 0.5-1.2 K. Measurements were obtained of the magnitude and temperature dependence of the charge imbalance voltage of seven samples, two of which contained magnetic impurities. The data are compared with recent theoretical models of the effect

  10. Testing conformal mapping with kitchen aluminum foil

    OpenAIRE

    Haas, S.; Cooke, D. A.; Crivelli, P.

    2016-01-01

    We report an experimental verification of conformal mapping with kitchen aluminum foil. This experiment can be reproduced in any laboratory by undergraduate students and it is therefore an ideal experiment to introduce the concept of conformal mapping. The original problem was the distribution of the electric potential in a very long plate. The correct theoretical prediction was recently derived by A. Czarnecki (Can. J. Phys. 92, 1297 (2014)).

  11. Ultrasonic maps of porosity in aluminum castings

    International Nuclear Information System (INIS)

    Ghaffari, Bita; Potter, Timothy J.; Mozurkewich, George

    2002-01-01

    The use of cast aluminum in the automotive industry has grown dramatically in recent years, leading to increased need for quantitative characterization of microporosity. As previously reported in the literature, the attenuation of ultrasound can be used to measure the porosity volume fraction and the mean pore size. An immersion ultrasound system has been built utilizing this technique to scan castings with high spatial resolution. Maps of attenuation are shown to locate areas of varying porosity readily and reliably

  12. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  13. Concept Development of an Aluminum Pedestrian Bridge

    OpenAIRE

    Brekke, Christian Arne Raknes

    2017-01-01

    As part of new initiatives from Norwegian Public Road Administration (NPRA) and Nye Veier AS towards reduced cost of road construction and maintenance, alternative materials for bridges are being considered. For the construction phase, quick installation and utilization of prefabricated units are being requested. For the operational phase, solutions not requiring periodical maintenance are favorized. In total, these new requirements are well suited for the use of aluminum. Especially for pede...

  14. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  15. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  16. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  17. Nitrogen bonding in aluminum oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Paul W., E-mail: pwang@bradley.edu [Department of Physics, Bradley University, 1501 W. Bradley Ave., Peoria, IL 61625 (United States); Hsu, Jin-Cherng [Department of Physics, Fu Jen Catholic University, Hsinchuang, Taipei Hsien 24205, Taiwan (China); Lin, Yung-Hsin; Chen, Huang-Lu [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, Hsinchuang, Taipei Hsien 24205, Taiwan (China)

    2010-04-15

    Assignment of oxidation states of N{sub 1s} in XPS spectra of aluminum oxynitride by curve fitting is difficult. The XPS curve fitting was previously discussed in the paper published in J. Non-Cryst. Solids, 224 (1998) 31, in which O{sub 1s} photoelectrons from GeO{sub 2} glass were used to illustrate how to fit the XPS spectra. Three different ways were pointed out to eliminate the ambiguity caused by curve fitting such as comparing the data to data from standard samples, investigating the continuous surface modifications caused by slowly sputtering the surface, and monitoring the continuous surface modifications due to gradual increases in surface species under heating, cooling, or irradiation. Our recent work in aluminum oxynitride films provides another example of how to fit the XPS spectra of N{sub 1s} by three different oxidation states of N{sup +}, N{sup 2+}, and N{sup 3+}, by comparison of the measured data to data from previously published results, and by the gradual changes of spectra as functions of the oxygen contents in the films. Three oxidation states in different nitrogen bonding in the aluminum oxynitride, AlO{sub 2}N, Al{sub 2}O{sub 5}N{sub 2}, and AlO{sub 3}N, were clearly deduced.

  18. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  19. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  20. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  1. The conjoint influence of home enriched environment and lead exposure on children's cognition and behaviour in a Mexican lead smelter community.

    Science.gov (United States)

    Moodie, Sue; Ialongo, Nick; López, Patricia; Rosado, Jorge; García-Vargas, Gonzalo; Ronquillo, Dolores; Kordas, Katarzyna

    2013-01-01

    A range of studies has been conducted on the detrimental effects of lead in mining and smelting communities. The neurocognitive and behavioural health effects of lead on children are well known. This research characterized the conjoint influence of lead exposure and home enriched environment on neurocognitive function and behaviour for first-grade children living in a Mexican lead smelter community. Structural equation models were used for this analysis with latent outcome variables, Cognition and Behaviour, constructed based on a battery of assessments administered to the first-grade children, their parents, and teachers. Structural equation modelling was used to describe complex relationships of exposure and health outcomes in a manner that permitted partition of both direct and indirect effects of the factors being measured. Home Environment (a latent variable constructed from information on mother's education and support of school work and extracurricular activities), and child blood lead concentration each had a main significant effect on cognition and behaviour. However, there were no statistically significant moderation relationships between lead and Home Environment on these latent outcomes. Home Environment had a significant indirect mediation effect between lead and both Cognition and Behaviour (p-valueEnvironment has a moderate mediation effect with respect to lead effects on Behaviour (β=0.305) and a lower mediation effect on Cognition (β=0.184). The extent of home enrichment in this study was most highly related to the mother's support of schoolwork and slightly less by the mother's support of extracurricular activities or mother's education. Further research may be able to develop approaches to support families to make changes within their home and child rearing practices, or advocate for different approaches to support their child's behaviour to reduce the impact of lead exposure on children's cognitive and behavioural outcomes. Copyright © 2012

  2. Integration of the predictions of two models with dose measurements in a case study of children exposed to the emissions of a lead smelter

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, R.; McKone, T.E.

    2009-03-01

    The predictions of two source-to-dose models are systematically evaluated with observed data collected in a village polluted by a currently operating secondary lead smelter. Both models were built up from several sub-models linked together and run using Monte-Carlo simulation, to calculate the distribution children's blood lead levels attributable to the emissions from the facility. The first model system is composed of the CalTOX model linked to a recoded version of the IEUBK model. This system provides the distribution of the media-specific lead concentrations (air, soil, fruit, vegetables and blood) in the whole area investigated. The second model consists of a statistical model to estimate the lead deposition on the ground, a modified version of the model HHRAP and the same recoded version of the IEUBK model. This system provides an estimate of the concentration of exposure of specific individuals living in the study area. The predictions of the first model system were improved in terms of accuracy and precision by performing a sensitivity analysis and using field data to correct the default value provided for the leaf wet density. However, in this case study, the first model system tends to overestimate the exposure due to exposed vegetables. The second model was tested for nine children with contrasting exposure conditions. It managed to capture the blood levels for eight of them. In the last case, the exposure of the child by pathways not considered in the model may explain the failure of the model. The interest of this integrated model is to provide outputs with lower variance than the first model system, but at the moment further tests are necessary to conclude about its accuracy.

  3. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits.

    Science.gov (United States)

    Petito Boyce, Catherine; Sax, Sonja N; Cohen, Joel M

    2017-08-01

    Inhalation plays an important role in exposures to lead in airborne particulate matter in occupational settings, and particle size determines where and how much of airborne lead is deposited in the respiratory tract and how much is subsequently absorbed into the body. Although some occupational airborne lead particle size data have been published, limited information is available reflecting current workplace conditions in the U.S. To address this data gap, the Battery Council International (BCI) conducted workplace monitoring studies at nine lead acid battery manufacturing facilities (BMFs) and five secondary smelter facilities (SSFs) across the U.S. This article presents the results of the BCI studies focusing on the particle size distributions calculated from Personal Marple Impactor sampling data and particle deposition estimates in each of the three major respiratory tract regions derived using the Multiple-Path Particle Dosimetry model. The BCI data showed the presence of predominantly larger-sized particles in the work environments evaluated, with average mass median aerodynamic diameters (MMADs) ranging from 21-32 µm for the three BMF job categories and from 15-25 µm for the five SSF job categories tested. The BCI data also indicated that the percentage of lead mass measured at the sampled facilities in the submicron range (i.e., lead) was generally small. The estimated average percentages of lead mass in the submicron range for the tested job categories ranged from 0.8-3.3% at the BMFs and from 0.44-6.1% at the SSFs. Variability was observed in the particle size distributions across job categories and facilities, and sensitivity analyses were conducted to explore this variability. The BCI results were compared with results reported in the scientific literature. Screening-level analyses were also conducted to explore the overall degree of lead absorption potentially associated with the observed particle size distributions and to identify key issues

  4. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    Science.gov (United States)

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  5. Relationships Between Solidification Parameters in A319 Aluminum Alloy

    Science.gov (United States)

    Vandersluis, E.; Ravindran, C.

    2018-03-01

    The design of high-performance materials depends on a comprehensive understanding of the alloy-specific relationships between solidification and properties. However, the inconsistent use of a particular solidification parameter for presenting materials characterization in the literature impedes inter-study comparability and the interpretation of findings. Therefore, there is a need for accurate expressions relating the solidification parameters for each alloy. In this study, A319 aluminum alloy castings were produced in a permanent mold with various preheating temperatures in order to control metal cooling. Analysis of the cooling curve for each casting enabled the identification of its liquidus, Al-Si eutectic, and solidus temperatures and times. These values led to the calculation of the primary solidification rate, total solidification rate, primary solidification time, and local solidification time for each casting, which were related to each other as well as to the average casting SDAS and material hardness. Expressions for each of their correlations have been presented with high coefficients of determination, which will aid in microstructural prediction and casting design.

  6. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  7. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  8. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  9. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  10. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  11. 49 CFR 178.512 - Standards for steel or aluminum boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel or aluminum boxes. 178.512... aluminum boxes. (a) The following are identification codes for steel or aluminum boxes: (1) 4A for a steel box; and (2) 4B for an aluminum box. (b) Construction requirements for steel or aluminum boxes are as...

  12. Physical and Electrical Characterization of Polymer Aluminum Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  13. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  14. Sensitization of Naturally Aged Aluminum 5083 Armor Plate

    Science.gov (United States)

    2015-07-29

    5 - 1 - SENSITIZATION OF NATURALLY AGED ALUMINUM 5083 ARMOR PLATE INTRODUCTION Aluminum -magnesium alloys are important for both ship...boundaries [3,4]. The magnesium-rich phase (normally β-Al3Mg2) is highly anodic with respect to the surrounding aluminum phase, thus is susceptible... alloys , and with varying amounts of debris scattered about the surface consistent with corrosion product, Figure 2b, that often forms over time within

  15. Differential response of plants to aluminum. A review

    OpenAIRE

    Valencia R, Rubén A; Ligarreto M, Gustavo A

    2012-01-01

    Aluminum toxicity is a major limiting factor to the growth and development of plants in acidic soils worldwide, occurring in 40% of arable soils. The root seems to be the object of aluminum toxicity, particularly the apex, producing a rapid inhibition of cell division and elongation of the root. Fortunately, plants differ in their ability to tolerate aluminum and grow in acidic soils. Tolerance mechanisms have commonly been defined in genetic and physiological terms, however, tolerance mechan...

  16. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  17. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  18. Mercury distribution characteristics in primary manganese smelting plants

    International Nuclear Information System (INIS)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-01-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1–99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. - Graphical abstract: 1. Lack of data on mercury (Hg) distribution in manganese smelters. 2. Mass distribution of Hg released from 3 plants (as normalized values) were made as follows by measurements. 3. Information of distribution of Hg in Manganese smelters would be used for emission in to air and releases to other streams for the nation and globe in UNEP mercury report. - Highlights: • The mass balance study by on-site measurement from primary manganese smelting plants was made at first time in the world. • Hg distribution and main input and release pathways of Hg from primary manganese smelting plants could be found as the first time. • Gas temperature in bag filter affects Hg behavior and speciation changes in APCDs. • National inventory of Hg emssion has been updated with new data. - Mercury distribution in manganese smelting plant was investigated as the first measurements at commercial plants in the world. National Hg release

  19. Monolithic Approach to Oxide Dispersion Strengthened Aluminum, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  20. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  1. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  2. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  3. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2013-01-01

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  4. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  5. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  6. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  7. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  8. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  9. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  10. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

    1991-09-01

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment

  11. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  12. Accelerating Thick Aluminum Liners Using Pulsed Power

    International Nuclear Information System (INIS)

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-01-01

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane

  13. Phonon optimized interatomic potential for aluminum

    Directory of Open Access Journals (Sweden)

    Murali Gopal Muraleedharan

    2017-12-01

    Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.

  14. Oxidation of zirconium-aluminum alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1967-10-01

    Examination of the processes occurring during the oxidation of Zr-1% A1, Zr-3% A1, and Zr-1.5% A1-0.5% Mo alloys has shown that in steam rapid oxidation occurs predominantly around the Zr 3 A1 particles, which at low temperatures appear to be relatively unattacked. The unoxidised particles become incorporated in the oxide, and become fully oxidised as the film thickens. This rapid localised oxidation is preceded by a short period of uniform film growth, during which the oxide film thickness does not exceed ∼200A-o. Thus the high oxidation rates can probably be ascribed to aluminum in solution in the zirconium matrix, although its precise mode of operation has not been determined. Once the solubility limit of aluminum is exceeded, the size, distribution and number of intermetallic particles affects the oxidation rate merely by altering the distribution of regions of metal giving high oxidation rates. The controlling process during the early stages of oxidation is electron transport and not ionic transport. Thus, the aluminum in the oxide film is presumably increasing the ionic conductivity more than the electronic. The oxidation rates in atmospheric pressure steam are very high and their irregular temperature dependence suggests that the oxidation rate will be pressure dependent. This was confirmed, in part, by a comparison with oxidation in moist air. It was found that the rate of development of white oxide around intermetallic particles was considerably reduced by the decrease in the partial pressure of H 2 O; the incubation period was not much different, however. (author)

  15. Phonon optimized interatomic potential for aluminum

    Science.gov (United States)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  16. Hydrolysis-precipitation studies of aluminum (III) solutions. I. Titration of acidified aluminum nitrate solutions

    NARCIS (Netherlands)

    Vermeulen, A.C.; Geus, John W.; Stol, R.J.; Bruyn, P.L. de

    Acidified aluminum nitrate solutions were titrated with alkali (NaOH or KOH) over a temperature range of 24°C to 90°C. A homogeneous distribution of added base was achieved by: (i) in situ decomposition of urea (90°C); and (ii) a novel method involving injection through a capillary submerged in the

  17. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum

    DEFF Research Database (Denmark)

    Reitzel, Kasper; Jensen, Henning S.; Egemose, Sara

    2013-01-01

    The possible pH dependent dissolution of aluminum hydroxides (Al(OH)(3)) from lake sediments was studied in six lakes previously treated with Al to bind excess phosphorus (P). Surface sediment was suspended for 2 h in lake water of pH 7.5, 8.5, or 9.5 with resulting stepwise increments in dissolved...

  18. The role of aluminum sensing and signaling in plant aluminum resistance

    Science.gov (United States)

    As researchers have gained a better understanding in recent years into the physiological, molecular and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the trigg...

  19. Polarization properties of real aluminum mirrors; I. Influence of the aluminum oxide layer

    NARCIS (Netherlands)

    van Harten, G.; Snik, F.; Keller, C.U.

    2009-01-01

    In polarimetry, it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in

  20. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  1. Modeling aluminum-lithium alloy welding characteristics

    Science.gov (United States)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  2. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  3. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  4. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  5. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the... Department of Commerce (``the Department'') initiated an antidumping duty investigation on Aluminum... Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty Investigation, 75...

  6. Sources of variation in concentrations of nickel and copper in mountain birch foliage near a nickel-copper smelter at Monchegorsk, north-western Russia: results of long-term monitoring

    International Nuclear Information System (INIS)

    Kozlov, Mikhail V.

    2005-01-01

    Concentrations of nickel and copper, two principal metal pollutants of the 'Severonikel' smelter at Monchegorsk, NW Russia, were measured in unwashed leaves of mountain birch, Betula pubescens subsp. czerepanovii, collected in eight study sites along the pollution gradient during 1991-2003. In spite of significant decline in metal emissions, concentrations of foliar metals in most of the study sites did not decrease, indicating that soil contamination remains extremely high. Multiyear mean values peaked at 6.6 km S of the smelter, where they were 20-25 times higher than in the most distant study site. Concentrations of both metals demonstrated pronounced annual variation, which was explained by the meteorological conditions of early summer: higher precipitation in May increased foliar concentrations of both metals, whereas higher precipitation in June resulted in lower foliar concentrations of nickel. These data suggest that ecotoxicological situation in metal-contaminated areas can be modified by the expected climate change. In heavily polluted sites individual birch trees generally retained their ranks in terms of metal contamination during 1995-2003, demonstrating that the use of the same set of trees can significantly increase the accuracy of the monitoring data. - Foliar concentrations of nickel and copper did not reflect emission decline during 1991-2003; annual variation was explained by weather conditions

  7. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  8. Primary fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, S; Jensen, L T; Foldager, M

    1990-01-01

    Serum concentrations of procollagen type III aminoterminal peptide have previously been reported to be low in some patients with primary fibromyalgia and the aim of this study was to determine if such patients differ clinically from primary fibromyalgia patients with normal levels of procollagen...... type III aminoterminal peptide. Subjective symptoms, tender points and dynamic muscle strength in 45 women with primary fibromyalgia were related to serum concentrations of procollagen type III aminoterminal peptide. Patients with low serum concentrations of procollagen type III aminoterminal peptide...... concentrations of procollagen type III aminoterminal peptide of primary fibromyalgia patients are connected to the disease impact....

  9. Modification of Sr on 4004 Aluminum Alloy

    Science.gov (United States)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  10. Aluminum limiter experiment in ST tokamak

    International Nuclear Information System (INIS)

    Meservey, E.B.; Bretz, N.; Dimock, D.L.; Hinnov, E.

    1976-01-01

    In order to investigate the effects of a light-element limiter on plasma parameters, aluminum rail limiters interchangeable with Mo rails were installed top, bottom, and outside directions in the ST tokamak. The inside limiter remained a fixed Mo rail. Compared with discharges produced immediately before and after with the usual Mo limiters, the ''aluminum'' discharges showed an increase of T/sub e/ (by factors of 1.4-2 near the center) and of energy confinement (by factors of 2 to 3 in el. energy/power input, depending on time of observation). H 2 and He discharges showed practically identical effects. In plasma composition, the Mo concentration dropped significantly, but Fe only slightly if at all; the Al concentration was about 3-5 percent (i.e., large compared to the heavier metals), whereas oxygen, about 4 to 8 percent to start with, dropped to insignificance, probably as a result of Al evaporation. The z/sub eff/ from resistivity increased 20-30 percent although the resistance dropped because of the higher T/sub e/. The improved T/sub e/ and energy confinement are thought to be the result of cumulative effects of more favorable radial current and power input distributions rather than direct energy losses by radiation

  11. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  12. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  14. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  15. Molten aluminum alloy fuel fragmentation experiments

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Cassulo, J.C.; Spencer, B.W.

    1992-01-01

    Experiments were conducted in which molten aluminum alloys were injected into a 1.2 m deep pool of water. The parameters varied were (i) injectant material (8001 aluminum alloy and 12.3 wt% U-87.7 wt% Al), (ii) melt superheat (O to 50 K), (iii) water temperature (313, 343 and 373 K) and (iv) size and geometry of the pour stream (5, 10 and 20 mm diameter circular and 57 mm annular). The pour stream fragmentation was dominated by surface tension with large particles (∼30 mm) being formed from varicose wave breakup of the 10-mm circular pours and from the annular flow off a 57 mm diameter tube. The fragments produced by the 5 mm circular et were smaller (∼ mm), and the 20 mm jet which underwent sinuous wave breakup produced ∼100 mm fragments. The fragments froze to form solid particles in 313 K water, and when the water was ≥343 K, the melt fragments did not freeze during their transit through 1.2 m of water

  16. Semi-solid metal forming of beryllium-reinforced aluminum alloys

    International Nuclear Information System (INIS)

    Haws, W.; Lane, L.; Marder, J.; Nicholas, N.

    1995-01-01

    A Powder Metallurgy (PM) based, Semi-Solid Metal (SSM) forming process has been developed to produce low cost near-net shapes of beryllium-reinforced aluminum alloys. Beryllium acts as a reinforcing additive to the aluminum, in which there is nearly no mutual solid solubility. The modulus of elasticity of the alloy dramatically increases, while the density and thermal expansion coefficient decrease with increasing beryllium content. The material is suitable for complex thermal management and vibration resistance applications, as well as for airborne components which are density and stiffness sensitive. The forming process involves heating a blank of the material to a temperature at which the aluminum is semi-solid and the beryllium is solid. The semi-solid blank is then injected without turbulence into a permanent mold. High quality, near net shape components can be produced which are functionally superior to those produced by other permanent mold processes. Dimensional accuracy is equivalent to or better than that obtained in high pressure die casting. Cost effectiveness is the primary advantage of this technique compared to other forming processes. The advantages and limitations of the process are described. Physical and mechanical property data are presented, as well as directions for future investigation

  17. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    Science.gov (United States)

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  18. Characterization of Ti6Al4V for integral transition structures in FRP-aluminum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schimanski, Kai; Schumacher, Jens; Von Hehl, Axel; Zoch, Hans-Werner [Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Wottschel, Vitalij; Vollertsen, Frank [Bremer Institut fuer Angewandte Strahltechnik, Bremen (Germany)

    2012-08-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context, the demand for weight saving in aerospace industry leads to increase numbers of applications of fiber reinforced composites for primary structural components. In consequence, the use of FRP-metal compounds is necessary. In the context of the investigations of the researcher group named ''Black-Silver'' (''Schwarz Silber'', FOR 1224) founded by the DFG (German Research Foundation) material optimized interface structures for advanced carbon fiber reinforced plastic (CFRP)-aluminum compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium), and fibers (glass fiber) as transition elements between CFRP and aluminum. For the connection of the aluminum sheet and the transition element die-casting and laser beam welding are basically used. The paper concentrates on the characterization of suitable materials for transition structures. Due to their high strength and low density (in comparison to steel) and the resulting potential in view on light-weight design Ti-alloys were investigated. Because of the increased availability of Ti-wires compared to Ti-foils in suitable thickness the former were used for the basic investigations on Ti-alloys which are suitable for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  20. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  1. Evaluation of microstructure of A356 aluminum alloy casting ...

    Indian Academy of Sciences (India)

    The objective of this investigation was to evaluate the effect of vibrations (during solidification) on the metallurgical properties of A356 aluminum casting. Mechanical vibrations were applied to A356 aluminum alloy through set up. A356 melt has been subjected to mechanical vibration with the frequency range from 0 to 400 ...

  2. Aluminum and iron contents in phosphate treated swamp rice farm ...

    African Journals Online (AJOL)

    In 2006 aluminum and iron contents were determined in phosphate treated swamp rice farm of Mbiabet, Akwa Ibom State. The objectives were to determine the aluminum and iron contents, the effect of drying, phosphate and lime application in an acid sulphate soil grown to rice in Nigeria. The soil samples used were ...

  3. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  4. exploration the extrudability of aluminum matrix composite (lm6/tic)

    African Journals Online (AJOL)

    lanez

    2017-11-24

    Nov 24, 2017 ... Aluminum matrix composites (LM6/TiC) is a mix of excellent properties of aluminum casting alloy (LM6), and particles of (TiC) which make it the first choice in many applications like airplane and marine industries. During this research the extrudability and mechanical specifications of this composite ...

  5. An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  6. Melting, growth, and faceting of lead precipitates in aluminum

    DEFF Research Database (Denmark)

    Gråbæk, L.; Bohr, J.; Andersen, H.H.

    1992-01-01

    Aluminum single crystals cut in the direction were implanted with 2 x 10(20) m-2 Pb+ ions at 75 or 150 keV. The implanted insoluble lead precipitated as epitaxially oriented crystallites in the aluminum matrix. The precipitates were studied by x-ray diffraction at Riso, DESY, and Brookhaven...

  7. A melt refining method for uranium-contaminated aluminum

    International Nuclear Information System (INIS)

    Uda, T.; Iba, H.; Hanawa, K.

    1986-01-01

    Melt refining of uranium-contaminated aluminum which has been difficult to decontaminate because of the high reactivity of aluminum, was experimentally studied. Samples of contaminated aluminum and its alloys were melted after adding various halide fluxes at various melting temperatures and various melting times. Uranium concentration in the resulting ingots was determined. Effective flux compositions were mixtures of chlorides and fluorides, such as LiF, KCl, and BaCl 2 , at a fluoride/chloride mole ratio of 1 to 1.5. The removal of uranium from aluminum (the ''decontamination effect'') increased with decreasing melting temperature, but the time allowed for reaction had little influence. Pure aluminum was difficult to decontaminate from uranium; however, uranium could be removed from alloys containing magnesium. This was because the activity of the aluminum was decreased by formation of the intermetallic compound Al-Mg. With a flux of LiF-KCl-BaCl 2 and a temperature of 800 0 C, uranium added to give an initial concentration of 500 ppm was removed from a commercial alloy of aluminum, A5056, which contains 5% magnesium, to a final concentration of 0.6 ppm, which is near that in the initial aluminum alloy

  8. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  9. Functional aluminum alloys for ultra high vacuum use

    International Nuclear Information System (INIS)

    Kato, Yutaka; Tsukamoto, Kenji; Isoyama, Eizo

    1985-01-01

    Ultra high vacuum systems made of aluminum alloys are actively developed. The reasons for using aluminum alloys are low residual radioactivity, light weight, good machinability, good thermal conductivity, non-magnetism. The important function required for ultra high vacuum materials is low outgassing rate, but surface gas on ordinary aluminum is much. Then the research on aluminum surface structure with low outgassing rate has been made and the special extrusion method, that is, extrusion method with the conditions of preventing air from entering inside of pipe and of taking in mixture gas of Ar + O 2 , was developed. 6063 alloy obtained by special extrusion method showed low outgassing rate (2 x 10 -13 Torr. 1/s. cm 2 ) by only 150 deg C, 24 h baking. For the future it will be important to develop aluminum alloys with low dynamic outgassing rate as well as low static outgassing rate. (author)

  10. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  11. Reuse of Aluminum Dross as an Engineered Product

    Science.gov (United States)

    Dai, Chen; Apelian, Diran

    To prevent the leaching of landfilled aluminum dross waste and save the energy consumed by recovering metallic aluminum from dross, aluminum dross is reused as an engineering product directly rather than "refurbished" ineffectively. The concept is to reduce waste and to reuse. Two kinds of aluminum dross from industrial streams were selected and characterized. We have shown that dross can be applied directly, or accompanied with a simple conditioning process, to manufacture refractory components. Dross particles below 50 mesh are most effective. Mechanical property evaluations revealed the possibility for dross waste to be utilized as filler in concrete, resulting in up to 40% higher flexural strength and 10% higher compressive strength compared to pure cement, as well as cement with sand additions. The potential usage of aluminum dross as a raw material for such engineering applications is presented and discussed.

  12. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  13. Strong nonlinear harmonic generation in a PZT/Aluminum resonator

    Energy Technology Data Exchange (ETDEWEB)

    Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)

    2009-11-01

    In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.

  14. Influence of coolant pH on corrosion of 6061 aluminum under reactor heat transfer conditions

    International Nuclear Information System (INIS)

    Pawel, S.J.; Felde, D.K.; Pawel, R.E.

    1995-10-01

    To support the design of the Advanced Neutron Source (ANS), an experimental program was conducted wherein aluminum alloy specimens were exposed at high heat fluxes to high-velocity aqueous coolants in a corrosion test loop. The aluminum alloys selected for exposure were candidate fuel cladding materials, and the loop system was constructed to emulate the primary coolant system for the proposed ANS reactor. One major result of this program has been the generation of an experimental database defining oxide film growth on 6061 aluminum alloy cladding. Additionally, a data correlation was developed from the database to permit the prediction of film growth for any reasonable thermal-hydraulic excursion. This capability was utilized effectively during the conceptual design stages of the reactor. During the course of this research, it became clear that the kinetics of film growth on the aluminum alloy specimens were sensitively dependent on the chemistry of the aqueous coolant and that relatively small deviations from the intended pH 5 operational level resulted in unexpectedly large changes in the corrosion behavior. Examination of the kinetic influences and the details of the film morphology suggested that a mechanism involving mass transport from other parts of the test loop was involved. Such a mechanism would also be expected to be active in the operating reactor. This report emphasizes the results of experiments that best illustrate the influence of the nonthermal-hydraulic parameters on film growth and presents data to show that comparatively small variations in pH near 5.0 invoke a sensitive response. Simply, for operation in the temperature and heat flux range appropriate for the ANS studies, coolant pH levels from 4.5 to 4.9 produced significantly less film growth than those from pH 5.1 to 6. A mechanism for this behavior based on the concept of treating the entire loop as an active corrosion system is presented

  15. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    Science.gov (United States)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  16. A chiral aluminum solvating agent (CASA) for 1H NMR chiral analysis of alcohols at low temperature.

    Science.gov (United States)

    Seo, Min-Seob; Jang, Sumin; Kim, Hyunwoo

    2018-03-16

    A chiral aluminum solvating agent (CASA) was demonstrated to be a general and efficient reagent for 1H NMR chiral analysis of alcohols. The sodium salt of the CASA (CASA-Na) showed a complete baseline peak separation of the hydroxyl group for various chiral alcohols including primary, secondary, and tertiary alcohols with alkyl and aryl substituents in CD3CN. Due to the weak intermolecular interaction, 1H NMR measurement at low temperature (-40 to 10 °C) was required.

  17. Microstructure, mechanical behavior and corrosion properties of friction stir welded aluminum alloys used in the aerospace industry

    OpenAIRE

    Alfaro Mercado, Ulises

    2011-01-01

    Friction stir welding (FSW) has been identified as “key” technology for the production of primary aerospace structures, being able to substitute conventional riveted airframes. FSW is a solid state welding process that avoids any problems caused by the solidification of the melted weld pool. Besides the production of high quality similar joints from high strength aluminum alloys, it allows for joining materials of different metallurgical characteristics. However, problems concerning the corro...

  18. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  19. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  20. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts