WorldWideScience

Sample records for prickle-related genes dyxin

  1. Cloning and expression analysis of transcription factor RrTTG1 related to prickle development in rose (Rosa Rugosa

    Directory of Open Access Journals (Sweden)

    Feng Li-Guo

    2015-01-01

    Full Text Available A prickle is an acuminate protuberance formed by the deformation of plant trichomes together with a few cortical cells. It is a type of multicellular eglandular trichome with special morphology, which originates from the phloem but is not connected to the xylem. Rosa rugosa is an important ornamental/commercial plant and an important raw material in the food and perfume industries. However, the firm prickles on its stems are inconvenient to field management, the harvesting of flowers and garden management. The TTG1 transcription factor related to the development of prickle was isolated from R. rugosa in the present study. Its expression patterns in different tissues and varieties were analyzed. Results showed the expression level of the RrTTG1 gene was highest in the leaves, followed by the stems, but was lower in the pericarps and petals. Moreover, the higher expression level of the RrTTG1 gene in all tissues of the ‘Ciguo rose’, as compared with that of the ‘Weihai wild rose’, follows the results of field morphological observation. Therefore, the RrTTG1 transcription factor is likely to regulate the development of rose prickles. This study allows for further discussion on the molecular mechanisms of prickle formation and development in R. rugosa and provides a molecular basis for the cultivation of roses with fewer or no prickles via genetic engineering.

  2. 3p interstitial deletion including PRICKLE2 in identical twins with autistic features.

    Science.gov (United States)

    Okumura, Akihisa; Yamamoto, Toshiyuki; Miyajima, Masakazu; Shimojima, Keiko; Kondo, Satoshi; Abe, Shinpei; Ikeno, Mitsuru; Shimizu, Toshiaki

    2014-11-01

    Microdeletion and microduplication syndromes without characteristic dysmorphic features are difficult to diagnose without chromosomal microarrays. We describe the clinical course and genetic findings of monozygotic twins with intellectual disabilities and autistic features associated with mild facial dysmorphism and microdeletion of chromosome 3p14. The postnatal course of the second twin was complicated by intestinal malrotation, whereas that of the first twin was unremarkable. Both twins had several mild dysmorphic features including upswept frontal hair, low-set posterior rotated ears, arched down-slanting eyebrows, prominent forehead, epicanthic folds, micrognathia, hypertelorism, broad nasal bridge, short philtrum, and camptodactyly of the bilateral fifth fingers. They had autistic features such as poor eye contact and no social smile, stereotyped behaviors, and preference for solitary play. Array comparative genomic hybridization analysis revealed de novo 6.88-Mb deletions of 3p14 (chr3: 60,472,496-67,385,119) involving 17 genes in both twins. The deleted region contained 17 genes, five of which are known or presumed to be related to central nervous system disorders: FEZF2, SYNPR, ATXN7, PRICKLE2, and MAGI1. We consider that PRICKLE2 is the most likely causative gene for the autistic features exhibited by these individuals. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Rose Prickles and Asparagus Spines--Different Hook Structures as Attachment Devices in Climbing Plants.

    Science.gov (United States)

    Gallenmüller, Friederike; Feus, Amélie; Fiedler, Kathrin; Speck, Thomas

    2015-01-01

    Functional morphology and biomechanical properties of hook structures functioning as attachment devices in the leaning climbers Rosa arvensis, Rosa arvensis 'Splendens', Asparagus falcatus and Asparagus setaceus are analysed in order to investigate the variability in closely related species as well as convergent developments of hook structure and properties in distant systematic lineages (monocots and dicots). Prickles and spines were characterised by their size, orientation and the maximum force measured at failure in mechanical tests performed with traction forces applied at different angles. In Rosa arvensis and Rosa arvensis 'Splendens' three types of prickles differing largely in geometrical and mechanical properties are identified (prickles of the wild species and two types of prickles in the cultivar). In prickles of Rosa arvensis no particular orientation of the prickle tip is found whereas in the cultivar Rosa arvensis 'Splendens' prickles gradually gain a downward-orientation due to differential growth in the first weeks of their development. Differences in mechanical properties and modes of failure are correlated to geometrical parameters. In Asparagus falcatus and Asparagus setaceus spines are composed of leaf tissue, stem tissue and tissue of the axillary bud. Between species spines differ in size, orientation, distribution along the stem, tissue contributions and mechanical properties. The prickles of Rosa arvensis and its cultivar and the spines of the studied Asparagus species have several traits in common: (1) a gradual change of cell size and cell wall thickness, with larger cells in the centre and smaller thick-walled cells at the periphery of the hooks, (2) occurrence of a diversity of shape and geometry within one individual, (3) failure of single hooks when submitted to moderate mechanical stresses (Fmax/basal area < 35 N/mm²) and (4) failure of the hooks without severe stem damage (at least in the tested wild species).

  4. Rose Prickles and Asparagus Spines--Different Hook Structures as Attachment Devices in Climbing Plants.

    Directory of Open Access Journals (Sweden)

    Friederike Gallenmüller

    Full Text Available Functional morphology and biomechanical properties of hook structures functioning as attachment devices in the leaning climbers Rosa arvensis, Rosa arvensis 'Splendens', Asparagus falcatus and Asparagus setaceus are analysed in order to investigate the variability in closely related species as well as convergent developments of hook structure and properties in distant systematic lineages (monocots and dicots. Prickles and spines were characterised by their size, orientation and the maximum force measured at failure in mechanical tests performed with traction forces applied at different angles. In Rosa arvensis and Rosa arvensis 'Splendens' three types of prickles differing largely in geometrical and mechanical properties are identified (prickles of the wild species and two types of prickles in the cultivar. In prickles of Rosa arvensis no particular orientation of the prickle tip is found whereas in the cultivar Rosa arvensis 'Splendens' prickles gradually gain a downward-orientation due to differential growth in the first weeks of their development. Differences in mechanical properties and modes of failure are correlated to geometrical parameters. In Asparagus falcatus and Asparagus setaceus spines are composed of leaf tissue, stem tissue and tissue of the axillary bud. Between species spines differ in size, orientation, distribution along the stem, tissue contributions and mechanical properties. The prickles of Rosa arvensis and its cultivar and the spines of the studied Asparagus species have several traits in common: (1 a gradual change of cell size and cell wall thickness, with larger cells in the centre and smaller thick-walled cells at the periphery of the hooks, (2 occurrence of a diversity of shape and geometry within one individual, (3 failure of single hooks when submitted to moderate mechanical stresses (Fmax/basal area < 35 N/mm² and (4 failure of the hooks without severe stem damage (at least in the tested wild species.

  5. Rose Prickles and Asparagus Spines – Different Hook Structures as Attachment Devices in Climbing Plants

    Science.gov (United States)

    Fiedler, Kathrin

    2015-01-01

    Functional morphology and biomechanical properties of hook structures functioning as attachment devices in the leaning climbers Rosa arvensis, Rosa arvensis ‘Splendens‘, Asparagus falcatus and Asparagus setaceus are analysed in order to investigate the variability in closely related species as well as convergent developments of hook structure and properties in distant systematic lineages (monocots and dicots). Prickles and spines were characterised by their size, orientation and the maximum force measured at failure in mechanical tests performed with traction forces applied at different angles. In Rosa arvensis and Rosa arvensis ‘Splendens‘ three types of prickles differing largely in geometrical and mechanical properties are identified (prickles of the wild species and two types of prickles in the cultivar). In prickles of Rosa arvensis no particular orientation of the prickle tip is found whereas in the cultivar Rosa arvensis ‘Splendens‘ prickles gradually gain a downward-orientation due to differential growth in the first weeks of their development. Differences in mechanical properties and modes of failure are correlated to geometrical parameters. In Asparagus falcatus and Asparagus setaceus spines are composed of leaf tissue, stem tissue and tissue of the axillary bud. Between species spines differ in size, orientation, distribution along the stem, tissue contributions and mechanical properties. The prickles of Rosa arvensis and its cultivar and the spines of the studied Asparagus species have several traits in common: (1) a gradual change of cell size and cell wall thickness, with larger cells in the centre and smaller thick-walled cells at the periphery of the hooks, (2) occurrence of a diversity of shape and geometry within one individual, (3) failure of single hooks when submitted to moderate mechanical stresses (Fmax/basal area < 35 N/mm²) and (4) failure of the hooks without severe stem damage (at least in the tested wild species). PMID

  6. Identification of a thymidine kinase (RuTK1) homolog differentially expressed in blackberry (Rubus L.) prickles

    International Nuclear Information System (INIS)

    Zhang, C.; Yang, H.; Wang, X.

    2016-01-01

    Thymidine kinase (TK) is a key enzyme in controlling DNA synthesis and plays an important role in cell proliferation. However, our understanding on the TK functions in plants is still limited. From an earlier comparative transcriptome analysis of shoot apex of blackberry cv. Boysenberry and its bud mutant cv. Ningzhi 1 with fewer and thinner prickles, we found a unigene homologous to TK, RuTK1 which was differentially expressed between them. In this study, the cDNA and genomic DNA (gDNA) sequences of RuTK1 were further analyzed. RuTK1 revealed an open reading frame (ORF) of 660 bp coding for 219 amino acid residues. The gDNA sequence, which contains four exons and three introns, is relatively conserved in most plant TK homologs. A phylogenetic analysis revealed that the TK proteins from plants were classified into three groups. In each group, TKs from the same family were relatively concentrated, and RuTK1 was classified to the dicotyledoneae class and closer to those from Rosaceae. RuTK1 was highly expressed in prickles at the early stage in Boysenberry compared to in Ningzhi1. In addition, RuTK1 expression was similarly greater in mature prickles at the late stage in both cultivars, which implies a possible involvement of RuTK1 in the cell cycle at the early stage of prickle formation. These results provide a novel foundation for the further elucidation of blackberry prickle development mechanism and the functions of TKs in plants. (author)

  7. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  8. Analysis of PRICKLE1 in human cleft palate and mouse development demonstrates rare and common variants involved in human malformations

    Science.gov (United States)

    Yang, Tian; Jia, Zhonglin; Bryant-Pike, Whitney; Chandrasekhar, Anand; Murray, Jeffrey C; Fritzsch, Bernd; Bassuk, Alexander G

    2014-01-01

    Palate development is shaped by multiple molecular signaling pathways, including the Wnt pathway. In mice and humans, mutations in both the canonical and noncanonical arms of the Wnt pathway manifest as cleft palate, one of the most common human birth defects. Like the palate, numerous studies also link different Wnt signaling perturbations to varying degrees of limb malformation; for example, shortened limbs form in mutations of Ror2,Vangl2looptail and, in particular, Wnt5a. We recently showed the noncanonical Wnt/planar cell polarity (PCP) signaling molecule Prickle1 (Prickle like 1) also stunts limb growth in mice. We now expanded these studies to the palate and show that Prickle1 is also required for palate development, like Wnt5a and Ror2. Unlike in the limb, the Vangl2looptail mutation only aggravates palate defects caused by other mutations. We screened Filipino cleft palate patients and found PRICKLE1 variants, both common and rare, at an elevated frequency. Our results reveal that in mice and humans PRICKLE1 directs palate morphogenesis; our results also uncouple Prickle1 function from Vangl2 function. Together, these findings suggest mouse and human palate development is guided by PCP-Prickle1 signaling that is probably not downstream of Vangl2. PMID:24689077

  9. Mechanisms of prickle1a function in zebrafish epilepsy and retinal neurogenesis

    Directory of Open Access Journals (Sweden)

    Xue Mei

    2013-05-01

    Epilepsy is a complex neurological disorder characterized by unprovoked seizures. The etiology is heterogeneous with both genetic and environmental causes. Genes that regulate neurotransmitters and ion channels in the central nervous system have been associated with epilepsy. However, a recent screening in human epilepsy patients identified mutations in the PRICKLE1 (PK1 locus, highlighting a potentially novel mechanism underlying seizures. PK1 is a core component of the planar cell polarity network that regulates tissue polarity. Zebrafish studies have shown that Pk1 coordinates cell movement, neuronal migration and axonal outgrowth during embryonic development. Yet how dysfunction of Pk1 relates to epilepsy is unknown. To address the mechanism underlying epileptogenesis, we used zebrafish to characterize Pk1a function and epilepsy-related mutant forms. We show that knockdown of pk1a activity sensitizes zebrafish larva to a convulsant drug. To model defects in the central nervous system, we used the retina and found that pk1a knockdown induces neurite outgrowth defects; yet visual function is maintained. Furthermore, we characterized the functional and biochemical properties of the PK1 mutant forms identified in human patients. Functional analyses demonstrate that the wild-type Pk1a partially suppresses the gene knockdown retinal defects but not the mutant forms. Biochemical analysis reveals increased ubiquitylation of one mutant form and decreased translational efficiency of another mutant form compared with the wild-type Pk1a. Taken together, our results indicate that mutation of human PK1 could lead to defects in neurodevelopment and signal processing, providing insight into seizure predisposition in these patients.

  10. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    Science.gov (United States)

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  11. Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects

    Directory of Open Access Journals (Sweden)

    Brian C. Gibbs

    2016-03-01

    Full Text Available Planar cell polarity (PCP is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj in Prickle1 (Pk1, a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT malalignment. This is associated with OFT shortening due to loss of polarized cell orientation and failure of second heart field cell intercalation mediating OFT lengthening. OFT myocardialization was disrupted with cardiomyocytes failing to align with the direction of cell invasion into the outflow cushions. The expression of genes mediating Wnt signaling was altered. Also noted were shortened but widened bile ducts and disruption in canonical Wnt signaling. Using an in vitro wound closure assay, we showed Bj mutant fibroblasts cannot establish polarized cell morphology or engage in directional cell migration, and their actin cytoskeleton failed to align with the direction of wound closure. Unexpectedly, Pk1 mutants exhibited primary and motile cilia defects. Given Bj mutant phenotypes are reminiscent of ciliopathies, these findings suggest Pk1 may also regulate ciliogenesis. Together these findings show Pk1 plays an essential role in regulating cell polarity and directional cell migration during development.

  12. Planar cell polarity gene expression correlates with tumor cell viability and prognostic outcome in neuroblastoma

    International Nuclear Information System (INIS)

    Dyberg, Cecilia; Papachristou, Panagiotis; Haug, Bjørn Helge; Lagercrantz, Hugo; Kogner, Per; Ringstedt, Thomas; Wickström, Malin; Johnsen, John Inge

    2016-01-01

    The non-canonical Wnt/Planar cell polarity (PCP) signaling pathway is a major player in cell migration during embryonal development and has recently been implicated in tumorigenesis. Transfections with cDNA plasmids or siRNA were used to increase and suppress Prickle1 and Vangl2 expression in neuroblastoma cells and in non-tumorigenic cells. Cell viability was measured by trypan blue exclusion and protein expression was determined with western blotting. Transcriptional activity was studied with luciferase reporter assay and mRNA expression with real-time RT-PCR. Immunofluorescence stainings were used to study the effects of Vangl2 overexpression in non-tumorigenic embryonic cells. Statistical significance was tested with t-test or one-way ANOVA. Here we show that high expression of the PCP core genes Prickle1 and Vangl2 is associated with low-risk neuroblastoma, suppression of neuroblastoma cell growth and decreased Wnt/β-catenin signaling. Inhibition of Rho-associated kinases (ROCKs) that are important in mediating non-canonical Wnt signaling resulted in increased expression of Prickle1 and inhibition of β-catenin activity in neuroblastoma cells. In contrast, overexpression of Vangl2 in MYC immortalized neural stem cells induced accumulation of active β-catenin and decreased the neural differentiation marker Tuj1. Similarly, genetically modified mice with forced overexpression of Vangl2 in nestin-positive cells showed decreased Tuj1 differentiation marker during embryonal development. Our experimental data demonstrate that high expression of Prickle1 and Vangl2 reduce the growth of neuroblastoma cells and indicate different roles of PCP proteins in tumorigenic cells compared to normal cells. These results suggest that the activity of the non-canonical Wnt/PCP signaling pathway is important for neuroblastoma development and that manipulation of the Wnt/PCP pathway provides a possible therapy for neuroblastoma. The online version of this article (doi:10.1186/s

  13. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle.

    Directory of Open Access Journals (Sweden)

    Bomsoo Cho

    2015-05-01

    Full Text Available The core components of the planar cell polarity (PCP signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1/SkpA/Supernumerary limbs(Slimb regulates the stability of one of the peripheral membrane components, Prickle (Pk. Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang and Flamingo (Fmi, and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.

  14. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.

  15. Egg cases of the graytail skate Bathyraja griseocauda and the cuphead skate Bathyraja scaphiops from the south-west Atlantic Ocean.

    Science.gov (United States)

    Mabragaña, E; Vazquez, D M; Gabbanelli, V; Sabadin, D; Barbini, S A; Lucifora, L O

    2017-09-01

    Egg cases of Bathyraja griseocauda were larger (140-142 mm in length) than those of Bathyraja scaphiops (88-90 mm in length) and their surface was relatively smooth, without denticles, prickles or any ornamentation. Egg cases of B. scaphiops had a relative coarse surface, covered with prickles of similar size. An identification key for the all described egg cases from Bathyraja occurring in the south-west Atlantic Ocean is provided. © 2017 The Fisheries Society of the British Isles.

  16. 75 FR 44049 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus

    Science.gov (United States)

    2010-07-27

    .... Koegel, Nicholas J. Niemerg, Dereck J. Oliveira, Paul J. O'Neil, Jr., Worden T. Price, Frankie R. Ramey... the twenty-five exemption applications, FMCSA exempts, Calvin R. Adams, Michael R. Amstutz, Clinton R. Carlson, II, Brandon L. Cheek, Michael J. Drake, Richard A. Dufton, Jr., Kenneth Dunn, Robert J. Dyxin...

  17. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration.

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-07-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)-related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. © 2014 American Society for Nutrition.

  18. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  19. The function of the frizzled pathway in the Drosophila wing is dependent on inturned and fuzzy.

    OpenAIRE

    Lee, Haeryun; Adler, Paul N

    2002-01-01

    The Drosophila epidermis is characterized by a dramatic planar or tissue polarity. The frizzled pathway has been shown to be a key regulator of planar polarity for hairs on the wing, ommatidia in the eye, and sensory bristles on the notum. We have investigated the genetic relationships between putative frizzled pathway downstream genes inturned, fuzzy, and multiple wing hairs (inturned-like genes) and upstream genes such as frizzled, prickle, and starry night (frizzled-like genes). Previous d...

  20. Determining Semantically Related Significant Genes.

    Science.gov (United States)

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  1. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  2. Autophagy-related genes in Helicobacter pylori infection.

    Science.gov (United States)

    Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio

    2017-06-01

    In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.

  3. A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking.

    Science.gov (United States)

    Minegishi, Katsura; Hashimoto, Masakazu; Ajima, Rieko; Takaoka, Katsuyoshi; Shinohara, Kyosuke; Ikawa, Yayoi; Nishimura, Hiromi; McMahon, Andrew P; Willert, Karl; Okada, Yasushi; Sasaki, Hiroshi; Shi, Dongbo; Fujimori, Toshihiko; Ohtsuka, Toshihisa; Igarashi, Yasunobu; Yamaguchi, Terry P; Shimono, Akihiko; Shiratori, Hidetaka; Hamada, Hiroshi

    2017-03-13

    Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly. Here we show that polarization of node cells is impaired in Wnt5a -/- Wnt5b -/- and Sfrp mutant embryos, and also in the presence of a uniform distribution of Wnt5a or Sfrp1, suggesting that Wnt5 and Sfrp proteins act as instructive signals in this process. The absence of planar cell polarity (PCP) core proteins Prickle1 and Prickle2 in individual cells or local forced expression of Wnt5a perturbed polarization of neighboring wild-type cells. Our results suggest that opposing gradients of Wnt5a and Wnt5b and of their Sfrp inhibitors, together with intercellular signaling via PCP proteins, polarize node cells along the anterior-posterior axis for breaking of left-right symmetry. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  5. Cloning arbuscule-related genes from mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen

    2000-01-01

    Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials...... available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential...

  6. The relation of serotonin-related gene and COMT gene polymorphisms with criminal behavior in schizophrenic disorder.

    Science.gov (United States)

    Koh, Kyung Bong; Choi, Eun Hee; Lee, Young-joon; Han, Mooyoung; Choi, Sang-Sup; Kim, So Won; Lee, Min Goo

    2012-02-01

    It has been suggested that patients with schizophrenia might be involved in criminal behavior, such as homicidal and violent behavior. However, the relationship between criminal behavior and genes in patients with schizophrenia has not been clearly elucidated. The objective of this study was to examine the relation between criminal behavior and serotonin-related gene or catechol-O-methyltransferase (COMT) gene polymorphisms in patients with schizophrenia. Serotonin-related and COMT polymorphic markers were assessed by using single nucleotide polymorphism (SNP) genotyping. Ninety-nine crime-related inpatients with schizophrenia (57 homicidal and 42 nonhomicidal violent) and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. The genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C and COMT V158M were compared between groups. The TPH1 CC genotype had 2.7-fold higher odds of crime-related schizophrenia compared with A-carrier genotype after the analysis was controlled for sex and age (OR, 2.69; 95% CI, 1.22 - 5.91; P = .01). In addition, the TPH1 CC genotype had 3.4-fold higher odds of homicidal schizophrenia compared with A-carrier genotype after the analysis was controlled for sex and age (OR, 3.38; 95% CI, 1.40 - 8.18; P = .007). However, no significant differences were found in the frequencies of genotype of COMT polymorphism between criminal schizophrenics and healthy subjects, nor were any significant differences found between nonhomicidal schizophrenics and healthy subjects. These results indicate that the TPH1 CC recessive genotype is likely to be a genetic risk factor for criminal behavior, especially homicidal behavior in patients with schizophrenia. However, COMT gene polymorphisms were not associated with criminal behavior in schizophrenic patients. © Copyright 2012 Physicians Postgraduate Press, Inc.

  7. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  8. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  10. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits

    DEFF Research Database (Denmark)

    Dashti, Hassan S; Follis, Jack L; Smith, Caren E

    2015-01-01

    OBJECTIVE: Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs13871...

  11. Gene-environment interactions of circadian-related genes for cardiometabolic traits

    Science.gov (United States)

    Objective: Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153,...

  12. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations in phenology and physiology of the crop are observed after a cold event. The objective of this work was to study the relative expression of genes related with cold stress in Chilean cultivars of rice. For this, we analyzed the expression ...

  13. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate...... vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based...

  14. Assembly of inflammation-related genes for pathway-focused genetic analysis.

    Directory of Open Access Journals (Sweden)

    Matthew J Loza

    2007-10-01

    Full Text Available Recent identifications of associations between novel variants in inflammation-related genes and several common diseases emphasize the need for systematic evaluations of these genes in disease susceptibility. Considering that many genes are involved in the complex inflammation responses and many genetic variants in these genes have the potential to alter the functions and expression of these genes, we assembled a list of key inflammation-related genes to facilitate the identification of genetic associations of diseases with an inflammation-related etiology. We first reviewed various phases of inflammation responses, including the development of immune cells, sensing of danger, influx of cells to sites of insult, activation and functional responses of immune and non-immune cells, and resolution of the immune response. Assisted by the Ingenuity Pathway Analysis, we then identified 17 functional sub-pathways that are involved in one or multiple phases. This organization would greatly increase the chance of detecting gene-gene interactions by hierarchical clustering of genes with their functional closeness in a pathway. Finally, as an example application, we have developed tagging single nucleotide polymorphism (tSNP arrays for populations of European and African descent to capture all the common variants of these key inflammation-related genes. Assays of these tSNPs have been designed and assembled into two Affymetrix ParAllele customized chips, one each for European (12,011 SNPs and African (21,542 SNPs populations. These tSNPs have greater coverage for these inflammation-related genes compared to the existing genome-wide arrays, particularly in the African population. These tSNP arrays can facilitate systematic evaluation of inflammation pathways in disease susceptibility. For additional applications, other genotyping platforms could also be employed. For existing genome-wide association data, this list of key inflammation-related genes and

  15. Isolation and characterization of Agouti: a diabetes/obesity related gene

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, Richard P. (Knoxville, TN)

    2000-06-27

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  16. Isolation and characterization of Agouti: a diabetes/obesity related gene

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, Richard P. (Knoxville, TN)

    1998-01-01

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  17. Pulmonary phenotypes associated with genetic variation in telomere-related genes.

    Science.gov (United States)

    Hoffman, Thijs W; van Moorsel, Coline H M; Borie, Raphael; Crestani, Bruno

    2018-05-01

    Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.

  18. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    Science.gov (United States)

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  19. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  20. Calcitonin gene-related peptide antagonism and cluster headache

    DEFF Research Database (Denmark)

    Ashina, Håkan; Newman, Lawrence; Ashina, Sait

    2017-01-01

    Calcitonin gene-related peptide (CGRP) is a key signaling molecule involved in migraine pathophysiology. Efficacy of CGRP monoclonal antibodies and antagonists in migraine treatment has fueled an increasing interest in the prospect of treating cluster headache (CH) with CGRP antagonism. The exact...... role of CGRP and its mechanism of action in CH have not been fully clarified. A search for original studies and randomized controlled trials (RCTs) published in English was performed in PubMed and in ClinicalTrials.gov . The search term used was "cluster headache and calcitonin gene related peptide......" and "primary headaches and calcitonin gene related peptide." Reference lists of identified articles were also searched for additional relevant papers. Human experimental studies have reported elevated plasma CGRP levels during both spontaneous and glyceryl trinitrate-induced cluster attacks. CGRP may play...

  1. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle.

    Science.gov (United States)

    Lim, Dajeong; Lee, Seung-Hwan; Kim, Nam-Kuk; Cho, Yong-Min; Chai, Han-Ha; Seong, Hwan-Hoo; Kim, Heebal

    2013-01-01

    Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

  2. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2013-01-01

    Full Text Available Marbling (intramuscular fat is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the ‘marbling score’ trait and systemically analyzed the network topology in Hanwoo (Korean cattle. As a result, we determined 3 modules (gene groups that showed statistically significant results for marbling score. In particular, one module (denoted as red has a statistically significant result for marbling score (p = 0.008 and intramuscular fat (p = 0.02 and water capacity (p = 0.006. From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

  3. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  4. New Solanum species from Tanzanian coastal forests may already ...

    African Journals Online (AJOL)

    The unusually long inflorescences with a dense covering of long straight prickles on the rachis distinguish S. ruvu from all other African species of spiny Solanum. Its likely affinities lie with another coastal forest species, S. zanzibarense, which exhibits a similar scandent habit, subentire leaves, thin stems, and prickles that ...

  5. Candidate genes and pathogenesis investigation for sepsis-related acute respiratory distress syndrome based on gene expression profile.

    Science.gov (United States)

    Wang, Min; Yan, Jingjun; He, Xingxing; Zhong, Qiang; Zhan, Chengye; Li, Shusheng

    2016-04-18

    Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury as well as a major cause of acute respiratory failure. Although researchers have made significant progresses in elucidating the pathophysiology of this complex syndrome over the years, the absence of a universal detail disease mechanism up until now has led to a series of practical problems for a definitive treatment. This study aimed to predict some genes or pathways associated with sepsis-related ARDS based on a public microarray dataset and to further explore the molecular mechanism of ARDS. A total of 122 up-regulated DEGs and 91 down-regulated differentially expressed genes (DEGs) were obtained. The up- and down-regulated DEGs were mainly involved in functions like mitotic cell cycle and pathway like cell cycle. Protein-protein interaction network of ARDS analysis revealed 20 hub genes including cyclin B1 (CCNB1), cyclin B2 (CCNB2) and topoisomerase II alpha (TOP2A). A total of seven transcription factors including forkhead box protein M1 (FOXM1) and 30 target genes were revealed in the transcription factor-target gene regulation network. Furthermore, co-cited genes including CCNB2-CCNB1 were revealed in literature mining for the relations ARDS related genes. Pathways like mitotic cell cycle were closed related with the development of ARDS. Genes including CCNB1, CCNB2 and TOP2A, as well as transcription factors like FOXM1 might be used as the novel gene therapy targets for sepsis related ARDS.

  6. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

    Science.gov (United States)

    Pan, David Z; Garske, Kristina M; Alvarez, Marcus; Bhagat, Yash V; Boocock, James; Nikkola, Elina; Miao, Zong; Raulerson, Chelsea K; Cantor, Rita M; Civelek, Mete; Glastonbury, Craig A; Small, Kerrin S; Boehnke, Michael; Lusis, Aldons J; Sinsheimer, Janet S; Mohlke, Karen L; Laakso, Markku; Pajukanta, Päivi; Ko, Arthur

    2018-04-17

    Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.

  7. Cloning of the relative genes of endocrine exophthalmos

    International Nuclear Information System (INIS)

    Zheng, JG

    2004-01-01

    Aim: In order to clarify the pathogenesis of endocrine exophthalmos, and lay foundations for finding the new functions of its relative genes, the cloning of its relative genes was carried out. Methods: The thyroid tissues of 10 hyperthyroidism patients, 5 of them with endocrine exophthalmos and 5 without that, were obtained. Their mRNA were collected respectively by using Quick Prep Micro mRNA purification kit. Then the same amount of the mRNA from 5 patients with endocrine exophthalmos was added into an eppendorf tube to form a mRNA pool. And that of the 5 patients without endocrine exophthalmos was also prepared as the other pool. As a model, the pool was used to synthesize the single and double chains of cDNA through SMART Tm PCR cDNA Synthesis Kit. The double chains cDNA from the endocrine exophthalmos patients, being used as tester, and that from the patients without endocrine exophthalmos, being used as driver, were digested by restriction endonucleases Hae III to get the fragments which was less than 500 bases. The tester cDNA was ligated with adapt or 1 or 2 respectively. Then the subtractive suppressive hybridization was performed between tester and driver cDNA. And the efficacies of subtraction were measured. The differential genes between the thyroid tissues of endocrine exophthalmos and the thyroid tissues without endocrine exophthalmos were obtained through two cycles of subtractive hybridization and two cycles PCR. The differential genes were cloned into the vector of pT-Adv, and then transformed into E.coliDH5a. 48 white clonies were selected to build the subtractive suppressive library of the relative genes of endocrine exophthalmos. The primer 2 was applied for the colony PCR of the relative genes. The amplified genes were obtained and purified by using Quaqwich Spine PCR Purification Kit. According to the principle of random primer, the double chains cDNA from the thyroid tissues with or without endocrine exophthalmos were digested by Hae III

  8. Expression Analysis of Genes Related to Rice Resistance Against Brown Planthopper, Nilaparvata lugens

    Directory of Open Access Journals (Sweden)

    Panatda Jannoey

    2017-05-01

    Full Text Available Brown planthopper (BPH is an insect species that feeds on the vascular system of rice plants. To examine the defence mechanism of rice plants against BPH, the pathogenesis-related genes (PR1a, PR2, PR3, PR4, PR6, PR9, PR10a, PR13, PR15 and PRpha, signaling molecule synthesis genes (AOS, AXR, ACO and LOX, antioxidant-related genes (CAT, TRX, GST and SOD and lignin biosynthesis-related genes (CHS, CHI and C4H were investigated in a resistant rice variety. AOS, PR6, PR9 and PR15 genes showed significantly increased relative expression levels at 24.38-, 19.17-, 14.71-, and 12.74-fold compared to the control. Moderate increased relative expression levels of lignin biosynthesis-related gene (C4H, pathogenesis-related genes (PR4, PR10a and PRpha, and antioxidant-related gene (GST were found, while CHI, LOX, SOD, TRX1 and AXR showed decreased relative expression levels. It was thus clearly shown that wound-induced response genes were activated in rice plants after BPH attacks through AOS activation. Jasmonic acid signaling molecule may activate PR6, PR15, GST and CAT subsequently increasing their expression for H2O2 detoxification. PR6 were expressed at the highest relative level among the PR genes. These genes therefore have also a considerable synergistic role with the other genes against BPH by interfered their digestion tract system.

  9. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  10. Identification of apoptosis-related PLZF target genes

    International Nuclear Information System (INIS)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes; Campillo, Jose Antonio; Parrado, Antonio

    2007-01-01

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localization is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression

  11. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    Science.gov (United States)

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  12. Gene Transfers Between Distantly Related Organisms

    Science.gov (United States)

    Doolittle, Russell F.

    2003-01-01

    With the completion of numerous microbial genome sequences, reports of individual gene transfers between distantly related prokaryotes have become commonplace. On the other hand, transfers between prokaryotes and eukaryotes still excite the imagination. Many of these claims may be premature, but some are certainly valid. In this chapter, the kinds of supporting data needed to propose transfers between distantly related organisms and cite some interesting examples are considered.

  13. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Directory of Open Access Journals (Sweden)

    Sherif F Tadros

    Full Text Available Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  14. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  15. Expression of isgylation related genes in regenerating rat liver

    Directory of Open Access Journals (Sweden)

    Kuklin A. V.

    2015-10-01

    Full Text Available Our recent studies have revealed the early up-regulated expression of interferon alpha (IFNα in the liver, induced by partial hepatectomy. The role of this cytokine of innate immune response in liver regeneration is still controversial. Aim. To analyze expression of canonical interferon-stimulated genes Ube1l, Ube2l6, Trim25, Usp18 and Isg15 during the liver transition from quiescence to proliferation induced by partial hepatectomy, and acute phase response induced by laparotomy. These genes are responsible for posttranslational modification of proteins by ISGylation. The expression of genes encoding TATA binding protein (TBP and 18S rRNA served as indirect general markers of transcriptional and translational activities. Methods. The abundance of investigated RNAs was assessed in total liver RNA by real time RT–qPCR. Results. Partial hepatecomy induced steady upregulation of the Tbp and 18S rRNA genes expression during 12 hours post-surgery and downregulation or no change in expression of ISGylation-related genes during the first 3 hours followed by slight upregulation at 12 hours. The level of Isg15 transcripts was permanently below that of the control during the prereplicative period. Laparotomy induced a continuous downregulation of Tbp and 18S rRNA expression and early (1–3h upregulation of ISGylation–related transcripts followed by a sharp drop at 6 hours and slight increase/decrease at 12 hours. The changes in the abundance of Ifnα and ISGylation-related mRNAs were oppositely directed at each stage of the response to partial hepatectomy and laparotomy. Conclusion. We suggest that the expression of ISGylation-related genes does not depend on the expression of Ifnα gene after both surgeries. The indirect indices of transcription and translation as well as the expression of ISGylation-relaled genes are principally different in response to partial hepatectomy and laparotomy and argue for the high specificity of innate immune response.

  16. Research progress on related genes for primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Ailijiang·Aierken

    2014-04-01

    Full Text Available Primary open angle glaucoma(POAGis the main cause of blindness with visual field damage and optic nerve degeneration. In recent years, a lot of researches have been done, showing that genetic factors and gene mutation play an important role in POAG. There are more than 20 related POAG genes. Now we will review the related genes of POAG, especially the well known causative genes of MYOC, OPTN, WDR36, and CAV1/CAV2, in terms of their locations, structures, research progress, et al, and provide a reference for genetic research in primary open-angle glaucoma.

  17. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Furuta

    Full Text Available Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene, outer membrane protein (OMP genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice.

  18. Transcriptomic network analysis of micronuclei-related genes: a case study

    DEFF Research Database (Denmark)

    van Leeuwen, D. M.; Pedersen, Marie; Knudsen, Lisbeth E.

    2011-01-01

    checkpoint and aneuploidy. The MN-related gene network was tested against a transcriptomics case study associated with MN measurements. In this case study, transcriptomic data from children and adults differentially exposed to ambient air pollution in the Czech Republic were analysed and visualised......Mechanistically relevant information on responses of humans to xenobiotic exposure in relation to chemically induced biological effects, such as micronuclei (MN) formation can be obtained through large-scale transcriptomics studies. Network analysis may enhance the analysis and visualisation...... of such data. Therefore, this study aimed to develop a 'MN formation' network based on a priori knowledge, by using the pathway tool MetaCore. The gene network contained 27 genes and three gene complexes that are related to processes involved in MN formation, e.g. spindle assembly checkpoint, cell cycle...

  19. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  20. Characterization of transformation related genes in oral cancer cells.

    Science.gov (United States)

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  1. Detection of Gene Interactions Based on Syntactic Relations

    Directory of Open Access Journals (Sweden)

    Mi-Young Kim

    2008-01-01

    Full Text Available Interactions between proteins and genes are considered essential in the description of biomolecular phenomena, and networks of interactions are applied in a system's biology approach. Recently, many studies have sought to extract information from biomolecular text using natural language processing technology. Previous studies have asserted that linguistic information is useful for improving the detection of gene interactions. In particular, syntactic relations among linguistic information are good for detecting gene interactions. However, previous systems give a reasonably good precision but poor recall. To improve recall without sacrificing precision, this paper proposes a three-phase method for detecting gene interactions based on syntactic relations. In the first phase, we retrieve syntactic encapsulation categories for each candidate agent and target. In the second phase, we construct a verb list that indicates the nature of the interaction between pairs of genes. In the last phase, we determine direction rules to detect which of two genes is the agent or target. Even without biomolecular knowledge, our method performs reasonably well using a small training dataset. While the first phase contributes to improve recall, the second and third phases contribute to improve precision. In the experimental results using ICML 05 Workshop on Learning Language in Logic (LLL05 data, our proposed method gave an F-measure of 67.2% for the test data, significantly outperforming previous methods. We also describe the contribution of each phase to the performance.

  2. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Dissecting Time- from Tumor-Related Gene Expression Variability in Bilateral Breast Cancer

    Directory of Open Access Journals (Sweden)

    Maurizio Callari

    2018-01-01

    Full Text Available Metachronous (MBC and synchronous bilateral breast tumors (SBC are mostly distinct primaries, whereas paired primaries and their local recurrences (LRC share a common origin. Intra-pair gene expression variability in MBC, SBC, and LRC derives from time/tumor microenvironment-related and tumor genetic background-related factors and pairs represents an ideal model for trying to dissect tumor-related from microenvironment-related variability. Pairs of tumors derived from women with SBC (n = 18, MBC (n = 11, and LRC (n = 10 undergoing local-regional treatment were profiled for gene expression; similarity between pairs was measured using an intraclass correlation coefficient (ICC computed for each gene and compared using analysis of variance (ANOVA. When considering biologically unselected genes, the highest correlations were found for primaries and paired LRC, and the lowest for MBC pairs. By instead limiting the analysis to the breast cancer intrinsic genes, correlations between primaries and paired LRC were enhanced, while lower similarities were observed for SBC and MBC. Focusing on stromal-related genes, the ICC values decreased for MBC and were significantly different from SBC. These findings indicate that it is possible to dissect intra-pair gene expression variability into components that are associated with genetic origin or with time and microenvironment by using specific gene subsets.

  4. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    Science.gov (United States)

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  5. A hybrid computational method for the discovery of novel reproduction-related genes.

    Science.gov (United States)

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Guohua; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations.

  6. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2017-01-01

    Full Text Available As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients’ personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.

  7. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    Science.gov (United States)

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  8. Citrus plastid-related gene profiling based on expressed sequence tag analyses

    Directory of Open Access Journals (Sweden)

    Tercilio Calsa Jr.

    2007-01-01

    Full Text Available Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark or in reproductive organs (flowers and fruits. Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC.

  9. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  10. Vasopressin Gene-Related Products in the Management of Breast Cancer

    National Research Council Canada - National Science Library

    North, William

    1998-01-01

    .... The VP gene is expressed by seemingly all breast cancers and by all DCIS, and this information coupled with an absence of VP gene-related products from fibrocystic disease potentially provides us...

  11. Preliminary characterization of a death-related gene in silkworm ...

    African Journals Online (AJOL)

    Through RT-PCR analysis of death-related protein gene in different tissues and different developmental stage of B. mori, it showed the distributed condition of the gene. It was widely expressed in various tissues and mainly expressed in testis, malphigian vessels, posterior intestine, silk gland. Meanwhile, it was widely ...

  12. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  13. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  14. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  15. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers

    Directory of Open Access Journals (Sweden)

    Mthembu NN

    2017-03-01

    Full Text Available Nonkululeko N Mthembu,1 Zukile Mbita,2 Rodney Hull,1 Zodwa Dlamini1 1Research, Innovation and Engagements, Mangosuthu University of Technology, Durban, 2Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa Abstract: Alternative splicing of mRNA leads to an increase in proteome biodiversity by allowing the generation of multiple mRNAs, coding for multiple protein isoforms of various structural and functional properties from a single primary pre-mRNA transcript. The protein isoforms produced are tightly regulated in normal development but are mostly deregulated in various cancers. In HIV-infected individuals with AIDS, there is an increase in aberrant alternative splicing, resulting in an increase in HIV/AIDS-related cancers, such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical cancer. This aberrant splicing leads to abnormal production of protein and is caused by mutations in cis-acting elements or trans-acting factors in angiogenesis-related genes. Restoring the normal regulation of alternative splicing of angiogenic genes would alter the expression of protein isoforms and may confer normal cell physiology in patients with these cancers. This review highlights the abnormalities in alternative splicing of angiogenesis-related genes and their implication in HIV/AIDS-related cancers. This allows us to gain an insight into the pathogenesis of HIV/AIDS-related cancer and in turn elucidate the therapeutic potential of alternatively spliced genes in HIV/AIDS-related malignancies. Keywords: vascular endothelial growth factor, oncogenic viruses, hypoxia induced factor 1, Kaposi’s sarcoma, non-Hodgkin’s lymphoma, therapies targeting alternative splicing

  16. Systematically characterizing and prioritizing chemosensitivity related gene based on Gene Ontology and protein interaction network

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2012-10-01

    Full Text Available Abstract Background The identification of genes that predict in vitro cellular chemosensitivity of cancer cells is of great importance. Chemosensitivity related genes (CRGs have been widely utilized to guide clinical and cancer chemotherapy decisions. In addition, CRGs potentially share functional characteristics and network features in protein interaction networks (PPIN. Methods In this study, we proposed a method to identify CRGs based on Gene Ontology (GO and PPIN. Firstly, we documented 150 pairs of drug-CCRG (curated chemosensitivity related gene from 492 published papers. Secondly, we characterized CCRGs from the perspective of GO and PPIN. Thirdly, we prioritized CRGs based on CCRGs’ GO and network characteristics. Lastly, we evaluated the performance of the proposed method. Results We found that CCRG enriched GO terms were most often related to chemosensitivity and exhibited higher similarity scores compared to randomly selected genes. Moreover, CCRGs played key roles in maintaining the connectivity and controlling the information flow of PPINs. We then prioritized CRGs using CCRG enriched GO terms and CCRG network characteristics in order to obtain a database of predicted drug-CRGs that included 53 CRGs, 32 of which have been reported to affect susceptibility to drugs. Our proposed method identifies a greater number of drug-CCRGs, and drug-CCRGs are much more significantly enriched in predicted drug-CRGs, compared to a method based on the correlation of gene expression and drug activity. The mean area under ROC curve (AUC for our method is 65.2%, whereas that for the traditional method is 55.2%. Conclusions Our method not only identifies CRGs with expression patterns strongly correlated with drug activity, but also identifies CRGs in which expression is weakly correlated with drug activity. This study provides the framework for the identification of signatures that predict in vitro cellular chemosensitivity and offers a valuable

  17. Conidiogenesis-related DNA photolyase gene in Beauveria bassiana.

    Science.gov (United States)

    Lee, Se Jin; Lee, Mi Rong; Kim, Sihyeon; Kim, Jong Cheol; Park, So Eun; Shin, Tae Young; Kim, Jae Su

    2018-03-01

    Beauveria bassiana is an entomopathogenic fungi used in environmentally mindful pest management. Its main active ingredient, conidia, is commercially available as a fungal biopesticide. Many studies of conidia production have focused on how to optimize culture conditions for maximum productivity and stability against unfavorable abiotic factors. However, understanding of how conidiogenesis-related genes provide improved conidial production remains unclear. In this study, we focus on identifying conidiogenesis-related genes in B. bassiana ERL1170 using a random mutagenesis technique. Transformation of ERL1170 using restriction enzyme-mediated integration generated one morphologically different transformant, ERL1170-pABeG #163. The transformant was confirmed to represent B. bassiana, and the binary vector was successfully integrated into the genome of ERL1170. Compared to the wild type, transformant #163 showed very slow hyphal growth and within 6 days only produced bassiana exhibits thread-like hyphae and conidiophore structures and circular conidia. To determine the location of the randomly inserted DNA, we conducted thermal asymmetric interlaced (TAIL) PCR and Escherichia coli cloning to clearly sequence the disrupted region. We identified one colony (colony No. 7) with an insertion site identified as DNA photolyase. This was confirmed through a gene knock-out study. It is possible the gene that encodes for DNA photolyase was disrupted during the insertion process and might be involved in fungal conidiogenesis. This work serves as a platform for exploring the function of a variety of B. bassiana genes involved in pest management and their downstream processing. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. GRtoGR: a system for mapping GO relations to gene relations.

    Science.gov (United States)

    Taha, Kamal

    2013-12-01

    We introduce in this paper a biological search engine called GRtoGR. Given a set of S genes, GRtoGR would determine from GO graph the most significant Lowest Common Ancestor (LCA) of the GO terms annotating the set S. This significant LCA annotates the genes that are the most semantically related to the set S. The framework of GRtoGR refines the concept of LCA by introducing the concepts of Relevant Lowest Common Ancestor (RLCA) and Semantically Relevant Lowest Common Ancestor (SRLCA). A SRLCA is the most significant LCA of the GO terms annotating the set S. We observe that the existence of the GO terms annotating the set S is dependent on the existence of this SRLCA in GO graph. That is, the terms annotating a given set of genes usually have existence dependency relationships with the SRLCA of these terms. We evaluated GRtoGR experimentally and compared it with nine other methods. Results showed marked improvement.

  19. Sex-related differences in gene expression in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Stephen Welle

    2008-01-01

    Full Text Available There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001 of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10 and activin A receptor IIB (ACVR2B. GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1 signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001 and ACVR2B (1.7-fold, P<0.03. If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size.

  20. A hybrid network-based method for the detection of disease-related genes

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene

    2018-02-01

    Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.

  1. NHR-23 dependent collagen and hedgehog-related genes required for molting

    International Nuclear Information System (INIS)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek; Krause, Michael W.; Kostrouch, Zdenek; Kostrouchova, Marta

    2011-01-01

    Highlights: → NHR-23 is a critical regulator of nematode development and molting. → The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. → Whole genome expression analysis identifies new potential targets of NHR-23. → Hedgehog-related genes are identified as NHR-23 dependent genes. → New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  2. NHR-23 dependent collagen and hedgehog-related genes required for molting

    Energy Technology Data Exchange (ETDEWEB)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Krause, Michael W. [Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Kostrouch, Zdenek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Kostrouchova, Marta, E-mail: marta.kostrouchova@lf1.cuni.cz [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic)

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  3. A pathway-based network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng

    2016-02-01

    Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.

  4. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  5. Deep learning of mutation-gene-drug relations from the literature.

    Science.gov (United States)

    Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo

    2018-01-25

    Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be

  6. [Phylogenetic analysis of closely related Leuconostoc citreum species based on partial housekeeping genes].

    Science.gov (United States)

    Lv, Qiang; Chen, Ming; Xu, Haiyan; Song, Yuqin; Sun, Zhihong; Dan, Tong; Sun, Tiansong

    2013-07-04

    Using the 16S rRNA, dnaA, murC and pyrG gene sequences, we identified the phylogenetic relationship among closely related Leuconostoc citreum species. Seven Leu. citreum strains originally isolated from sourdough were characterized by PCR methods to amplify the dnaA, murC and pyrG gene sequences, which were determined to assess the suitability as phylogenetic markers. Then, we estimated the genetic distance and constructed the phylogenetic trees including 16S rRNA and above mentioned three housekeeping genes combining with published corresponding sequences. By comparing the phylogenetic trees, the topology of three housekeeping genes trees were consistent with that of 16S rRNA gene. The homology of closely related Leu. citreum species among dnaA, murC, pyrG and 16S rRNA gene sequences were different, ranged from75.5% to 97.2%, 50.2% to 99.7%, 65.0% to 99.8% and 98.5% 100%, respectively. The phylogenetic relationship of three housekeeping genes sequences were highly consistent with the results of 16S rRNA gene sequence, while the genetic distance of these housekeeping genes were extremely high than 16S rRNA gene. Consequently, the dnaA, murC and pyrG gene are suitable for classification and identification closely related Leu. citreum species.

  7. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer's Disease.

    Science.gov (United States)

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang

    2016-01-01

    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.

  8. EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamomi

    Directory of Open Access Journals (Sweden)

    Mahomed Waheed

    2011-11-01

    Full Text Available Abstract Background Avocado (Persea americana belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR. Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. Results 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. Conclusions This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved

  9. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Science.gov (United States)

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  10. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    Directory of Open Access Journals (Sweden)

    Felix E Enciso-Rodríguez

    Full Text Available The Cape gooseberry (Physalisperuviana L is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site, CC (Coiled-Coil, TIR (Toll/Interleukin-1 Receptor. We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene architecture, 17 Receptor like kinase (RLKs candidates related to PAMP-Triggered Immunity (PTI, eight (TIR-NBS-LRR, or TNL and nine (CC-NBS-LRR, or CNL candidates related to Effector-Triggered Immunity (ETI genes among others. These candidate genes were categorized by molecular function (98%, biological process (85% and cellular component (79% using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  11. Transcriptional regulation of genes related to progesterone production.

    Science.gov (United States)

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  12. Expression and functional analysis of apoptosis-related gene ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... conducted a molecular cloning and functional analysis to study a specific silkworm gene BmICAD related to apoptosis. .... blocking with 5% non-fat milk for 1 h at room temperature, the .... requirements for all next experiments.

  13. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    Science.gov (United States)

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  14. Discovering implicit entity relation with the gene-citation-gene network.

    Directory of Open Access Journals (Sweden)

    Min Song

    Full Text Available In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner.

  15. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  16. TLR-related pathway analysis : novel gene-gene interactions in the development of asthma and atopy

    NARCIS (Netherlands)

    Reijmerink, N. E.; Bottema, R. W. B.; Kerkhof, M.; Gerritsen, J.; Stelma, F. F.; Thijs, C.; van Schayck, C. P.; Smit, H. A.; Brunekreef, B.; Koppelman, G. H.; Postma, D. S.

    P>Background: The toll-like receptor (TLR)-related pathway is important in host defence and may be crucial in the development of asthma and atopy. Numerous studies have shown associations of TLR-related pathway genes with asthma and atopy phenotypes. So far it has not been investigated whether

  17. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  18. Addiction and Reward-related Genes Show Altered Expression in the Postpartum Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Changjiu eZhao

    2014-11-01

    Full Text Available Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET indicated that postpartum (relative to virgin NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia. Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.

  19. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time ... which would greatly enhance the use of G. darwinii-specific desirable genes in ... used to determine all linkage groups, the order of groups on the same ... age groups.

  20. Transcription profiling and identification of infection-related genes in Phytophthora cactorum.

    Science.gov (United States)

    Chen, Xiao-Ren; Huang, Shen-Xin; Zhang, Ye; Sheng, Gui-Lin; Zhang, Bo-Yue; Li, Qi-Yuan; Zhu, Feng; Xu, Jing-You

    2018-04-01

    Phytophthora cactorum, an oomycete pathogen, infects more than 200 plant species within several plant families. To gain insight into the repertoire of the infection-related genes of P. cactorum, Illumina RNA-Seq was used to perform a global transcriptome analysis of three life cycle stages of the pathogen, mycelia (MY), zoospores (ZO) and germinating cysts with germ tubes (GC). From over 9.8 million Illumina reads for each library, 18,402, 18,569 and 19,443 distinct genes were identified for MY, ZO and GC libraries, respectively. Furthermore, the transcriptome difference among MY, ZO and GC stages was investigated. Gene ontology (GO) and KEGG pathway enrichment analyses revealed diverse biological functions and processes. Comparative analysis identified a large number of genes that are associated with specific stages and pathogenicity, including 166 effector genes. Of them, most of RXLR and NLP genes showed induction while the majority of CRN genes were down-regulated in GC, the important pre-infection stage, compared to either MY or ZO. And 14 genes encoding small cysteine-rich (SCR) secretory proteins showed differential expression during the developmental stages and in planta. Ectopic expression in the Solanaceae indicated that SCR113 and one elicitin PcINF1 can trigger cell death on Nicotiana benthamiana, tobacco (N. tabacum) and tomato (Solanum lycopersicum) leaves. Neither conserved domain nor homologues of SCR113 in other organisms can be identified. Collectively, our study provides a comprehensive examination of gene expression across three P. cactorum developmental stages and describes pathogenicity-related genes, all of which will help elucidate the pathogenicity mechanism of this destructive pathogen.

  1. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus.

    Science.gov (United States)

    Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan

    2014-09-29

    G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.

  2. [Establishment of a comprehensive database for laryngeal cancer related genes and the miRNAs].

    Science.gov (United States)

    Li, Mengjiao; E, Qimin; Liu, Jialin; Huang, Tingting; Liang, Chuanyu

    2015-09-01

    By collecting and analyzing the laryngeal cancer related genes and the miRNAs, to build a comprehensive laryngeal cancer-related gene database, which differs from the current biological information database with complex and clumsy structure and focuses on the theme of gene and miRNA, and it could make the research and teaching more convenient and efficient. Based on the B/S architecture, using Apache as a Web server, MySQL as coding language of database design and PHP as coding language of web design, a comprehensive database for laryngeal cancer-related genes was established, providing with the gene tables, protein tables, miRNA tables and clinical information tables of the patients with laryngeal cancer. The established database containsed 207 laryngeal cancer related genes, 243 proteins, 26 miRNAs, and their particular information such as mutations, methylations, diversified expressions, and the empirical references of laryngeal cancer relevant molecules. The database could be accessed and operated via the Internet, by which browsing and retrieval of the information were performed. The database were maintained and updated regularly. The database for laryngeal cancer related genes is resource-integrated and user-friendly, providing a genetic information query tool for the study of laryngeal cancer.

  3. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    Science.gov (United States)

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  4. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients

    Science.gov (United States)

    Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Mendiola, Marta; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B.; Machado, Isidro; Ramos, David; Gironella, Meritxell; Espinosa-Salinas, Isabel; Ramos, Ricardo; Martín-Hernández, Roberto; Risueño, Alberto; De Las Rivas, Javier; Reglero, Guillermo; Yaya, Ricardo; Fernández-Martos, Carlos; Aparicio, Jorge; Maurel, Joan; Feliu, Jaime; de Molina, Ana Ramírez

    2015-01-01

    Lipid metabolism plays an essential role in carcinogenesis due to the requirements of tumoral cells to sustain increased structural, energetic and biosynthetic precursor demands for cell proliferation. We investigated the association between expression of lipid metabolism-related genes and clinical outcome in intermediate-stage colon cancer patients with the aim of identifying a metabolic profile associated with greater malignancy and increased risk of relapse. Expression profile of 70 lipid metabolism-related genes was determined in 77 patients with stage II colon cancer. Cox regression analyses using c-index methodology was applied to identify a metabolic-related signature associated to prognosis. The metabolic signature was further confirmed in two independent validation sets of 120 patients and additionally, in a group of 264 patients from a public database. The combined analysis of these 4 genes, ABCA1, ACSL1, AGPAT1 and SCD, constitutes a metabolic-signature (ColoLipidGene) able to accurately stratify stage II colon cancer patients with 5-fold higher risk of relapse with strong statistical power in the four independent groups of patients. The identification of a group of 4 genes that predict survival in intermediate-stage colon cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy, and avoids the toxic and unnecessary chemotherapy in patients classified as low-risk group. PMID:25749516

  5. LGscore: A method to identify disease-related genes using biological literature and Google data.

    Science.gov (United States)

    Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun

    2015-04-01

    Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    Directory of Open Access Journals (Sweden)

    Dong Hyun eKim

    2013-08-01

    Full Text Available Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e. Medicago truncatula (Mt, Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc, Phaseolus vulgaris (Pv and Glycine max (Gm. Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks and nonsynonymous substitutions per nonsynonymous site (Ka between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the farthest distance between Mt and Pv in 6 legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reported some interesting observations e.g. no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

  7. Schizophrenia and vitamin D related genes could have been subject to latitude-driven adaptation.

    Science.gov (United States)

    Amato, Roberto; Pinelli, Michele; Monticelli, Antonella; Miele, Gennaro; Cocozza, Sergio

    2010-11-11

    Many natural phenomena are directly or indirectly related to latitude. Living at different latitudes, indeed, has its consequences with being exposed to different climates, diets, light/dark cycles, etc. In humans, one of the best known examples of genetic traits following a latitudinal gradient is skin pigmentation. Nevertheless, also several diseases show latitudinal clinals such as hypertension, cancer, dismetabolic conditions, schizophrenia, Parkinson's disease and many more. We investigated, for the first time on a wide genomic scale, the latitude-driven adaptation phenomena. In particular, we selected a set of genes showing signs of latitude-dependent population differentiation. The biological characterization of these genes showed enrichment for neural-related processes. In light of this, we investigated whether genes associated to neuropsychiatric diseases were enriched by Latitude-Related Genes (LRGs). We found a strong enrichment of LRGs in the set of genes associated to schizophrenia. In an attempt to try to explain this possible link between latitude and schizophrenia, we investigated their associations with vitamin D. We found in a set of vitamin D related genes a significant enrichment of both LRGs and of genes involved in schizophrenia. Our results suggest a latitude-driven adaptation for both schizophrenia and vitamin D related genes. In addition we confirm, at a molecular level, the link between schizophrenia and vitamin D. Finally, we discuss a model in which schizophrenia is, at least partly, a maladaptive by-product of latitude dependent adaptive changes in vitamin D metabolism.

  8. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    Science.gov (United States)

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry ( Physalis peruviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P . peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  9. Identification of genes related to Paulownia witches' broom by AFLP and MSAP.

    Science.gov (United States)

    Cao, Xibing; Fan, Guoqiang; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng

    2014-08-21

    DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches' broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L(-1) MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB.

  10. Identification of Genes Related to Paulownia Witches’ Broom by AFLP and MSAP

    Science.gov (United States)

    Cao, Xibing; Fan, Guoqiang; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng

    2014-01-01

    DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches’ broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L−1 MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB. PMID:25196603

  11. [Progress in the study on diacylgycerol acyltransferase (DGAT)-related genes].

    Science.gov (United States)

    Ma, Hai-Ming; Shi, Qi-Shun; Liu, Xiao-Chun

    2005-12-01

    Diacylgycerol Acyltransferase (DGAT) plays an important role in the formation of lipid in different tissues of biological body. DGAT catalyzes the final step in triacylglycerol (TAG) biosynthesis by converting diacylgycerol (DAG) and fatty acyl-coenzyme A (CoA) into triacylglycerol. This enzyme is coded by both DGAT1 and DGAT2. DGAT1 belongs to the gene family of cholesterol acyltransferase (ACAT). DGAT2 belongs to the gene family of monoacylgycerol acyltransferases (MGAT1). This paper reviewed the structure, location on chromosome and biological effect of DGAT-related genes. The relationship between polymorphism and performance of animal was also discussed.

  12. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    Directory of Open Access Journals (Sweden)

    Raffaella Cascella

    2014-01-01

    Full Text Available Age-related macular degeneration (AMD is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old. AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension. In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2 that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines, immune cells (macrophages, and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.

  13. Serotonin, calcitonin and calcitonin gene-related peptide in acute pancreatitis

    DEFF Research Database (Denmark)

    Wahlstrøm, Kirsten Lykke; Novovic, Srdan; Ersbøll, Annette Kjær

    2017-01-01

    OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients with alco......OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients...... dysfunction. We hypothesize that serotonin plays a pathogenic role in the compromised pancreatic microcirculation, and calcitonin a role as a biomarker of severity in AP....

  14. Schizophrenia and vitamin D related genes could have been subject to latitude-driven adaptation

    Directory of Open Access Journals (Sweden)

    Monticelli Antonella

    2010-11-01

    Full Text Available Abstract Background Many natural phenomena are directly or indirectly related to latitude. Living at different latitudes, indeed, has its consequences with being exposed to different climates, diets, light/dark cycles, etc. In humans, one of the best known examples of genetic traits following a latitudinal gradient is skin pigmentation. Nevertheless, also several diseases show latitudinal clinals such as hypertension, cancer, dismetabolic conditions, schizophrenia, Parkinson's disease and many more. Results We investigated, for the first time on a wide genomic scale, the latitude-driven adaptation phenomena. In particular, we selected a set of genes showing signs of latitude-dependent population differentiation. The biological characterization of these genes showed enrichment for neural-related processes. In light of this, we investigated whether genes associated to neuropsychiatric diseases were enriched by Latitude-Related Genes (LRGs. We found a strong enrichment of LRGs in the set of genes associated to schizophrenia. In an attempt to try to explain this possible link between latitude and schizophrenia, we investigated their associations with vitamin D. We found in a set of vitamin D related genes a significant enrichment of both LRGs and of genes involved in schizophrenia. Conclusions Our results suggest a latitude-driven adaptation for both schizophrenia and vitamin D related genes. In addition we confirm, at a molecular level, the link between schizophrenia and vitamin D. Finally, we discuss a model in which schizophrenia is, at least partly, a maladaptive by-product of latitude dependent adaptive changes in vitamin D metabolism.

  15. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer

  17. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  18. Steroidogenesis-related gene expression in the rat ovary exposed to melatonin supplementation

    Directory of Open Access Journals (Sweden)

    Gisele Negro Lima

    2015-02-01

    Full Text Available OBJECTIVE: To analyze steroidogenesis-related gene expression in the rat ovary exposed to melatonin supplementation. METHODS: Thirty-two virgin adult female rats were randomized to two groups as follows: the control group GI received vehicle and the experimental group GII received melatonin supplementation (10 µg/night per animal for 60 consecutive days. After the treatment, animals were anesthetized and the collected ovaries were immediately placed in liquid nitrogen for complementary deoxyribonucleic acid microarray analyses. A GeneChip¯ Kit Rat Genome 230 2.0 Affymetrix Array was used for gene analysis and the experiment was repeated three times for each group. The results were normalized with the GeneChip¯ Operating Software program and confirmed through analysis with the secondary deoxyribonucleic acid-Chip Analyzer (dChip software. The data were confirmed by real-time reverse transcription polymerase chain reaction analysis. Genes related to ovarian function were further confirmed by immunohistochemistry. RESULTS: We found the upregulation of the type 9 adenylate cyclase and inhibin beta B genes and the downregulation of the cyclic adenosine monophosphate response element modulator and cytochrome P450 family 17a1 genes in the ovarian tissue of GII compared to those of the control group. CONCLUSION: Our data suggest that melatonin supplementation decreases gene expression of cyclic adenosine monophosphate, which changes ovarian steroidogenesis.

  19. Identification of Genes Related to Paulownia Witches’ Broom by AFLP and MSAP

    Directory of Open Access Journals (Sweden)

    Xibing Cao

    2014-08-01

    Full Text Available DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches’ broom (PaWB infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS using amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L−1 MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB.

  20. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    Science.gov (United States)

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  1. GLUCOCORTICOID RECEPTOR-RELATED GENES: GENOTYPE AND BRAIN GENE EXPRESSION RELATIONSHIPS TO SUICIDE AND MAJOR DEPRESSIVE DISORDER.

    Science.gov (United States)

    Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, J John

    2016-06-01

    We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. © 2016 Wiley Periodicals, Inc.

  2. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    Science.gov (United States)

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  3. Expression of biomineralization-related ion transport genes in Emiliania huxleyi.

    Science.gov (United States)

    Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin

    2011-12-01

    Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes

    International Nuclear Information System (INIS)

    Litlekalsoy, Jorunn; Rostad, Kari; Kalland, Karl-Henning; Hostmark, Jens G.; Laerum, Ole Didrik

    2016-01-01

    The purpose of this study was to evaluate invasive and metastatic potential of urothelial cancer by investigating differential expression of various clock genes/proteins participating in the 24 h circadian rhythms and to compare these gene expressions with transcription of other cancer-associated genes. Twenty seven paired samples of tumour and benign tissue collected from patients who underwent cystectomy were analysed and compared to 15 samples of normal bladder tissue taken from patients who underwent cystoscopy for benign prostate hyperplasia (unrelated donors). Immunohistochemical analyses were made for clock and clock-related proteins. In addition, the gene-expression levels of 22 genes (clock genes, casein kinases, oncogenes, tumour suppressor genes and cytokeratins) were analysed by real-time quantitative PCR (qPCR). Considerable up- or down-regulation and altered cellular distribution of different clock proteins, a reduction of casein kinase1A1 (CSNK1A1) and increase of casein kinase alpha 1 E (CSNK1E) were found. The pattern was significantly correlated with simultaneous up-regulation of stimulatory tumour markers, and a down-regulation of several suppressor genes. The pattern was mainly seen in aneuploid high-grade cancers. Considerable alterations were also found in the neighbouring bladder mucosa. The close correlation between altered expression of various clock genes and common tumour markers in urothelial cancer indicates that disturbed function in the cellular clock work may be an important additional mechanism contributing to cancer progression and malignant behaviour. The online version of this article (doi:10.1186/s12885-016-2580-y) contains supplementary material, which is available to authorized users

  5. MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature

    Directory of Open Access Journals (Sweden)

    Fang Yu-Ching

    2011-12-01

    Full Text Available Abstract Background DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The relations between aberrant gene methylation and cancer development have been identified by a number of recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the MeInfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation extraction, we have now developed MeInfoText 2.0, which uses a machine learning-based approach to extract gene methylation-cancer relations. Description Two maximum entropy models are trained to predict if aberrant gene methylation is related to any type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MeInfoText 2.0 provides the gene methylation profiles of different types of human cancer. The extracted relations with maximum probability, evidence sentences, and specific gene information are also retrievable. The database is available at http://bws.iis.sinica.edu.tw:8081/MeInfoText2/. Conclusion The previous version, MeInfoText, was developed by using association rules, whereas MeInfoText 2.0 is based on a new framework that combines machine learning, dictionary lookup and pattern matching for epigenetics information extraction. The results of experiments show that MeInfoText 2.0 outperforms existing tools in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.

  6. General and Specific Genetic Polymorphism of Cytokines-Related Gene in AITD

    Directory of Open Access Journals (Sweden)

    Chen Xiaoheng

    2017-01-01

    Full Text Available Autoimmune thyroid disease (AITD shows the highest incidence among organ-specific autoimmune diseases and is the most common thyroid disease in humans, including Graves’ disease (GD and Hashimoto’s thyroiditis (HT. The susceptibility to autoimmune diseases is affected by increased autoantibody levels, susceptibility gene polymorphisms, environmental factors, and psychological factors, but the pathogenesis remains unclear. Various cytokines and related genes encoding them play important roles in the development and progression of AITD. CD152, an expression product of the CTLA-4 gene, downregulates T cell activation. The A/A genotype polymorphism in the CT60 locus may reduce the production of thyroid autoantibodies. The C1858T polymorphism of the PTNP22 gene reduces the expression of its encoded LYP, which increases the risk of GD and HT. GD is an organ-specific autoimmune disease involving increased secretion of thyroid hormone, whereas HT may be associated with the destruction of thyroid gland tissue and hypothyroidism. These two diseases exhibit similar pathogenesis but opposite trends in the clinical manifestations. In this review, we focus on the structure and function of these cytokines and related genes in AITD, as well as the association of polymorphisms with susceptibility to GD and HT, and attempt to describe their differences in pathogenesis and clinical manifestations.

  7. Germination and seedling morphology of four South American Smilax (Smilacaceae

    Directory of Open Access Journals (Sweden)

    Aline Redondo Martins

    2012-03-01

    Full Text Available Species of Smilax, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30ºC and 20-30ºC and light (presence/ absence, and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30ºC in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%, independently of treatment. However, S. polyantha had low germination rates (19-24%. After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovateelliptic, coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics.

  8. Germination and seedling morphology of four South American Smilax (Smilacaceae).

    Science.gov (United States)

    Martins, Aline Redondo; Soares, Anielca Nascimento; Bombo, Aline Bertolosi; Fidelis, Alessandra; Novembre, Ana Dionisia da Luz Coelho; da Glória, Beatriz Appezzato

    2012-03-01

    Species of Smilax, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30 degrees C and 20-30 degrees C) and light (presence/ absence), and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30 degrees C in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%), independently of treatment. However, S. polyantha had low germination rates (19-24%). After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovate-elliptic, coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics.

  9. Ortholog-based screening and identification of genes related to intracellular survival.

    Science.gov (United States)

    Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin

    2018-04-20

    Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.

  10. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range...... of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  11. Vasopressin Gene-Related Products in the Management of Breast Cancer

    National Research Council Canada - National Science Library

    North, William

    1999-01-01

    ...), and this information coupled with an absence of vasopressin gene-related products from fibrocystic disease potentially provides us with a new screening test for distinguishing both breast cancer...

  12. Screening the Drug Sensitivity Genes Related to GEM and CDDP in the Lung Cancer Cell-lines

    Directory of Open Access Journals (Sweden)

    Chunyu YANG

    2009-10-01

    Full Text Available Background and objective Screening of small-cell lung cancer (SCLC and non-small cell lung cancer (NSCLC cell lines with gemcitabine hydrochloride (GEM and cisplatin (CDDP related to drug sensitivity gene might clarify the action mechanism of anti-cancer drugs and provide a new clue for overcoming drug resistance and the development of new anti-cancer drugs, and also provide theoretical basis for the clinical treatment of individual. Methods The drug sensitivity of CDDP and GEM in 4 SCLC cell lines and 6 NSCLC cell lines was determined using MTT colorimetric assay, while the cDNA macroarray was applied to detect the gene expression state related to drug sensitivity of 10 lung cancer cell line in 1 291, and the correlation between the two was analysized. Results There were 6 genes showing significant positive correlation (r≥0.632, P < 0.05 with GEM sensitivity; 45 genes positively related to CDDP; another 41 genes related to both GEM and CDDP (r≥± 0.4. Lung cancer with GEM and CDDP sensitivity of two types of drugs significantly related genes were Metallothinein (Signal transduction molecules, Cathepsin B (Organization protease B and TIMP1 (Growth factor; the GEM, CDDP sensitivity associated genes of lung cancer cell lines mainly distributed in Metallothinein, Cathepsin B, growth factor TIMP1 categories. Conclusion There existed drug-related sensitive genes of GEM, CDDP in SCLC and NSCLC cell lines; of these genes, Metallothinein, Cathepsin B and TIMP1 genes presented a significant positive correlation with GEM drug sensitivity, a significant negative correlation with CDDP drug sensitivity.

  13. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Relative gene expression of fatty acid synthesis genes at 60 days postpartum in bovine mammary epithelial cells of Surti and Jafarabadi buffaloes

    Directory of Open Access Journals (Sweden)

    Mamta Janmeda

    2017-05-01

    Full Text Available Aim: Aim of the study was to study the relative gene expression of genes associated with fatty acid synthesis at 60 days postpartum (pp in bovine mammary epithelial cells (MECs of Surti and Jafarabadi buffaloes. Materials and Methods: A total of 10 healthy Surti and Jafarabadi buffaloes of each breed were selected at random from Livestock Research Station, Navsari and Cattle Breeding Farm, Junagadh, Gujarat, respectively, for this study. Milk sample was collected from each selected buffalo at day 60 pp from these two breeds to study relative gene expression of major milk fat genes using non-invasive approach of obtaining primary bovine MECs (pBMEC from milk samples. Results: In this study overall, the relative expression of the six major milk lipogenic genes butyrophilin subfamily 1 member A1 (BTN1A1, stearoyl-CoA desaturase (SCD, lipoprotein lipase (LPL, glycerol-3-phosphate acyltransferase mitochondrial (GPAM, acetyl-coenzyme A carboxylase alpha (ACACA, and lipin (LPIN did not show changes in expression patterns at 60th day of lactation in both Surti and Jafarabadi buffaloes. Conclusion: The pBMEC can be successfully recovered from 1500 ml of milk of Surti and Jafarabadi buffaloes using antibody-mediated magnetic bead separation and can be further used for recovering RNA for down step quantification of major milk lipogenic gene expression. The relative expression of the six major milk lipogenic genes BTN1A1, SCD, LPL, GPAM, ACACA, and LPIN did not show changes in expression patterns in both Surti and Jafarabadi buffaloes, suggesting expression levels of lipogenic genes are maintained almost uniform till peak lactation without any significant difference.

  15. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    Science.gov (United States)

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  16. Sex steroid-related candidate genes in psychiatric disorders.

    Science.gov (United States)

    Westberg, Lars; Eriksson, Elias

    2008-07-01

    Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid-induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid-related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function.

  17. Concerted down-regulation of immune-system related genes predicts metastasis in colorectal carcinoma

    International Nuclear Information System (INIS)

    Fehlker, Marion; Huska, Matthew R; Jöns, Thomas; Andrade-Navarro, Miguel A; Kemmner, Wolfgang

    2014-01-01

    This study aimed at the identification of prognostic gene expression markers in early primary colorectal carcinomas without metastasis at the time point of surgery by analyzing genome-wide gene expression profiles using oligonucleotide microarrays. Cryo-conserved tumor specimens from 45 patients with early colorectal cancers were examined, with the majority of them being UICC stage II or earlier and with a follow-up time of 41–115 months. Gene expression profiling was performed using Whole Human Genome 4x44K Oligonucleotide Microarrays. Validation of microarray data was performed on five of the genes in a smaller cohort. Using a novel algorithm based on the recursive application of support vector machines (SVMs), we selected a signature of 44 probes that discriminated between patients developing later metastasis and patients with a good prognosis. Interestingly, almost half of the genes was related to the patients’ immune response and showed reduced expression in the metastatic cases. Whereas up to now gene signatures containing genes with various biological functions have been described for prediction of metastasis in CRC, in this study metastasis could be well predicted by a set of gene expression markers consisting exclusively of genes related to the MHC class II complex involved in immune response. Thus, our data emphasize that the proper function of a comprehensive network of immune response genes is of vital importance for the survival of colorectal cancer patients

  18. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Science.gov (United States)

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  19. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  20. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation.

    Science.gov (United States)

    Li, Min; Zhang, Jiayi; Liu, Qing; Wang, Jianxin; Wu, Fang-Xiang

    2014-01-01

    Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.

  1. Different stress-related gene expression in depression and suicide

    NARCIS (Netherlands)

    Zhao, J; Qi, X-R; Gao, S-F; Lu, J; van Wamelen, D J; Kamphuis, W; Bao, A-M; Swaab, D F

    OBJECTIVE: Suicide occurs in some, but not all depressed patients. So far, it remains unknown whether the studied stress-related candidate genes change in depression, suicide or both. The prefrontal cortex (PFC) is involved in, among other things, impulse control and inhibitory behavior and plays an

  2. Measured Gene-by-Environment Interaction in Relation to Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Nigg, Joel; Nikolas, Molly; Burt, S. Alexandra

    2010-01-01

    Objective: To summarize and evaluate the state of knowledge regarding the role of measured gene-by-environment interactions in relation to attention-deficit/hyperactivity disorder. Method: A selective review of methodologic issues was followed by a systematic search for relevant articles on measured gene-by-environment interactions; the search…

  3. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  4. Pulmonary artery hypertension in childhood: The transforming growth factor-β superfamily-related genes

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2018-04-01

    Full Text Available Pulmonary artery hypertension (PAH is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-β superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-β superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia, caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH. Key Words: bone morphogenetic proteins, mutation, pulmonary hypertension

  5. Visually Relating Gene Expression and in vivo DNA Binding Data

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  6. A database of annotated promoters of genes associated with common respiratory and related diseases

    KAUST Repository

    Chowdhary, Rajesh

    2012-07-01

    Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation. For this purpose, we conducted a promoter analysis of genes associated with 11 common RRDs including allergic rhinitis, asthma, bronchiectasis, bronchiolitis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, eczema, psoriasis, and urticaria, many of which are thought to be genetically related. The objective of the present study was to obtain deeper insight into the transcriptional regulation of these disease-associated genes by annotating their promoter regions with transcription factors (TFs) and TF binding sites (TFBSs). We discovered many TFs that are significantly enriched in the target disease groups including associations that have been documented in the literature. We also identified a number of putative TFs/TFBSs that appear to be novel. The results of our analysis are provided in an online database that is freely accessible to researchers at http://www.respiratorygenomics.com. Promoter-associated TFBS information and related genomic features, such as histone modification sites, microsatellites, CpG islands, and SNPs, are graphically summarized in the database. Users can compare and contrast underlying mechanisms of specific RRDs relative to candidate genes, TFs, gene ontology terms, micro-RNAs, and biological pathways for the conduct of metaanalyses. This database represents a novel, useful resource for RRD researchers. Copyright © 2012 by the American Thoracic Society.

  7. A database of annotated promoters of genes associated with common respiratory and related diseases

    KAUST Repository

    Chowdhary, Rajesh; Tan, Sinlam; Pavesi, Giulio; Jin, Gg; Dong, Difeng; Mathur, Sameer K.; Burkart, Arthur; Narang, Vipin; Glurich, Ingrid E.; Raby, Benjamin A.; Weiss, Scott T.; Limsoon, Wong; Liu, Jun; Bajic, Vladimir B.

    2012-01-01

    Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation. For this purpose, we conducted a promoter analysis of genes associated with 11 common RRDs including allergic rhinitis, asthma, bronchiectasis, bronchiolitis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, eczema, psoriasis, and urticaria, many of which are thought to be genetically related. The objective of the present study was to obtain deeper insight into the transcriptional regulation of these disease-associated genes by annotating their promoter regions with transcription factors (TFs) and TF binding sites (TFBSs). We discovered many TFs that are significantly enriched in the target disease groups including associations that have been documented in the literature. We also identified a number of putative TFs/TFBSs that appear to be novel. The results of our analysis are provided in an online database that is freely accessible to researchers at http://www.respiratorygenomics.com. Promoter-associated TFBS information and related genomic features, such as histone modification sites, microsatellites, CpG islands, and SNPs, are graphically summarized in the database. Users can compare and contrast underlying mechanisms of specific RRDs relative to candidate genes, TFs, gene ontology terms, micro-RNAs, and biological pathways for the conduct of metaanalyses. This database represents a novel, useful resource for RRD researchers. Copyright © 2012 by the American Thoracic Society.

  8. Hypomethylation and Aberrant Expression of the Glioma Pathogenesis-Related 1 Gene in Wilms Tumors

    Directory of Open Access Journals (Sweden)

    Laxmi Chilukamarri

    2007-11-01

    Full Text Available Wilms tumors (WTs have a complex etiology, displaying genetic and epigenetic changes, including loss of imprinting (LOI and tumor suppressor gene silencing. To identify new regions of epigenetic perturbation in WTs, we screened kidney and tumor DNA using CpG island (CGI tags associated with cancer-specific DNA methylation changes. One such tag corresponded to a paralog of the glioma pathogenesis-related 1/related to testis-specific, vespid, and pathogenesis proteins 1 (GLIPR1/RTVP-1 gene, previously reported to be a tumor-suppressor gene silenced by hypermethylation in prostate cancer. Here we report methylation analysis of the GLIPR1/RTVP-1 gene in WTs and normal fetal and pediatric kidneys. Hypomethylation of the GLIPR1/RTVP-1 5'-region in WTs relative to normal tissue is observed in 21/24 (87.5% of WTs analyzed. Quantitative analysis of GLIPR1/RTVP-1 expression in 24 WTs showed elevated transcript levels in 16/24 WTs (67%, with 12 WTs displaying in excess of 20-fold overexpression relative to fetal kidney (FK control samples. Immunohistochemical analysis of FK and WT corroborates the RNA expression data and reveals high GLIPR1/RTVP-1 in WT blastemal cells together with variable levels in stromal and epithelial components. Hypomethylation is also evident in the WT precursor lesions and nephrogenic rests (NRs, supporting a role for GLIPR1/RTVP-1 deregulation early in Wilms tumorigenesis. Our data show that, in addition to gene dosage changes arising from LOI and hypermethylation-induced gene silencing, gene activation resulting from hypomethylation is also prevalent in WTs.

  9. The first report of prion-related protein gene (PRNT) polymorphisms in goat.

    Science.gov (United States)

    Kim, Yong-Chan; Jeong, Byung-Hoon

    2017-06-01

    Prion protein is encoded by the prion protein gene (PRNP). Polymorphisms of several members of the prion gene family have shown association with prion diseases in several species. Recent studies on a novel member of the prion gene family in rams have shown that prion-related protein gene (PRNT) has a linkage with codon 26 of prion-like protein (PRND). In a previous study, codon 26 polymorphism of PRND has shown connection with PRNP haplotype which is strongly associated with scrapie vulnerability. In addition, the genotype of a single nucleotide polymorphism (SNP) at codon 26 of PRND is related to fertilisation capacity. These findings necessitate studies on the SNP of PRNT gene which is connected with PRND. In goat, several polymorphism studies have been performed for PRNP, PRND, and shadow of prion protein gene (SPRN). However, polymorphism on PRNT has not been reported. Hence, the objective of this study was to determine the genotype and allelic distribution of SNPs of PRNT in 238 Korean native goats and compare PRNT DNA sequences between Korean native goats and several ruminant species. A total of five SNPs, including PRNT c.-114G > T, PRNT c.-58A > G in the upstream of PRNT gene, PRNT c.71C > T (p.Ala24Val) and PRNT c.102G > A in the open reading frame (ORF) and c.321C > T in the downstream of PRNT gene, were found in this study. All five SNPs of caprine PRNT gene in Korean native goat are in complete linkage disequilibrium (LD) with a D' value of 1.0. Interestingly, comparative sequence analysis of the PRNT gene revealed five mismatches between DNA sequences of Korean native goats and those of goats deposited in the GenBank. Korean native black goats also showed 5 mismatches in PRNT ORF with cattle. To the best of our knowledge, this is the first genetic research of the PRNT gene in goat.

  10. Gene expression in triple-negative breast cancer in relation to survival.

    Science.gov (United States)

    Wang, Shuyang; Beeghly-Fadiel, Alicia; Cai, Qiuyin; Cai, Hui; Guo, Xingyi; Shi, Liang; Wu, Jie; Ye, Fei; Qiu, Qingchao; Zheng, Ying; Zheng, Wei; Bao, Ping-Ping; Shu, Xiao-Ou

    2018-05-10

    The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression. We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources. Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83-0.97), RASGRP1 (HR 0.89, 95% CI 0.82-0.97), and SOD2 (HR 0.80, 95% CI 0.66-0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81-0.97) and RASGRP1 (HR 0.87, 95% CI 0.81-0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06-1.22) and GSPT1 (HR 1.33, 95% CI 1.14-1.55) expression was associated with shorter DFS. We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.

  11. Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes

    Directory of Open Access Journals (Sweden)

    Leon French

    2017-05-01

    Full Text Available Genome-wide expression profiling of the human brain has revealed genes that are differentially expressed across the lifespan. Characterizing these genes adds to our understanding of both normal functions and pathological conditions. Additionally, the specific cell-types that contribute to the motor, sensory and cognitive declines during aging are unclear. Here we test if age-related genes show higher expression in specific neural cell types. Our study leverages data from two sources of murine single-cell expression data and two sources of age-associations from large gene expression studies of postmortem human brain. We used nonparametric gene set analysis to test for age-related enrichment of genes associated with specific cell-types; we also restricted our analyses to specific gene ontology groups. Our analyses focused on a primary pair of single-cell expression data from the mouse visual cortex and age-related human post-mortem gene expression information from the orbitofrontal cortex. Additional pairings that used data from the hippocampus, prefrontal cortex, somatosensory cortex and blood were used to validate and test specificity of our findings. We found robust age-related up-regulation of genes that are highly expressed in oligodendrocytes and astrocytes, while genes highly expressed in layer 2/3 glutamatergic neurons were down-regulated across age. Genes not specific to any neural cell type were also down-regulated, possibly due to the bulk tissue source of the age-related genes. A gene ontology-driven dissection of the cell-type enriched genes highlighted the strong down-regulation of genes involved in synaptic transmission and cell-cell signaling in the Somatostatin (Sst neuron subtype that expresses the cyclin dependent kinase 6 (Cdk6 and in the vasoactive intestinal peptide (Vip neuron subtype expressing myosin binding protein C, slow type (Mybpc1. These findings provide new insights into cell specific susceptibility to normal aging

  12. The Mycobacterium leprae antigen 85 complex gene family: identification of the genes for the 85A, 85C, and related MPT51 proteins

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Bekelie, S.; Osland, A.; Wieles, B.; Janson, A. A.; Thole, J. E.

    1993-01-01

    The genes for two novel members (designated 85A and 85C) of the Mycobacterium leprae antigen 85 complex family of proteins and the gene for the closely related M. leprae MPT51 protein were isolated. The complete DNA sequence of the M. leprae 85C gene and partial sequences of the 85A and MPT51 genes

  13. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    Science.gov (United States)

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By

  14. Transcriptome Analysis of Calcium- and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development

    Science.gov (United States)

    Li, Yan; Meng, Jingjing; Yang, Sha; Guo, Feng; Zhang, Jialei; Geng, Yun; Cui, Li; Wan, Shubo; Li, Xinguo

    2017-01-01

    Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+)-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4) and the red skin of Stage 3 (S3) showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2), S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway. PMID:28769950

  15. Transcriptome Analysis of Calcium- and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-07-01

    Full Text Available Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4 and the red skin of Stage 3 (S3 showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2, S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway.

  16. Loss-of-function of neuroplasticity-related genes confers risk for human neurodevelopmental disorders.

    Science.gov (United States)

    Smith, Milo R; Glicksberg, Benjamin S; Li, Li; Chen, Rong; Morishita, Hirofumi; Dudley, Joel T

    2018-01-01

    High and increasing prevalence of neurodevelopmental disorders place enormous personal and economic burdens on society. Given the growing realization that the roots of neurodevelopmental disorders often lie in early childhood, there is an urgent need to identify childhood risk factors. Neurodevelopment is marked by periods of heightened experience-dependent neuroplasticity wherein neural circuitry is optimized by the environment. If these critical periods are disrupted, development of normal brain function can be permanently altered, leading to neurodevelopmental disorders. Here, we aim to systematically identify human variants in neuroplasticity-related genes that confer risk for neurodevelopmental disorders. Historically, this knowledge has been limited by a lack of techniques to identify genes related to neurodevelopmental plasticity in a high-throughput manner and a lack of methods to systematically identify mutations in these genes that confer risk for neurodevelopmental disorders. Using an integrative genomics approach, we determined loss-of-function (LOF) variants in putative plasticity genes, identified from transcriptional profiles of brain from mice with elevated plasticity, that were associated with neurodevelopmental disorders. From five shared differentially expressed genes found in two mouse models of juvenile-like elevated plasticity (juvenile wild-type or adult Lynx1-/- relative to adult wild-type) that were also genotyped in the Mount Sinai BioMe Biobank we identified multiple associations between LOF genes and increased risk for neurodevelopmental disorders across 10,510 patients linked to the Mount Sinai Electronic Medical Records (EMR), including epilepsy and schizophrenia. This work demonstrates a novel approach to identify neurodevelopmental risk genes and points toward a promising avenue to discover new drug targets to address the unmet therapeutic needs of neurodevelopmental disease.

  17. [Expression of saponin biosynthesis related genes in different tissues of Panax quinquefolius].

    Science.gov (United States)

    Wang, Kang-Yu; Liu, Wei-Can; Zhang, Mei-Ping; Zhao, Ming-Zhu; Wang, Yan-Fang; Li, Li; Sun, Chun-Yu; Hu, Ke-Xin; Cong, Yue-Yi; Wang, Yi

    2018-01-01

    The relationship between saponin content of Panax quinquefolius in different parts of the organization and expression of ginsenoside biosynthesis related gene was obtained by the correlation analysis between saponin content and gene expression. The 14 tissue parts of P. quinquefolius were studied, six saponins in P. quinquefolius. Samples (ginsenoside Rg₁, Re, Rb₁, Rc, Rb₂ and Rd), group saponins and total saponins were determined by high performance liquid chromatography and vanillin-sulfuric acid colorimetric method. Simultaneously, the expression levels of 7 ginsenoside biosynthesis related genes ( SQS, OSC, DS, β-AS, SQE, P450 and FPS ) in different tissues of P. quinquefolius were determined by Real-time fluorescence quantitative PCR. Although 7 kinds of ginsenoside biosynthesis related enzyme gene in the P. quinquefolius involved in ginsenoside synthesis, the expression of β-AS and P450 genes had no significant effect on the content of monosodium saponins, grouping saponins and total saponins, FPS, SQS, OSC, DS and SQE had significant or extremely significant on the contents of single saponins Re, Rg1, Rb1, Rd, group saponin PPD and PPT, total saponin TMS and total saponin TS ( P saponins, grouping saponins and total saponins in P. quinquefolius was affected by the interaction of multiple enzyme genes in the saponin synthesis pathway, the content of saponins in different tissues of P. quinquefolius was determined by the differences in the expression of key enzymes in the biosynthetic pathway. Therefore, this study further clarified that FPS, SQS, OSC, DS and SQE was the key enzyme to control the synthesis of saponins in P. quinquefolius by correlation analysis, the biosynthesis of ginsenosides in P. quinquefolius was regulated by these five kind of enzymes in cluster co-expression of interaction mode. Copyright© by the Chinese Pharmaceutical Association.

  18. Cytologic atypia in the contralateral unaffected breast is related to parity and estrogen-related genes.

    Science.gov (United States)

    Monahan, Denise A; Wang, Jun; Lee, Oukseub; Revesz, Elizabeth; Taft, Nancy; Ivancic, David; Hansen, Nora M; Bethke, Kevin P; Zalles, C; Khan, Seema A

    2016-12-01

    The contralateral unaffected breast (CUB) of women with unilateral breast cancer provides a model for the study of breast tissue-based risk factors. Using random fine needle aspiration (rFNA), we have investigated hormonal and gene expression patterns related to atypia in the CUBs of newly diagnosed breast cancer patients. 83 women underwent rFNA of the CUB. Cytologic analysis was performed using the Masood Score (MS), atypia was defined as MS > 14. RNA was extracted using 80% of the sample. The expression of 20 hormone related genes was quantified using Taqman Low Density Arrays. Statistical analysis was performed using 2-tailed t tests and linear regression. Cytological atypia was more frequent in multiparous women (P = 0.0392), and was not associated with any tumor-related features in the affected breast. Masood Score was higher with shorter interval since last pregnancy (R = 0.204, P = 0.0417), higher number of births (R = 0.369, P = 0.0006), and estrogen receptor (ER) negativity of the index cancer (R = -0.203, P = 0.065). Individual cytologic features were associated with aspects of parity. Specifically, anisonucleosis was correlated with shorter interval since last pregnancy (R = 0.318, P = 0.0201), higher number of births (R = 0.382, P = 0.0004), and ER status (R = -0.314, P = 0.0038). Eight estrogen-regulated genes were increased in atypical samples (P breast cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA.

    Science.gov (United States)

    Sarro, E C; Sullivan, R M; Barr, G

    2014-01-31

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpaired odor-shock conditioning for 5 days, which produces deficits in adult behavior and amygdala dysfunction. In adulthood, we used the Light/Dark box test to measure anxiety-related behaviors, measuring the latency to enter the lit area and quantified urination and defecation. The amygdala was then dissected and a microarray analysis was performed to examine changes in gene expression. Animals that had received early unpredictable trauma displayed significantly longer latencies to enter the lit area and more defecation and urination. The microarray analysis revealed over-represented genes related to learning and memory, synaptic transmission and trans-membrane transport. Gene ontology and pathway analysis identified highly represented disease states related to anxiety phenotypes, including social anxiety, obsessive-compulsive disorders, post-traumatic stress disorder and bipolar disorder. Addiction-related genes were also overrepresented in this analysis. Unpredictable shock during early development increased anxiety-like behaviors in adulthood with concomitant changes in genes related to neurotransmission, resulting in gene expression patterns similar to anxiety-related psychiatric disorders. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Effects of salmon calcitonin and calcitonin gene related peptide ...

    African Journals Online (AJOL)

    The aim of this investigation was to examine and compare the effects of calcitonin gene related peptide (CGRP) and salmon calcitonin (sCT) on gastric lesions and mucosal barrier components such as mucus and phospholipids in rats exposed to cold + restraint stress (CRS). Twenty-eight Wistar albino rats (150 – 200 g) ...

  1. Survival of Listeria monocytogenes in simulated gastrointestinal system and transcriptional profiling of stress- and adhesion-related genes

    DEFF Research Database (Denmark)

    Jiang, Lingli; Olesen, Inger; Andersen, Thomas

    2010-01-01

    -related genes after exposure to the conditions similar to those encountered in the mouth, stomach, and small intestine. None of the L. monocytogenes strains investigated could survive in the gastric juice at pH 2.5 or 3.0. Their survival increased at higher pH (3.5 and 4.0) in the gastric stress. Relative...... afterpassing through the simulated gastrointestinal tract, whereas that of the adhesion-related gene ami was downregulated. Taken together, this study revealed that L. monocytogenes strains enhanced the expression of stressrelated genes and decreased the transcription of adhesion-related gene in order...

  2. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  3. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  4. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways

    Directory of Open Access Journals (Sweden)

    A. Achiron

    2004-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system disease in which activated autoreactive T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and axonal loss. The etiology of MS, as well as the mechanisms associated with its unexpected onset, the unpredictable clinical course spanning decades, and the different rates of progression leading to disability over time, remains an enigma. We have applied gene expression microarrays technology in peripheral blood mononuclear cells (PBMC to better understand MS pathogenesis and better target treatment approaches. A signature of 535 genes were found to distinguish immunomodulatory treatment effects between 13 treated and 13 untreated MS patients. In addition, the expression pattern of 1109 gene transcripts that were previously reported to significantly differentiate between MS patients and healthy subjects were further analyzed to study the effect of cytokine-related pathways on disease pathogenesis. When relative gene expression for 26 MS patients was compared to 18 healthy controls, 30 genes related to various cytokine-associated pathways were identified. These genes belong to a variety of families such as interleukins, small inducible cytokine subfamily and tumor necrosis factor ligand and receptor. Further analysis disclosed seven cytokine-associated genes within the immunomodulatory treatment signature, and two cytokine-associated genes SCYA4 (small inducible cytokine A4 and FCAR (Fc fragment of IgA, CD89 that were common to both the MS gene expression signature and the immunomodulatory treatment gene expression signature. Our results indicate that cytokine-associated genes are involved in various pathogenic pathways in MS and also related to immunomodulatory treatment effects.

  5. Expression of defence-related genes in sunflower infected with broomrape

    Directory of Open Access Journals (Sweden)

    Tatiana Şestacova

    2016-07-01

    Full Text Available Transcriptional activity of four defence-related genes (NPR1, PAL, defensin and PR5 in seven sunflower lines – resistant (MS-2161A, tolerant (MS-2039A and susceptible (MS-2098A, MS-2091A, MS-2077A, MS-2067A and MS-1589A, infected with three broomrape populations (Tulcea, Romania; Soroca and Anenii Noi, Republic of Moldova, was studied in advanced stages of infection (90 days after sowing. Obtained results revealed that resistant genotypes are characterized through higher stability in transcriptional activity of the studied genes. Thus, resistance could be associated with ability rapidly to maintain and recover a normal level of metabolism under more intensive stress factors. Also, it was established that expression of PR5 and defensin genes was altered and revealed considerable deviations in this phase of adaptation, while NPR1 and PAL mostly showed values at the level of the control group, which allows assuming that these genes, in the moment of sample collection and analysis, had normalized transcriptional activity, probably being involved in early responses.

  6. Three Studies Point to Same Risk Gene for Age-Related Macular Degeneration

    Science.gov (United States)

    ... point to same risk gene for age-related macular degeneration NIH-funded research helps unravel the biology of ... rare, but powerful risk factor for age-related macular degeneration (AMD), a common cause of vision loss in ...

  7. Association between the SPRY1 gene polymorphism and obesity-related traits and osteoporosis in Korean women.

    Science.gov (United States)

    Jin, Hyun-Seok; Kim, Bo-Young; Kim, Jeonghyun; Hong, Kyung-Won; Jung, Suk-Yul; Lee, Yun-Seok; Huh, Dam; Oh, Bermseok; Chung, Yoon-Sok; Jeong, Seon-Yong

    2013-01-01

    Emerging evidence has revealed a close relationship between obesity and osteoporosis. It was reported recently that conditional knockout of the Spry1 gene in mice adipocytes causes an increase in body fat and a decrease in bone mass, and that these phenotypes are rescued by Spry1 overexpression in adipose tissue. In this study, we investigated whether genetic variation in the human SPRY1 gene is associated with obesity-related phenotypes and/or osteoporosis in humans. We performed a candidate gene association analysis between the four single nucleotide polymorphisms (SNPs) and 14 imputed SNPs in the SPRY1 gene and obesity-related traits and osteoporosis in a Korean women cohort (3013 subjects). All four SPRY1 gene SNPs were significantly associated with either obesity-related traits or osteoporosis. The TGCC haplotype in the SRPY1 gene showed simultaneous association with an increased risk for obesity-related traits, percentage body fat (p=0.0087) and percentage abdominal fat (p=0.047), and osteoporosis (odds ratio=1.50; p=0.025) in the recessive genetic model. Our results support a previous finding in conditional Spry1 gene knockout mice and suggest that the SPRY1 gene is an important genetic factor for determining the risk of both obesity and osteoporosis in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp.

    Science.gov (United States)

    Wang, Tao; Huang, Dongya; Chen, Baoyu; Mao, Nini; Qiao, Yushan; Ji, Muxiang

    2018-03-01

    Polyploidization always induces a series of changes in genome, transcriptome and epigenetics, of which changes in gene expression are the immediate causes of genotype alterations of polyploid plants. In our previous study on strawberry polyploidization, genes related to photosynthesis were found to undergo changes in gene expression and DNA methylation. Therefore, we chose 11 genes that were closely related to plant photosynthesis and analysed their expression during strawberry hybridization and chromosome doubling. Most genes of pentaploids showed expression levels between parents and were more similar to F. × ananassa. Gene expression levels of decaploids were higher than those of pentaploids and F. × ananassa. Different types of photosynthesis-related genes responded differently to hybridization and chromosome doubling. Chloroplast genes and regulatory genes showed complex responses. Structural genes of the photosynthetic system were expressed at a constant level and displayed a clear dosage effect. The methylation levels of one CG site on SIGE, which regulates expression of chloroplast genes, were negatively correlated with gene expression. In pentaploids and decaploids, more transcripts were from F. × ananassa than from F. viridis. The ratio of transcripts from from F. × ananassa to those from F. viridis was close to the ratio (4:1) of the genome of F. × ananassa to that of F. viridis in pentaploids and decaploids, but there were also some exceptions with obvious deviation.

  9. Intersex related gene expression profiles in clams Scrobicularia plana: Molecular markers and environmental application

    International Nuclear Information System (INIS)

    Ciocan, Corina M.; Cubero-Leon, Elena; Langston, William J.; Pope, Nick; Cornelius, Keith; Hill, E.M.; Alvarez-Munoz, Diana; Indiveri, Paolo; Lerebours, Adelaide; Minier, Christophe; Rotchell, Jeanette M.

    2015-01-01

    Highlights: • Expression of intersex-related genes was analysed in clam gonads sampled from the Channel. • Genes were differentially expressed at sites with varying levels of intersex and contaminants. • Correlations between gene expressions, key contaminants and sampling sites were identified. • No single gene expression studied correlated with intersex incidence. - Abstract: Intersex, the appearance of female characteristics in male gonads, has been identified in several aquatic species. It is a widespread phenomenon in populations of the bivalve, Scrobicularia plana, from the southwest coast of the U.K. Genes previously identified as differentially expressed (ferritin, testicular haploid expressed gene, THEG, proliferating cell nuclear antigen, PCNA; receptor activated protein kinase C, RACK; cytochrome B, CYB; and cytochrome c oxidase 1, COX1) in intersex clams relative to normal male clams, were selected for characterisation and an environmental survey of the Channel region. Transcripts were significantly differentially expressed at sites with varying intersex incidence and contaminant burdens. Significant correlations between specific gene expressions, key contaminants and sampling locations have been identified, though no single gene was associated with intersex incidence. The results highlight the difficulty in understanding the intersex phenomenon in molluscs where there is still a lack of knowledge on the control of normal reproduction

  10. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    Science.gov (United States)

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  11. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    Science.gov (United States)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  12. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes.

    Science.gov (United States)

    Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C

    2016-01-01

    Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the

  13. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk

    DEFF Research Database (Denmark)

    Hoeft, B.; Linseisen, J.; Beckmann, L.

    2010-01-01

    as contributing factor to colon carcinogenesis. We examined the association between genetic variability in 43 fatty acid metabolism-related genes and colorectal risk in 1225 CRC cases and 2032 controls participating in the European Prospective Investigation into Cancer and Nutrition study. Three hundred......Colorectal cancer (CRC) is the third most common malignant tumor and the fourth leading cause of cancer death worldwide. The crucial role of fatty acids for a number of important biological processes suggests a more in-depth analysis of inter-individual differences in fatty acid metabolizing genes...... variants with CRC risk. Our results support the key role of prostanoid signaling in colon carcinogenesis and suggest a relevance of genetic variation in fatty acid metabolism-related genes and CRC risk....

  14. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat.

    Science.gov (United States)

    Han, Wenjing; Li, Xiaoyan; Wang, Lele; Wang, Honghao; Yang, Kun; Wang, Zhixin; Wang, Ruijun; Su, Rui; Liu, Zhihong; Zhao, Yanhong; Zhang, Yanjun; Li, Jinquan

    2018-03-01

    This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. We found that FoxN1 , FoxE1 , and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1 , FoxE1 , and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

  15. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat

    Directory of Open Access Journals (Sweden)

    Wenjing Han

    2018-03-01

    Full Text Available Objective This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Methods Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. Results We found that FoxN1, FoxE1, and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1, FoxE1, and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. Conclusion This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

  16. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    International Nuclear Information System (INIS)

    Ray, Anamika; Liu Jing; Ayoubi, Patricia; Pope, Carey

    2010-01-01

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse

  17. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    Science.gov (United States)

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for 0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for BAC } rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. Copyright © 2017 by the Genetics Society of America.

  18. Sieve-based relation extraction of gene regulatory networks from biological literature.

    Science.gov (United States)

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming

  19. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    Science.gov (United States)

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in

  20. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis.

    Science.gov (United States)

    Quispe, Ruth L; Justino, Emily B; Vieira, Felipe N; Jaramillo, Michael L; Rosa, Rafael D; Perazzolo, Luciane M

    2016-11-01

    We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effective gene therapy in an authentic model of Tay-Sachs-related diseases.

    Science.gov (United States)

    Cachón-González, M Begoña; Wang, Susan Z; Lynch, Andrew; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2006-07-05

    Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the beta-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human beta-hexosaminidase alpha and beta subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of beta-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.

  2. RGFinder: a system for determining semantically related genes using GO graph minimum spanning tree.

    Science.gov (United States)

    Taha, Kamal

    2015-01-01

    Biologists often need to know the set S' of genes that are the most functionally and semantically related to a given set S of genes. For determining the set S', most current gene similarity measures overlook the structural dependencies among the Gene Ontology (GO) terms annotating the set S, which may lead to erroneous results. We introduce in this paper a biological search engine called RGFinder that considers the structural dependencies among GO terms by employing the concept of existence dependency. RGFinder assigns a weight to each edge in GO graph to represent the degree of relatedness between the two GO terms connected by the edge. The value of the weight is determined based on the following factors: 1) type of the relation represented by the edge (e.g., an "is-a" relation is assigned a different weight than a "part-of" relation), 2) the functional relationship between the two GO terms connected by the edge, and 3) the string-substring relationship between the names of the two GO terms connected by the edge. RGFinder then constructs a minimum spanning tree of GO graph based on these weights. In the framework of RGFinder, the set S' is annotated to the GO terms located at the lowest convergences of the subtree of the minimum spanning tree that passes through the GO terms annotating set S. We evaluated RGFinder experimentally and compared it with four gene set enrichment systems. Results showed marked improvement.

  3. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    Logemann, E.; Wu ShengCheng; Schröder, J.; Schmelzer, E.; Somssich, I.E.; Hahlbrock, K.

    1995-01-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  4. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    Directory of Open Access Journals (Sweden)

    Dorota Kamińska

    2016-01-01

    Full Text Available Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan. Results. Immediate posttransplant graft function (14-day GFR was influenced negatively by TGFB1 (P=0.039 and positively by IL-2 gene expression (P=0.040. Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18 and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P=0.027, FAS: P=0.021, and IFNG: P=0.029 and long-term graft function (24-month GFR CASP3: P=0.003, FAS: P=0.033, IL-18: P=0.044, and IFNG: P=0.04. Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes’ expression in the recipients’ peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function.

  5. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat.

    Science.gov (United States)

    He, Huagang; Zhu, Shanying; Jiang, Zhengning; Ji, Yaoyong; Wang, Feng; Zhao, Renhui; Bie, Tongde

    2016-04-01

    The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.

  6. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    2011-02-01

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  7. Association analysis of 94 candidate genes and schizophrenia-related endophenotypes.

    Directory of Open Access Journals (Sweden)

    Tiffany A Greenwood

    Full Text Available While it is clear that schizophrenia is highly heritable, the genetic basis of this heritability is complex. Human genetic, brain imaging, and model organism studies have met with only modest gains. A complementary research tactic is to evaluate the genetic substrates of quantitative endophenotypes with demonstrated deficits in schizophrenia patients. We used an Illumina custom 1,536-SNP array to interrogate 94 functionally relevant candidate genes for schizophrenia and evaluate association with both the qualitative diagnosis of schizophrenia and quantitative endophenotypes for schizophrenia. Subjects included 219 schizophrenia patients and normal comparison subjects of European ancestry and 76 schizophrenia patients and normal comparison subjects of African ancestry, all ascertained by the UCSD Schizophrenia Research Program. Six neurophysiological and neurocognitive endophenotype test paradigms were assessed: prepulse inhibition (PPI, P50 suppression, the antisaccade oculomotor task, the Letter-Number Span Test, the California Verbal Learning Test-II, and the Wisconsin Card Sorting Test-64 Card Version. These endophenotype test paradigms yielded six primary endophenotypes with prior evidence of heritability and demonstrated schizophrenia-related impairments, as well as eight secondary measures investigated as candidate endophenotypes. Schizophrenia patients showed significant deficits on ten of the endophenotypic measures, replicating prior studies and facilitating genetic analyses of these phenotypes. A total of 38 genes were found to be associated with at least one endophenotypic measure or schizophrenia with an empirical p-value<0.01. Many of these genes have been shown to interact on a molecular level, and eleven genes displayed evidence for pleiotropy, revealing associations with three or more endophenotypic measures. Among these genes were ERBB4 and NRG1, providing further support for a role of these genes in schizophrenia susceptibility

  8. Calcitonin gene-related peptide and pain

    DEFF Research Database (Denmark)

    Schou, Wendy Sophie; Ashina, Sait; Amin, Faisal Mohammad

    2017-01-01

    and cerebrospinal fluid in subjects with musculoskeletal pain. A randomized clinical trial on monoclonal antibody, which selectively binds to and inhibits the activity of CGRP (galcanezumab) in patients with osteoarthritis knee pain, failed to demonstrate improvement of pain compared with placebo. No studies......BACKGROUND: Calcitonin gene-related peptide (CGRP) is widely distributed in nociceptive pathways in human peripheral and central nervous system and its receptors are also expressed in pain pathways. CGRP is involved in migraine pathophysiology but its role in non-headache pain has not been...... clarified. METHODS: We performed a systematic literature search on PubMed, Embase and ClinicalTrials.gov for articles on CGRP and non-headache pain covering human studies including experimental studies and randomized clinical trials. RESULTS: The literature search identified 375 citations of which 50...

  9. Genetic association analysis of 30 genes related to obesity in a European American population.

    Science.gov (United States)

    Li, P; Tiwari, H K; Lin, W-Y; Allison, D B; Chung, W K; Leibel, R L; Yi, N; Liu, N

    2014-05-01

    Obesity, which is frequently associated with diabetes, hypertension and cardiovascular diseases, is primarily the result of a net excess of caloric intake over energy expenditure. Human obesity is highly heritable, but the specific genes mediating susceptibility in non-syndromic obesity remain unclear. We tested candidate genes in pathways related to food intake and energy expenditure for association with body mass index (BMI). We reanalyzed 355 common genetic variants of 30 candidate genes in seven molecular pathways related to obesity in 1982 unrelated European Americans from the New York Cancer Project. Data were analyzed by using a Bayesian hierarchical generalized linear model. The BMIs were log-transformed and then adjusted for covariates, including age, age(2), gender and diabetes status. The single-nucleotide polymorphisms (SNPs) were modeled as additive effects. With the stipulated adjustments, nine SNPs in eight genes were significantly associated with BMI: ghrelin (GHRL; rs35683), agouti-related peptide (AGRP; rs5030980), carboxypeptidase E (CPE; rs1946816 and rs4481204), glucagon-like peptide-1 receptor (GLP1R; rs2268641), serotonin receptors (HTR2A; rs912127), neuropeptide Y receptor (NPY5R;Y5R1c52), suppressor of cytokine signaling 3 (SOCS3; rs4969170) and signal transducer and activator of transcription 3 (STAT3; rs4796793). We also found a gender-by-SNP interaction (rs1745837 in HTR2A), which indicated that variants in the gene HTR2A had a stronger association with BMI in males. In addition, NPY1R was detected as having a significant gene effect even though none of the SNPs in this gene was significant. Variations in genes AGRP, CPE, GHRL, GLP1R, HTR2A, NPY1R, NPY5R, SOCS3 and STAT3 showed modest associations with BMI in European Americans. The pathways in which these genes participate regulate energy intake, and thus these associations are mechanistically plausible in this context.

  10. A novel gene: sawD related to the differentiation of streptomyces ansochromogenes.

    Science.gov (United States)

    Gang, L; Wei, C; Yuqing, T; Huarong, T; Chater, K F; Buttner, M J

    1999-01-01

    A 1.3 kb DNA fragment was cloned from a total DNA library of Streptomyces ansochromogenes using Southern hybridization. Nucleotide sequencing analysis indicated that the 1320 bp DNA fragment contained a complete open reading frame (ORF). In search of databases, the deduced product of ORF containing 213 amino acids is homologous to the serine protease of Caulobacter cresceatus, and a conserved serine-catalytic active site (GPSAG) exists. The gene was designated as sawD. The function of this gene was studied with the strategy of gene disruption, and the result showed that the sawD may be related to sporulation and especially to the spore septation in Streptomyces ansochromogenes. The preliminary result indicated that sawD mutant could produce abundant pigment in contrast with the wild type, it seems that sawD gene may be involved in pigment biosynthesis, and this gene is also dispensable for biosynthesis of nikkomycin in Streptomyces ansochromogenes.

  11. Rapid Communication: MiR-92a as a housekeeping gene for analysis of bovine mastitis-related microRNA in milk.

    Science.gov (United States)

    Lai, Y C; Fujikawa, T; Ando, T; Kitahara, G; Koiwa, M; Kubota, C; Miura, N

    2017-06-01

    Our aim was to identify a suitable microRNA housekeeping gene for real-time PCR analysis of bovine mastitis-related microRNA in milk. We identified , , and as housekeeping gene candidates on the basis of previous Solexa sequencing results. Threshold cycle (CT) values for , , and did not differ between milk from control cows and milk from mastitis-affected cows. NormFinder software identified as the most stable single housekeeping gene. We evaluated the suitability of the housekeeping gene candidates by using them to assess expression levels of the inflammation-related gene . Regardless of the housekeeping gene candidates used for normalization, relative expression levels of were significantly higher in mastitis-affected samples than in control samples. However, of all the housekeeping genes and gene combinations investigated, normalization with alone generated the difference in relative expression between mastitis-affected and control samples with the highest significance. These results suggest that is suitable for use as a housekeeping gene for analysis of bovine mastitis-related microRNA in milk.

  12. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing.

    Science.gov (United States)

    Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J; Ericson, Brad L; Cserhati, Matyas F; Guda, Chittibabu; Carlson, Kimberly A

    2018-01-01

    Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster . The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.

  13. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Biswarup [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tyler, Brett M. [Oregon State Univ., Corvallis, OR (United States); Setubal, Joao [Univ. of Sao Paulo (Brazil); Murali, T. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-11-03

    Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed a website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.

  15. Epigenetics-related genes in prostate cancer: expression profile in prostate cancer tissues, androgen-sensitive and -insensitive cell lines.

    Science.gov (United States)

    Shaikhibrahim, Zaki; Lindstrot, Andreas; Ochsenfahrt, Jacqueline; Fuchs, Kerstin; Wernert, Nicolas

    2013-01-01

    Epigenetic changes have been suggested to drive prostate cancer (PCa) development and progression. Therefore, in this study, we aimed to identify novel epigenetics-related genes in PCa tissues, and to examine their expression in metastatic PCa cell lines. We analyzed the expression of epigenetics-related genes via a clustering analysis based on gene function in moderately and poorly differentiated PCa glands compared to normal glands of the peripheral zone (prostate proper) from PCa patients using Whole Human Genome Oligo Microarrays. Our analysis identified 12 epigenetics-related genes with a more than 2-fold increase or decrease in expression and a p-value epigenetics-related genes that we identified in primary PCa tissues may provide further insight into the role that epigenetic changes play in PCa. Moreover, some of the genes that we identified may play important roles in primary PCa and metastasis, in primary PCa only, or in metastasis only. Follow-up studies are required to investigate the functional role and the role that the expression of these genes play in the outcome and progression of PCa using tissue microarrays.

  16. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.

    Science.gov (United States)

    Zhang, Yunhua; Dai, Li; Liu, Ying; Zhang, YuHang; Wang, ShaoPeng

    2017-01-01

    Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.

  17. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus

    Science.gov (United States)

    2012-01-01

    Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and

  18. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae

    Science.gov (United States)

    Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.

    2016-01-01

    Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905

  19. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  20. Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas

    NARCIS (Netherlands)

    Wensman, H.; Goransson, H.; Leuchowius, K.J.; Stromberg, S.; Ponten, F.; Isaksson, A.; Rutteman, G.R.; Heldin, N.; Pejler, G.; Hellmen, E.

    2009-01-01

    Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas Journal Breast Cancer Research and Treatment Publisher Springer Netherlands ISSN 0167-6806 (Print) 1573-7217 (Online) Issue Volume 118, Number 2 / November, 2009 Category Preclinical Study DOI

  1. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    Science.gov (United States)

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  2. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  3. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  4. Comprehensive investigation of cytokine- and immune-related gene variants in HBV-associated hepatocellular carcinoma patients.

    Science.gov (United States)

    Yu, Fengxue; Zhang, Xiaolin; Tian, Suzhai; Geng, Lianxia; Xu, Weili; Ma, Ning; Wang, Mingbang; Jia, Yuan; Liu, Xuechen; Ma, Junji; Quan, Yuan; Zhang, Chaojun; Guo, Lina; An, Wenting; Liu, Dianwu

    2017-12-22

    Host genotype may be closely related to the different outcomes of Hepatitis B virus (HBV) infection. To identify the association of variants and HBV infection, we comprehensively investigated the cytokine- and immune-related gene mutations in patients with HBV associated hepatocellular carcinoma (HBV-HCC). Fifty-three HBV-HCC patients, 53 self-healing cases (SH) with HBV infection history and 53 healthy controls (HCs) were recruited, the whole exon region of 404 genes were sequenced at >900× depth. Comprehensive variants and gene levels were compared between HCC and HC, and HCC and SH. Thirty-nine variants (adjusted P HBV-HCC. Thirty-four variants were from eight human leukocyte antigen (HLA) genes that were previously reported to be associated with HBV-HCC. The novelties of our study are: five variants (rs579876, rs579877, rs368692979, NM_145007:c.*131_*130delTG, NM_139165:exon5:c.623-2->TT) from three genes ( REAT1E , NOD-like receptor (NLR) protein 11 ( NLRP11 ), hydroxy-carboxylic acid receptor 2 ( HCAR2 )) were found strongly associated with HBV-HCC. We found 39 different variants in 11 genes that were significantly related to HBV-HCC. Five of them were new findings. Our data implied that chronic hepatitis B patients who carry these variants are at a high risk of developing HCC. © 2017 The Author(s).

  5. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2016-06-01

    Full Text Available The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for

  6. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Science.gov (United States)

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  7. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution.

    Science.gov (United States)

    Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J

    2018-02-01

    WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    OpenAIRE

    Ghalandari; Hosseini-Esfahani; Mirmiran

    2015-01-01

    Context Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. E...

  9. Long-term consequences of chronic fluoxetine exposure on the expression of myelination-related genes in the rat hippocampus

    Science.gov (United States)

    Kroeze, Y; Peeters, D; Boulle, F; van den Hove, D L A; van Bokhoven, H; Zhou, H; Homberg, J R

    2015-01-01

    The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders. PMID:26393488

  10. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  11. Peripartal alterations of calcitonin gene-related peptide and minerals in dairy cows affected by milk fever.

    Science.gov (United States)

    Zebeli, Qendrim; Beitz, Donald C; Bradford, Barry J; Dunn, Suzanna M; Ametaj, Burim N

    2013-03-01

    Milk fever, a metabolic disease of dairy cattle, is associated with perturbations of calcium homeostasis, the pathogenesis of which is not yet completely understood. The aim of this study was to investigate plasma concentrations of calcitonin gene-related peptide and selected minerals and metabolites in periparturient cows with and without milk fever. Plasma concentrations of calcitonin gene-related peptide, as well as calcium, phosphate, magnesium, iron, glucose, lactate, and cortisol, were determined in multiple plasma samples from Jersey cows with and without spontaneous milk fever. Cows affected by milk fever (n = 5) had lower concentrations of calcitonin gene-related peptide (P = .038) and inorganic phosphate (P cows tended to have lower calcium concentrations (P = .071). Magnesium, iron, lactate, glucose, and cortisol concentrations were comparable between both groups of cows (P > .10). Around the day of calving, plasma concentrations of lactate, glucose, and cortisol increased and the concentration of iron decreased in all cows (P ≤ .01). Despite the limited number of cows evaluated, this report is the first to indicate lowered concentrations of calcitonin gene-related peptide as part of the metabolic changes during milk fever in cows. Further work with a larger cohort of animals is warranted to understand the precise role of calcitonin gene-related peptide and the potential associations with disturbances in plasma minerals typically observed during milk fever. © 2013 American Society for Veterinary Clinical Pathology.

  12. Identification of pathogenic genes and upstream regulators in age-related macular degeneration.

    Science.gov (United States)

    Zhao, Bin; Wang, Mengya; Xu, Jing; Li, Min; Yu, Yuhui

    2017-06-26

    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in older individuals. Our study aims to identify the key genes and upstream regulators in AMD. To screen pathogenic genes of AMD, an integrated analysis was performed by using the microarray datasets in AMD derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We constructed the AMD-specific transcriptional regulatory network to find the crucial transcriptional factors (TFs) which target the DEGs in AMD. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to verify the DEGs and TFs obtained by integrated analysis. From two GEO datasets obtained, we identified 1280 DEGs (730 up-regulated and 550 down-regulated genes) between AMD and normal control (NC). After KEGG analysis, steroid biosynthesis is a significantly enriched pathway for DEGs. The expression of 8 genes (TNC, GRP, TRAF6, ADAMTS5, GPX3, FAP, DHCR7 and FDFT1) was detected. Except for TNC and GPX3, the other 6 genes in qRT-PCR played the same pattern with that in our integrated analysis. The dysregulation of these eight genes may involve with the process of AMD. Two crucial transcription factors (c-rel and myogenin) were concluded to play a role in AMD. Especially, myogenin was associated with AMD by regulating TNC, GRP and FAP. Our finding can contribute to developing new potential biomarkers, revealing the underlying pathogenesis, and further raising new therapeutic targets for AMD.

  13. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    Science.gov (United States)

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment

  14. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.

    Science.gov (United States)

    Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P

    2016-09-01

    Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. © 2015 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  15. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes.

    Science.gov (United States)

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B; Zhang, Yaou

    2013-01-07

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3'-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.

  16. Study on relationship between apoptosis-related genes and radiosensitivity of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li Huixiang; Wang Yaohe; Shi Yonggang; Gao Dongling; Zhang Yunhan

    2000-01-01

    Objective: To observing the relationship between apoptosis-related genes bcl-2,c-myc, p53 and the radiosensitivity of esophageal squamous cell carcinoma. Methods: The expression levels of bcl-2, c-myc and p53 genes in 57 biopsy samples from patients of esophageal squamous cell carcinoma were detected with the LSAB immunohistochemistry method. All the patients were treated with radiotherapy. The radiotherapeutic effect in these patients was observed and the relation between gene expression and radiosensitivity was analyzed. Results: Compared with the bcl-2-negative group, the radiosensitivity of bcl-2-positive one was lower(P<0.01). The radiosensitivity of p53-positive group was slightly lower than that of the p53-negative one (P<0.05). The c-myc protein expression was not related to radiosensitivity. Conclusion: Detection and comprehensive analysis of bcl-2, c-myc and p53 protein expressions are useful in forecasting the radiotherapeutic effect on squamous cell carcinoma of esophagus

  17. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  18. The associations between immunity-related genes and breast cancer prognosis in Korean women.

    Directory of Open Access Journals (Sweden)

    Jaesung Choi

    Full Text Available We investigated the role of common genetic variation in immune-related genes on breast cancer disease-free survival (DFS in Korean women. 107 breast cancer patients of the Seoul Breast Cancer Study (SEBCS were selected for this study. A total of 2,432 tag single nucleotide polymorphisms (SNPs in 283 immune-related genes were genotyped with the GoldenGate Oligonucleotide pool assay (OPA. A multivariate Cox-proportional hazard model and polygenic risk score model were used to estimate the effects of SNPs on breast cancer prognosis. Harrell's C index was calculated to estimate the predictive accuracy of polygenic risk score model. Subsequently, an extended gene set enrichment analysis (GSEA-SNP was conducted to approximate the biological pathway. In addition, to confirm our results with current evidence, previous studies were systematically reviewed. Sixty-two SNPs were statistically significant at p-value less than 0.05. The most significant SNPs were rs1952438 in SOCS4 gene (hazard ratio (HR = 11.99, 95% CI = 3.62-39.72, P = 4.84E-05, rs2289278 in TSLP gene (HR = 4.25, 95% CI = 2.10-8.62, P = 5.99E-05 and rs2074724 in HGF gene (HR = 4.63, 95% CI = 2.18-9.87, P = 7.04E-05. In the polygenic risk score model, the HR of women in the 3rd tertile was 6.78 (95% CI = 1.48-31.06 compared to patients in the 1st tertile of polygenic risk score. Harrell's C index was 0.813 with total patients and 0.924 in 4-fold cross validation. In the pathway analysis, 18 pathways were significantly associated with breast cancer prognosis (P<0.1. The IL-6R, IL-8, IL-10RB, IL-12A, and IL-12B was associated with the prognosis of cancer in data of both our study and a previous study. Therefore, our results suggest that genetic polymorphisms in immune-related genes have relevance to breast cancer prognosis among Korean women.

  19. Gene expression markers of age-related inflammation in two human cohorts.

    Science.gov (United States)

    Pilling, Luke C; Joehanes, Roby; Melzer, David; Harries, Lorna W; Henley, William; Dupuis, Josée; Lin, Honghuang; Mitchell, Marcus; Hernandez, Dena; Ying, Sai-Xia; Lunetta, Kathryn L; Benjamin, Emelia J; Singleton, Andrew; Levy, Daniel; Munson, Peter; Murabito, Joanne M; Ferrucci, Luigi

    2015-10-01

    Chronically elevated circulating inflammatory markers are common in older persons but mechanisms are unclear. Many blood transcripts (>800 genes) are associated with interleukin-6 protein levels (IL6) independent of age. We aimed to identify gene transcripts statistically mediating, as drivers or responders, the increasing levels of IL6 protein in blood at older ages. Blood derived in-vivo RNA from the Framingham Heart Study (FHS, n=2422, ages 40-92 yrs) and InCHIANTI study (n=694, ages 30-104 yrs), with Affymetrix and Illumina expression arrays respectively (>17,000 genes tested), were tested for statistical mediation of the age-IL6 association using resampling techniques, adjusted for confounders and multiple testing. In FHS, IL6 expression was not associated with IL6 protein levels in blood. 102 genes (0.6% of 17,324 expressed) statistically mediated the age-IL6 association of which 25 replicated in InCHIANTI (including 5 of the 10 largest effect genes). The largest effect gene (SLC4A10, coding for NCBE, a sodium bicarbonate transporter) mediated 19% (adjusted CI 8.9 to 34.1%) and replicated by PCR in InCHIANTI (n=194, 35.6% mediated, p=0.01). Other replicated mediators included PRF1 (perforin, a cytolytic protein in cytotoxic T lymphocytes and NK cells) and IL1B (Interleukin 1 beta): few other cytokines were significant mediators. This transcriptome-wide study on human blood identified a small distinct set of genes that statistically mediate the age-IL6 association. Findings are robust across two cohorts and different expression technologies. Raised IL6 levels may not derive from circulating white cells in age related inflammation. Published by Elsevier Inc.

  20. Lipids, lipid genes, and incident age-related macular degeneration: the three continent age-related macular degeneration consortium

    NARCIS (Netherlands)

    Klein, Ronald; Myers, Chelsea E.; Buitendijk, Gabriëlle H. S.; Rochtchina, Elena; Gao, Xiaoyi; de Jong, Paulus T. V. M.; Sivakumaran, Theru A.; Burlutsky, George; McKean-Cowdin, Roberta; Hofman, Albert; Iyengar, Sudha K.; Lee, Kristine E.; Stricker, Bruno H.; Vingerling, Johannes R.; Mitchell, Paul; Klein, Barbara E. K.; Klaver, Caroline C. W.; Wang, Jie Jin

    2014-01-01

    To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD). Meta-analysis. setting: Three population-based cohorts. population: A total of 6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES),

  1. Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability

    NARCIS (Netherlands)

    M.R.F. Reijnders (Margot R.F.); Kousi, M. (M.); G.M. van Woerden (Geeske); M. Klein (Marieke); L.B.C. Bralten (Linda); G.M.S. Mancini (Grazia); T. van Essen (Ton); Proietti-Onori, M. (M.); E.E.J. Smeets (Eric E.J.); Van Gastel, M. (M.); Stegmann, A.P.A. (A. P.A.); Stevens, S.J.C. (S. J.C.); Lelieveld, S.H. (S. H.); C. Gilissen (Christian); R. Pfundt (Rolph); Tan, P.L. (P. L.); T. Kleefstra (Tjitske); B. Franke (Barbara); Y. Elgersma (Ype); N. Katsanis (Nicholas); H.G. Brunner

    2017-01-01

    textabstractDe novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and

  2. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals

    Directory of Open Access Journals (Sweden)

    Pia Løtvedt

    2017-12-01

    Full Text Available Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens.We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds. Keywords: Animal domestication, Stress response, HPA axis, Glucocorticoid receptor, Gene expression, Chicken

  3. Developmental and functional expression of miRNA-stability related genes in the nervous system.

    Science.gov (United States)

    de Sousa, Érica; Walter, Lais Takata; Higa, Guilherme Shigueto Vilar; Casado, Otávio Augusto Nocera; Kihara, Alexandre Hiroaki

    2013-01-01

    In the nervous system, control of gene expression by microRNAs (miRNAs) has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We first detected two genes in the retina that have been associated to miRNA stability, XRN2 and PAPD4. These genes are highly expressed during retinal development, however with distinct subcellular localization. We investigated whether these proteins are regulated during specific phases of the cell cycle. Combined analyses of nuclei position in neuroblastic layer and labeling using anti-cyclin D1 revealed that both proteins do not accumulate in S or M phases of the cell cycle, being poorly expressed in progenitor cells. Indeed, XRN2 and PAPD4 were observed mainly after neuronal differentiation, since low expression was also observed in astrocytes, endothelial and microglial cells. XRN2 and PAPD4 are expressed in a wide variety of neurons, including horizontal, amacrine and ganglion cells. To evaluate the functional role of both genes, we carried out experiments addressed to the retinal adaptation in response to different ambient light conditions. PAPD4 is upregulated after 3 and 24 hours of dark- adaptation, revealing that accumulation of this protein is governed by ambient light levels. Indeed, the fast and functional regulation of PAPD4 was not related to changes in gene expression, disclosing that control of protein levels occurs by post-transcriptional mechanisms. Furthermore, we were able to quantify changes in PAPD4 in specific amacrine cells after dark -adaptation, suggesting for circuitry-related roles in visual perception. In summary, in this study we first described the

  4. Developmental and functional expression of miRNA-stability related genes in the nervous system.

    Directory of Open Access Journals (Sweden)

    Érica de Sousa

    Full Text Available In the nervous system, control of gene expression by microRNAs (miRNAs has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We first detected two genes in the retina that have been associated to miRNA stability, XRN2 and PAPD4. These genes are highly expressed during retinal development, however with distinct subcellular localization. We investigated whether these proteins are regulated during specific phases of the cell cycle. Combined analyses of nuclei position in neuroblastic layer and labeling using anti-cyclin D1 revealed that both proteins do not accumulate in S or M phases of the cell cycle, being poorly expressed in progenitor cells. Indeed, XRN2 and PAPD4 were observed mainly after neuronal differentiation, since low expression was also observed in astrocytes, endothelial and microglial cells. XRN2 and PAPD4 are expressed in a wide variety of neurons, including horizontal, amacrine and ganglion cells. To evaluate the functional role of both genes, we carried out experiments addressed to the retinal adaptation in response to different ambient light conditions. PAPD4 is upregulated after 3 and 24 hours of dark- adaptation, revealing that accumulation of this protein is governed by ambient light levels. Indeed, the fast and functional regulation of PAPD4 was not related to changes in gene expression, disclosing that control of protein levels occurs by post-transcriptional mechanisms. Furthermore, we were able to quantify changes in PAPD4 in specific amacrine cells after dark -adaptation, suggesting for circuitry-related roles in visual perception. In summary, in this study we

  5. Differential Gene Expression in the Otic Capsule and the Middle Ear-An Annotation of Bone-Related Signaling Genes

    DEFF Research Database (Denmark)

    Nielsen, Michelle C.; Martin-Bertelsen, Tomas; Friis, Morten

    2015-01-01

    Hypothesis: A number of bone-related genes may be responsible for the unique suppression of perilabyrinthine bone remodeling. Background: Bone remodeling is highly inhibited around the inner ear space most likely because of osteoprotegerin (OPG), which is a well-known potent inhibitor of osteocla...

  6. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus.

    Directory of Open Access Journals (Sweden)

    Yuki Mitaka

    Full Text Available Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of

  7. Codon 201Gly Polymorphic Type of the DCC Gene is Related to Disseminated Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Xiao-Tang Kong

    2001-01-01

    Full Text Available The deleted in colorectal carcinoma (DCC gene is a potential tumor- suppressor gene on chromosome 18821.3. The relatively high frequency of loss of heterozygosity (LOH and loss of expression of this gene in neuroblastoma, especially in the advanced stages, imply the possibility of involvement of the DCC gene in progression of neuroblastoma. However, only few typical mutations have been identified in this gene, indicating that other possible mechanisms for the inactivation of this gene may exist. A polymorphic change (Arg to Gly at DCC codon 201 is related to advanced colorectal carcinoma and increases in the tumors with absent DCC protein expression. In order to understand whether this change is associated with the development or progression of neuroblastoma, we investigated codon 201 polymorphism of the DCC gene in 102 primary neuroblastomas by polymerase chain reaction single-strand conformation polymorphism. We found no missense or nonsense mutations, but a polymorphic change from CGA (Arg to GGA (Gly at codon 201 resulting in three types of polymorphism: codon 201Gly type, codon 201Arg/Gly type, and codon 201Arg type. The codon 201Gly type occurred more frequently in disseminated (stages IV and IVs neuroblastomas (72% than in localized (stages I, II, and III tumors (48% (P=.035, and normal controls (38% (P=.024. In addition, the codon 201Gly type was significantly more common in tumors found clinically (65% than in those found by mass screening (35% (P=.002. The results suggested that the codon 201Gly type of the DCC gene might be associated with a higher risk of disseminating neuroblastoma.

  8. Genetic variants in hormone-related genes and risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Tess Clendenen

    Full Text Available Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk.

  9. Calcitonin gene-related peptide and calcitonin in man

    International Nuclear Information System (INIS)

    Fischer, J.A.; Henke, H.; Petermann, J.B.; Tschopp, F.A.

    1985-01-01

    Calcitonin gene-related peptide has been identified in the human brain, spinal cord, pituitary and thyroid glands as assessed by RIA and RRA. An immunoreactive and receptoractive peak coeluting with synthetic hCGRP on gel permeation chromatography and HPLC has been recognized. The levels measured by RRA are generally higher than those by RIA. Different characteristics of hCGRP and sCT binding sites and the distinct regional distribution evaluated with membranes and receptor autoradiography indicate separate receptors of the two peptides. Our results suggest different physiological roles of CGRP and CT in the central nervous system which remain to be discovered. (Auth.)

  10. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-01-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  11. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-12-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  12. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review.

    Science.gov (United States)

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-07-01

    Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association.

  13. Transport of Magnesium by a Bacterial Nramp-Related Gene

    Science.gov (United States)

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  14. Associations between Single-Nucleotide Polymorphisms in Corticotropin-Releasing Hormone-Related Genes and Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Ayaka Sasaki

    Full Text Available Irritable bowel syndrome (IBS is a common functional disorder with distinct features of stress-related pathophysiology. A key mediator of the stress response is corticotropin-releasing hormone (CRH. Although some candidate genes have been identified in stress-related disorders, few studies have examined CRH-related gene polymorphisms. Therefore, we tested our hypothesis that single-nucleotide polymorphisms (SNPs in CRH-related genes influence the features of IBS.In total, 253 individuals (123 men and 130 women participated in this study. They comprised 111 IBS individuals and 142 healthy controls. The SNP genotypes in CRH (rs28364015 and rs6472258 and CRH-binding protein (CRH-BP (rs10474485 were determined by direct sequencing and real-time polymerase chain reaction. The emotional states of the subjects were evaluated using the State-Trait Anxiety Inventory, Perceived Stress Scale, and the Self-rating Depression Scale.Direct sequencing of the rs28364015 SNP of CRH revealed no genetic variation among the study subjects. There was no difference in the genotype distributions and allele frequencies of rs6472258 and rs10474485 between IBS individuals and controls. However, IBS subjects with diarrhea symptoms without the rs10474485 A allele showed a significantly higher emotional state score than carriers.These results suggest that the CRH and CRH-BP genes have no direct effect on IBS status. However, the CRH-BP SNP rs10474485 has some effect on IBS-related emotional abnormalities and resistance to psychosocial stress.

  15. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  16. Brain region-specific altered expression and association of mitochondria-related genes in autism.

    Science.gov (United States)

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Matsuzaki, Hideo; Miyachi, Taishi; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Matsumoto, Kaori; Iwata, Yasuhide; Suzuki, Katsuaki; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2012-11-01

    Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC

  17. Brain region-specific altered expression and association of mitochondria-related genes in autism

    Directory of Open Access Journals (Sweden)

    Anitha Ayyappan

    2012-11-01

    Full Text Available Abstract Background Mitochondrial dysfunction (MtD has been observed in approximately five percent of children with autism spectrum disorders (ASD. MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA. Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG, motor cortex (MC and thalamus (THL from autism patients (n=8 and controls (n=10 were obtained from the Autism Tissue Program (Princeton, NJ, USA. Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2, neurofilament, light polypeptide (NEFL and solute carrier family 25, member 27 (SLC25A27 showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066 and SLC25A27 (P = 0.046; Z-score 1.990 showed genetic association with autism in Caucasian and Japanese samples, respectively. The

  18. Common genetic variation in six lipid-related and statin-related genes, statin use and risk of incident nonfatal myocardial infarction and stroke.

    Science.gov (United States)

    Hindorff, Lucia A; Lemaitre, Rozenn N; Smith, Nicholas L; Bis, Joshua C; Marciante, Kristin D; Rice, Kenneth M; Lumley, Thomas; Enquobahrie, Daniel A; Li, Guo; Heckbert, Susan R; Psaty, Bruce M

    2008-08-01

    Genetic polymorphisms are associated with lipid-lowering response to statins, but generalizeability to disease endpoints is unclear. The association between 82 common single nucleotide polymorphisms (SNPs) in six lipid-related or statin-related genes (ABCB1, CETP, HMGCR, LDLR, LIPC, NOS3) and incident nonfatal myocardial infarction (MI) and ischemic stroke was analyzed according to current statin use and overall in a population-based case-control study (856 MI, 368 stroke, 2686 controls). Common SNPs were chosen from resequencing data using pairwise linkage disequilibrium. Gene-level analyses (testing global association within a gene) and SNP-level analyses (comparing the number of observed vs. expected associations across all genes) were performed using logistic regression, setting nominal statistical significance at P value of less than 0.05. No gene-level interactions with statin use on MI or stroke were identified. Across all genes, two SNP-statin interactions on MI were observed (one ABCB1, one LIPC) and five interactions on stroke (one CETP, four LIPC). The strongest SNP-statin interaction was for synonymous CETP SNP rs5883 on stroke (P=0.008). Gene-level associations were present for LIPC and MI (P=0.026), but not other genes or outcomes. SNP-level associations included three SNPs with MI (one LDLR, two LIPC) and two SNPs with stroke (one CETP, one LDLR). The number of observed SNP associations was no greater than expected by chance. Several potential novel associations or interactions of SNPs in ABCB1, CETP, LDLR, and LIPC with MI and stroke were identified; however, our results should be regarded as hypothesis generating until corroborated by other studies.

  19. Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    International Nuclear Information System (INIS)

    Fu, Li-Yun; Jia, Hu-Liang; Dong, Qiong-Zhu; Wu, Jin-Cai; Zhao, Yue; Zhou, Hai-Jun; Ren, Ning; Ye, Qin-Hai; Qin, Lun-Xiu

    2009-01-01

    Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes. We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test. With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes. TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis

  20. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  1. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  2. Extracting microRNA-gene relations from biomedical literature using distant supervision.

    Directory of Open Access Journals (Sweden)

    Andre Lamurias

    Full Text Available Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text. MicroRNA regulation is an important biological process due to its close association with human diseases. The proposed method, IBRel, is based on distantly supervised multi-instance learning. We evaluated IBRel on three datasets, and the results were compared with a co-occurrence approach as well as a supervised machine learning algorithm. While supervised learning outperformed on two of those datasets, IBRel obtained an F-score 28.3 percentage points higher on the dataset for which there was no training set developed specifically. To demonstrate the applicability of IBRel, we used it to extract 27 miRNA-gene relations from recently published papers about cystic fibrosis. Our results demonstrate that our method can be successfully used to extract relations from literature about a biological process without an annotated corpus. The source code and data used in this study are available at https://github.com/AndreLamurias/IBRel.

  3. Identification, Characterization and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L. Moench, a Food, Fodder and Biofuel Crop

    Directory of Open Access Journals (Sweden)

    KRISHAN MOHAN RAI

    2016-08-01

    Full Text Available Biomass based alternative fuels offer a solution to the world’s ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification. It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4. Further, 53 tandem duplication events involving 146 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publicly available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  4. Apoptosis related genes expressed in cultured Fallopian tube epithelial cells infected in vitro with Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    PAZ A REYES

    2007-01-01

    Full Text Available Background: Infection of the Fallopian tubes (FT by Neisseria gonorrhoeae (Ngo can lead to acute salpingitis, an inflammatory condition resulting in damage primarily to the ciliated cells, with loss of ciliary activity and sloughing of the cells from the epithelium. Recently, we have shown that Ngo infection induced apoptosis in FT epithelium cells by a TNF-alpha dependent mechanism that could contribute to the cell and tissue damage observed in gonococcal salpingitis. Aim: To investigate the apoptosis-related genes expressed during apoptosis induction in cultured FT epithelial cells infected in vitro by Ngo. Materials and Methods: In the current study, we used cDNA macroarrays and real time PCR to identify and determine the expression levels of apoptosis related genes during the in vitro gonococci infection of FT epithelial cells. Results: Significant apoptosis was induced following infection with Ngo. Macroarray analysis identified the expression of multiple genes of the TNF receptor family (TNFRSF1B, -4, -6, -10A, -10B and -10D and the Bcl-2 family (BAK1, BAX, BLK, HRK and MCL-1 without differences between controls and infected cells. This lack of difference was confirmed by RT-PCR of BAX, Bcl-2, TNFRS1A (TNFR-I and TNFRSF1B (TNFR-II. Conclusion: Several genes related to apoptosis are expressed in primary cultures of epithelial cells of the human Fallopian tube. Infection with Ngo induces apoptosis without changes in the pattern of gene expression of several apoptosis-related genes. Results strongly suggest that Ngo regulates apoptosis in the FT by post-transcriptional mechanisms that need to be further addressed

  5. RESISTANCE-RELATED GENE TRANSCRIPTION AND ...

    African Journals Online (AJOL)

    jdx

    2014-02-05

    Feb 5, 2014 ... By 72 hpi, the pathogen switched to necrotrophic growth to avoid contact with the increasing ... A better understanding of the gene network underlying ... 5.0 software under default parameters and were custom-ordered.

  6. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time in an interspecific population of Gossypium hirsutum × G. darwinii. Shuwen Zhang, Qianqian Lan, Xiang Gao, Biao Yang, Caiping Cai, Tianzhen Zhang and Baoliang Zhou. J. Genet. 95, 197–201. Table 1. Loci composition and recombination distances of ...

  7. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  8. Potassium

    Science.gov (United States)

    ... confusion listlessness tingling, prickling, burning, tight, or pulling sensation of arms, hands, legs, or feet heaviness or weakness of legs cold, pale, gray skin stomach pain unusual stomach bulging ...

  9. Related structures of neutral capsular polysaccharides of Acinetobacter baumannii isolates that carry related capsule gene clusters KL43, KL47, and KL88.

    Science.gov (United States)

    Shashkov, Alexander S; Kenyon, Johanna J; Arbatsky, Nikolay P; Shneider, Mikhail M; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2016-11-29

    Capsular polysaccharides were recovered from four Acinetobacter baumannii isolates, and the following related structures of oligosaccharide repeating units were established by sugar analyses along with 1D and 2D 1 H and 13 C NMR spectroscopy: NIPH 60 and LUH5544 (K43) NIPH 601 (K47) The K locus for capsule biosynthesis in the genome sequences available for NIPH 60 and LUH5544, designated KL43, was found to be related to gene clusters KL47 in NIPH 601 and KL88 in LUH5548. The three clusters share most gene content differing in only a small portion that includes an additional glycosyltransferase genes in KL47 and KL88, as well as genes encoding distinct Wzy polymerases that were found to form the same α-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc linkage in K43 and K47. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin; Wong, Yue Him; Tsang, Ling Ming; Chu, Ka Hou; Qian, Pei Yuan; Chan, Benny K K

    2013-01-01

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  11. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  12. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    Science.gov (United States)

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Single nucleotide polymorphisms (SNPs in coding regions of canine dopamine- and serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Lingaas Frode

    2008-01-01

    Full Text Available Abstract Background Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour. Results Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732. A total of 11 non-synonymous SNPs (nsSNPs, which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters. Conclusion We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.

  14. Plasticity-related genes in brain development and amygdala-dependent learning.

    Science.gov (United States)

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  16. Contribution of WUSCHEL-related homeobox (WOX genes to identify the phylogenetic relationships among Petunia species

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Anversa Segatto

    Full Text Available Abstract Developmental genes are believed to contribute to major changes during plant evolution, from infrageneric to higher levels. Due to their putative high sequence conservation, developmental genes are rarely used as molecular markers, and few studies including these sequences at low taxonomic levels exist. WUSCHEL-related homeobox genes (WOX are transcription factors exclusively present in plants and are involved in developmental processes. In this study, we characterized the infrageneric genetic variation of Petunia WOX genes. We obtained phylogenetic relationships consistent with other phylogenies based on nuclear markers, but with higher statistical support, resolution in terminals, and compatibility with flower morphological changes.

  17. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae.

    Directory of Open Access Journals (Sweden)

    Dylan P G Short

    Full Text Available Verticillium dahliae is a cosmopolitan, soilborne fungus that causes a significant wilt disease on a wide variety of plant hosts including economically important crops, ornamentals, and timber species. Clonal expansion through asexual reproduction plays a vital role in recurring plant epidemics caused by this pathogen. The recent discovery of recombination between clonal lineages and preliminary investigations of the meiotic gene inventory of V. dahliae suggest that cryptic sex appears to be rare in this species. Here we expanded on previous findings on the sexual nature of V. dahliae. Only 1% of isolates in a global collection of 1120 phytopathogenic V. dahliae isolates contained the MAT1-1 idiomorph, whereas 99% contained MAT1-2. Nine unique multilocus microsatellite types comprised isolates of both mating types, eight of which were collected from the same substrate at the same time. Orthologs of 88 previously characterized sex-related genes from fungal model systems in the Ascoymycota were identified in the genome of V. dahliae, out of 93 genes investigated. Results of RT-PCR experiments using both mating types revealed that 10 arbitrarily chosen sex-related genes, including MAT1-1-1 and MAT1-2-1, were constitutively expressed in V. dahliae cultures grown under laboratory conditions. Ratios of non-synonymous (amino-acid altering to synonymous (silent substitutions in V. dahliae MAT1-1-1 and MAT1-2-1 sequences were indistinguishable from the ratios observed in the MAT genes of sexual fungi in the Pezizomycotina. Patterns consistent with strong purifying selection were also observed in 18 other arbitrarily chosen V. dahliae sex-related genes, relative to the patterns in orthologs from fungi with known sexual stages. This study builds upon recent findings from other laboratories and mounts further evidence for an ancestral or cryptic sexual stage in V. dahliae.

  18. Copy number variation in VEGF gene as a biomarker of susceptibility to age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Norshakimah Md Bakri

    2018-07-01

    Full Text Available Background: Several studies in various populations have been conducted to determine candidate genes that could contribute to age-related macular degeneration (AMD pathogenesis. Objective: The present study was undertaken to determine the association of high temperature requirement A-1 (HTRA1, vascular endothelial growth factor (VEGF and very-low-density receptor (VLDR genes with wet AMD subjects in Malaysia. Methods: A total of 125 subjects with wet AMD and 120 subjects without AMD from the Malaysian population were selected for this study. Genomic DNA was extracted and copy number variations (CNVs were determined using quantitative real-time Polymerase Chain Reaction (qPCR and comparison between the two groups was done. The demographic characteristics were also recorded. Statistical analysis was carried out using software where a level of P  0.05. Conclusion: Observations of an association between CNVs of VEGF gene and wet AMD have revealed that the CNVs of VEGF gene appears to be a possible contributor to wet AMD subjects in Malaysia. Keywords: Age-related macular degeneration, Copy number variations, VEGF, HTRA1, VLDR genes and Malaysia

  19. The Genetic Variation of Bali Cattle (Bos javanicus Based on Sex Related Y Chromosome Gene

    Directory of Open Access Journals (Sweden)

    A Winaya

    2011-09-01

    Full Text Available Bali cattle is very popular Indonesian local beef related to their status in community living process of farmers in Indonesia, especially as providers of meat and exotic animal. Bali cattle were able to adapt the limited environment and becoming local livestock that existed until recently.  In our early study by microsatellites showed that Bali cattle have specific allele. In this study we analyzed the variance of partly sex related Y (SRY gene sequence in Bali cattle bull as a source of cement for Artificial Insemination (AI.  Blood from 17 two location of AI center, Singosari, Malang and Baturiti, Bali was collected and then extracted to get the DNA genome.  PCR reaction was done to amplify partially of SRY gene segment and followed by sequencing PCR products to get the DNA sequence of SRY gene. The SRY gene sequence was used to determine the genetic variation and phylogenetic relationship.  We found that Bali cattle bull from Singosari has relatively closed genetic relationship with Baturiti. It is also supported that in early data some Bali bulls of Singosari were came from Baturiti. It has been known that Baturiti is the one source of Bali cattle bull with promising genetic potential. While, in general that Bali bull where came from two areas were not different on reproductive performances. It is important to understand about the genetic variation of Bali cattle in molecular level related to conservation effort and maintaining the genetic characters of the local cattle. So, it will not become extinct or even decreased the genetic quality of Indonesian indigenous cattle.   Key Words : Bali cattle, SRY gene, artificial insemination, phylogenetic, allele   Animal Production 13(3:150-155 (2011

  20. Influence of Dopamine-Related Genes on Neurobehavioral Recovery after Traumatic Brain Injury during Early Childhood.

    Science.gov (United States)

    Treble-Barna, Amery; Wade, Shari L; Martin, Lisa J; Pilipenko, Valentina; Yeates, Keith Owen; Taylor, H Gerry; Kurowski, Brad G

    2017-06-01

    The present study examined the association of dopamine-related genes with short- and long-term neurobehavioral recovery, as well as neurobehavioral recovery trajectories over time, in children who had sustained early childhood traumatic brain injuries (TBI) relative to children who had sustained orthopedic injuries (OI). Participants were recruited from a prospective, longitudinal study evaluating outcomes of children who sustained a TBI (n = 68) or OI (n = 72) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at the immediate post-acute period (0-3 months after injury); 6, 12, and 18 months after injury; and an average of 3.5 and 7 years after injury. Thirty-two single nucleotide polymorphisms (SNPs) in dopamine-related genes (dopamine receptor D2 [DRD2], solute carrier family 6 member 3 [SLC6A3], solute carrier family 18 member A2 [SLC18A2], catechol-o-methyltransferase [COMT], and ankyrin repeat and kinase domain containing 1 [ANKK1]) were examined in association with short- and long-term executive function and behavioral adjustment, as well as their trajectories over time. After controlling for premorbid child functioning, genetic variation within the SLC6A3 (rs464049 and rs460000) gene was differentially associated with neurobehavioral recovery trajectories over time following TBI relative to OI, with rs464049 surviving multiple testing corrections. In addition, genetic variation within the ANKK1 (rs1800497 and rs2734849) and SLC6A3 (rs464049, rs460000, and rs1042098) genes was differentially associated with short- and long-term neurobehavioral recovery following TBI, with rs460000 and rs464049 surviving multiple testing corrections. The findings provide preliminary evidence that genetic variation in genes involved in DRD2 expression and density (ANKK1) and dopamine transport (SLC6A3) plays a role in neurobehavioral recovery following pediatric TBI.

  1. Copepod swimming behavior, respiration, and expression of stress-related genes in response to high stocking densities

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jakobsen, Hans H.; Stief, Peter

    2017-01-01

    ,000 ind. L−1. Three biological/physiological end-points were studied: swimming behavior, respiration rate and expression level of stress-related genes. None of the elevated densities caused any significant change in swimming behavior, respiration rate or gene expression level. This study suggests...

  2. Possible Links among Mirror Neurons and Genes Related to Autism

    OpenAIRE

    MOCHIZUKI, Mai; 望月,麻衣

    2016-01-01

    Autism includes many neurodevelopmental disorders and defi cits in communication. Althoughresearchers have considered various origins, the onset mechanism is still not clear. The aim ofthis article is to provide some clues for interaction of autism with mirror neuronal and geneticfactors. First, the impact of neural brain cells considered to infl uence autism will be discussedwith reference to mirror neurons. Then, the discussion will move to genes related to autism.Consequently, it is argued...

  3. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  4. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.

    Science.gov (United States)

    Zegaoui, Zahia; Planchais, Séverine; Cabassa, Cécile; Djebbar, Reda; Abrous Belbachir, Ouzna; Carol, Pierre

    2017-11-01

    Many landraces of cowpea [Vigna unguiculata (L.) Walp.] are adapted to particular geographical and climatic conditions. Here we describe two landraces grown respectively in arid and temperate areas of Algeria and assess their physiological and molecular responses to drought stress. As expected, when deprived of water cowpea plants lose water over time with a gradual reduction in transpiration rate. The landraces differed in their relative water content (RWC) and whole plant transpiration rate. The landrace from Menia, an arid area, retained more water in adult leaves. Both landraces responded to drought stress at the molecular level by increasing expression of stress-related genes in aerial parts, including proline metabolism genes. Expression of gene(s) encoding proline synthesis enzyme P5CS was up regulated and gene expression of ProDH, a proline catabolism enzyme, was down regulated. Relatively low amounts of proline accumulated in adult leaves with slight differences between the two landraces. During drought stress the most apical part of plants stayed relatively turgid with a high RWC compared to distal parts that wilted. Expression of key stress genes was higher and more proline accumulated at the apex than in distal leaves indicating that cowpea has a non-uniform stress response at the whole plant level. Our study reveals a developmental control of water stress through preferential proline accumulation in the upper tier of the cowpea plant. We also conclude that cowpea landraces display physiological adaptations to water stress suited to the arid and temperate climates in which they are cultivated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2.

    Science.gov (United States)

    Dong, Lanlan; Zhou, Simin; He, Yuan; Jia, Yan; Bai, Qunhua; Deng, Peng; Gao, Jieying; Li, Yingli; Xiao, Hong

    2018-05-01

    This study is to investigate the genome sequence of Serratia sp. S2. The genomic DNA of Serratia sp. S2 was extracted and the sequencing library was constructed. The sequencing was carried out by Illumina 2000 and complete genomic sequences were obtained. Gene function annotation and bioinformatics analysis were performed by comparing with the known databases. The genome size of Serratia sp. S2 was 5,604,115 bp and the G+C content was 57.61%. There were 5373 protein coding genes, and 3732, 3614, and 3942 genes were respectively annotated into the GO, KEGG, and COG databases. There were 12 genes related to chromium metabolism in the Serratia sp. S2 genome. The whole genome sequence of Serratia sp. S2 is submitted to the GenBank database with gene accession number of LNRP00000000. Our findings may provide theoretical basis for the subsequent development of new biotechnology to repair environmental chromium pollution.

  6. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    Science.gov (United States)

    Lissner, Michelle M; Thomas, Brandon J; Wee, Kathleen; Tong, Ann-Jay; Kollmann, Tobias R; Smale, Stephen T

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development.

  7. Overexpression of blueberry FLOWERING LOCUS T is associated with changes in the expression of phytohormone-related genes in blueberry plants.

    Science.gov (United States)

    Gao, Xuan; Walworth, Aaron E; Mackie, Charity; Song, Guo-Qing

    2016-01-01

    Flowering locus T ( FT ) is a primary integrator in the regulation of plant flowering. Overexpressing a blueberry ( Vaccinium corymbosum L.) FT gene ( VcFT ) (herein VcFT -OX) resulted in early flowering and dwarfing in 'Aurora' plants (herein 'VcFT-Aurora'). In this study, we found that VcFT -OX reduced shoot regeneration from leaf explants. To investigate the potential roles of the phytohormone pathway genes associated with VcFT -OX, differentially expressed ( DE ) genes in leaf tissues of 'VcFT-Aurora' plants were annotated and analyzed using non-transgenic 'Aurora' plants as a control. Three DE floral genes, including the blueberry SUPPRESSOR of Overexpression of constans 1 ( VcSOC1 ) (gibberellin related), Abscisic acid responsive elements-binding factor 2 ( VcABF2 ) and protein related to ABI3/VP1 ( VcABI3/VP1 ) (ethylene-related), are present under both the phytohormone-responsive and the dwarfing-related Gene Ontology terms. The gene networks of the DE genes overall showed the molecular basis of the multifunctional aspects of VcFT overexpression beyond flowering promotion and suggested that phytohormone changes could be signaling molecules with important roles in the phenotypic changes driven by VcFT -OX.

  8. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  9. Identifying Tmem59 related gene regulatory network of mouse neural stem cell from a compendium of expression profiles

    Directory of Open Access Journals (Sweden)

    Guo Xiuyun

    2011-09-01

    Full Text Available Abstract Background Neural stem cells offer potential treatment for neurodegenerative disorders, such like Alzheimer's disease (AD. While much progress has been made in understanding neural stem cell function, a precise description of the molecular mechanisms regulating neural stem cells is not yet established. This lack of knowledge is a major barrier holding back the discovery of therapeutic uses of neural stem cells. In this paper, the regulatory mechanism of mouse neural stem cell (NSC differentiation by tmem59 is explored on the genome-level. Results We identified regulators of tmem59 during the differentiation of mouse NSCs from a compendium of expression profiles. Based on the microarray experiment, we developed the parallelized SWNI algorithm to reconstruct gene regulatory networks of mouse neural stem cells. From the inferred tmem59 related gene network including 36 genes, pou6f1 was identified to regulate tmem59 significantly and might play an important role in the differentiation of NSCs in mouse brain. There are four pathways shown in the gene network, indicating that tmem59 locates in the downstream of the signalling pathway. The real-time RT-PCR results shown that the over-expression of pou6f1 could significantly up-regulate tmem59 expression in C17.2 NSC line. 16 out of 36 predicted genes in our constructed network have been reported to be AD-related, including Ace, aqp1, arrdc3, cd14, cd59a, cds1, cldn1, cox8b, defb11, folr1, gdi2, mmp3, mgp, myrip, Ripk4, rnd3, and sncg. The localization of tmem59 related genes and functional-related gene groups based on the Gene Ontology (GO annotation was also identified. Conclusions Our findings suggest that the expression of tmem59 is an important factor contributing to AD. The parallelized SWNI algorithm increased the efficiency of network reconstruction significantly. This study enables us to highlight novel genes that may be involved in NSC differentiation and provides a shortcut to

  10. DIA1R is an X-linked gene related to Deleted In Autism-1.

    Directory of Open Access Journals (Sweden)

    Azhari Aziz

    Full Text Available BACKGROUND: Autism spectrum disorders (ASDS are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1 gene. METHODOLOGY/PRINCIPAL FINDINGS: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related. While DIA1 is autosomal (chromosome 3, position 3q24, DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical, and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. CONCLUSIONS/SIGNIFICANCE: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.

  11. Age-related Resistance and the Defense Signaling Pathway of Ph-3 Gene Against Phytophthora infestans in Tomatoes

    Directory of Open Access Journals (Sweden)

    Sayed Rashad Ali Shah

    2015-09-01

    Full Text Available Resistance (R genes against plant pathogens often have age-related resistance (ARR effects. However, the mechanism involved in this phenomenon remains unknown. In this paper, Solanum lycopersicum ‘CLN2037B’ and S. pimpinellifolium ‘L3708’ harboring the Ph-3 gene, as well as S. habrochaites ‘LA2099’, ‘LA1777’ and ‘LA1033’ harboring quantitative trait loci (QTLs, were tested to investigate age-related resistance against late blight (LB; caused by Phytophthora infestans in the three-leaf stage of the plants. The results demonstrated that the QTL-related LB resistance showed the same age-related resistance as the Ph-3-mediated resistance at the six- and nine-leaf stages compared with the three-leaf stage. This indicated that there is a common defense mechanism in tomatoes against P. infestans via ARR. In addition, we combined ethylene (ET, salicylic acid (SA and jasmonic acid (JA mutants with virus-induced gene silencing (VIGS to study the Ph-3-dependent resistance signaling pathway. The results showed that ethylene and salicylic acid, but not jasmonic acid, are involved in the LB resistance mediated by the Ph-3 gene.

  12. A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes.

    Directory of Open Access Journals (Sweden)

    Fu-Hui Xiao

    Full Text Available It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remains rather stable after including methylomes of two white individuals. Further analyses suggest that the observed DMRs likely have functional roles in regulating disease-associated gene expressions, with some genes [e.g. caspase 3 (CASP3] being down-regulated whereas the others [i.e. interleukin 1 receptor, type 2 (IL1R2] up-regulated. Therefore, our study suggests that suppressing the disease-related genes via epigenetic modification is an important contributor to human longevity.

  13. Radioresistance related genes screened by protein-protein interaction network analysis in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zhu Xiaodong; Guo Ya; Qu Song; Li Ling; Huang Shiting; Li Danrong; Zhang Wei

    2012-01-01

    Objective: To discover radioresistance associated molecular biomarkers and its mechanism in nasopharyngeal carcinoma by protein-protein interaction network analysis. Methods: Whole genome expression microarray was applied to screen out differentially expressed genes in two cell lines CNE-2R and CNE-2 with different radiosensitivity. Four differentially expressed genes were randomly selected for further verification by the semi-quantitative RT-PCR analysis with self-designed primers. The common differentially expressed genes from two experiments were analyzed with the SNOW online database in order to find out the central node related to the biomarkers of nasopharyngeal carcinoma radioresistance. The expression of STAT1 in CNE-2R and CNE-2 cells was measured by Western blot. Results: Compared with CNE-2 cells, 374 genes in CNE-2R cells were differentially expressed while 197 genes showed significant differences. Four randomly selected differentially expressed genes were verified by RT-PCR and had same change trend in consistent with the results of chip assay. Analysis with the SNOW database demonstrated that those 197 genes could form a complicated interaction network where STAT1 and JUN might be two key nodes. Indeed, the STAT1-α expression in CNE-2R was higher than that in CNE-2 (t=4.96, P<0.05). Conclusions: The key nodes of STAT1 and JUN may be the molecular biomarkers leading to radioresistance in nasopharyngeal carcinoma, and STAT1-α might have close relationship with radioresistance. (authors)

  14. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    Science.gov (United States)

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  15. Genome-wide gene expression array identifies novel genes related to disease severity and excessive daytime sleepiness in patients with obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Yung-Che Chen

    Full Text Available We aimed to identify novel molecular associations between chronic intermittent hypoxia with re-oxygenation and adverse consequences in obstructive sleep apnea (OSA. We analyzed gene expression profiles of peripheral blood mononuclear cells from 48 patients with sleep-disordered breathing stratified into four groups: primary snoring (PS, moderate to severe OSA (MSO, very severe OSA (VSO, and very severe OSA patients on long-term continuous positive airway pressure treatment (VSOC. Comparisons of the microarray gene expression data identified eight genes up-regulated with OSA and down-regulated with CPAP treatment, and five genes down-regulated with OSA and up-regulated with CPAP treatment. Protein expression levels of two genes related to endothelial tight junction (AMOT P130, and PLEKHH3, and three genes related to anti-or pro-apoptosis (BIRC3, ADAR1 P150, and LGALS3 were all increased in the VSO group, while AMOT P130 was further increased, and PLEKHH3, BIRC3, and ADAR1 P150 were all decreased in the VSOC group. Subgroup analyses revealed that AMOT P130 protein expression was increased in OSA patients with excessive daytime sleepiness, BIRC3 protein expression was decreased in OSA patients with hypertension, and LGALS3 protein expression was increased in OSA patients with chronic kidney disease. In vitro short-term intermittent hypoxia with re-oxygenation experiment showed immediate over-expression of ADAR1 P150. In conclusion, we identified a novel association between AMOT/PLEKHH3/BIRC3/ADAR1/LGALS3 over-expressions and high severity index in OSA patients. AMOT and GALIG may constitute an important determinant for the development of hypersomnia and kidney injury, respectively, while BIRC3 may play a protective role in the development of hypertension.

  16. Integrative Analysis of DCE-MRI and Gene Expression Profiles in Construction of a Gene Classifier for Assessment of Hypoxia-Related Risk of Chemoradiotherapy Failure in Cervical Cancer

    DEFF Research Database (Denmark)

    Fjeldbo, Christina S; Julin, Cathinka H; Lando, Malin

    2016-01-01

    platforms. The prognostic value was independent of existing clinical markers, regardless of clinical endpoints. CONCLUSIONS: A robust DCE-MRI-associated gene classifier has been constructed that may be used to achieve an early indication of patients' risk of hypoxia-related chemoradiotherapy failure.......PURPOSE: A 31-gene expression signature reflected in dynamic contrast enhanced (DCE)-MR images and correlated with hypoxia-related aggressiveness in cervical cancer was identified in previous work. We here aimed to construct a dichotomous classifier with key signature genes and a predefined...... as an indicator of hypoxia. RESULTS: Classifier candidates were constructed by integrative analysis of ABrix and gene expression profiles in the training cohort and evaluated by a leave-one-out cross-validation approach. On the basis of their ability to separate patients correctly according to hypoxia status, a 6...

  17. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  18. Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by Helicobacter pylori.

    Science.gov (United States)

    Cairns, Michael T; Gupta, Ananya; Naughton, Julie A; Kane, Marian; Clyne, Marguerite; Joshi, Lokesh

    2017-10-07

    To identify glycosylation-related genes in the HT29 derivative cell line, HT29-MTX-E12, showing differential expression on infection with Helicobacter pylori ( H. pylori ). Polarised HT29-MTX-E12 cells were infected for 24 h with H. pylori strain 26695. After infection RNA was isolated from both infected and non-infected host cells. Sufficient infections were carried out to provide triplicate samples for microarray analysis and for qRT-PCR analysis. RNA was isolated and hybridised to Affymetrix arrays. Analysis of microarray data identified genes significantly differentially expressed upon infection. Genes were grouped into gene ontology functional categories. Selected genes associated with host glycan structure (glycosyltransferases, hydrolases, lectins, mucins) were validated by real-time qRT-PCR analysis. Infection of host cells was confirmed by the isolation of live bacteria after 24 h incubation and by PCR amplification of bacteria-specific genes from the host cell RNA. H. pylori do not survive incubation under the adopted culture conditions unless they associate with the adherent mucus layer of the host cell. Microarray analysis identified a total of 276 genes that were significantly differentially expressed ( P < 0.05) upon H. pylori infection and where the fold change in expression was greater than 2. Six of these genes are involved in glycosylation-related processes. Real-time qRT-PCR demonstrated significant downregulation (1.8-fold, P < 0.05) of the mucin MUC20. REG4 was heavily expressed and significantly downregulated (3.1-fold, P < 0.05) upon infection. Gene ontology analysis was consistent with previous studies on H. pylori infection. Gene expression data suggest that infection with H. pylori causes a decrease in glycan synthesis, resulting in shorter and simpler glycan structures.

  19. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers.

    Science.gov (United States)

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), "best close match" (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our

  20. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus in China with multiple gene markers.

    Directory of Open Access Journals (Sweden)

    Qing-Yan Dai

    Full Text Available Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI gene and two alternative internal transcribed spacer (ITS genes (ITS1 and ITS2. Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML/Neighbor-joining (NJ, "best close match" (BCM, Minimum distance (MD, and BP-based method (BP, representing commonly used methodology (tree-based and non-tree based in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In

  1. The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes

    Science.gov (United States)

    Freiman, Zohar E.; Rosianskey, Yogev; Dasmohapatra, Rajeswari; Kamara, Itzhak; Flaishman, Moshe A.

    2015-01-01

    The traditional definition of climacteric and non-climacteric fruits has been put into question. A significant example of this paradox is the climacteric fig fruit. Surprisingly, ripening-related ethylene production increases following pre- or postharvest 1-methylcyclopropene (1-MCP) application in an unexpected auto-inhibitory manner. In this study, ethylene production and the expression of potential ripening-regulator, ethylene-synthesis, and signal-transduction genes are characterized in figs ripening on the tree and following preharvest 1-MCP application. Fig ripening-related gene expression was similar to that in tomato and apple during ripening on the tree, but only in the fig inflorescence–drupelet section. Because the pattern in the receptacle is different for most of the genes, the fig drupelets developed inside the syconium are proposed to function as parthenocarpic true fruit, regulating ripening processes for the whole accessory fruit. Transcription of a potential ripening regulator, FcMADS8, increased during ripening on the tree and was inhibited following 1-MCP treatment. Expression patterns of the ethylene-synthesis genes FcACS2, FcACS4, and FcACO3 could be related to the auto-inhibition reaction of ethylene production in 1-MCP-treated fruit. Along with FcMADS8 suppression, gene expression analysis revealed upregulation of FcEBF1, and downregulation of FcEIL3 and several FcERFs by 1-MCP treatment. This corresponded with the high storability of the treated fruit. One FcERF was overexpressed in the 1-MCP-treated fruit, and did not share the increasing pattern of most FcERFs in the tree-ripened fig. This demonstrates the potential of this downstream ethylene-signal-transduction component as an ethylene-synthesis regulator, responsible for the non-climacteric auto-inhibition of ethylene production in fig. PMID:25956879

  2. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    Science.gov (United States)

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  3. Developmental and Functional Expression of miRNA-Stability Related Genes in the Nervous System

    OpenAIRE

    de Sousa, ?rica; Walter, Lais Takata; Higa, Guilherme Shigueto Vilar; Casado, Ot?vio Augusto Nocera; Kihara, Alexandre Hiroaki

    2013-01-01

    In the nervous system, control of gene expression by microRNAs (miRNAs) has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We fi...

  4. No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes

    DEFF Research Database (Denmark)

    Sørensen, Mette; Nygaard, Marianne; Debrabant, Birgit

    2016-01-01

    additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed......In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16...... in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes...

  5. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    Science.gov (United States)

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  6. Quantifying The Relative Importance Of Phylogeny And Environmental Preferences As Drivers Of Gene Content In Prokaryotic Microorganisms

    Directory of Open Access Journals (Sweden)

    Javier eTamames

    2016-03-01

    Full Text Available Two complementary forces shape microbial genomes: vertical inheritance of genes by phylogenetic descent, and acquisition of new genes related to adaptation to particular habitats and lifestyles. Quantification of the relative importance of each driving force proved difficult. We determined the contribution of each factor, and identified particular genes or biochemical/cellular processes linked to environmental preferences (i.e., propensity of a taxon to live in particular habitats. Three types of data were confronted: [i] complete genomes, which provide gene content of different taxa; [ii] phylogenetic information, via alignment of 16S rRNA sequences, which allowed determination of the distance between taxa, and [iii] distribution of species in environments via 16S rRNA sampling experiments, reflecting environmental preferences of different taxa. The combination of these three datasets made it possible to describe and quantify the relationships among them. We found that, although phylogenetic descent was responsible for shaping most genomes, a discernible part of the latter was correlated to environmental adaptations. Particular families of genes were identified as environmental markers, as supported by direct studies such as metagenomic sequencing. These genes are likely important for adaptation of bacteria to particular conditions or habitats, such as carbohydrate or glycan metabolism genes being linked to host-associated environments.

  7. Overexpression of blueberry FLOWERING LOCUS T is associated with changes in the expression of phytohormone-related genes in blueberry plants

    Science.gov (United States)

    Gao, Xuan; Walworth, Aaron E; Mackie, Charity; Song, Guo-qing

    2016-01-01

    Flowering locus T (FT) is a primary integrator in the regulation of plant flowering. Overexpressing a blueberry (Vaccinium corymbosum L.) FT gene (VcFT) (herein VcFT-OX) resulted in early flowering and dwarfing in ‘Aurora’ plants (herein ‘VcFT-Aurora’). In this study, we found that VcFT-OX reduced shoot regeneration from leaf explants. To investigate the potential roles of the phytohormone pathway genes associated with VcFT-OX, differentially expressed (DE) genes in leaf tissues of ‘VcFT-Aurora’ plants were annotated and analyzed using non-transgenic ‘Aurora’ plants as a control. Three DE floral genes, including the blueberry SUPPRESSOR of Overexpression of constans 1 (VcSOC1) (gibberellin related), Abscisic acid responsive elements-binding factor 2 (VcABF2) and protein related to ABI3/VP1 (VcABI3/VP1) (ethylene-related), are present under both the phytohormone-responsive and the dwarfing-related Gene Ontology terms. The gene networks of the DE genes overall showed the molecular basis of the multifunctional aspects of VcFT overexpression beyond flowering promotion and suggested that phytohormone changes could be signaling molecules with important roles in the phenotypic changes driven by VcFT-OX. PMID:27818778

  8. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    Science.gov (United States)

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  9. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    In-Su Kim

    2017-02-01

    Full Text Available We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD. We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+ to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h. We found that the Epidermal Growth Factor Receptor (EGFR pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26 gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.

  10. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    International Nuclear Information System (INIS)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue

  11. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Science.gov (United States)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue. PMID:24346830

  12. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto [Universidade Federal da Grande Dourados - UFGD, Dourados, MS (Brazil); Teruya, Roberto [Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, MS (Brazil); Fagundes, Djalma José, E-mail: fsomaio@cardiol.br; Taha, Murched Omar [Universidade Federal de São Paulo - UNIFESP, São Paulo, SP (Brazil)

    2014-02-15

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue.

  13. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways

    DEFF Research Database (Denmark)

    Palsgaard, J.; Brøns, C.; Friedrichsen, M.

    2009-01-01

    BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing...... type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression...... downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS...

  14. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  15. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    Science.gov (United States)

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Tetra primer ARMS-PCR relates folate/homocysteine pathway genes and ACE gene polymorphism with coronary artery disease.

    Science.gov (United States)

    Masud, Rizwan; Qureshi, Irfan Zia

    2011-09-01

    Cardiovascular disorders and coronary artery disease (CAD) are significant contributors to morbidity and mortality in heart patients. As genes of the folate/homocysteine pathway have been linked with the vascular disease, we investigated association of these gene polymorphisms with CAD/myocardial infarction (MI) using the novel approach of tetraprimer ARMS-PCR. A total of 230 participants (129 MI cases, 101 normal subjects) were recruited. We genotyped rs1801133 and rs1801131 SNPs in 5'10' methylenetetrahydrofolate reductase (MTHFR), rs1805087 SNP in 5' methyltetrahydrofolate homocysteine methyltransferase (MTR), rs662 SNP in paroxanse1 (PON1), and rs5742905 polymorphism in cystathionine beta synthase (CBS). Angiotensin converting enzyme (ACE) insertion/deletion polymorphism was detected through conventional PCR. Covariates included blood pressure, fasting blood sugar, serum cholesterol, and creatinine concentrations. Our results showed allele frequencies at rs1801133, rs1801131, rs1805087 and the ACE insertion/deletion (I/D) polymorphism varied between cases and controls. Logistic regression, after adjusting for covariates, demonstrated significant associations of rs1801133 and rs1805087 with CAD in the additive, dominant, and genotype model. In contrast, ACE I/D polymorphism was significantly related with CAD where recessive model was applied. Gene-gene interaction against the disease status revealed two polymorphism groups: rs1801133, rs662, and rs1805087; and rs1801131, rs662, and ACE I/D. Only the latter interaction maintained significance after adjusted for covariates. Our study concludes that folate pathway variants exert contributory influence on susceptibility to CAD. We further suggest that tetraprimer ARMS-PCR successfully resolves the genotypes in selected samples and might prove to be a superior technique compared to the conventional approach.

  17. Interaction between the RGS6 gene and psychosocial stress on obesity-related traits.

    Science.gov (United States)

    Kim, Hyun-Jin; Min, Jin-Young; Min, Kyoung-Bok

    2017-03-31

    Obesity is a major risk factor for chronic diseases and arises from the interactions between environmental factors and multiple genes. Psychosocial stress may affect the risk for obesity, modifying food intake and choice. A recent study suggested regulator of G-protein signaling 6 (RGS6) as a novel candidate gene for obesity in terms of reward-related feeding under stress. In this study, we tried to verify the unidentified connection between RGS6 and human obesity with psychosocial stress in a Korean population. A total of 1,462 adult subjects, who participated in the Korean Association Resource cohort project, were included for this analysis. Obesity-related traits including waist circumference, body mass index, and visceral adipose tissue were recorded. A total of 4 intronic SNPs for the RGS6 gene were used for this study. We found that interactions between SNP rs2239219 and psychosocial stress are significantly associated with abdominal obesity (p = 0.007). As risk allele of this SNP increased, prevalence of abdominal obesity under high-stress conditions gradually increased (p = 0.013). However, we found no SNPs-by-stress interaction effect on other adiposity phenotypes. This study suggests that RGS6 is closely linked to stress-induced abdominal obesity in Korean adults.

  18. Pathway-based analysis of a melanoma genome-wide association study: analysis of genes related to tumour-immunosuppression.

    Directory of Open Access Journals (Sweden)

    Nils Schoof

    Full Text Available Systemic immunosuppression is a risk factor for melanoma, and sunburn-induced immunosuppression is thought to be causal. Genes in immunosuppression pathways are therefore candidate melanoma-susceptibility genes. If variants within these genes individually have a small effect on disease risk, the association may be undetected in genome-wide association (GWA studies due to low power to reach a high significance level. Pathway-based approaches have been suggested as a method of incorporating a priori knowledge into the analysis of GWA studies. In this study, the association of 1113 single nucleotide polymorphisms (SNPs in 43 genes (39 genomic regions related to immunosuppression have been analysed using a gene-set approach in 1539 melanoma cases and 3917 controls from the GenoMEL consortium GWA study. The association between melanoma susceptibility and the whole set of tumour-immunosuppression genes, and also predefined functional subgroups of genes, was considered. The analysis was based on a measure formed by summing the evidence from the most significant SNP in each gene, and significance was evaluated empirically by case-control label permutation. An association was found between melanoma and the complete set of genes (p(emp=0.002, as well as the subgroups related to the generation of tolerogenic dendritic cells (p(emp=0.006 and secretion of suppressive factors (p(emp=0.0004, thus providing preliminary evidence of involvement of tumour-immunosuppression gene polymorphisms in melanoma susceptibility. The analysis was repeated on a second phase of the GenoMEL study, which showed no evidence of an association. As one of the first attempts to replicate a pathway-level association, our results suggest that low power and heterogeneity may present challenges.

  19. Expression pattern of salt tolerance-related genes in Aegilops cylindrica.

    Science.gov (United States)

    Arabbeigi, Mahbube; Arzani, Ahmad; Majidi, Mohammad Mahdi; Sayed-Tabatabaei, Badraldin Ebrahim; Saha, Prasenjit

    2018-02-01

    Aegilops cylindrica , a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica , originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K + concentrations, together with lower Na + concentrations than K44 genotype. A. cylindrica HKT1;5 ( AecHKT1;5 ), SOS1 ( AecSOS1 ), NHX1 ( AecNHX1 ) and VP1 ( AecVP1 ) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na + in the shoots and the much lower Na + and higher K + concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na + in possible combination with the exclusion of excessive Na + from the root in the salt-tolerant genotype are suggested.

  20. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes

    OpenAIRE

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B.; Zhang, Yaou

    2012-01-01

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly ...

  1. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    Science.gov (United States)

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  2. Hippocampal gene expression patterns in oxytocin male knockout mice are related to impaired social interaction.

    Science.gov (United States)

    Lazzari, Virginia Meneghini; Zimmermann-Peruzatto, Josi Maria; Agnes, Grasiela; Becker, Roberta Oriques; de Moura, Ana Carolina; Almeida, Silvana; Guedes, Renata Padilha; Giovenardi, Marcia

    2017-11-02

    Social interaction between animals is crucial for the survival and life in groups. It is well demonstrated that oxytocin (OT) and vasopressin (AVP) play critical roles in the regulation of social behaviors in mammals, however, other neurotransmitters and hormones are involved in the brain circuitry related to these behaviors. The present study aimed to investigate the gene expression of neurotransmitter receptors in the brain of OT knockout (OTKO) male mice. In this study, we evaluated the expression levels of the OT receptor (Oxtr), AVP receptors 1a and 1b (Avpr1a; Avpr1b), dopamine receptor 2 (Drd2), and the estrogen receptors alpha and beta (Esr1; Esr2) genes in the hippocampus (HPC), olfactory bulb (OB), hypothalamus (HPT) and prefrontal cortex (PFC). AVP gene (Avp) expression was analyzed in the HPT. Gene expression results were discussed regarding to social interaction and sexual behavior findings. Additionally, we analyzed the influence of OT absence on the Avp mRNA expression levels in the HPT. RNA extraction and cDNAs synthesis followed by quantitative polymerase chain reaction were performed for gene expression determination. Results were calculated with the 2 -ΔΔCt method. Our main finding was that HPC is more susceptible to gene expression changes due to the lack of OT. OTKOs exhibited decreased expression of Drd2 and Avpr1b, but increased expression of Oxtr in the HPC. In the PFC, Esr2 was increased. In the HPT, there was a reduced Avp expression in the OTKO group. No differences were detected in the OB and HPT. Despite these changes in gene expression, sexual behavior was not affected. However, OTKO showed higher social investigation and lower aggressive performance than wild-type mice. Our data highlight the importance of OT for proper gene expression of neurotransmitter receptors related to the regulation of social interaction in male mice. Copyright © 2017. Published by Elsevier B.V.

  3. DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Liu Wan; Zhou Qixing; Li Peijun; Gao Hairong; Han, Y.P.; Li, X.J.; Yang, Y.S.; Li Yanzhi

    2009-01-01

    In the current study, Arabidopsis seedlings were hydroponically grown on MS media containing cadmium (Cd) of 0-2.0 mg L -1 for 60 h of treatment. Gene expression profiles were used to relate exposure to Cd with some altered biological responses and/or specific growth effects. RT-PCR analysis was used to quantitate mRNA expression for seven genes known to be involved in DNA mismatch repair (MMR) system and cell division. Results indicated that Cd concentrations of 0.25-2.0 mg L -1 cause increased total soluble protein levels in shoots of Arabidopsis seedlings in an inverted U-shaped dose-response manner. Exposure to 0.25 and 0.5 mg L -1 of Cd dramatically induced expression of four genes (i.e. proliferating cell nuclear antigen 2 (atPCNA 2), MutL1 homolog (atMLH1), MutS 2 homolog (atMSH2) and atMSH3) and five genes (i.e. atPCNA1,2, atMLH1 and atMSH2,7), respectively, in shoots of Arabidopsis seedlings; Exposure to 1.0 mg L -1 of Cd significantly elevated expression of only two genes (atMSH6,7), but caused prominent inhibition in expression of three genes (atPCNA2, atMLH1 and atMSH3) in shoots of Arabidopsis seedlings. The expression alterations of the above genes were independent of any biological effects such as survival, fresh weight and chlorophyll level of shoots. However, shoots of Arabidopsis seedlings exposed to 2.0 mg L -1 of Cd exhibited statistically prominent repression in expression of these seven genes, and showed incipient reduction of fresh weight and chlorophyll level. This research provides data concerning sensitivity of expression profiles of atMLH1, atMSH2,3,6,7 and atPCNA1,2 genes in Arabidopsis seedlings to Cd exposure, as well as the potential use of these gene expression patterns as representative molecular biomarkers indicative of Cd exposure and related biological effects.

  4. DNA methylation of angiotensin II receptor gene in nonalcoholic steatohepatitis-related liver fibrosis.

    Science.gov (United States)

    Asada, Kiyoshi; Aihara, Yosuke; Takaya, Hiroaki; Noguchi, Ryuichi; Namisaki, Tadashi; Moriya, Kei; Uejima, Masakazu; Kitade, Mitsuteru; Mashitani, Tsuyoshi; Takeda, Kosuke; Kawaratani, Hideto; Okura, Yasushi; Kaji, Kosuke; Douhara, Akitoshi; Sawada, Yasuhiko; Nishimura, Norihisa; Seki, Kenichiro; Mitoro, Akira; Yamao, Junichi; Yoshiji, Hitoshi

    2016-10-08

    To clarify whether Agtr1a methylation is involved in the development of nonalcoholic steatohepatitis (NASH)-related liver fibrosis in adult rats. A choline-deficient amino acid (CDAA) diet model was employed for methylation analysis of NASH-related liver fibrosis. Agtr1a methylation levels were measured in the livers of CDAA- and control choline-sufficient amino acid (CSAA)-fed rats for 8 and 12 wk using quantitative methylation-specific PCR. Hepatic stellate cells (HSCs) were isolated by collagenase digestion of the liver, followed by centrifugation of the crude cell suspension through a density gradient. Agtr1a methylation and its gene expression were also analyzed during the activation of HSCs. The mean levels of Agtr1a methylation in the livers of CDAA-fed rats (11.5% and 18.6% at 8 and 12 wk, respectively) tended to be higher ( P = 0.06 and 0.09, respectively) than those in the livers of CSAA-fed rats (2.1% and 5.3% at 8 and 12 wk, respectively). Agtr1a was not methylated at all in quiescent HSCs, but was clearly methylated in activated HSCs (13.8%, P < 0.01). Interestingly, although Agtr1a was hypermethylated, the Agtr1a mRNA level increased up to 2.2-fold ( P < 0.05) in activated HSCs compared with that in quiescent HSCs, suggesting that Agtr1a methylation did not silence its expression but instead had the potential to upregulate its expression. These findings indicate that Agtr1a methylation and its upregulation of gene expression are associated with the development of NASH-related liver fibrosis. This is the first study to show that DNA methylation is potentially involved in the regulation of a renin-angiotensin system-related gene expression during liver fibrosis.

  5. Expression of osteoprotegerin, RNAK and RANKL genes in femoral head avascular necrosis and related signaling pathway.

    Science.gov (United States)

    Miao, Qingtang; Hao, Sibin; Li, Hongmei; Sun, Fang; Wang, Xueling

    2015-01-01

    Femoral head avascular necrosis (AVN) causes the damage of hip joint and related dysfunctions, thus consisting of a clinical challenge. Osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) all regulate the formation of bones via gene transcriptional regulation for the balance between osteoblasts and osteoclasts. This study thus investigated the expressional profiles of OPG, RANK and RANKL genes in AVN patients, and explored related molecular mediating pathways. Real-time qPCR was used to measure the gene expression of OPG, RANK and RANKL genes in AVN femoral head tissue samples from 42 patients, along with normal tissues. Western blotting analysis was performed to quantify protein levels of OPG and RANKL. There was a trend but not statistically significant elevation of mRNA levels of OPG in femoral head AVN tissues compared to normal tissues (P>0.05). The expression of RNAK and RNAKL, however, was significantly elevated in necrotic tissues (P<0.05). No significant difference in protein levels of OPG or RANKL between groups. The expression of OPG, RANK and RANKL genes exert a crucial role in the progression of AVN, suggesting their roles in mediating bone homeostasis and potential effects on bone destruction.

  6. On the relation between gene flow theory and genetic gain

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2000-01-01

    Full Text Available Abstract In conventional gene flow theory the rate of genetic gain is calculated as the summed products of genetic selection differential and asymptotic proportion of genes deriving from sex-age groups. Recent studies have shown that asymptotic proportions of genes predicted from conventional gene flow theory may deviate considerably from true proportions. However, the rate of genetic gain predicted from conventional gene flow theory was accurate. The current note shows that the connection between asymptotic proportions of genes and rate of genetic gain that is embodied in conventional gene flow theory is invalid, even though genetic gain may be predicted correctly from it.

  7. 3p14 De Novo Interstitial Microdeletion in a Patient with Intellectual Disability and Autistic Features with Language Impairment: A Comparison with Similar Cases

    Directory of Open Access Journals (Sweden)

    Ana Belén de la Hoz

    2015-01-01

    Full Text Available To date, few cases of 3p proximal interstitial deletions have been reported and the phenotype and genotype correlation is not well understood. Here, we report a new case of a 3p proximal interstitial deletion. The patient is an 11-year-old female with speech and social interaction difficulties, learning disability, and slight facial dysmorphism, but no other major malformations. An 8 Mb de novo interstitial deletion at 3p14.2-p14.1, from position 60.461.316 to 68.515.453, was revealed by means of array comparative genomic hybridization and confirmed using quantitative reverse-transcription polymerase chain reaction assays. This region includes six genes: FEZF2, CADPS, SYNPR, ATXN7, PRICKLE, and MAGI1, that are known to have a role in neurodevelopment. These genes are located on the proximal side of the deletion. We compare our case with previously well-defined patients reported in the literature and databases.

  8. SÍNTESIS, CARACTERIZACIÓN ESTRUCTURAL Y PROPIEDADES MAGNÉTICAS DE COMPUESTOS SEMICONDUCTORES DEL TIPO Dy (x In (1-x Sb ISYNTHESIS, STRUCTURAL CHARACTERIZATION AND MAGNETIC PROPERTIES OF SEMICONDUCTOR COMPOUNDS OF TYPE Dy x In (1-x S

    Directory of Open Access Journals (Sweden)

    Euclides J. Velazco Rivero

    2018-04-01

    Full Text Available Semiconductor compounds of molecular formula of type DyxIn (1-x Sb (x = 0,02; 0,03; 0,04; 0,05; 0,06 y 0,07 were synthesized by means of direct interaction of the elements under heat treatment to 550°C during 11 days in vacuum sealed quartz ampoules. The analyses by X-rays diffraction showed that the compounds with x = 0,02; 0,03 y 0,04 presented pure phases of InSb doped with Dy without presence of alternate phases of DySb. These compounds, analyzed by scanning electronic microscopy – SEM, showed particles with a variety of shapes and sizes each one. Whereas the magnetic susceptibility measurements showed that those doped compounds, in spite of their paramagnetic behavior, the predominant magnetic interaction is ferromagnetic due to their positive Curie temperature (θ

  9. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Yang, Lihua; Zha, Jinmiao; Li, Wei; Li, Zhaoli; Wang, Zijian

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333microg/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na(+),K(+)-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10microg/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10microg/l. The expressions of Na(+),K(+)-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100microg/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  10. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lihua; Zha Jinmiao; Li Wei; Li Zhaoli [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, P.O. Box 2871, Beijing 100085 (China); Wang Zijian, E-mail: wangzj@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, P.O. Box 2871, Beijing 100085 (China)

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333 {mu}g/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na{sup +},K{sup +}-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10 {mu}g/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10 {mu}g/l. The expressions of Na{sup +},K{sup +}-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100 {mu}g/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  11. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus)

    International Nuclear Information System (INIS)

    Yang Lihua; Zha Jinmiao; Li Wei; Li Zhaoli; Wang Zijian

    2010-01-01

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333 μg/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na + ,K + -ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10 μg/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10 μg/l. The expressions of Na + ,K + -ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100 μg/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  12. Effects of high temperature on photosynthesis and related gene expression in poplar

    Science.gov (United States)

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  13. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    Science.gov (United States)

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Assessing the Likelihood of Gene Flow From Sugarcane (Saccharum Hybrids to Wild Relatives in South Africa

    Directory of Open Access Journals (Sweden)

    Sandy J. Snyman

    2018-06-01

    Full Text Available Pre-commercialization studies on environmental biosafety of genetically modified (GM crops are necessary to evaluate the potential for sexual hybridization with related plant species that occur in the release area. The aim of the study was a preliminary assessment of factors that may contribute to gene flow from sugarcane (Saccharum hybrids to indigenous relatives in the sugarcane production regions of Mpumalanga and KwaZulu-Natal provinces, South Africa. In the first instance, an assessment of Saccharum wild relatives was conducted based on existing phylogenies and literature surveys. The prevalence, spatial overlap, proximity, distribution potential, and flowering times of wild relatives in sugarcane production regions based on the above, and on herbaria records and field surveys were conducted for Imperata, Sorghum, Cleistachne, and Miscanthidium species. Eleven species were selected for spatial analyses based on their presence within the sugarcane cultivation region: four species in the Saccharinae and seven in the Sorghinae. Secondly, fragments of the nuclear internal transcribed spacer (ITS regions of the 5.8s ribosomal gene and two chloroplast genes, ribulose-bisphosphate carboxylase (rbcL, and maturase K (matK were sequenced or assembled from short read data to confirm relatedness between Saccharum hybrids and its wild relatives. Phylogenetic analyses of the ITS cassette showed that the closest wild relative species to commercial sugarcane were Miscanthidium capense, Miscanthidium junceum, and Narenga porphyrocoma. Sorghum was found to be more distantly related to Saccharum than previously described. Based on the phylogeny described in our study, the only species to highlight in terms of evolutionary divergence times from Saccharum are those within the genus Miscanthidium, most especially M. capense, and M. junceum which are only 3 million years divergent from Saccharum. Field assessment of pollen viability of 13 commercial sugarcane

  15. Assessing the Likelihood of Gene Flow From Sugarcane (Saccharum Hybrids) to Wild Relatives in South Africa

    Science.gov (United States)

    Snyman, Sandy J.; Komape, Dennis M.; Khanyi, Hlobisile; van den Berg, Johnnie; Cilliers, Dirk; Lloyd Evans, Dyfed; Barnard, Sandra; Siebert, Stefan J.

    2018-01-01

    Pre-commercialization studies on environmental biosafety of genetically modified (GM) crops are necessary to evaluate the potential for sexual hybridization with related plant species that occur in the release area. The aim of the study was a preliminary assessment of factors that may contribute to gene flow from sugarcane (Saccharum hybrids) to indigenous relatives in the sugarcane production regions of Mpumalanga and KwaZulu-Natal provinces, South Africa. In the first instance, an assessment of Saccharum wild relatives was conducted based on existing phylogenies and literature surveys. The prevalence, spatial overlap, proximity, distribution potential, and flowering times of wild relatives in sugarcane production regions based on the above, and on herbaria records and field surveys were conducted for Imperata, Sorghum, Cleistachne, and Miscanthidium species. Eleven species were selected for spatial analyses based on their presence within the sugarcane cultivation region: four species in the Saccharinae and seven in the Sorghinae. Secondly, fragments of the nuclear internal transcribed spacer (ITS) regions of the 5.8s ribosomal gene and two chloroplast genes, ribulose-bisphosphate carboxylase (rbcL), and maturase K (matK) were sequenced or assembled from short read data to confirm relatedness between Saccharum hybrids and its wild relatives. Phylogenetic analyses of the ITS cassette showed that the closest wild relative species to commercial sugarcane were Miscanthidium capense, Miscanthidium junceum, and Narenga porphyrocoma. Sorghum was found to be more distantly related to Saccharum than previously described. Based on the phylogeny described in our study, the only species to highlight in terms of evolutionary divergence times from Saccharum are those within the genus Miscanthidium, most especially M. capense, and M. junceum which are only 3 million years divergent from Saccharum. Field assessment of pollen viability of 13 commercial sugarcane cultivars using

  16. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  17. Expression of Hormonal Carcinogenesis Genes and Related Regulatory microRNAs in Uterus and Ovaries of DDT-Treated Female Rats.

    Science.gov (United States)

    Kalinina, T S; Kononchuk, V V; Gulyaeva, L F

    2017-10-01

    The insecticide dichlorodiphenyltrichloroethane (DDT) is a nonmutagenic xenobiotic compound able to exert estrogen-like effects resulting in activation of estrogen receptor-α (ERα) followed by changed expression of its downstream target genes. In addition, studies performed over recent years suggest that DDT may also influence expression of microRNAs. However, an impact of DDT on expression of ER, microRNAs, and related target genes has not been fully elucidated. Here, using real-time PCR, we assessed changes in expression of key genes involved in hormonal carcinogenesis as well as potentially related regulatory oncogenic/tumor suppressor microRNAs and their target genes in the uterus and ovaries of female Wistar rats during single and chronic multiple-dose DDT exposure. We found that applying DDT results in altered expression of microRNAs-221, -222, -205, -126a, and -429, their target genes (Pten, Dicer1), as well as genes involved in hormonal carcinogenesis (Esr1, Pgr, Ccnd1, Cyp19a1). Notably, Cyp19a1 expression seems to be also regulated by microRNAs-221, -222, and -205. The data suggest that epigenetic effects induced by DDT as a potential carcinogen may be based on at least two mechanisms: (i) activation of ERα followed by altered expression of the target genes encoding receptor Pgr and Ccnd1 as well as impaired expression of Cyp19a1, affecting, thereby, cell hormone balance; and (ii) changed expression of microRNAs resulting in impaired expression of related target genes including reduced level of Cyp19a1 mRNA.

  18. DNA methylation patterns of genes related to immune response in the different clinical forms of oral lichen planus.

    Science.gov (United States)

    Cruz, Aline Fernanda; de Resende, Renata Gonçalves; de Lacerda, Júlio César Tanos; Pereira, Núbia Braga; Melo, Leonardo Augusto; Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; Gomez, Ricardo Santiago

    2018-01-01

    The oral lichen planus is a chronic inflammatory disease. Although its aetiology is not well understood, the role of T lymphocytes in its inflammatory events is recognised. Identifying the epigenetic mechanisms involved in the pathogenesis of this immune-mediated condition is fundamental for understanding the inflammatory reaction that occurs in the disease. The purpose of this work was to evaluate the methylation pattern of 21 immune response-related genes in the different clinical forms of oral lichen planus. A cross-sectional study was performed to analyse the DNA methylation patterns in three distinct groups of oral lichen planus: (i) reticular/plaque lesions; (ii) erosive lesions; (iii) normal oral mucosa (control group). After DNA extraction from biopsies, the samples were submitted to digestions by methylation-sensitive and methylation-dependent enzymes and double digestion. The relative percentage of methylated DNA for each gene was provided using real-time polymerase chain reaction arrays. Hypermethylation of the STAT5A gene was observed only in the control group (59.0%). A higher hypermethylation of the ELANE gene was found in reticular/plaque lesions (72.1%) compared to the erosive lesions (50.0%). Our results show variations in the methylation profile of immune response-related genes, according to the clinical type of oral lichen planus after comparing with the normal oral mucosa. Further studies are necessary to validate these findings using gene expression analysis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Search for Nodulation and Nodule Development-related cystatin genes in the genome of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Songli Yuan

    2016-10-01

    Full Text Available Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97~245 amino acid residues, different isoelectric points (pI and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS - specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16 was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to

  20. Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine.

    Science.gov (United States)

    Dauelsberg, Patricia; Matus, José Tomás; Poupin, María Josefina; Leiva-Ampuero, Andrés; Godoy, Francisca; Vega, Andrea; Arce-Johnson, Patricio

    2011-09-15

    In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Genomic Prediction and Association Mapping of Curd-Related Traits in Gene Bank Accessions of Cauliflower.

    Science.gov (United States)

    Thorwarth, Patrick; Yousef, Eltohamy A A; Schmid, Karl J

    2018-02-02

    Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower ( Brassica oleracea var. botrytis ) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding. Copyright © 2018 Thorwarth et al.

  2. Genomic Prediction and Association Mapping of Curd-Related Traits in Gene Bank Accessions of Cauliflower

    Directory of Open Access Journals (Sweden)

    Patrick Thorwarth

    2018-02-01

    Full Text Available Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower (Brassica oleracea var. botrytis by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding.

  3. Effects of methionine supplementation on the expression of protein deposition-related genes in acute heat stress-exposed broilers.

    Directory of Open Access Journals (Sweden)

    Ana Paula Del Vesco

    Full Text Available The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I, growth hormone receptor (GHR, phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1 in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2 genes in the breast muscle of broilers. Broilers from 1-21 and 22-42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD, recommended level of methionine (DL1, and excess supplementation of methionine (DL2. The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively. The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001 and the highest CTSL2 gene expression (P<0.0001. The methionine supplementation increased the IGF-I (P = 0.0144 and GHR (P = 0.0011 gene expression and decreased the CTSL2 (P = 0.0004 and atrogin 1 (P = 0.0012 gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252 and CTSL2 (P = 0.0011 gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001, with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that

  4. Prevalence of Escherichia coli adhesion-related genes in neonatal calf diarrhea in Uruguay.

    Science.gov (United States)

    Umpiérrez, Ana; Acquistapace, Sofía; Fernández, Sofía; Oliver, Martín; Acuña, Patricia; Reolón, Eduardo; Zunino, Pablo

    2016-05-31

    Neonatal calf diarrhea (NCD), one of the most important diseases of neonatal dairy and beef calves in Uruguay, has become relevant in association with intensive systems. This disease generates substantial economic losses every year worldwide as a result of increased morbidity and mortality. Escherichia coli, one of the pathogens associated with NCD, can express several fimbrial and afimbrial adhesins. The objective of this study was to assess the presence of clpG, f5, f17A, f17G(II), and f17G(I) genes that encode three important adhesins expressed in diarrheagenic E. coli: F5, F17 and CS31A, isolated from feces of calves in Uruguay. Feces of 86 (70 diarrheic and 16 healthy) calves, from 15 animal facilities in Uruguay, were collected between 2012 and 2013. Biochemical and molecular identification were performed to finally obtain 298 E. coli isolates. Partial amplification of adhesion-related genes was performed by polymerase chain reaction. The most prevalent gene was f17A (31.2%), followed by f17G(II), clpG, f17G(I) and f5 (25.8%, 17.5%, 3.7% and 0.7%, respectively). All genes were present in diarrheic and healthy animals except f5 and f17G(I); these genes were present only in affected calves, although in low numbers. This is the first report of the presence of F5, F17, and CS31A genes in E. coli strains from NCD cases in Uruguay. Prevalence values of the genes, except f5, were in accordance with regional findings. It is expected that further characterization of locally transmitted strains will contribute to control a problem of regional and international magnitude.

  5. Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models.

    Directory of Open Access Journals (Sweden)

    Véronique Dorval

    Full Text Available Mutations in leucine-rich repeat kinase 2 (LRRK2 are the most frequent cause of genetic Parkinson's disease (PD. The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout (KO mice, as well as mice expressing human LRRK2 wildtype (hLRRK2-WT or the PD-associated R1441G mutation (hLRRK2-R1441G. We identified a total of 761 genes and 24 miRNAs that were misregulated in the absence of LRRK2 when a false discovery rate of 0.2 was applied. Notably, most changes in gene expression were modest (i.e., <2 fold. By real-time quantitative RT-PCR, we confirmed the variations of selected genes (e.g., adra2, syt2, opalin and miRNAs (e.g., miR-16, miR-25. Surprisingly, little or no changes in gene expression were observed in mice expressing hLRRK2-WT or hLRRK2-R1441G when compared to non-transgenic controls. Nevertheless, a number of miRNAs were misexpressed in these models. Bioinformatics analysis identified several miRNA-dependent and independent networks dysregulated in LRRK2-deficient mice, including PD-related pathways. These results suggest that brain LRRK2 plays an overall modest role in gene transcription regulation in mammals; however, these effects seem context and RNA type-dependent. Our data thus set the stage for future investigations regarding LRRK2 function in PD development.

  6. The relation of thrombomodulin G33A and C1418T gene ...

    African Journals Online (AJOL)

    Wael Alkhiary

    2017-08-31

    Aug 31, 2017 ... Aim of the study: To assess whether Thrombomodulin (TM) G33A and C1418T gene polymorphisms are related to the .... the AA genotype (24 and 235 bp). The wild-type G .... in two meta-analyses of a total of 13 and 14 case-control studies, ... Diabetic. 41 (37.3%). 39 (38.2%). NS. Non Diabetic. 69 (62.7%).

  7. Different stress-related gene expression in depression and suicide.

    Science.gov (United States)

    Zhao, J; Qi, X-R; Gao, S-F; Lu, J; van Wamelen, D J; Kamphuis, W; Bao, A-M; Swaab, D F

    2015-09-01

    Suicide occurs in some, but not all depressed patients. So far, it remains unknown whether the studied stress-related candidate genes change in depression, suicide or both. The prefrontal cortex (PFC) is involved in, among other things, impulse control and inhibitory behavior and plays an important role in both suicide and depression. We have employed qPCR to study 124 anterior cingulate cortex (ACC) and dorsolateral PFC (DLPFC) brain samples, obtained from two brain banks, from: i) young depressed patients (average age 43 years) who committed suicide (MDD-S) and depressed patients who died from causes other than suicide (MDD-NS) and from ii) elderly depressed patients (average age 75 years) who did not commit suicide (DEP). Both cohorts were individually matched with non-psychiatric non-suicide control subjects. We determined the transcript levels of hypothalamic-pituitary-adrenal axis-regulating molecules (corticotropin-releasing hormone (CRH), CRH receptors, CRH binding protein, mineralocorticoid receptor/glucocorticoid receptor), transcription factors that regulate CRH expression, CRH-stimulating cytokines, chaperone proteins, retinoid signaling, brain-derived neurotrophic factor and tropomyosin-related kinase B, cytochrome proteins, nitric oxide synthase (NOS) and monoamines. In the MDD-S group, expression levels of CRH and neuronal NOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) were increased. Other changes were only present in the DEP group, i.e. decreased NIDD, and increased and 5-hydroxytryptamine receptor 1A (5-HT1A) expression levels. Changes were found to be more pronounced in the anterior cingulate cortex than in the dorsolateral PFC. Depressed patients who committed suicide have different gene expression patterns than depressed patients who died of causes other than suicide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    Science.gov (United States)

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  9. Expression of genes related to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late gestation

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-11-01

    Full Text Available Abstract Background Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production. Methods Expression of genes encoding for corticotropin-releasing hormone (CRH, CRH receptors (CRHR 1 and 2beta, CRH-binding protein, proopiomelanocortin (POMC, melanocortin receptor 2 (MC2R, and glucocorticoid receptor was quantified by real-time PCR and localized by in situ hydridization in fetal lungs at gestational days (GD 15.5, 16.5, and 17.5, and was also quantified in primary mesenchymal- and epithelial cell-enriched cultures. In addition, the capability of CRH and adrenocorticotropic hormone (ACTH to stimulate pulmonary expression of enzymes involved in the adrenal pathway of glucocorticoid synthesis was addressed, as well as the glucocorticoid production by fetal lung explants. Results We report that all the studied genes are expressed in fetal lungs according to different patterns. On GD 15.5, Mc2r showed peaks in expression in samples that have previously presented high mRNA levels for glucocorticoid synthesizing enzymes, including 11beta-hydroxylase (Cyp11b1. Crhr1 mRNA co-localized with Pomc mRNA in cells surrounding the proximal epithelium on GD 15.5 and 16.5. A transition in expression sites toward distal epithelial cells was observed between GD 15.5 and 17.5 for all the studied genes. CRH or ACTH stimulation of genes involved in the adrenal pathway of glucocorticoid synthesis was not observed in lung explants on GD 15.5, whereas CRH significantly increased expression of 21-hydroxylase (Cyp21a1 on GD 17.5. A deoxycorticosterone production by fetal lung explants was observed. Conclusions Temporal and spatial

  10. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  11. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  12. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes

    Science.gov (United States)

    Tong, Ying; Zhang, Yang; Huang, Jiaomei; Xiao, Shu; Zhang, Yuehuan; Li, Jun; Chen, Jinhui; Yu, Ziniu

    2015-01-01

    Background The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs. Results The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.). Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs) and 1,699 simple sequence repeats (SSRs) were compiled. Conclusions Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research

  13. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes.

    Directory of Open Access Journals (Sweden)

    Ying Tong

    Full Text Available The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs.The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.. Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs and 1,699 simple sequence repeats (SSRs were compiled.Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research on bivalve

  14. Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL Related Genes and Expression Profiling during Fruit Development in the Chinese Pear

    Directory of Open Access Journals (Sweden)

    Yunpeng Cao

    2016-10-01

    Full Text Available In plants, 4-coumarate:coenzyme A ligases (4CLs, comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR. We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.

  15. Association between SNPs within candidate genes and compounds related to boar taint and reproduction

    DEFF Research Database (Denmark)

    Moe, Maren; Lien, Sigbjørn; Aasmundstad, Torunn

    2009-01-01

    BACKGROUND: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is produced in the same biochemical pathway as testosterone and estrogens, which represents...... of this study was to detect SNPs in boar taint candidate genes and to perform association studies for both single SNPs and haplotypes with levels of boar taint compounds and phenotypes related to reproduction. RESULTS: An association study involving 275 SNPs in 121 genes and compounds related to boar taint...... and reproduction were carried out in Duroc and Norwegian Landrace boars. Phenotypes investigated were levels of androstenone, skatole and indole in adipose tissue, levels of androstenone, testosterone, estrone sulphate and 17beta-estradiol in plasma, and length of bulbo urethralis gland. The SNPs were genotyped...

  16. Common and rare variants in the exons and regulatory regions of osteoporosis-related genes improve osteoporotic fracture risk prediction.

    Science.gov (United States)

    Lee, Seung Hun; Kang, Moo Il; Ahn, Seong Hee; Lim, Kyeong-Hye; Lee, Gun Eui; Shin, Eun-Soon; Lee, Jong-Eun; Kim, Beom-Jun; Cho, Eun-Hee; Kim, Sang-Wook; Kim, Tae-Ho; Kim, Hyun-Ju; Yoon, Kun-Ho; Lee, Won Chul; Kim, Ghi Su; Koh, Jung-Min; Kim, Shin-Yoon

    2014-11-01

    Osteoporotic fracture risk is highly heritable, but genome-wide association studies have explained only a small proportion of the heritability to date. Genetic data may improve prediction of fracture risk in osteopenic subjects and assist early intervention and management. To detect common and rare variants in coding and regulatory regions related to osteoporosis-related traits, and to investigate whether genetic profiling improves the prediction of fracture risk. This cross-sectional study was conducted in three clinical units in Korea. Postmenopausal women with extreme phenotypes (n = 982) were used for the discovery set, and 3895 participants were used for the replication set. We performed targeted resequencing of 198 genes. Genetic risk scores from common variants (GRS-C) and from common and rare variants (GRS-T) were calculated. Nineteen common variants in 17 genes (of the discovered 34 functional variants in 26 genes) and 31 rare variants in five genes (of the discovered 87 functional variants in 15 genes) were associated with one or more osteoporosis-related traits. Accuracy of fracture risk classification was improved in the osteopenic patients by adding GRS-C to fracture risk assessment models (6.8%; P risk in an osteopenic individual.

  17. Bodede et al., Afr J Tradit Complement Altern Med. (2015) 12(5):70 ...

    African Journals Online (AJOL)

    Proff.Adewunmi

    with the bark armed with thorny prickles on younger branches which develop into cone-shaped knobs often ... Seed dormancy could be imposed either by the seed coat .... The conditions that determine and regulate germination and survival of ...

  18. The value of esophageal histology in the diagnosis of gastroesophageal reflux disease in patients with heartburn and normal endoscopy

    NARCIS (Netherlands)

    Tytgat, Guido N. J.

    2008-01-01

    Histologic markers of reflux-induced mucosal injury are demonstrable in patients with nonerosive gastroesophageal reflux disease (neGERD). They include papillary elongation, basal cell hyperplasia, and dilation of intercellular spaces, especially of the prickle layer. These abnormalities are

  19. Expression Profiling of Genes Related to Endothelial Cells Biology in Patients with Type 2 Diabetes and Patients with Prediabetes

    Directory of Open Access Journals (Sweden)

    Sara Moradipoor

    2016-01-01

    Full Text Available Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.

  20. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  1. Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter.

    Science.gov (United States)

    Raghothama, K G; Liu, D; Nelson, D E; Hasegawa, P M; Bressan, R A

    1993-12-01

    Osmotin is a small (24 kDa), basic, pathogenesis-related protein, that accumulates during adaptation of tobacco (Nicotiana tabacum) cells to osmotic stress. There are more than 10 inducers that activate the osmotin gene in various plant tissues. The osmotin promoter contains several sequences bearing a high degree of similarity to ABRE, as-1 and E-8 cis element sequences. Gel retardation studies indicated the presence of at least two regions in the osmotin promoter that show specific interactions with nuclear factors isolated from cultured cells or leaves. The abundance of these binding factors increased in response to salt, ABA and ethylene. Nuclear factors protected a 35 bp sequence of the promoter from DNase I digestion. Different 5' deletions of the osmotin promoter cloned into a promoter-less GUSNOS plasmid (pBI 201) were used in transient expression studies with a Biolistic gun. The transient expression studies revealed the presence of three distinct regions in the osmotin promoter. The promoter sequence from -108 to -248 bp is absolutely required for reporter gene activity, followed by a long stretch (up to -1052) of enhancer-like sequence and then a sequence upstream of -1052, which appears to contain negative elements. The responses to ABA, ethylene, salt, desiccation and wounding appear to be associated with the -248 bp sequence of the promoter. This region also contains a putative ABRE (CACTGTG) core element. Activation of the osmotin gene by various inducers is discussed in view of antifungal activity of the osmotin protein.

  2. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fushimi, Kazuaki; Uzawa, Katsuhiro; Ishigami, Takashi; Yamamoto, Nobuharu; Kawata, Tetsuya; Shibahara, Takahiko; Ito, Hisao; Mizoe, Jun-etsu; Tsujii, Hirohiko; Tanzawa, Hideki

    2008-01-01

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  3. Gene expression profile of AIDS-related Kaposi's sarcoma

    International Nuclear Information System (INIS)

    Cornelissen, Marion; Kuyl, Antoinette C van der; Burg, Remco van den; Zorgdrager, Fokla; Noesel, Carel JM van; Goudsmit, Jaap

    2003-01-01

    Kaposi's Sarcoma (KS) is a proliferation of aberrant vascular structures lined by spindle cells, and is caused by a gammaherpes virus (HHV8/KSHV). Its course is aggravated by co-infection with HIV-1, where the timing of infection with HIV-1 and HHV8 is important for the clinical outcome. In order to better understand the pathogenesis of KS, we have analysed tissue from two AIDS-KS lesions, and from normal skin by serial analysis of gene expression (SAGE). Semi-quantitative RT-PCR was then used to validate the results. The expression profile of AIDS-related KS (AIDS-KS) reflects an active process in the skin. Transcripts of HHV8 were found to be very low, and HIV-1 mRNA was not detected by SAGE, although it could be found using RT-PCR. Comparing the expression profile of AIDS-KS tissue with publicly available SAGE libraries suggested that AIDS-KS mRNA levels are most similar to those in an artificially mixed library of endothelial cells and leukocytes, in line with the description of KS lesions as containing spindle cells with endothelial characteristics, and an inflammatory infiltrate. At least 64 transcripts were found to be significantly elevated, and 28 were statistically downregulated in AIDS-KS compared to normal skin. Five of the upregulated mRNAs, including Tie 1 and sialoadhesin/CD169, were confirmed by semi-quantitative PCR to be elevated in additional AIDS-KS biopsies. Antibodies to sialoadhesin/CD169, a known marker of activated macrophages, were shown to specifically label tumour macrophages. The expression profile of AIDS-KS showed 64 genes to be significantly upregulated, and 28 genes downregulated, compared with normal skin. One of the genes with increased expression was sialoadhesin (CD169). Antibodies to sialoadhesin/CD169 specifically labelled tumour-associated macrophages, suggesting that macrophages present in AIDS-KS lesions belong to a subset of human CD169+ macrophages

  4. Expression analysis of fiber related genes in cotton (gossypium hirsutum l.) through real time pcr

    International Nuclear Information System (INIS)

    Iqbal, N.; Khatoon, A.; Asif, M.; Bashir, A.

    2016-01-01

    Cotton fibers are unicellular seed trichomes and the largest known plant cells. Fiber morphogenesis in cotton is a complex process involving a large number of genes expressed throughout fiber development process. The expression profiling of five gene families in various cotton tissues was carried out through real time PCR. Expression analysis revealed that transcripts of expansin, tubulin and E6 were elevated from 5 to 20 days post anthesis (DPA) fibers. Three Lipid transfer proteins (LTPs) including LTP1, LTP3, LTP7 exhibited highest expression in 10 - 20 DPA fibers. Transcripts of LTP3 were detected in fibers and non fiber tissues that of LTP7 were almost negligible in non fiber tissues. Sucrose phosphate synthase gene showed highest expression in 10 DPA fibers while sucrose synthse (susy) expressed at higher rate in 5-20 DPA fibers as well as roots. The results reveal that most of fiber related genes showed high expression in 5-20 DPA fibers. Comprehensive expression study may help to determine tissue and stage specificity of genes under study. The study may also help to explore complex process of fiber development and understand the role of these genes in fiber development process. Highly expressed genes in fibers may be transformed in cotton for improvement of fiber quality traits. Genes that were expressed specifically in fibers or other tissues could be used for isolation of upstream regulatory sequences. (author)

  5. Indirect two-sided relative ranking: a robust similarity measure for gene expression data

    Directory of Open Access Journals (Sweden)

    Licamele Louis

    2010-03-01

    Full Text Available Abstract Background There is a large amount of gene expression data that exists in the public domain. This data has been generated under a variety of experimental conditions. Unfortunately, these experimental variations have generally prevented researchers from accurately comparing and combining this wealth of data, which still hides many novel insights. Results In this paper we present a new method, which we refer to as indirect two-sided relative ranking, for comparing gene expression profiles that is robust to variations in experimental conditions. This method extends the current best approach, which is based on comparing the correlations of the up and down regulated genes, by introducing a comparison based on the correlations in rankings across the entire database. Because our method is robust to experimental variations, it allows a greater variety of gene expression data to be combined, which, as we show, leads to richer scientific discoveries. Conclusions We demonstrate the benefit of our proposed indirect method on several datasets. We first evaluate the ability of the indirect method to retrieve compounds with similar therapeutic effects across known experimental barriers, namely vehicle and batch effects, on two independent datasets (one private and one public. We show that our indirect method is able to significantly improve upon the previous state-of-the-art method with a substantial improvement in recall at rank 10 of 97.03% and 49.44%, on each dataset, respectively. Next, we demonstrate that our indirect method results in improved accuracy for classification in several additional datasets. These datasets demonstrate the use of our indirect method for classifying cancer subtypes, predicting drug sensitivity/resistance, and classifying (related cell types. Even in the absence of a known (i.e., labeled experimental barrier, the improvement of the indirect method in each of these datasets is statistically significant.

  6. A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Liucun; Zhang, Yu-Hang; Su, Fangchu; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that develop from the ovary. The fertilization, development and maturation of fruits are crucial for plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this study, we used Arabidopsis thaliana as a model organism and attempted to identify novel genes related to fruit-associated biological processes. Specifically, using validated genes, we applied a shortest-path-based method to identify several novel genes in a large network constructed using the protein-protein interactions observed in Arabidopsis thaliana. The described analyses indicate that several of the discovered genes are associated with fruit fertilization, development and maturation in Arabidopsis thaliana.

  7. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  8. Cyclic lipopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit

    Science.gov (United States)

    Effects of cyclic lipopeptides obtained from B. subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level ...

  9. The Impact of Oxytocin Gene Knockout on Sexual Behavior and Gene Expression Related to Neuroendocrine Systems in the Brain of Female Mice.

    Science.gov (United States)

    Zimmermann-Peruzatto, Josi Maria; Lazzari, Virgínia Meneghini; Agnes, Grasiela; Becker, Roberta Oriques; de Moura, Ana Carolina; Guedes, Renata Padilha; Lucion, Aldo Bolten; Almeida, Silvana; Giovenardi, Márcia

    2017-07-01

    Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V 1a R), and dopamine (D 2 R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The C DNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2 -ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V 1a R in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D 2 R of OTKO. However, OTKO showed an increased gene expression of V 1a R in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V 1a R), and these changes may contribute to the decreased sexual behavior observed in OTKO females.

  10. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Investigation of de novo unique differentially expressed genes related to evolution in exercise response during domestication in Thoroughbred race horses.

    Directory of Open Access Journals (Sweden)

    Woncheoul Park

    Full Text Available Previous studies of horse RNA-seq were performed by mapping sequence reads to the reference genome during transcriptome analysis. However in this study, we focused on two main ideas. First, differentially expressed genes (DEGs were identified by de novo-based analysis (DBA in RNA-seq data from six Thoroughbreds before and after exercise, here-after referred to as "de novo unique differentially expressed genes" (DUDEG. Second, by integrating both conventional DEGs and genes identified as being selected for during domestication of Thoroughbred and Jeju pony from whole genome re-sequencing (WGS data, we give a new concept to the definition of DEG. We identified 1,034 and 567 DUDEGs in skeletal muscle and blood, respectively. DUDEGs in skeletal muscle were significantly related to exercise-induced stress biological process gene ontology (BP-GO terms: 'immune system process'; 'response to stimulus'; and, 'death' and a KEGG pathways: 'JAK-STAT signaling pathway'; 'MAPK signaling pathway'; 'regulation of actin cytoskeleton'; and, 'p53 signaling pathway'. In addition, we found TIMELESS, EIF4A3 and ZNF592 in blood and CHMP4C and FOXO3 in skeletal muscle, to be in common between DUDEGs and selected genes identified by evolutionary statistics such as FST and Cross Population Extended Haplotype Homozygosity (XP-EHH. Moreover, in Thoroughbreds, three out of five genes (CHMP4C, EIF4A3 and FOXO3 related to exercise response showed relatively low nucleotide diversity compared to the Jeju pony. DUDEGs are not only conceptually new DEGs that cannot be attained from reference-based analysis (RBA but also supports previous RBA results related to exercise in Thoroughbred. In summary, three exercise related genes which were selected for during domestication in the evolutionary history of Thoroughbred were identified as conceptually new DEGs in this study.

  12. Investigation of de novo unique differentially expressed genes related to evolution in exercise response during domestication in Thoroughbred race horses.

    Science.gov (United States)

    Park, Woncheoul; Kim, Jaemin; Kim, Hyeon Jeong; Choi, JaeYoung; Park, Jeong-Woong; Cho, Hyun-Woo; Kim, Byeong-Woo; Park, Myung Hum; Shin, Teak-Soon; Cho, Seong-Keun; Park, Jun-Kyu; Kim, Heebal; Hwang, Jae Yeon; Lee, Chang-Kyu; Lee, Hak-Kyo; Cho, Seoae; Cho, Byung-Wook

    2014-01-01

    Previous studies of horse RNA-seq were performed by mapping sequence reads to the reference genome during transcriptome analysis. However in this study, we focused on two main ideas. First, differentially expressed genes (DEGs) were identified by de novo-based analysis (DBA) in RNA-seq data from six Thoroughbreds before and after exercise, here-after referred to as "de novo unique differentially expressed genes" (DUDEG). Second, by integrating both conventional DEGs and genes identified as being selected for during domestication of Thoroughbred and Jeju pony from whole genome re-sequencing (WGS) data, we give a new concept to the definition of DEG. We identified 1,034 and 567 DUDEGs in skeletal muscle and blood, respectively. DUDEGs in skeletal muscle were significantly related to exercise-induced stress biological process gene ontology (BP-GO) terms: 'immune system process'; 'response to stimulus'; and, 'death' and a KEGG pathways: 'JAK-STAT signaling pathway'; 'MAPK signaling pathway'; 'regulation of actin cytoskeleton'; and, 'p53 signaling pathway'. In addition, we found TIMELESS, EIF4A3 and ZNF592 in blood and CHMP4C and FOXO3 in skeletal muscle, to be in common between DUDEGs and selected genes identified by evolutionary statistics such as FST and Cross Population Extended Haplotype Homozygosity (XP-EHH). Moreover, in Thoroughbreds, three out of five genes (CHMP4C, EIF4A3 and FOXO3) related to exercise response showed relatively low nucleotide diversity compared to the Jeju pony. DUDEGs are not only conceptually new DEGs that cannot be attained from reference-based analysis (RBA) but also supports previous RBA results related to exercise in Thoroughbred. In summary, three exercise related genes which were selected for during domestication in the evolutionary history of Thoroughbred were identified as conceptually new DEGs in this study.

  13. Two-stage case-control association study of dopamine-related genes and migraine

    Directory of Open Access Journals (Sweden)

    Pardo Julio

    2009-09-01

    Full Text Available Abstract Background We previously reported risk haplotypes for two genes related with serotonin and dopamine metabolism: MAOA in migraine without aura and DDC in migraine with aura. Herein we investigate the contribution to migraine susceptibility of eight additional genes involved in dopamine neurotransmission. Methods We performed a two-stage case-control association study of 50 tag single nucleotide polymorphisms (SNPs, selected according to genetic coverage parameters. The first analysis consisted of 263 patients and 274 controls and the replication study was composed by 259 cases and 287 controls. All cases were diagnosed according to ICHD-II criteria, were Spanish Caucasian, and were sex-matched with control subjects. Results Single-marker analysis of the first population identified nominal associations of five genes with migraine. After applying a false discovery rate correction of 10%, the differences remained significant only for DRD2 (rs2283265 and TH (rs2070762. Multiple-marker analysis identified a five-marker T-C-G-C-G (rs12363125-rs2283265-rs2242592-rs1554929-rs2234689 risk haplotype in DRD2 and a two-marker A-C (rs6356-rs2070762 risk haplotype in TH that remained significant after correction by permutations. These results, however, were not replicated in the second independent cohort. Conclusion The present study does not support the involvement of the DRD1, DRD2, DRD3, DRD5, DBH, COMT, SLC6A3 and TH genes in the genetic predisposition to migraine in the Spanish population.

  14. The Calcium-Sensing Receptor Gene Polymorphism rs1801725 and Calcium-Related Phenotypes in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Alicja E. Grzegorzewska

    2018-05-01

    Full Text Available Background/Aims: The calcium-sensing receptor gene (CASR rs1801725 variant is responsible for a non-conservative amino-acid change (A986S in the calcium-sensing receptor cytoplasmic tail. We hypothesized that rs1801725 polymorphism might be helpful in understanding Ca-related abnormalities in HD patients. Methods: In 1215 subjects (245 on cinacalcet, we determined the associations of rs1801725 with secondary hyperparathyroidism (sHPT-related laboratory parameters, PTH-decreasing effect of cinacalcet hydrochloride, coronary artery disease (CAD, myocardial infarction (MI, nephrolithiasis-related ESRD, and mortality. CASR rs7652589(AT haplotypes and rs1801725 epistatic interactions with vitamin D signaling pathway genes were examined for associations with selected phenotypes. Results: The rs1801725 variant allele showed an increasing independent effect on plasma PTH (Pcorrected = 0.009. CASR rs7652589_rs1801725 AT haplotype was associated with 1.7-fold higher frequency of PTH levels over 437 pg/mL than the reference haplotype GG (P = 0.001. CASR rs7652589_rs1801725 AG haplotype was 1.5-fold more frequent in nephrolithiasis-related ESRD than the GG haplotype (P = 0.004. There were no significant associations between rs1801725, CAD, MI, and response to cinacalcet. Variant homozygosity of rs1801725 correlated independently with higher infection-related mortality compared with heterozygosity (HR 7.95, 95%CI 2.15 – 29.37, P = 0.003 and major homozygosity (HR 5.89, 95%CI 1.69 – 20.55, P = 0.040. CASR rs1801725 did not show epistatic interactions with vitamin D signaling pathway genes concerning tested associations. Conclusion: The variant allele of CASR rs1801725 solely and together with the variant allele of rs7652589 increases risk of more advanced sHPT. Homozygosity of the rs1801725 variant allele contributes to infection-related mortality in HD patients.

  15. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-01-01

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  16. Estrogen-related receptor α is essential for the expression of antioxidant protection genes and mitochondrial function

    International Nuclear Information System (INIS)

    Rangwala, Shamina M.; Li, Xiaoyan; Lindsley, Loren; Wang, Xiaomei; Shaughnessy, Stacey; Daniels, Thomas G.; Szustakowski, Joseph; Nirmala, N.R.; Wu, Zhidan; Stevenson, Susan C.

    2007-01-01

    Estrogen-related receptor α (ERRα) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERRα null mice. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) stimulated mitochondrial gene expression program in control cells, but not in the ERRα null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1α levels was dependent on ERRα. Furthermore, we found that the PGC-1α-mediated induction of estrogen-related receptor γ and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERRα. Basal levels of NRF-2 were decreased in the absence of ERRα. The absence of ERRα resulted in a decrease in citrate synthase enzyme activity in response to PGC-1α overexpression. Our results indicate an essential role for ERRα as a key regulator of oxidative metabolism

  17. Analysis of iron acquisition and storage-related genes in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A.

    Science.gov (United States)

    Kanaujia, Pawan Kumar; Bajaj, Priyanka; Virdi, Jugsharan Singh

    2015-10-01

    Possession of mechanisms for iron acquisition and its storage enhances the ability of the bacteria to survive in the iron-limiting environment of the host. In this study, 81 strains of Yersinia enterocolitica biovar 1A isolated from various clinical (n = 51) and non-clinical (n = 30) sources were investigated for the presence of the genes related to iron acquisition and storage. Important genes which were present in more than 85% of the strains included hasA, foxA, bfr, bfd, ftnA, and hmsT as well as the fhuCDB, fepBDGCfesfepA, feoAB, yfuABCD, hemPRSTUV, and hmsHFRS gene clusters. Majority of these genes is being reported for the first time in biovar 1A strains and showed significant homology with genes present in the known pathogenic biovars of Y. enterocolitica. However, no significant difference was observed in the distribution of iron acquisition and storage-related genes among clinical and non-clinical biovar 1A strains. Thus, it may be suggested that the presence of iron acquisition and storage-related genes per se might not be responsible for the supposedly better ability of clinical biovar 1A strains to cause infections in humans. However, in the backdrop of this data, the need to undertake functional studies are highly recommended. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  18. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System

    Directory of Open Access Journals (Sweden)

    Gang Yu

    2017-11-01

    Full Text Available Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.

  19. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Science.gov (United States)

    Hsu, Ju-Chun; Chien, Ting-Ying; Hu, Chia-Cheng; Chen, Mei-Ju May; Wu, Wen-Jer; Feng, Hai-Tung; Haymer, David S; Chen, Chien-Yu

    2012-01-01

    Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS). The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs). A total of 29,067 isotigs have putative homologues in the non-redundant (nr) protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also analyzed to

  20. Molecular characterization of a human G20P[28] rotavirus a strain with multiple genes related to bat rotaviruses.

    Science.gov (United States)

    Esona, Mathew D; Roy, Sunando; Rungsrisuriyachai, Kunchala; Gautam, Rashi; Hermelijn, Sandra; Rey-Benito, Gloria; Bowen, Michael D

    2018-01-01

    Group A rotaviruses are the major cause of severe gastroenteritis in the young of mammals and birds. This report describes characterization of an unusual G20P[28] rotavirus strain detected in a 24month old child from Suriname. Genomic sequence analyses revealed that the genotype constellation of the Suriname strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] was G20-P[28]-I13-R13-C13-M12-A23-N13-T15-E20-H15. Genes VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5 were recently assigned novel genotypes by the Rotavirus Classification Working Group (RCWG). Three of the 11 gene segments (VP7, VP4, VP6) were similar to cognate gene sequences of bat-like human rotavirus strain Ecu534 from Ecuador and the VP7, NSP3 and NSP5 gene segments of strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] were found to be closely related to gene sequences of bat rotavirus strain 3081/BRA detected in Brazil. Although distantly related, the VP1 gene of the study strain and bat strain BatLi09 detected in Cameroon in 2014 are monophyletic. The NSP1 gene was found to be most closely related to human strain QUI-35-F5 from Brazil. These findings suggest that strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] represents a zoonotic infection from a bat host. Published by Elsevier B.V.

  1. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  2. Gradient phenomenon of multidrug resistance gene expression in breast cancer during neoadjuvant chemotherapy is related to disease progression

    Directory of Open Access Journals (Sweden)

    N. V. Litviakov

    2013-01-01

    Full Text Available The paper examined 106 patients with breast cancer (BC treated with neoadjuvant chemotherapy (NАС. In the biopsy material, derived from primary tumor before NAC and surgical samples after chemotherapy the expression of 8 multidrug resistance genes (MDR ABCB1, АВСВ2, ABCC1, ABCC2, АВСС5, ABCG1, ABCG2 и MVP was evaluated using quantitative RT-PCR. During the NAC course 75 % of patients manifested gradient phenomenon for gene expression that means a unidirectional change in the expression of all five MDR genes ABCB1, ABCC1, ABCC2, ABCG1 и ABCG2 closely associated with the NAC efficacy: the reduction in MDR gene expression was related to good response to NAC while the expression increase associated with poor response to NAC. In 25% of patients there was no such change in studied gene expression that means the lack of a gradient phenomenon. The objective was to study whether gradient phenomenon for MDR gene expression during NAC is related to disease free survival in breast cancer patients. Five-year metastasis-free survival in patients having a gradient phenomenon was 73 % versus 39 % in patients who lack a gradient phenomenon (log-rank test p=0,0018. So, the presence of a gradient phenomenon in patients is appeared to be associated with a good disease prognosis. It is assumed that the gradiThe paper examined 106 patients with breast cancer (BC treated with neoadjuvant chemotherapy (NАС. In the biopsy material, derived from primary tumor before NAC and surgical samples after chemotherapy the expression of 8 multidrug resistance genes (MDR ABCB1, АВСВ2, ABCC1, ABCC2, АВСС5, ABCG1, ABCG2 и MVP was evaluated using quantitative RT-PCR. During the NAC course 75 % of patients manifested gradient phenomenon for gene expression that means a unidirectional change in the expression of all five MDR genes ABCB1, ABCC1, ABCC2, ABCG1 и ABCG2 closely associated with the NAC efficacy: the reduction in MDR gene expression was related to good

  3. vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala).

    Science.gov (United States)

    Shukalyuk, Andrey I; Golovnina, Kseniya A; Baiborodin, Sergei I; Gunbin, Konstantin V; Blinov, Alexander G; Isaeva, Valeria V

    2007-02-01

    vasa (vas)-related genes are members of the DEAD-box protein family and are expressed in the germ cells of many Metazoa. We cloned vasa-related genes (PpVLG, CpVLG) and other DEAD-box family related genes (PpDRH1, PpDRH2, CpDRH, AtDRHr) from the colonial parasitic rhizocephalan barnacle Polyascus polygenea, the non-colonial Clistosaccus paguri (Crustacea: Cirripedia: Rhizocephala), and the parasitic isopodan Athelgis takanoshimensis (Crustacea: Isopoda). The colonial Polyascus polygenea, a parasite of the coastal crabs Hemigrapsus sanguineus and Hemigrapsus longitarsis was used as a model object for further detailed investigations. Phylogenetic analysis suggested that PpVLG and CpVLG are closely related to vasa-like genes of other Arthropoda. The rest of the studied genes form their own separate branch on the phylogenetic tree and have a common ancestry with the p68 and PL10 subfamilies. We suppose this group may be a new subfamily of the DEAD-box RNA helicases that is specific for parasitic Crustacea. We found PpVLG and PpDRH1 expression products in stem cells from stolons and buds of internae, during asexual reproduction of colonial P. polygenea, and in germ cells from sexually reproducing externae, including male spermatogenic cells and female oogenic cells.

  4. Dataset of the HOX1 gene sequences of the wheat polyploids and their diploid relatives

    Directory of Open Access Journals (Sweden)

    Andrey B. Shcherban

    2018-02-01

    Full Text Available The TaHOX-1 gene of common wheat Triticum aestivum L. (BAD-genome encodes transcription factor (HD-Zip I which is characterized by the presence of a DNA-binding homeodomain (HD with an adjacent Leucine zipper (LZ motif. This gene can play a role in adapting plant to a variety of abiotic stresses, such as drought, cold, salinity etc., which strongly affect wheat production. However, it's both functional role in stress resistance and divergence during wheat evolution has not yet been elucidated. This data in brief article is associated with the research paper “Structural and functional divergence of homoeologous copies of the TaHOX-1 gene in polyploid wheats and their diploid ancestors”. The data set represents a recent survey of the primary HOX-1 gene sequences isolated from the first wheat allotetraploids (BA-genome and their corresponding Triticum and Aegilops diploid relatives. Specifically, we provide detailed information about the HOX-1 nucleotide sequences of the promoter region and both nucleotide and amino acid sequences of the gene. The sequencing data used here is available at DDBJ/EMBL/GenBank under the accession numbers MG000630-MG000698. Keywords: Wheat, Polyploid, HOX-1 gene, Homeodomain, Transcription factor, Promoter, Triticum, Aegilops

  5. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts

    Science.gov (United States)

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-01-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status.

  6. Acinetobacter baumannii K27 and K44 capsular polysaccharides have the same K unit but different structures due to the presence of distinct wzy genes in otherwise closely related K gene clusters.

    Science.gov (United States)

    Shashkov, Alexander S; Kenyon, Johanna J; Senchenkova, Sof'ya N; Shneider, Mikhail M; Popova, Anastasiya V; Arbatsky, Nikolay P; Miroshnikov, Konstantin A; Volozhantsev, Nikolay V; Hall, Ruth M; Knirel, Yuriy A

    2016-05-01

    Capsular polysaccharides (CPSs), from Acinetobacter baumannii isolates 1432, 4190 and NIPH 70, which have related gene content at the K locus, were examined, and the chemical structures established using 2D(1)H and(13)C NMR spectroscopy. The three isolates produce the same pentasaccharide repeat unit, which consists of 5-N-acetyl-7-N-[(S)-3-hydroxybutanoyl] (major) or 5,7-di-N-acetyl (minor) derivatives of 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic (legionaminic) acid (Leg5Ac7R), D-galactose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine. However, the linkage between repeat units in NIPH 70 was different to that in 1432 and 4190, and this significantly alters the CPS structure. The KL27 gene cluster in 4190 and KL44 gene cluster in NIPH 70 are organized identically and contain lga genes for Leg5Ac7R synthesis, genes for the synthesis of the common sugars, as well as anitrA2 initiating transferase and four glycosyltransferases genes. They share high-level nucleotide sequence identity for corresponding genes, but differ in the wzy gene encoding the Wzy polymerase. The Wzy proteins, which have different lengths and share no similarity, would form the unrelated linkages in the K27 and K44 structures. The linkages formed by the four shared glycosyltransferases were predicted by comparison with gene clusters that synthesize related structures. These findings unambiguously identify the linkages formed by WzyK27 and WzyK44, and show that the presence of different wzy genes in otherwise closely related K gene clusters changes the structure of the CPS. This may affect its capacity as a protective barrier for A. baumannii. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma

    Directory of Open Access Journals (Sweden)

    Ye H

    2015-06-01

    Full Text Available Hua Ye, Kai Yang, Xue-Mei Tan, Xiao-Juan Fu, Han-Xue LiDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaBackground: Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm variation of PER1 and expression of tumor-related genes VEGF, KI67, C-MYC, and P53 in different stages of carcinogenesis.Materials and methods: Dimethylbenzanthracene was used to establish a golden hamster model of buccal mucosa carcinogenesis. Hamsters with normal buccal mucosa, precancerous lesion, and cancerous lesion were sacrificed at six different time points during a 24-hour period of a day. Pathological examination was conducted using routine hematoxylin and eosin staining. PER1, VEGF, KI67, C-MYC, and P53 mRNAs were detected by real-time reverse transcriptase polymerase chain reaction, and a cosinor analysis was applied to analyze the daily rhythm.Results: PER1, VEGF, C-MYC, and P53 mRNA exhibited daily rhythmic expression in three carcinogenesis stages, and KI67 mRNA exhibited daily rhythmic expression in the normal and precancerous stages. The daily rhythmic expression of KI67 was not observed in cancerous stages. The mesor and amplitude of PER1 and P53 mRNA expression decreased upon the development of cancer (P<0.05, whereas the mesor and amplitude of VEGF, KI67, and C-MYC mRNA increased upon the development of cancer (P<0.05. Compared with the normal tissues, the acrophases of PER1, VEGF, and C-MYC mRNA occurred earlier, whereas the acrophases of P53 and KI67 mRNA lagged remarkably in the precancerous lesions. In the cancer stage, the acrophases

  8. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Science.gov (United States)

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.

    Science.gov (United States)

    Usdin, Karen; Kumari, Daman

    2015-01-01

    The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.

  10. POSSIBLE RELATED FUNCTIONS OF THE NON-HOMOLOGOUS CO-REGULATED GENE PAIR PDCD10 AND SERPINI1

    Directory of Open Access Journals (Sweden)

    Concetta Scimone

    2017-04-01

    Full Text Available Gene expression in mammalians is a very finely controlled mechanism, and bidirectional promoters can be considered one of the most compelling examples of the accuracy of genic expression coordination. As recently reported, a bidirectional promoter regulates the expression of the PDCD10(whose mutations cause familial Cerebral Cavernous Malformations (CCMs and SERPINI1 gene pair, even though they are non-homologous genes. The aim of this study was to identify any potential common roles of these two coregulated genes. An in-silico approach was used to identify functional correlations, using the BioGraph, IPA® and Cytoscape tools and the KEGG pathway database. The results obtained show that PDCD10 and SERPINI1 may co-regulate some cellular processes, particularly those related to focal adhesion maintenance. All common pathways identified for PDCD10 and SERPINI1 are closely associated with the pathogenic characteristics of CCMs; we thus hypothesize that genes involved in these networks may contribute to the development of CCMs.

  11. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    Science.gov (United States)

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  12. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  13. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    Science.gov (United States)

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  14. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis.

    Directory of Open Access Journals (Sweden)

    Shijiang Yu

    Full Text Available Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3% unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.

  15. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis.

    Science.gov (United States)

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.

  16. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Hatta, Mitsutoki; Naganuma, Kaori; Kato, Kenichi; Yamazaki, Jun

    2015-01-01

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  17. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan); Naganuma, Kaori [Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka (Japan); Kato, Kenichi; Yamazaki, Jun [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan)

    2015-12-04

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  18. Ethylene-Related Gene Expression Networks in Wood Formation

    Directory of Open Access Journals (Sweden)

    Carolin Seyfferth

    2018-03-01

    Full Text Available Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2 homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and

  19. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.

    Science.gov (United States)

    Kermicle, Jerry L

    2006-01-01

    Some populations of maize's closest relatives, the annual teosintes of Mexico, are unreceptive to maize pollen. When present in the pistil (silk and ovary) a number of maize genes discriminate against or exclude pollen not carrying the same allele. An analogous gene Tcb1-s was found in some teosinte populations but not in sympatric or parapatric maize. It was polymorphic among populations of teosinte growing wild, but regularly present in populations growing in intimate association with maize as a weed. Introduction of Tcb1-s into maize substantially to fully restored compatibility with Tcb1-s carrying teosintes. Although Tcb1-s pollen can fertilize tcb1 tcb1 maize, it is at a competitive disadvantage relative to tcb1 pollen. Hence, the influence of Tcb1-s on crossability is bidirectional. In the absence of maize, Tcb1-s can increase in teosinte populations without improving their fitness. In the presence of maize, Tcb1-s appears to have been co-opted to provide reproductive isolation for adaptation to a cultivated habitat.

  20. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    Science.gov (United States)

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide.

    NARCIS (Netherlands)

    Zhao, Juan; Verwer, R.W.H.; Gao, S.; Qi, Xin-Rui; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F.

    2018-01-01

    People that committed suicide were reported to have enhanced levels of gene transcripts for synaptic proteins in their prefrontal cortex (PFC). Given the close association of suicide with major depressive disorder (MDD), we here assessed whether these changes are related to suicide or rather to

  2. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.H.; Gao, S.-F.; Qi, X.-R.; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F.

    People that committed suicide were reported to have enhanced levels of gene transcripts for synaptic proteins in their prefrontal cortex (PFC). Given the close association of suicide with major depressive disorder (MDD), we here assessed whether these changes are related to suicide or rather to

  3. Antioxidative-related genes expression following perfluorooctane sulfonate (PFOS) exposure in the intertidal mud crab, Macrophthalmus japonicus

    Science.gov (United States)

    Park, Kiyun; Nikapitiya, Chamilani; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2015-09-01

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant that is used as a surfactant in various industries and consumer products. The intertidal mud crab, Macrophthalmus japonicus, is one of the most abundant macrobenthic creatures. In this study, we have investigated the effect of PFOS on the molecular transcription of antioxidant and detoxification signaling in M. japonicus crab. The selected stress response genes were superoxide dismutases (CuZnSOD and MnSOD), catalase (CAT), glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR). Significant up-regulation of SODs and CAT was observed after 24 and 96 h exposure to PFOS at different concentrations. The gene expression levels of GPx, PHGPx, and TrXR were significantly up-regulated after exposure to PFOS for 96 h. The transcript levels of CAT and PHGPx were induced in dose- and time-dependent manners after PFOS treatments. However, Prx gene expression was significantly up-regulated in M. japonicus crabs exposed to 10 and 30 μg L-1 PFOS for 96 h. Additionally, PFOS toxicity in M. japonicus induced reduced survival rates at relatively high concentrations of PFOS exposure. Our findings support the contention that exposures to PFOS induced the response of genes related to oxidative stress and detoxification in M. japonicus crabs.

  4. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai

    2015-09-01

    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  5. Survey of Attitudes and Ethical Concerns Related to Gene Therapy Among Medical Students and Postgraduates in China.

    Science.gov (United States)

    Xiang, Liangcheng; Xiao, Lihong; Gou, Zhongping; Li, Mei; Zhang, Wei; Wang, Haiping; Feng, Ping

    2015-12-01

    Gene therapy is becoming an important treatment modality for gravely ill patients, and today's medical students and postgraduates are both potential consumers and future providers of gene therapy. Therefore, their attitudes and concerns about gene therapy may directly influence its long-term development and implementation in the clinic. We performed a cross-sectional survey of medical students and postgraduates at West China Medical School of Sichuan University. A custom-designed questionnaire was distributed to 600 students, and 579 were valid (96.98% response). Most respondents (84.46%) indicated little prior knowledge about gene therapy. The proportion of respondents considering gene therapy as acceptable ranged from 63.73% for serious illness to 17.72% for genetic enhancement. Adverse side effects were the most frequent concern among respondents when asked to imagine that they would receive gene therapy to treat a severe brain-related illness. These results suggest that medical students in China consider gene therapy's acceptability to be rather low, and are most concerned about its adverse side effects.

  6. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach.

    Science.gov (United States)

    Harduin-Lepers, Anne; Mollicone, Rosella; Delannoy, Philippe; Oriol, Rafael

    2005-08-01

    The animal sialyltransferases are Golgi type II transmembrane glycosyltransferases. Twenty distinct sialyltransferases have been identified in both human and murine genomes. These enzymes catalyze transfer of sialic acid from CMP-Neu5Ac to the glycan moiety of glycoconjugates. Despite low overall identities, they share four conserved peptide motifs [L (large), S (small), motif III, and motif VS (very small)] that are hallmarks for sialyltransferase identification. We have identified 155 new putative genes in 25 animal species, and we have exploited two lines of evidence: (1) sequence comparisons and (2) exon-intron organization of the genes. An ortholog to the ancestor present before the split of ST6Gal I and II subfamilies was detected in arthropods. An ortholog to the ancestor present before the split of ST6GalNAc III, IV, V, and VI subfamilies was detected in sea urchin. An ortholog to the ancestor present before the split of ST3Gal I and II subfamilies was detected in ciona, and an ortholog to the ancestor of all the ST8Sia was detected in amphioxus. Therefore, single examples of the four families (ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia) have appeared in invertebrates, earlier than previously thought, whereas the four families were all detected in bony fishes, amphibians, birds, and mammals. As previously hypothesized, sequence similarities among sialyltransferases suggest a common genetic origin, by successive duplications of an ancestral gene, followed by divergent evolution. Finally, we propose predictions on these invertebrates sialyltransferase-related activities that have not previously been demonstrated and that will ultimately need to be substantiated by protein expression and enzymatic activity assays.

  7. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes...... and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi....... In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression....

  8. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    Science.gov (United States)

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.

  9. Identification of flowering-related genes responsible for differences in bolting time between two radish inbred lines

    Directory of Open Access Journals (Sweden)

    Hye Sun Cho

    2016-12-01

    Full Text Available Late bolting after cold exposure is an economically important characteristic of radish (Raphanus sativus L., an important Brassicaceae root vegetable crop. However, little information is available regarding the genes and pathways that govern flowering time in this species. We performed high-throughput RNA sequencing analysis to elucidate the molecular mechanisms that determine the differences in flowering times between two radish lines, NH-JS1 (late bolting and NH-JS2 (early bolting. In total, 71,188 unigenes were identified by reference-guided assembly, of which 309, 788, and 980 genes were differentially expressed between the two inbred lines after 0, 15, and 35 days of vernalization, respectively. Among these genes, 218 homologs of Arabidopsis flowering-time (Ft genes were identified in the radish, and 49 of these genes were differentially expressed between the two radish lines in the presence or absence of vernalization treatment. Most of the Ft genes up-regulated in NH-JS1 vs NH-JS2 were repressors of flowering, such as RsFLC, consistent with the late-bolting phenotype of NH-JS1. Although the functions of genes down-regulated in NH-JS1 were less consistent with late-bolting characteristics than the up-regulated Ft genes, several Ft enhancer genes, including RsSOC1, a key floral integrator, showed an appropriate expression to the late-bolting phenotype. In addition, the patterns of gene expression related to the vernalization pathway closely corresponded with the different bolting times of the two inbred lines. These results suggest that the vernalization pathway is conserved between radish and Arabidopsis.

  10. Calcitonin-gene related peptide and cerebral vasospasm.

    Science.gov (United States)

    Schebesch, Karl-Michael; Herbst, Andreas; Bele, Sylvia; Schödel, Petra; Brawanski, Alexander; Stoerr, Eva-Maria; Lohmeier, Annette; Kagerbauer, Simone Maria; Martin, Jan; Proescholdt, Martin

    2013-04-01

    The pathophysiology of arterial vasospasm following subarachnoid hemorrhage (SAH) is poorly understood and the contribution of endogenous neuropeptides has not been sufficiently elucidated. Recently, we detected an excessive release of vasoconstrictive neuropeptide Y (NPY) in SAH patients and identified a significant correlation of NPY cerebrospinal fluid (CSF) levels with vasospasm-related ischemia. Here, we present the results of an experimental study on the possible role of the potent endogenous vasodilator calcitonin-gene related peptide (CGRP) in the acute stage of SAH. Twelve consecutive patients with SAH were included. Seven patients had severe arterial vasospasm, confirmed by transcranial doppler-sonography (TCD). Prospectively, CSF was collected from day 1 to day 10 after onset of the SAH. The levels of CGRP were determined in a competitive enzyme immunoassay and were correlated with the clinical course and hemodynamic changes. A cohort of 29 patients without CNS disease served as a control. CGRP was significantly higher in SAH patients compared with the control group (p<0.05). From day 1 to day 4, the CGRP levels in patients without vasospasm were significantly higher than the levels of CGRP in patients with vasospasm (p<0.05). These patients did not develop cerebral ischemia. The significantly increased levels of the CGRP during the first days after onset of the SAH in the non-vasospasm group indicate a potential protective role of CGRP. CGRP may alleviate arterial vasoconstriction and thus protect the brain from vasospasm and subsequent ischemia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available To identify genes associated with genic male sterility (GMS that could be useful for hybrid breeding in Chinese cabbage (Brassicarapa ssp. pekinensis, floral bud transcriptome analysis was carried out using a B. rapa microarray with 300,000 probes (Br300K. Among 47,548 clones deposited on a Br300K microarray with seven probes of 60 nt length within the 3' 150 bp region, a total of 10,622 genes were differentially expressed between fertile and sterile floral buds; 4,774 and 5,848 genes were up-regulated over 2-fold in fertile and sterile buds, respectively. However, the expression of 1,413 and 199 genes showed fertile and sterile bud-specific features, respectively. Genes expressed specifically in fertile buds, possibly GMS-related genes, included homologs of several Arabidopsis male sterility-related genes, genes associated with the cell wall and synthesis of its surface proteins, pollen wall and coat components, signaling components, and nutrient supplies. However, most early genes for pollen development, genes for primexine and callose formation, and genes for pollen maturation and anther dehiscence showed no difference in expression between fertile and sterile buds. Some of the known genes associated with Arabidopsis pollen development showed similar expression patterns to those seen in this study, while others did not. BrbHLH89 and BrMYP99 are putative GMS genes. Additionally, 17 novel genes identified only in B. rapa were specifically and highly expressed only in fertile buds, implying the possible involvement in male fertility. All data suggest that Chinese cabbage GMS might be controlled by genes acting in post-meiotic tapetal development that are different from those known to be associated with Arabidopsis male sterility.

  12. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Science.gov (United States)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  13. The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Minoru; Ishimura, Akihiko; Yoshida, Masakazu [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan); Suzuki, Yutaka; Sugano, Sumio [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba (Japan); Suzuki, Takeshi, E-mail: suzuki-t@staff.kanazawa-u.ac.jp [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan)

    2010-08-20

    Research highlights: {yields} Utx increases expression of Rb and Rbl2 genes through its demethylase activity. {yields} Utx changes histone H3 methylation on the Rb and Rbl2 promoters. {yields} Utx induces decreased cell proliferation of mammalian primary cells. -- Abstract: Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control.

  14. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  15. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes

  16. A Microarray Study of Carpet-Shell Clam (Ruditapes decussatus Shows Common and Organ-Specific Growth-Related Gene Expression Differences in Gills and Digestive Gland

    Directory of Open Access Journals (Sweden)

    Carlos Saavedra

    2017-11-01

    Full Text Available Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC, i.e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/insulin-like growth factor signaling pathway (IIS, enzymes of four additional signaling pathways (Raf/Ras/Mapk, Jnk, TOR, and Hippo, and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in the microarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO term enrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others

  17. Diagnostic value of tolerance-related gene expression measured in the recipient alloantigen-reactive T cell fraction.

    Science.gov (United States)

    Lim, Dong-Gyun; Park, Youn-Hee; Kim, Sung-Eun; Jeong, Seong-Hee; Kim, Song-Cheol

    2013-08-01

    The efficient development of tolerance-inducing therapies and safe reduction of immunosuppression should be supported by early diagnosis and prediction of tolerance in transplantation. Using mouse models of donor-specific tolerance to allogeneic skin and islet grafts we tested whether measurement of tolerance-related gene expression in their alloantigen-reactive peripheral T cell fraction efficiently reflected the tolerance status of recipients. We found that Foxp3, Nrn1, and Klrg1 were preferentially expressed in conditions of tolerance compared with rejection or unmanipulated controls if their expression is measured in CD69(+) T cells prepared from coculture of recipient peripheral T cells and donor antigen-presenting cells. The same pattern of gene expression was observed in recipients grafted with either skin or islets, recipients of different genetic origins, and even those taking immunosuppressive drugs. These findings suggest that the expression of tolerance-related genes in the alloantigen-reactive T cell fraction could be used to detect tolerance in the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. DNA Methylation of Regulatory Regions of Imprinted Genes at Birth and Its Relation to Infant Temperament

    Directory of Open Access Journals (Sweden)

    Bernard F. Fuemmeler

    2016-01-01

    Full Text Available BACKGROUND DNA methylation of the differentially methylated regions (DMRs of imprinted genes is relevant to neurodevelopment. METHODS DNA methylation status of the DMRs of nine imprinted genes in umbilical cord blood leukocytes was analyzed in relation to infant behaviors and temperament (n = 158. RESULTS MEG3 DMR levels were positively associated with internalizing ( β = 0.15, P = 0.044 and surgency ( β = 0.19, P = 0.018 behaviors, after adjusting for birth weight, gender, gestational age at birth, maternal age at delivery, race/ethnicity, education level, smoking status, parity, and a history of anxiety or depression. Higher methylation levels at the intergenic MEG3-IG methylation regions were associated with surgency ( β = 0.28, P = 0.0003 and PEG3 was positively related to externalizing ( β = 0.20, P = 0.01 and negative affectivity ( β = 0.18, P = 0.02. CONCLUSION While the small sample size limits inference, these pilot data support gene-specific associations between epigenetic differences in regulatory regions of imprinted domains at birth and later infant temperament.

  19. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    Science.gov (United States)

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1.

  20. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Directory of Open Access Journals (Sweden)

    Rhonda L Feinbaum

    Full Text Available Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700 were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  1. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Science.gov (United States)

    Feinbaum, Rhonda L; Urbach, Jonathan M; Liberati, Nicole T; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  2. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse

    Energy Technology Data Exchange (ETDEWEB)

    Love, D.R.; Marsden, R.F.; Bloomfield, J.F.; Davies, K.E. (John Radcliffe Hospital, Oxford (England)); Morris, G.E.; Ellis, J.M. (North East Wales Inst., Deeside, Wales (England)); Fairbrother, U.; Edwards, Y.H. (Univ. College London (England)); Slater, C.P. (Newcastle General Hospital, Newcastle-upon-Tyne (England)); Parry, D.J. (Univ. of Ottawa, Ontario (Canada))

    1991-04-15

    The authors have previously reported a dystrophin-related locus (DMDL for Duchenne muscular dystrophy-like) on human chromosome 6 that maps close to the dy mutation on mouse chromosome 10. Here they show that this gene is expressed in a wide range of tissues at varying levels. The transcript is particularly abundant in several human fetal tissues, including heart, placenta, and intestine. Studies with antisera raised against a DMDL fusion protein identify a 400,000 M{sub r} protein in all mouse tissues tested, including those of mdx and dy mice. Unlike the dystrophin gene, the DMDL gene transcript is not differentially spliced at the 3{prime} end in either fetal muscle or brain.

  3. Polymorphism screening and mapping of nine meat performance-related genes in the pig

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Stratil, Antonín; Svatoňová, Martina; Maštálková, Lucie; Patáková, Jitka; Van Poucke, M.; Bartenschlager, H.; Peelman, L. J.; Geldermann, H.

    2010-01-01

    Roč. 41, č. 3 (2010), s. 334-335 ISSN 0268-9146 R&D Projects: GA AV ČR KJB500450801; GA ČR GA523/09/0844; GA ČR(CZ) GA523/06/1302 Institutional research plan: CEZ:AV0Z50450515 Keywords : genomics * meat performance -related genes * pig Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 2.203, year: 2010

  4. Polymorphism screening and mapping of nine meat performance-related genes in the pig

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Stratil, Antonín; Svatoňová, Martina; Maštálková, Lucie; Patáková, Jitka; Van Poucke, M.; Bartenschlager, H.; Peelman, L. J.; Geldermann, H.

    2010-01-01

    Roč. 41, č. 3 (2010), s. 334-335 ISSN 0268-9146 R&D Projects: GA AV ČR KJB500450801; GA ČR GA523/09/0844; GA ČR(CZ) GA523/06/1302 Institutional research plan: CEZ:AV0Z50450515 Keywords : genomics * meat performance-related genes * pig Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 2.203, year: 2010

  5. Comparison of Genetic Variants in Cancer-Related Genes between Chinese Hui and Han Populations.

    Directory of Open Access Journals (Sweden)

    Chaoyong Tian

    Full Text Available The Chinese Hui population, as the second largest minority ethnic group in China, may have a different genetic background from Han people because of its unique demographic history. In this study, we aimed to identify genetic differences between Han and Hui Chinese from the Ningxia region of China by comparing eighteen single nucleotide polymorphisms in cancer-related genes.DNA samples were collected from 99 Hui and 145 Han people from the Ningxia Hui Autonomous Region in China, and SNPs were detected using an improved multiplex ligase detection reaction method. Genotyping data from six 1000 Genomes Project population samples (99 Utah residents with northern and western European ancestry (CEU, 107 Toscani in Italy (TSI, 108 Yoruba in Ibadan (YRI, 61 of African ancestry in the southwestern US (ASW, 103 Han Chinese in Beijing (CHB, and 104 Japanese in Tokyo (JPT were also included in this study. Differences in the distribution of alleles among the populations were assessed using χ2 tests, and FST was used to measure the degree of population differentiation.We found that the genetic diversity of many SNPs in cancer-related genes in the Hui Chinese in Ningxia was different from that in the Han Chinese in Ningxia. For example, the allele frequencies of four SNPs (rs13361707, rs2274223, rs465498, and rs753955 showed different genetic distributions (p0.000 between the Hui and Han populations.These results suggest that some SNPs associated with cancer-related genes vary among different Chinese ethnic groups. We suggest that population differences should be carefully considered in evaluating cancer risk and prognosis as well as the efficacy of cancer therapy.

  6. Expression of estrogen-related gene markers in breast cancer tissue predicts aromatase inhibitor responsiveness.

    Directory of Open Access Journals (Sweden)

    Irene Moy

    Full Text Available Aromatase inhibitors (AIs are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC. Messenger RNA (mRNA levels of 5 estrogen-related genes-AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR-were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy-defined as the combined complete response, partial response, and stable disease rates for at least 6 months-was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36% and identical sensitivity (96% to the current clinical practice (ERα/PR-IHC. In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection.

  7. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  8. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery.

    Science.gov (United States)

    Verstraeten, Aline; Alaerts, Maaike; Van Laer, Lut; Loeys, Bart

    2016-06-01

    Marfan syndrome (MFS) is a rare, autosomal-dominant, multisystem disorder, presenting with skeletal, ocular, skin, and cardiovascular symptoms. Significant clinical overlap with other systemic connective tissue diseases, including Loeys-Dietz syndrome (LDS), Shprintzen-Goldberg syndrome (SGS), and the MASS phenotype, has been documented. In MFS and LDS, the cardiovascular manifestations account for the major cause of patient morbidity and mortality, rendering them the main target for therapeutic intervention. Over the past decades, gene identification studies confidently linked the aforementioned syndromes, as well as nonsyndromic aneurysmal disease, to genetic defects in proteins related to the transforming growth factor (TGF)-β pathway, greatly expanding our knowledge on the disease mechanisms and providing us with novel therapeutic targets. As a result, the focus of the developing pharmacological treatment strategies is shifting from hemodynamic stress management to TGF-β antagonism. In this review, we discuss the insights that have been gained in the molecular biology of MFS and related disorders over the past 25 years. © 2016 WILEY PERIODICALS, INC.

  9. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    Directory of Open Access Journals (Sweden)

    Amanda Vansan Marangon

    2013-01-01

    Full Text Available The genetic variability of the host contributes to the risk of human papillomavirus (HPV-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3, and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitoryKIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions.

  10. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    Science.gov (United States)

    Marangon, Amanda Vansan; Guelsin, Gláucia Andreia Soares; Visentainer, Jeane Eliete Laguila; Borelli, Sueli Donizete; Watanabe, Maria Angélica Ehara; Consolaro, Márcia Edilaine Lopes; Caleffi-Ferracioli, Katiany Rizzieri; Rudnick, Cristiane Conceição Chagas; Sell, Ana Maria

    2013-01-01

    The genetic variability of the host contributes to the risk of human papillomavirus (HPV)-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs) of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3), and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitory)KIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions. PMID:23936772

  11. Expression of Mesenchymal Stem Cells-Related Genes and Plasticity of Aspirated Follicular Cells Obtained from Infertile Women

    Directory of Open Access Journals (Sweden)

    Edo Dzafic

    2014-01-01

    Full Text Available After removal of oocytes for in vitro fertilization, follicular aspirates which are rich in somatic follicular cells are discarded in daily medical practice. However, there is some evidence that less differentiated cells with stem cell characteristics are present among aspirated follicular cells (AFCs. The aim of this study was to culture AFCs in vitro and to analyze their gene expression profile. Using the RT2 Profiler PCR array, we investigated the expression profile of 84 genes related to stemness, mesenchymal stem cells (MCSs, and cell differentiation in AFCs enriched by hypoosmotic protocol from follicular aspirates of infertile women involved in assisted reproduction programme in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs and fibroblasts. Altogether the expression of 57 genes was detected in AFCs: 16 genes (OCT4, CD49f, CD106, CD146, CD45, CD54, IL10, IL1B, TNF, VEGF, VWF, HDAC1, MITF, RUNX2, PPARG, and PCAF were upregulated and 20 genes (FGF2, CASP3, CD105, CD13, CD340, CD73, CD90, KDR, PDGFRB, BDNF, COL1A1, IL6, MMP2, NES, NUDT6, BMP6, SMURF2, BMP4, GDF5, and JAG1 were downregulated in AFCs when compared with BM-MSCs. The genes which were upregulated in AFCs were mostly related to MSCs and connected with ovarian function, and differed from those in fibroblasts. The cultured AFCs with predominating granulosa cells were successfully in vitro differentiated into adipogenic-, osteogenic-, and pancreatic-like cells. The upregulation of some MSC-specific genes and in vitro differentiation into other types of cells indicated a subpopulation of AFCs with specific stemness, which was not similar to those of BM-MSCs or fibroblasts.

  12. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  13. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  14. Oxytocin receptor gene (OXTR) in relation to loneliness in adolescence : interactions with sex, parental support, and DRD2 and 5-HTTLPR genotypes

    NARCIS (Netherlands)

    van Roekel, Eeske; Verhagen, Maaike; Engels, Rutger C. M. E.; Goossens, Luc; Scholte, Ron H. J.

    2013-01-01

    Background Recent research has shown that loneliness, a common problem in adolescence, may have a genetic basis. The evidence, though, was limited mostly to serotonin-related and dopamine-related genes. In the present study, we focused on the oxytocin receptor gene (OXTR).Methods Associations were

  15. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)

    2010-01-01

    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on

  16. Large scale expression changes of genes related to neuronal signaling and developmental processes found in lateral septum of postpartum outbred mice.

    Directory of Open Access Journals (Sweden)

    Brian E Eisinger

    Full Text Available Coordinated gene expression changes across the CNS are required to produce the mammalian maternal phenotype. Lateral septum (LS is a brain region critically involved with aspects of maternal care, and we recently examined gene expression of whole septum (LS and medial septum in selectively bred maternal mice. Here, we expand on the prior study by 1 conducting microarray analysis solely on LS in virgin and postpartum mice, 2 using outbred mice, and 3 evaluating the role of sensory input on gene expression changes. Large scale changes in genes related to neuronal signaling were identified, including four GABAA receptor subunits. Subunits α4 and δ were downregulated in maternal LS, likely reflecting a reduction in the extrasynaptic, neurosteroid-sensitive α4/δ containing receptor subtype. Conversely, subunits ε and θ were increased in maternal LS. Fifteen K+ channel related genes showed altered expression, as did dopamine receptors Drd1a and Drd2 (both downregulated, hypocretin receptor 1 (Hcrtr1, kappa opioid receptor 1 (Oprk1, and transient receptor potential channel 4 (Trpc4. Expression of a large number of genes linked to developmental processes or cell differentiation were also altered in postpartum LS, including chemokine (C-X-C motif ligand 12 (Cxcl12, fatty acid binding protein 7 (Fabp7, plasma membrane proteolipid (Pllp, and suppressor of cytokine signaling 2 (Socs2. Additional genes that are linked to anxiety, such as glutathione reductase (Gsr, exhibited altered expression. Pathway analysis also identified changes in genes related to cyclic nucleotide metabolism, chromatin structure, and the Ras gene family. The sensory presence of pups was found to contribute to the altered expression of a subset of genes across all categories. This study suggests that both large changes in neuronal signaling and the possible terminal differentiation of neuronal and/or glial cells play important roles in producing the maternal state.

  17. Sexy gene conversions: locating gene conversions on the X-chromosome.

    Science.gov (United States)

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  18. Light regimes differentially affect baseline transcript abundance of stress-axis and (neurodevelopment-related genes in zebrafish (Danio rerio, Hamilton 1822 AB and TL larvae

    Directory of Open Access Journals (Sweden)

    Ruud van den Bos

    2017-11-01

    Full Text Available Many strains of zebrafish (Danio rerio are readily available. Earlier we observed differences between AB and Tupfel long-fin (TL larvae regarding baseline hypothalamus-pituitary-interrenal (HPI axis activity and (neurodevelopment. Light regimes, i.e. 14 h light:10 h dark and 24 h continuous dark or light, affect hatching rate and larval growth. Here, we assessed baseline transcript abundance of HPI-axis-related genes and (neurodevelopment-related genes of AB and TL larvae (5 days post fertilisation using these light regimes. A principal component analysis revealed that in AB larvae the baseline expression of HPI-axis-related genes was higher the more hours of light, while the expression of (neurodevelopment-related genes was higher under 14 h light:10 h dark than under both continuous light or dark. In TL larvae, a complex pattern emerged regarding baseline expression of HPI-axis-related and (neurodevelopment-related genes. These data extend data of earlier studies by showing that light regimes affect gene-expression in larvae, and more importantly so, strengthen the notion of differences between larvae of the AB and TL strain. The latter finding adds to the growing database of phenotypical differences between zebrafish of the AB and TL strain.

  19. Association between polymorphisms in cancer-related genes and early onset of esophageal adenocarcinoma.

    Science.gov (United States)

    Wu, I-Chen; Zhao, Yang; Zhai, Rihong; Liu, Geoffrey; Ter-Minassian, Monica; Asomaning, Kofi; Su, Li; Liu, Chen-Yu; Chen, Feng; Kulke, Matthew H; Heist, Rebecca S; Christiani, David C

    2011-04-01

    There is an increasing incidence of esophageal adenocarcinoma (EA) among younger people in the western populations. However, the association between genetic polymorphisms and the age of EA onset is unclear. In this study, 1330 functional/tagging single-nucleotide polymorphisms (SNPs) from 354 cancer-related genes were genotyped in 335 white EA patients. Twenty important SNPs that have the highest importance scores and lowest classification error rate were identified by the random forest algorithm to be associated with early onset of EA (age ≤ 55 years). Subsequent logistic regression analysis indicated that 10 SNPs (rs2070744 of NOS3, rs720321 of BCL2, rs17757541 of BCL2, rs11775256 of TNFRSF10A, rs1035142 of CASP8, rs2236302 of MMP14, rs4740363 of ABL1, rs696217 of GHRL, rs2445762 of CYP19A1, and rs11941492 of VEGFR2/KDR) were significantly associated with early onset of EA (≤55 vs >55 years, all P polymorphisms in cancer-related genes, especially those in the apoptotic pathway, play an important role in the development of younger-aged EA in a dose-response manner.

  20. Increased missense mutation burden of Fatty Acid metabolism related genes in nunavik inuit population.

    Science.gov (United States)

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit.

  1. A polymorphism in AGT and AGTR1 gene is associated with lead-related high blood pressure.

    Science.gov (United States)

    Kim, Hyung-Ki; Lee, Hwayoung; Kwon, Jun-Tack; Kim, Hak-Jae

    2015-12-01

    We investigated the association of polymorphisms in two renin-angiotensin system-related genes, expressed as angiotensinogen (AGT) and angiotensin II type 1 receptor (AGTR1), with blood lead levels and lead-related blood pressure in lead-exposed male workers in Korea. A cross-sectional study involving 808 lead-exposed male workers in Korea was conducted using a restriction fragment length polymorphism-based strategy to differentiate the various genotypes of polymorphisms in the AGT and AGTR1 genes. The association of clinical characteristics with genotypes as modifiers was estimated after adjustment for age, smoking status, drinking status, body mass index and job duration of each subject. Genotype and allele frequencies of the M235T polymorphism in AGT were associated with lead-related high blood pressure status. Moreover, blood lead levels were associated with allele frequencies of the AGT M235T polymorphism. These results suggested that the M/M genotype and M allele of AGT are risk factors for lead-related high blood pressure. © The Author(s) 2014.

  2. Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes.

    Science.gov (United States)

    Rex, Maria; Hilton, Emma; Old, Robert

    2002-03-01

    We have investigated the induction of the six Xenopus nodal-related genes, Xnr1-Xnr6, by maternal determinants. The beta-catenin pathway was modelled by stimulation using Xwnt8, activin-like signalling was modelled by activin, and VegT action was studied by overexpression in animal cap explants. Combinations of factors were examined, and previously unrecognised interactions were revealed in animal caps and whole embryos. For the induction of Xnr5 and Xnr6 in whole embryos, using a beta-catenin antisense morpholino oligonucleotide or a dominant negative XTcf3, we have demonstrated an absolute permissive requirement for the beta-catenin/Tcf pathway, in addition to the requirement for VegT action. In animal caps Xnr5 and Xnr6 are induced in response to VegT overexpression, and this induction is dependent upon the concomitant activation of the beta-catenin pathway that VegT initiates in animal caps. For the induction of Xnr3, VegT interacts negatively so as to inhibit the induction otherwise observed with wnt-signalling alone. The negative effect of VegT is not the result of a general inhibition of wnt-signalling, and does not result from an inhibition of wnt-induced siamois expression. A 294 bp proximal promoter fragment of the Xnr3 gene is sufficient to mediate the negative effect of VegT. Further experiments, employing cycloheximide to examine the dependence of Xnr gene expression upon proteins translated after the mid-blastula stage, demonstrated that Xnrs 4, 5 and 6 are 'primary' Xnr genes whose expression in the late blastula is solely dependent upon factors present before the mid-blastula stage.

  3. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. New ALS-Related Genes Expand the Spectrum Paradigm of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Sabatelli, Mario; Marangi, Giuseppe; Conte, Amelia; Tasca, Giorgio; Zollino, Marcella; Lattante, Serena

    2016-03-01

    Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons. Clinical heterogeneity is a well-recognized feature of the disease as age of onset, site of onset and the duration of the disease can vary greatly among patients. A number of genes have been identified and associated to familial and sporadic forms of ALS but the majority of cases remains still unexplained. Recent breakthrough discoveries have demonstrated that clinical manifestations associated with ALS-related genes are not circumscribed to motor neurons involvement. In this view, ALS appears to be linked to different conditions over a continuum or spectrum in which overlapping phenotypes may be identified. In this review, we aim to examine the increasing number of spectra, including ALS/Frontotemporal Dementia and ALS/Myopathies spectra. Considering all these neurodegenerative disorders as different phenotypes of the same spectrum can help to identify common pathological pathways and consequently new therapeutic targets in these incurable diseases. © 2016 International Society of Neuropathology.

  5. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum.

    Science.gov (United States)

    Sousa, Liza Margareth Medeiros de Carvalho; Mendes, Gabriela Pacheco; Campos, Danila Barreiro; Baruselli, Pietro Sampaio; Papa, Paula de Carvalho

    2016-01-01

    We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1-the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2-the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3-the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular matrix

  6. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum.

    Directory of Open Access Journals (Sweden)

    Liza Margareth Medeiros de Carvalho Sousa

    Full Text Available We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG, modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL. Therefore, we investigated: 1-the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2-the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3-the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96. However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01. In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the

  7. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  8. Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes

    Directory of Open Access Journals (Sweden)

    Podder Soumita

    2012-01-01

    Full Text Available Abstract Background One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions. Results Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder. Conclusions Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease.

  9. In vivo release of calcitonin gene-related peptide-like material from the cervicotrigeminal area in the rat. Effects of electrical and noxious stimulations of the muzzle.

    Science.gov (United States)

    Pohl, M; Collin, E; Bourgoin, S; Clot, A M; Hamon, M; Cesselin, F; Le Bars, D

    1992-10-01

    The continuous perfusion with an artificial cerebrospinal fluid of the cervicotrigeminal area of the spinal cord in halothane-anaesthetized rats allowed the collection of calcitonin gene-related peptide-like material with the same immunological and chromatographic characteristics as authentic rat alpha-calcitonin gene-related peptide. The spinal release of calcitonin gene-related peptide-like material could be significantly increased by the local application of 60 mM K+ (approximately +100%), high-intensity percutaneous electrical stimulation (approximately +200%) and noxious heat (by immersion in water at 52 degrees C; approximately +150%) applied to the muzzle. By contrast, noxious mechanical (pinches) and chemical (subcutaneous formalin injection) stimulations and deep cooling (by immersion in water at 0 degrees C) of the muzzle did not alter the spinal release of calcitonin gene-related peptide-like material. In addition, low-intensity electrical stimulation, recruiting only the A alpha/beta primary afferent fibres, significantly reduced (approximately -30%) the release of calcitonin gene-related peptide-like material from the cervicotrigeminal area. These data suggest that among the various types of natural noxious stimuli, noxious heat may selectively excite calcitonin gene-related peptide-containing A delta and C primary afferent fibres projecting within the dorsal horn of the spinal cord, and that activation of A alpha/beta fibres reduces spontaneous calcitonin gene-related peptide-like material release possibly through an inhibitory presynaptic control of calcitonin gene-related peptide-containing A delta/C fibres.

  10. Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization.

    Science.gov (United States)

    Fister, Andrew S; Mejia, Luis C; Zhang, Yufan; Herre, Edward Allen; Maximova, Siela N; Guiltinan, Mark J

    2016-05-17

    The pathogenesis-related (PR) group of proteins are operationally defined as polypeptides that increase in concentration in plant tissues upon contact with a pathogen. To date, 17 classes of highly divergent proteins have been described that act through multiple mechanisms of pathogen resistance. Characterizing these families in cacao, an economically important tree crop, and comparing the families to those in other species, is an important step in understanding cacao's immune response. Using publically available resources, all members of the 17 recognized pathogenesis-related gene families in the genome of Theobroma cacao were identified and annotated resulting in a set of ~350 members in both published cacao genomes. Approximately 50 % of these genes are organized in tandem arrays scattered throughout the genome. This feature was observed in five additional plant taxa (three dicots and two monocots), suggesting that tandem duplication has played an important role in the evolution of the PR genes in higher plants. Expression profiling captured the dynamics and complexity of PR genes expression at basal levels and after induction by two cacao pathogens (the oomycete, Phytophthora palmivora, and the fungus, Colletotrichum theobromicola), identifying specific genes within families that are more responsive to pathogen challenge. Subsequent qRT-PCR validated the induction of several PR-1, PR-3, PR-4, and PR-10 family members, with greater than 1000 fold induction detected for specific genes. We describe candidate genes that are likely to be involved in cacao's defense against Phytophthora and Colletotrichum infection and could be potentially useful for marker-assisted selection for breeding of disease resistant cacao varieties. The data presented here, along with existing cacao-omics resources, will enable targeted functional genetic screening of defense genes likely to play critical functions in cacao's defense against its pathogens.

  11. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    Science.gov (United States)

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (Plycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  12. Activation of Arabidopsis seed hair development by cotton fiber-related genes.

    Directory of Open Access Journals (Sweden)

    Xueying Guan

    Full Text Available Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1 that is negatively regulated by TRIPTYCHON (TRY. Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2, a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0 activated fiber-like hair production in 4-6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular.

  13. Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis

    Directory of Open Access Journals (Sweden)

    Francisco eMarco

    2014-03-01

    Full Text Available It has been previously described that elevation of endogenous spermine levels in Arabidopsis could be achieved by transgenic overexpression of S-Adenosylmethionine decarboxylase (SAMDC or Spermine synthase (SPMS. In both cases, spermine accumulation had an impact on the plant transcriptome, with up-regulation of a set of genes enriched in functional categories involved in defense-related processes against both biotic and abiotic stresses. In this work, the response of SAMDC1-overexpressing plants against bacterial and oomycete pathogens has been tested. The expression of several pathogen defense-related genes was induced in these plants as well as in wild type plants exposed to an exogenous supply of spermine. SAMDC1-overexpressing plants showed an increased tolerance to infection by Pseudomonas syringae and by Hyaloperonospora arabidopsidis. Both results add more evidence to the hypothesis that spermine plays a key role in plant resistance to biotic stress.

  14. Reward dependence is related to norepinephrine transporter T-182C gene polymorphism in a Korean population.

    Science.gov (United States)

    Ham, Byung-Joo; Choi, Myoung-Jin; Lee, Heon-Jeong; Kang, Rhee-Hun; Lee, Min-Soo

    2005-06-01

    It is well established that approximately 50% of the variance in personality traits is genetic. The goal of this study was to investigate a relationship between personality traits and the T-182C polymorphism in the norepinephrine transporter gene. The participants included 115 healthy adults with no history of psychiatric disorders and other physical illness during the past 6 months. All participants were tested with the Temperament and Character Inventory and genotyped norepinephrine transporter gene polymorphism. Differences on the Temperament and Character Inventory dimensions among three groups were examined with one-way analysis of variance. Our study suggests that the norepinephrine transporter T-182C gene polymorphism is associated with reward dependence in Koreans, but the small number of study participants and their sex and age heterogeneity limits generalization of our results. Further studies are necessary with a larger number of homogeneous participants to confirm whether the norepinephrine transporter gene is related to personality traits.

  15. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits.

    Directory of Open Access Journals (Sweden)

    Angelo Scuteri

    2007-07-01

    Full Text Available The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 x10(-7, hip circumference (p = 3.4 x 10(-8, and weight (p = 9.1 x 10(-7. In Sardinia, homozygotes for the rare "G" allele of this SNP (minor allele frequency = 0.46 were 1.3 BMI units heavier than homozygotes for the common "A" allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 x 10(-6. Homozygotes for the rare "A" allele of this SNP (minor allele frequency = 0.12 were 1.8 BMI units heavier than homozygotes for the common "G" allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496 and in Hispanic Americans (N = 839, we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001, weight (p = 0.001, and hip circumference (p = 0.0005. We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare "A" allele were, on average, 1.0-3.0 BMI units heavier than homozygotes for the more common "G" allele. In summary, we have completed a whole genome-association scan for

  16. Varroa destructor induces changes in the expression of immunity-related genes during the development of Apis mellifera worker and drone broods.

    Science.gov (United States)

    Zaobidna, Ewa A; Żółtowska, Krystyna; Łopieńska-Biernat, Elżbieta

    2017-12-20

    The ectoparasitic mite Varroa destructor has emerged as the major pest of honeybees. Despite extensive research efforts, the pathogenesis of varroosis has not been fully explained. Earlier studies suggested that V. destructor infestation leads to the suppression of the host's immune system. The aim of this study was to analyze the immune responses of 14 genes in the Toll signal transduction pathways, including effector genes of antimicrobial peptides (AMPs), in developing Apis mellifera workers and drones infested with V. destructor. Four developmental stages (L5 larvae, prepupae, and 2 pupal stages) and newly emerged imagines were analyzed. In workers, the most significant changes were observed in L5 larvae in the initial stages of infestation. A significant increase in the relative expression of 10 of the 14 analyzed genes, including defensin-1 and defensin-2, was observed in infested bees relative to non-infested individuals. The immune response in drones developed at a slower rate. The expression of genes regulating cytoplasmic signal transduction increased in prepupae, whereas the expression of defensin-1 and defensin-2 effector genes increased in P3 pupae with red eyes. The expression of many immunity-related genes was silenced in successive life stages and in imagines, and it was more profound in workers than in drones. The results indicate that V. destructor significantly influences immune responses regulated by the Toll signal transduction pathway in bees. In infested bees, the observed changes in Toll pathway genes varied between life stages and the sexes.

  17. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality.

    Science.gov (United States)

    Yang, Pan; Gong, Ya-Jie; Wang, Yi-Xin; Liang, Xin-Xiu; Liu, Qing; Liu, Chong; Chen, Ying-Jun; Sun, Li; Lu, Wen-Qing; Zeng, Qiang

    2017-12-01

    Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V + /PI - spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alteration of apoptosis-related genes in postmenopausal women with uterine prolapse.

    Science.gov (United States)

    Saatli, Bahadir; Kizildag, Sefa; Cagliyan, Erkan; Dogan, Erbil; Saygili, Ugur

    2014-07-01

    We aimed to compare expression levels of antiapoptotic and proapoptotic genes in parametrial and vaginal tissues from postmenopausal women with and without pelvic organ prolapse (POP). We hypothesized that the expression of genes that induce apoptosis may be altered in vaginal and parametrial tissues in postmenopausal women with POP. Samples of vaginal and parametrial tissues were obtained from postmenopausal women with (n = 10) and without (n = 10) POP who underwent vaginal or abdominal hysterectomy. Expression levels of antiapoptotic (BCL-2, BCL-XL) and proapoptotic (BAX, BAD) genes were studied by real-time reverse-transcription polymerase chain reaction (RT-PCR). Gene expression levels of BCL-2 (P gene expression levels of BCL-2 (p gene expression levels differed significantly between postmenopausal women with and without POP. Bcl-2 family genes were overexpressed in the parametrium of patients with POP compared with vaginal tissue, suggesting that the processes responsible for POP have a greater effect on parametrial tissue than vaginal tissue during the development of POP.

  19. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Yuanman Tang

    2017-11-01

    Full Text Available Various classes of plant pathogenesis-related proteins have been identified in the past several decades. PR-Q, a member of the PR3 family encoding chitinases, has played an important role in regulating plant resistance and preventing pathogen infection. In this paper, we functionally characterized NtPR-Q in tobacco plants and found that the overexpression of NtPR-Q in tobacco Yunyan87 resulted in higher resistance to Ralstonia solanacearum inoculation. Surprisingly, overexpression of NtPR-Q led to the activation of many defense-related genes, such as salicylic acid (SA-responsive genes NtPR1a/c, NtPR2 and NtCHN50, JA-responsive gene NtPR1b and ET production-associated genes NtACC Oxidase and NtEFE26. Consistent with the role of NtPR-Q in multiple stress responses, NtPR-Q transcripts were induced by the exogenous hormones SA, ethylene and methyl jasmonate, which could enhance the resistance of tobacco to R. solanacearum. Collectively, our results suggested that NtPR-Q overexpression led to the up-regulation of defense-related genes and enhanced plant resistance to R. solanacearum infection.

  20. Calcitonin gene-related peptide does not cause the familial hemiplegic migraine phenotype

    DEFF Research Database (Denmark)

    Hansen, J.M.; Thomsen, L.L.; Olesen, J.

    2008-01-01

    Objective: The neuropeptide calcitonin gene-related peptide (CGRP) is a migraine trigger that plays a crucial role in migraine pathophysiology, and CGRP antagonism is efficient in the treatment of migraine attacks. Familial hemiplegic migraine (FHM) is a dominantly inherited subtype of migraine w...... without aura. This indicates that the pathophysiologic pathways underlying migraine headache in FHM may be different from the common types of migraine and questions whether CGRP antagonists would be effective in the treatment of FHM patients Udgivelsesdato: 2008/9/9...

  1. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress

    DEFF Research Database (Denmark)

    Olesen, Inger; Jespersen, Lene

    2010-01-01

    Relative gene transcription and virulence potential, as measured by a Caco-2 adhesion assay, were investigated for three enterohemorrhagic Escherichia coli (EHEC) strains after long-term adaptation for 24 h to acid (BHI pH 5.5) and salt (BHI 4.5% (w/v) NaCl) stress. Five virulence genes (eae, lpf...... compared to EDL933 (O157:H7, raw hamburger). Long-term adaptation to salt stress significantly increased the adhesion of all three EHEC strains to Caco-2 compared to the non-stressed controls. The present study shows that long-term adaptation to food related stress factors such as acid and salt is capable...... of changing the relative transcription of important virulence and stress response genes and increasing the virulence potential as measured by adhesion to the human colonic epithelial cell line, Caco-2....

  2. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  3. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  4. Nonsynonymous substitution rate (Ka is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2011-02-01

    Full Text Available Abstract Background Mammalian genome sequence data are being acquired in large quantities and at enormous speeds. We now have a tremendous opportunity to better understand which genes are the most variable or conserved, and what their particular functions and evolutionary dynamics are, through comparative genomics. Results We chose human and eleven other high-coverage mammalian genome data–as well as an avian genome as an outgroup–to analyze orthologous protein-coding genes using nonsynonymous (Ka and synonymous (Ks substitution rates. After evaluating eight commonly-used methods of Ka and Ks calculation, we observed that these methods yielded a nearly uniform result when estimating Ka, but not Ks (or Ka/Ks. When sorting genes based on Ka, we noticed that fast-evolving and slow-evolving genes often belonged to different functional classes, with respect to species-specificity and lineage-specificity. In particular, we identified two functional classes of genes in the acquired immune system. Fast-evolving genes coded for signal-transducing proteins, such as receptors, ligands, cytokines, and CDs (cluster of differentiation, mostly surface proteins, whereas the slow-evolving genes were for function-modulating proteins, such as kinases and adaptor proteins. In addition, among slow-evolving genes that had functions related to the central nervous system, neurodegenerative disease-related pathways were enriched significantly in most mammalian species. We also confirmed that gene expression was negatively correlated with evolution rate, i.e. slow-evolving genes were expressed at higher levels than fast-evolving genes. Our results indicated that the functional specializations of the three major mammalian clades were: sensory perception and oncogenesis in primates, reproduction and hormone regulation in large mammals, and immunity and angiotensin in rodents. Conclusion Our study suggests that Ka calculation, which is less biased compared to Ks and Ka

  5. Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise

    Directory of Open Access Journals (Sweden)

    Renae Jane Stefanetti

    2014-01-01

    Full Text Available Skeletal muscle atrophy is a critical component of the ageing process. Age-related muscle wasting is due to disrupted muscle protein turnover, a process mediated in part by the ubiquitin proteasome pathway (UPP. Additionally, older subjects have been observed to have an attenuated anabolic response, at both the molecular and physiological levels, following a single-bout of resistance exercise (RE. We investigated the expression levels of the UPP-related genes and proteins involved in muscle protein degradation in 10 older (60-75 years versus 10 younger (18-30 years healthy male subjects at basal as well as 2 hours after a single-bout of RE. MURF1, atrogin-1 and FBXO40, their substrate targets PKM2, myogenin, MYOD, MHC and EIF3F as well as MURF1 and atrogin-1 transcriptional regulators FOXO1 and FOXO3 gene and/or protein expression levels were measured via real time PCR and western blotting, respectively. At basal, no age-related difference was observed in the gene/protein levels of atrogin-1, MURF1, myogenin, MYOD and FOXO1/3. However, a decrease in FBXO40 mRNA and protein levels was observed in older subjects, while PKM2 protein was increased in older subjects. In response to RE, MURF1, atrogin-1 and FBXO40 mRNA were upregulated in both the younger and older subjects, with changes observed in protein levels. In conclusion, UPP-related gene/protein expression is comparably regulated in healthy young and old male subjects at basal and following RE. These findings suggest that UPP signalling plays a limited role in the process of age-related muscle wasting. Future studies are required to investigate additional proteolytic mechanisms in conjunction with skeletal muscle protein breakdown measurements following RE in older versus younger subjects.

  6. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism.

    Science.gov (United States)

    Bakst, M R; Welch, G R; Fetterer, R; Miska, K

    2016-06-01

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 d leads to a progressive increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associated with fatty acid metabolism (8), apoptosis (7), and oxidative stress (16) pathways to better understand the basis of embryo mortality during egg storage. A total of 642 broiler eggs in 2 separate trials were subjected to the following egg treatments: stored 4 d (Control 1, C1); stored 21 d but subjected to short periods of incubation during egg storage (SPIDES); stored un-manipulated 21 d (NonSPIDES, NS); and stored 4 d then incubated for 10 h to advance the embryos to the same developmental stages as the SPIDES embryos (Control 2, C2). Hatchability trials (277 eggs) confirmed the efficacy of SPIDES compared to NS treatments in both trials. To determine relative expression of 31 selected genes, 365 blastoderms were isolated, staged, and flash frozen in batches of 5 to 10 blastoderms per vial (7 vials per egg treatment) prior to RNA extractions. Analysis of gene expression was performed using qRT-PCR and the results presented as relative expression normalized to C1. The relative expression of genes in which the SPIDES and C2 treatments were significantly up- or down-regulated in tandem indicated that the stage-specific expression of those genes was maintained by the SPIDES treatment. This study provides the relative gene expressions of blastodermal cells before and after prolonged egg storage as well as insight as to how SPIDES impacts blastodermal cell gene expression. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Jung, In-Ho; Lee, Jai-Young; Choi, Jinhee

    2007-07-31

    In this study, di(2-ethylhexyl)phthalate (DEHP) toxicities to Caenorhabditis elegans were investigated using multiple toxic endpoints, such as mortality, growth, reproduction and stress-related gene expression, focusing on the identification of chemical-induced gene expression as a sensitive biomarker for DEHP monitoring. The possible use of C. elegans as a sentinel organism in the monitoring of soil ecosystem health was also tested by conducting the experiment on the exposure of nematode to field soil. Twenty-four-hour median lethal concentration (LC50) data suggest that DEHP has a relatively high potential of acute toxicity to C. elegans. Decreases in body length and egg number per worm observed after 24h of DEHP exposure may induce long-term alteration in the growth and reproduction of the nematode population. Based on the result from the C. elegans genome array and indicated in the literatures, stress proteins, metallothionein, vitellogenin, xenobiotic metabolism enzymes, apoptosis-related proteins, and antioxidant enzyme genes were selected as stress-related genes and their expression in C. elegans by DEHP exposure was analyzed semi-quantitatively. Expression of heat shock protein (hsp)-16.1 and hsp-16.2 genes was decreased by DEHP exposure. Expression of cytochrome P450 (cyp) 35a2 and glutathione-S-transferease (gst)-4, phase I and phase II of xenobiotic metabolism enzymes, was increased by DEHP exposure in a concentration-dependent manner. An increase in stress-related gene expressions occurred concomitantly with the deterioration on the physiological level, which suggests an increase in expression of those genes may not be considered as a homeostatic response but as a toxicity that might have physiological consequences. The experiment with the soil from the landfill site suggests that the potential of the C. elegans biomarker identified in laboratory conditions should be calibrated and validated for its use in situ.

  8. Altered expression of the TCR signaling related genes CD3 and FcεRIγ in patients with aplastic anemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2012-03-01

    Full Text Available Abstract Background Aplastic anemia (AA is characterized by pancytopenia and bone marrow hypoplasia, which results from immune-mediated hematopoiesis suppression. Understanding the pathophysiology of the immune system, particularly T cells immunity, has led to improved AA treatment over the past decades. However, primary and secondary failure after immunosuppressive therapy is frequent. Thus, knowledge of the immune mechanisms leading to AA is crucial to fundamentally understand the disease. Findings To elucidate the T cell receptor (TCR signal transduction features in AA, the expression levels of CD3γ, δ, ε and ζ chain and FcεRIγ genes, which are involved in TCR signal transduction, and the negative correlation of the expression levels between the CD3ζ and FcεRIγ genes in T cells from peripheral blood mononuclear cells (PBMCs were analyzed. Real-time RT-PCR using the SYBR Green method was used to detect the expression level of these genes in PBMCs from 18 patients with AA and 14 healthy individuals. The β2microglobulin gene (β2M was used as an endogenous reference. The expression levels of the CD3γ, CD3δ, CD3ε and CD3ζ genes in patients with AA were significantly increased compared to a healthy control group, whereas the FcεRIγ gene expression level was significantly decreased in patients with AA in comparison with the healthy control group. Moreover, the negative correlation of the expression levels between the CD3ζ and FcεRIγ genes was lost. Conclusions To our knowledge, this is the first report of the CD3γ, CD3δ, CD3ε, CD3ζ and FcεRIγ gene expression in patients with AA. The abnormally expressed TCR signaling related genes may relate to T cells dysfunction in AA.

  9. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.

    Science.gov (United States)

    Gangwar, Manali; Sood, Hemant; Chauhan, Rajinder Singh

    2016-04-01

    Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.

  10. [Correlation of gene expression related to amount of ginseng saponin in 15 tissues and 6 kinds of ginseng saponin biosynthesis].

    Science.gov (United States)

    Wang, Kang-yu; Zhang, Mei-ping; Li, Chuang; Jiang, Shi-cui; Yin, Rui; Sun, Chun-yu; Wang, Yi

    2015-08-01

    Fifteen tissues of 4-year-old fruit repining stage Jilin ginseng were chosen as materials, six kinds of monomer saponins (ginsenosides Rg1, Re, Rb1, Rc, Rb2 and Rd) content in 15 tissues was measured by HPLC and vanillin-sulfuric acid method. The relative expression of FPS, SQS, SQE, OSC, β-AS and P450 genes in 15 tissues was analyzed by real-time PCR. The correlations between ginseng saponin content in 15 tissues of Jilin ginseng and biosynthetic pathway -related genes were obtained. The results showed that was a synergistic increase and decrease trend of positive linear correlation among six kinds of monomer saponin content, and there was a significantly (P saponin content and total saponins content. Monomer saponin content and 6 kinds of enzyme gene correlation were different. Biosynthesis of ginseng total saponins and monomer saponin were regulated by six kinds of participation ginsenoside biosynthesis enzyme genes, the expression of these six kinds of genes in different tissues of ginseng showed collaborative increase and decrease trend, and regulated biosynthesis of ginseng ginsenoside by group coordinative manner.

  11. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior.

    Science.gov (United States)

    Tsoi, Lam C; Qin, Tingting; Slate, Elizabeth H; Zheng, W Jim

    2011-11-11

    To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray

  12. Comparative Study on Reagents Involved in Grape Bud Break and Their Effects on Different Metabolites and Related Gene Expression during Winter

    Directory of Open Access Journals (Sweden)

    Muhammad Khalil-Ur-Rehman

    2017-08-01

    Full Text Available To elucidate promoting and inhibiting effects of hydrogen cynamide (HC and abscisic acid (ABA on quiescence release of grape buds, physiological and molecular approaches were used to explore the mechanisms of quiescence based on metabolic and gene expression analysis. Physiological and molecular mechanisms involved in bud quiescence of grape were studied before and after application of HC, ABA, and ABA-HC. The data showed that ABA inhibited proclamation of quiescence in grape buds and attenuated the influence of HC. Bud quiescence was promoted and regulated by HC and ABA pre-treatment on buds of grape cultivar “Shine Muscat” with 5% HC, 100 μM ABA and combination of ABA-HC (5% HC+100 μM ABA during quiescence under forcing condition. Exogenous application of ABA elevated superoxide dismutase (SOD, peroxidase (POD and ascorbate peroxidase (APX related specific activities, while catalase (CAT activity was increased during initial period of forcing and then decreased. The concentration of plant growth hormones including gibberellins (GA and indole acetic acid increased by HC application but decreased the ABA contents under forcing condition. ABA increased the fructose content during quiescence under forcing condition while sucrose and total soluble sugars peaked in HC treated buds as compared to control. Genes related to ABA pathway, protein phosphatase 2C (PP2C family were down regulated in the buds treated with HC, ABA and ABA-HC as compared to control while two genes related to GA pathway (GID1 family, out of which one gene showed down regulation during initial period of forcing while other gene was up regulated in response to HC and ABA-HC treatments as compared to control. Exogenous ABA application up regulated genes related to antioxidant enzymes as compared to control. The gene probable fructose-bisphosphate aldolase 1, chloroplastic-like, was up regulated in response to ABA treatment as compared to control. Analysis of metabolites and

  13. No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes.

    Science.gov (United States)

    Soerensen, Mette; Nygaard, Marianne; Debrabant, Birgit; Mengel-From, Jonas; Dato, Serena; Thinggaard, Mikael; Christensen, Kaare; Christiansen, Lene

    2016-06-01

    In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16 additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed with phenotype data on physical functioning (hand grip strength), cognitive functioning (mini mental state examination and a cognitive composite score), activity of daily living and self-rated health. Five SNPs showed association to one of the phenotypes; however, none of these SNPs were associated with a change in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes consistently shown to predict survival. It is possible that larger sample sizes are needed to robustly reveal associations with small effect sizes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Aroma Quality of Fruits of Wild and Cultivated Strawberry (FRAGARIA SPP. in Relation to the Flavour-Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Bianchi Giulia

    2014-09-01

    Full Text Available Expression profiles of flavour-related genes and the aroma quality of fruit headspace were investigated in the four strawberry genotypes ‘Reine des Vallées’ (Fragaria vesca, ‘Profumata di Tortona’ (F mos-chata, ‘Onda’ and VR 177 selection (F” x ananassa. Differences in the expression level of genes coding of strawberry alcohol acyltransferase (SAAT, F. x ananassa nerolidol synthase 1 (FaNESl and F vesca monoterpene and sesquiterpene synthases (FvPINS and PINS1, respectively were detected among these genotypes. In fruits of F. x ananassa the terpenoid profile was dominated by nerolidol, whereas wild spe–cies produced mainly monoterpenes. It was correlated with the higher induction of FaNES1 in cultivated and PINS gene in the wild Fragaria species. The flavour biogenesis in ripening fruits was determined by the expression of SAAT gene, especially visible for ‘Profumata di Tortona’ and ‘Onda’ strawberries. The fruit solid-phase microextraction (SPME headspace was analysed using the Gas Chromatography-Olfac–tometry (GC-O, that allows for the chromatographic separation of volatiles together with their olfactomet-ric evaluation. ‘Reine des Vallées’ fruits have a peculiar profile characterized by high concentrations of limonene, linalool and mesifurane that resulted in “spiced”, “citrus, floral” and “sweet, baked” descriptors. The character impact compound in ‘Profumata di Tortona’ fruits was ethyl butanoate, responsible for “sweet” and “fruity, strawberry” descriptors. However, it was detected in lower amount in comparison to the data obtained for F. x ananassa strawberries. The sesquiterpene nerolidol was identified in both culti–vated strawberry genotypes.

  15. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  16. Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin.

    Science.gov (United States)

    Shu, Benshui; Zhang, Jingjing; Sethuraman, Veeran; Cui, Gaofeng; Yi, Xin; Zhong, Guohua

    2017-10-16

    As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome data for Sf9 cell line was accomplished using Illumina sequencing technology, and 97 putative apoptosis-related genes were identified through BLAST and KEGG orthologue annotations. Fragments of potential candidate apoptosis-related genes were cloned, and the mRNA expression patterns of ten identified genes regulated by azadirachtin were examined using qRT-PCR. Furthermore, Western blot analysis showed that six putative apoptosis-related proteins were upregulated after being treated with azadirachtin while the protein Bcl-2 were downregulated. These data suggested that both intrinsic and extrinsic apoptotic signal pathways comprising the identified potential apoptosis-related genes were potentially active in S. frugiperda. In addition, the preliminary results revealed that caspase-dependent or caspase-independent apoptotic pathways could function in azadirachtin-induced apoptosis in Sf9 cells.

  17. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

    Directory of Open Access Journals (Sweden)

    João Paulo Fabi

    Full Text Available Papaya (Carica papaya L. is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.

  18. Relationships between genetic polymorphisms in inflammation-related factor gene and the pathogenesis of nasopharyngeal cancer.

    Science.gov (United States)

    Qu, Yan-Li; Yu, Hong; Chen, Yan-Zhi; Zhao, Yu-Xia; Chen, Guang-Jun; Bai, Lu; Liu, Dan; Su, Hong-Xin; Wang, He-Tong

    2014-09-01

    Our study aims to discuss the association between inflammation-related factors such as single nucleotide polymorphisms (SNPs) with susceptibility and recurrence in nasopharyngeal carcinoma. We used Taqman real-time polymerase chain reaction (PCR) to characterize the genetic variation of five SNPs in 194 nasopharyngeal carcinoma patients and 231 healthy subjects. All statistical analysis is performed with statistical product and service solutions v13.0; odds ratio (OR) value and 95 % confidence interval (CI) were calculated. There is no relationship between TGFβ1 -869 T/C, IL-6 -634C/G, TGFβ1 -509C/T, IL1 -511C/T and nasopharyngeal carcinoma susceptibility. Both single factor and multiple factors analysis showed that IL1a -889 T/T genotype is significantly associated with nasopharyngeal carcinoma in decreasing the risk of nasopharyngeal carcinoma. A highly significant association was found between IL1a -889 T/T genotype and protective genotype as defined by various pathological types. This is more obvious in the protective genotype of the non-keratin-type squamous carcinoma undifferentiated type. We also discovered that genotype G/G and C/G + G/G of IL6 -634 gene are associated with reduced recurrence of nasopharyngeal carcinoma. IL1a -889 gene polymorphism and susceptibility is related to nasopharyngeal carcinoma and can potentially decrease the risk of nasopharyngeal carcinoma in the Han Chinese population in north China. IL1-889 TT genotype is protective genotype for nasopharyngeal carcinoma. We have provided evidence that the GG genotype of the IL6 -634 gene is associated with recurrent risk of nasopharyngeal carcinoma. The G allele is the protective gene of nasopharyngeal carcinoma recurrence.

  19. Identification and detection of a novel human endogenous retrovirus-related gene, and structural characterization of its related elements

    Directory of Open Access Journals (Sweden)

    Qiaoyi Liang

    2009-01-01

    Full Text Available Up-regulation of human endogenous retroviruses (HERVs is associated with many diseases, including cancer. In this study, an H family HERV (HERV-H-related gene was identified and characterized. Its spliced transcript lacks protein-coding capacity and may belong to the emerging class of noncoding RNAs (ncRNAs. The 1.3-kb RNA consisting of four exons is transcribed from an Alu element upstream of a 5.0-kb structurally incomplete HERV-H element. RT-PCR and quantitative RT-PCR results indicated that expression of this HERV-related transcript was negatively associated with colon, stomach, and kidney cancers. Its expression was induced upon treatment with DNA methylation and histone deacetylation inhibitors. A BLAT search using long terminal repeats (LTRs identified 50 other LTR homogenous HERV-H elements. Further analysis of these elements revealed that all are structurally incomplete and only five exert transcriptional activity. The results presented here recommend further investigation into a potentially functional HERV-H-related ncRNA.

  20. Sex-related differences in gene expression following Coxiella burnetii infection in mice: potential role of circadian rhythm.

    Directory of Open Access Journals (Sweden)

    Julien Textoris

    Full Text Available BACKGROUND: Q fever, a zoonosis due to Coxiella burnetii infection, exhibits sexual dimorphism; men are affected more frequently and severely than women for a given exposure. Here we explore whether the severity of C. burnetii infection in mice is related to differences in male and female gene expression profiles. METHODOLOGY/PRINCIPAL FINDINGS: Mice were infected with C. burnetii for 24 hours, and gene expression was measured in liver cells using microarrays. Multiclass analysis identified 2,777 probes for which expression was specifically modulated by C. burnetti infection. Only 14% of the modulated genes were sex-independent, and the remaining 86% were differentially expressed in males and females. Castration of males and females showed that sex hormones were responsible for more than 60% of the observed gene modulation, and this reduction was most pronounced in males. Using functional annotation of modulated genes, we identified four clusters enriched in males that were related to cell-cell adhesion, signal transduction, defensins and cytokine/Jak-Stat pathways. Up-regulation of the IL-10 and Stat-3 genes may account for the high susceptibility of men with Q fever to C. burnetii infection and autoantibody production. Two clusters were identified in females, including the circadian rhythm pathway, which consists of positive (Clock, Arntl and negative (Per limbs of a feedback loop. We found that Clock and Arntl were down-modulated whereas Per was up-regulated; these changes may be associated with efficient bacterial elimination in females but not in males, in which an exacerbated host response would be prominent. CONCLUSION: This large-scale study revealed for the first time that circadian rhythm plays a major role in the anti-infectious response of mice, and it provides a new basis for elucidating the role of sexual dimorphism in human infections.

  1. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Hypertension-Related Gene Polymorphisms of G-Protein-Coupled Receptor Kinase 4 Are Associated with NT-proBNP Concentration in Normotensive Healthy Adults

    Directory of Open Access Journals (Sweden)

    Junichi Yatabe

    2012-01-01

    Full Text Available G protein-coupled receptor kinase 4 (GRK4 with activating polymorphisms desensitize the natriuric renal tubular D1 dopamine receptor, and these GRK4 polymorphisms are strongly associated with salt sensitivity and hypertension. Meanwhile, N-terminal pro-B-type natriuretic peptide (NT-proBNP may be useful in detecting slight volume expansion. However, relations between hypertension-related gene polymorphisms including GRK4 and cardiovascular indices such as NT-proBNP are not clear, especially in healthy subjects. Therefore, various hypertension-related polymorphisms and cardiovascular indices were analyzed in 97 normotensive, healthy Japanese adults. NT-proBNP levels were significantly higher in subjects with two or more GRK4 polymorphic alleles. Other hypertension-related gene polymorphisms, such as those of renin-angiotensin-aldosterone system genes, did not correlate with NT-proBNP. There was no significant association between any of the hypertension-related gene polymorphisms and central systolic blood pressure, cardioankle vascular index, augmentation index, plasma aldosterone concentration, or an oxidative stress marker, urinary 8-OHdG. Normotensive individuals with GRK4 polymorphisms show increased serum NT-proBNP concentration and may be at a greater risk of developing hypertension and cardiovascular disease.

  3. Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains

    Directory of Open Access Journals (Sweden)

    Runa Kuley

    2017-08-01

    Full Text Available Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. During 2007–2010 the largest Q fever outbreak ever reported occurred in The Netherlands. It is anticipated that strains from this outbreak demonstrated an increased zoonotic potential as more than 40,000 individuals were assumed to be infected. The acquisition of novel genetic factors by these C. burnetii outbreak strains, such as virulence-related genes, has frequently been proposed and discussed, but is not proved yet. In the present study, the whole genome sequence of several Dutch strains (CbNL01 and CbNL12 genotypes, a few additionally selected strains from different geographical locations and publicly available genome sequences were used for a comparative bioinformatics approach. The study focuses on the identification of specific genetic differences in the outbreak related CbNL01 strains compared to other C. burnetii strains. In this approach we investigated the phylogenetic relationship and genomic aspects of virulence and host-specificity. Phylogenetic clustering of whole genome sequences showed a genotype-specific clustering that correlated with the clustering observed using Multiple Locus Variable-number Tandem Repeat Analysis (MLVA. Ortholog analysis on predicted genes and single nucleotide polymorphism (SNP analysis of complete genome sequences demonstrated the presence of genotype-specific gene contents and SNP variations in C. burnetii strains. It also demonstrated that the currently used MLVA genotyping methods are highly discriminatory for the investigated outbreak strains. In the fully reconstructed genome sequence of the Dutch outbreak NL3262 strain of the CbNL01 genotype, a relatively large number of transposon-linked genes were identified as compared to the other published complete genome sequences of C. burnetii. Additionally, large numbers of SNPs in its membrane proteins and predicted virulence-associated genes were identified

  4. TDZ pulsing evaluation on the in vitro morphogenesis of peach palm.

    Science.gov (United States)

    Graner, Erika Mendes; Oberschelp, Gustavo Pedro Javier; Brondani, Gilvano Ebling; Batagin-Piotto, Katherine Derlene; de Almeida, Cristina Vieira; de Almeida, Marcílio

    2013-04-01

    Peach palm (Bactris gasipaes Kunth.) cropping is an excellent alternative to native species exploitation; nevertheless, the problems with seed germination and conventional propagation justify the use of in vitro culturing. Aiming to asses TDZ pulsing effect on B. gasipaes morphogenesis, explants obtained from unarmed microplants were maintained in two treatments, half of them in MS free medium (without growth regulator) and the other half in MS with TDZ (0.36 μM). Both groups were transferred to growth regulator-free MS medium following 14 days of culture. After 84 days of culture, TDZ pulsing increased the growth and development of the shoots, restricted the growth and development of the roots, with no influence on adventitious bud induction or somatic embryogenesis. Furthermore, development of prickles, thickening of roots and chlorotic leaves were noted under TDZ pulsing. Leaf sheath histological analysis showed an epidermal origin and no vascularization of these prickles.

  5. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  6. Neurocarta: aggregating and sharing disease-gene relations for the neurosciences.

    Science.gov (United States)

    Portales-Casamar, Elodie; Ch'ng, Carolyn; Lui, Frances; St-Georges, Nicolas; Zoubarev, Anton; Lai, Artemis Y; Lee, Mark; Kwok, Cathy; Kwok, Willie; Tseng, Luchia; Pavlidis, Paul

    2013-02-26

    Understanding the genetic basis of diseases is key to the development of better diagnoses and treatments. Unfortunately, only a small fraction of the existing data linking genes to phenotypes is available through online public resources and, when available, it is scattered across multiple access tools. Neurocarta is a knowledgebase that consolidates information on genes and phenotypes across multiple resources and allows tracking and exploring of the associations. The system enables automatic and manual curation of evidence supporting each association, as well as user-enabled entry of their own annotations. Phenotypes are recorded using controlled vocabularies such as the Disease Ontology to facilitate computational inference and linking to external data sources. The gene-to-phenotype associations are filtered by stringent criteria to focus on the annotations most likely to be relevant. Neurocarta is constantly growing and currently holds more than 30,000 lines of evidence linking over 7,000 genes to 2,000 different phenotypes. Neurocarta is a one-stop shop for researchers looking for candidate genes for any disorder of interest. In Neurocarta, they can review the evidence linking genes to phenotypes and filter out the evidence they're not interested in. In addition, researchers can enter their own annotations from their experiments and analyze them in the context of existing public annotations. Neurocarta's in-depth annotation of neurodevelopmental disorders makes it a unique resource for neuroscientists working on brain development.

  7. High arterial compliance in cirrhosis is related to low adrenaline and elevated circulating calcitonin gene related peptide but not to activated vasoconstrictor systems

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Møller, S; Schifter, S

    2001-01-01

    catecholamines, renin activity, endothelin-1, and calcitonin gene related peptide (CGRP) at baseline and during oxygen inhalation. RESULTS: COMP(art) was significantly increased in cirrhotic patients compared with controls (1.32 v 1.06 ml/mm Hg; padrenaline levels (r=-0.......001) and central circulation time (r=-0.49; padrenaline (-16%; p... to COMP(art) disappeared. The relation of COMP(art) to CGRP and circulatory variables remained unchanged. CONCLUSION: Elevated arterial compliance in cirrhosis is related to low adrenaline, high CGRP, and systemic hyperdynamics but not to indicators of the activated vasoconstrictor systems (noradrenaline...

  8. Bio-Oss® modified by calcitonin gene-related peptide promotes osteogenesis in vitro.

    Science.gov (United States)

    Li, Yuanjing; Yang, Lan; Zheng, Zhichao; Li, Zhengmao; Deng, Tian; Ren, Wen; Wu, Caijuan; Guo, Lvhua

    2017-11-01

    Bio-Oss ® and α-calcitonin gene-related peptide (CGRP) are involved in osteogenesis. However, it has remained to be assessed how α-CGRP affects the effect of Bio-Oss. In the present study, primary osteoblasts were incubated with α-CGRP, Bio-Oss, α-GGRP-Bio-Oss or mimic-α-CGRP. The proliferation rate, mineralization nodules, alkaline phosphatase (ALP) activity and the expression of osteogenic genes were measured by a Cell Counting Kit-8 assay, Alizarin Red-S staining, ALP activity detection and reverse-transcription quantitative PCR as well as western blot analysis, respectively. The proliferation rate, ALP activity and the number of mineralization nodules were significantly increased in the α-CGRP-modified Bio-Oss group compared to that in the Bio-Oss group. The mRNA and protein levels of osteocalcin, Runt-related transcription factor-2 and ALP were significantly upregulated in the α-CGRP-Bio-Oss group compared with those in the Bio-Oss group. Furthermore, the effect of mimic-α-CGRP on osteogenesis was reduced as it carried a mutation. In conclusion, the present study was the first to demonstrate that Bio-Oss modified with CGRP contributed to osteogenesis and may provide a novel formulation applied in the clinic for restoration of large bone defects.

  9. Relative codon adaptation: a generic codon bias index for prediction of gene expression.

    Science.gov (United States)

    Fox, Jesse M; Erill, Ivan

    2010-06-01

    The development of codon bias indices (CBIs) remains an active field of research due to their myriad applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as a novel CBI able to estimate codon bias without using a reference set. The results of this new index when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications to conclude that natural selection favours higher expression and enhanced codon usage optimization in short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful reference-set-based index that directly takes into account the genomic base composition. Finally, we show that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating on the CAI reference set and that this improvement is significantly larger when analysing genomes with high mutational bias.

  10. Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies.

    Science.gov (United States)

    Guerrini, Renzo; Parrini, Elena

    2012-12-01

    Rett syndrome is an X-linked neurodevelopmental disorder that manifests in early childhood with developmental stagnation, and loss of spoken language and hand use, with the development of distinctive hand stereotypies, severe cognitive impairment, and autistic features. About 60% of patients have epilepsy. Seizure onset before the age of 3 years is unlikely, and onset after age 20 is rare. Diagnosis of Rett syndrome is based on key clinical elements that identify "typical" Rett syndrome but also "variant" or "atypical" forms. Diagnostic criteria have been modified only slightly over time, even after discovering that MECP2 gene alterations are present in >90% of patients with typical Rett syndrome but only in 50-70% of atypical cases. Over the last several years, intragenic or genomic alterations of the CDKL5 and FOXG1 genes have been associated with severe cognitive impairment, early onset epilepsy and, often, dyskinetic movement disorders, which have variably been defined as Rett variants. It is now clearly emerging that epilepsy has distinctive characteristics in typical Rett syndrome and in the different syndromes caused by CDKL5 and FOXG1 gene alterations. The progressive parting of CDKL5- and FOXG1-gene-related encephalopathies from the core Rett syndrome is reflected by the effort to produce clearer diagnostic criteria for typical and atypical Rett syndrome. Efforts to characterize the molecular pathology underlying these developmental encephalopathies are pointing to abnormalities of telencephalic development, neuronal morphogenesis, maturation and maintenance, and dendritic arborization. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  11. Analysis of 30 genes (355 SNPS) related to energy homeostasis for association with adiposity in European-American and Yup'ik Eskimo populations.

    Science.gov (United States)

    Chung, Wendy K; Patki, Amit; Matsuoka, Naoki; Boyer, Bert B; Liu, Nianjun; Musani, Solomon K; Goropashnaya, Anna V; Tan, Perciliz L; Katsanis, Nicholas; Johnson, Stephen B; Gregersen, Peter K; Allison, David B; Leibel, Rudolph L; Tiwari, Hemant K

    2009-01-01

    Human adiposity is highly heritable, but few of the genes that predispose to obesity in most humans are known. We tested candidate genes in pathways related to food intake and energy expenditure for association with measures of adiposity. We studied 355 genetic variants in 30 candidate genes in 7 molecular pathways related to obesity in two groups of adult subjects: 1,982 unrelated European Americans living in the New York metropolitan area drawn from the extremes of their body mass index (BMI) distribution and 593 related Yup'ik Eskimos living in rural Alaska characterized for BMI, body composition, waist circumference, and skin fold thicknesses. Data were analyzed by using a mixed model in conjunction with a false discovery rate (FDR) procedure to correct for multiple testing. After correcting for multiple testing, two single nucleotide polymorphisms (SNPs) in Ghrelin (GHRL) (rs35682 and rs35683) were associated with BMI in the New York European Americans. This association was not replicated in the Yup'ik participants. There was no evidence for gene x gene interactions among genes within the same molecular pathway after adjusting for multiple testing via FDR control procedure. Genetic variation in GHRL may have a modest impact on BMI in European Americans.

  12. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality

    International Nuclear Information System (INIS)

    Yang, Pan; Gong, Ya-Jie; Wang, Yi-Xin; Liang, Xin-Xiu; Liu, Qing; Liu, Chong; Chen, Ying-Jun; Sun, Li; Lu, Wen-Qing

    2017-01-01

    Background: Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. Objectives: We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. Methods: In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. Results: We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V + /PI − spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). Conclusion: Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health. - Highlights: • We used two urine samples to assess the individual's phthalate exposure levels. • Fas, FasL, and caspase3 variants modified the association between phthalate exposure and spermatozoa apoptosis. • Caspase3 variants modified the association between phthalate exposure and semen quality. • Gene-environment interaction effects should be

  13. New Face for Chromatin-Related Mesenchymal Modulator: n-CHD9 Localizes to Nucleoli and Interacts With Ribosomal Genes.

    Science.gov (United States)

    Salomon-Kent, Ronit; Marom, Ronit; John, Sam; Dundr, Miroslav; Schiltz, Louis R; Gutierrez, Jose; Workman, Jerry; Benayahu, Dafna; Hager, Gordon L

    2015-09-01

    Mesenchymal stem cells' differentiation into several lineages is coordinated by a complex of transcription factors and co-regulators which bind to specific gene promoters. The Chromatin-Related Mesenchymal Modulator, CHD9 demonstrated in vitro its ability for remodeling activity to reposition nucleosomes in an ATP-dependent manner. Epigenetically, CHD9 binds with modified H3-(K9me2/3 and K27me3). Previously, we presented a role for CHD9 with RNA Polymerase II (Pol II)-dependent transcription of tissue specific genes. Far less is known about CHD9 function in RNA Polymerase I (Pol I) related transcription of the ribosomal locus that also drives specific cell fate. We here describe a new form, the nucleolar CHD9 (n-CHD9) that is dynamically associated with Pol I, fibrillarin, and upstream binding factor (UBF) in the nucleoli, as shown by imaging and molecular approaches. Inhibitors of transcription disorganized the nucleolar compartment of transcription sites where rDNA is actively transcribed. Collectively, these findings link n-CHD9 with RNA pol I transcription in fibrillar centers. Using chromatin immunoprecipitation (ChIP) and tilling arrays (ChIP- chip), we find an association of n-CHD9 with Pol I related to rRNA biogenesis. Our new findings support the role for CHD9 in chromatin regulation and association with rDNA genes, in addition to its already known function in transcription control of tissue specific genes. © 2015 Wiley Periodicals, Inc.

  14. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor ( Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2015-10-01

    Full Text Available The AT motif-binding factor (ATBF1 not only interacts with protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3 (PIAS3 to suppress STAT3 signaling regulating embryo early development and cell differentiation, but is required for early activation of the pituitary specific transcription factor 1 (Pit1 gene (also known as POU1F1 critically affecting mammalian growth and development. The goal of this study was to detect novel nucleotide variations and haplotypes structure of the ATBF1 gene, as well as to test their associations with growth-related traits in goats. Herein, a total of seven novel single nucleotide polymorphisms (SNPs (SNP 1-7 within this gene were found in two well-known Chinese native goat breeds. Haplotypes structure analysis demonstrated that there were four haplotypes in Hainan black goat while seventeen haplotypes in Xinong Saanen dairy goat, and both breeds only shared one haplotype (hap1. Association testing revealed that the SNP2, SNP5, SNP6, and SNP7 loci were also found to significantly associate with growth-related traits in goats, respectively. Moreover, one diplotype in Xinong Saanen dairy goats significantly linked to growth related traits. These preliminary findings not only would extend the spectrum of genetic variations of the goat ATBF1 gene, but also would contribute to implementing marker-assisted selection in genetics and breeding in goats.

  15. Cross-species comparison of the gut: Differential gene expression sheds light on biological differences in closely related tenebrionids.

    Science.gov (United States)

    Oppert, Brenda; Perkin, Lindsey; Martynov, Alexander G; Elpidina, Elena N

    2018-04-01

    The gut is one of the primary interfaces between an insect and its environment. Understanding gene expression profiles in the insect gut can provide insight into interactions with the environment as well as identify potential control methods for pests. We compared the expression profiles of transcripts from the gut of larval stages of two coleopteran insects, Tenebrio molitor and Tribolium castaneum. These tenebrionids have different life cycles, varying in the duration and number of larval instars. T. castaneum has a sequenced genome and has been a model for coleopterans, and we recently obtained a draft genome for T. molitor. We assembled gut transcriptome reads from each insect to their respective genomes and filtered mapped reads to RPKM>1, yielding 11,521 and 17,871 genes in the T. castaneum and T. molitor datasets, respectively. There were identical GO terms in each dataset, and enrichment analyses also identified shared GO terms. From these datasets, we compiled an ortholog list of 6907 genes; 45% of the total assembled reads from T. castaneum were found in the top 25 orthologs, but only 27% of assembled reads were found in the top 25 T. molitor orthologs. There were 2281 genes unique to T. castaneum, and 2088 predicted genes unique to T. molitor, although improvements to the T. molitor genome will likely reduce these numbers as more orthologs are identified. We highlight a few unique genes in T. castaneum or T. molitor that may relate to distinct biological functions. A large number of putative genes expressed in the larval gut with uncharacterized functions (36 and 68% from T. castaneum and T. molitor, respectively) support the need for further research. These data are the first step in building a comprehensive understanding of the physiology of the gut in tenebrionid insects, illustrating commonalities and differences that may be related to speciation and environmental adaptation. Published by Elsevier Ltd.

  16. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    Science.gov (United States)

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  17. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    Science.gov (United States)

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  18. Suppression subtractive hybridization as a tool to identify anthocyanin metabolism-related genes in apple skin.

    Science.gov (United States)

    Ban, Yusuke; Moriguchi, Takaya

    2010-01-01

    The pigmentation of anthocyanins is one of the important determinants for consumer preference and marketability in horticultural crops such as fruits and flowers. To elucidate the mechanisms underlying the physiological process leading to the pigmentation of anthocyanins, identification of the genes differentially expressed in response to anthocyanin accumulation is a useful strategy. Currently, microarrays have been widely used to isolate differentially expressed genes. However, the use of microarrays is limited by its high cost of special apparatus and materials. Therefore, availability of microarrays is limited and does not come into common use at present. Suppression subtractive hybridization (SSH) is an alternative tool that has been widely used to identify differentially expressed genes due to its easy handling and relatively low cost. This chapter describes the procedures for SSH, including RNA extraction from polysaccharides and polyphenol-rich samples, poly(A)+ RNA purification, evaluation of subtraction efficiency, and differential screening using reverse northern in apple skin.

  19. Characterization of a molt-related myostatin gene (FmMstn) from the banana shrimp Fenneropenaeus merguiensis.

    Science.gov (United States)

    Zhuo, Rui Qun; Zhou, Ting Ting; Yang, Shi Ping; Chan, Siuming Francis

    2017-07-01

    Myostatin is an important member of the transforming growth factor (TGF) family that functions to regulate muscle growth in animals. In this study, the myostatin gene (FmMstn) and two slightly different (short and long forms) cDNAs of the banana shrimp Fenneropenaeus merguiensis were cloned and characterized. Similar to Mstn gene of the scallop, fish and mammal, FmMstn gene consists of 3 exons and 2 introns. The 2kb upstream promoter region of the FmMstn gene consists of putative response elements for myocyte enhancing factor (MEF2) and E-box factors. The longest open reading frame of the short Mstn consists of 1260bp encoding for a protein with 420 amino acid residues. The long FmMstn is almost identical to the short FmMstn with the exception of 8 amino acid insertions. FmMstn is most similar to the Mstn of Litopenaeus vannamei and Penaeus monodon sharing >92-98% amino acid sequence identity. Multiple sequence alignment results revealed high degree of amino acid conservation of the cysteine residues and mature peptide of the FmMstn with Mstn from other animals. FmMstn transcript was detected in the heart, muscle, optic nerve and thoracic ganglion. FmMstn transcript level in muscle is higher in early postmolt, decreases in intermolt and increases again towards ecdysis. Higher expression level of FmMstn is also observed in smaller shrimp of the same age. Knock-down of FmMstn gene by RNAi can cause a significant increase in molt cycle duration and failure of some shrimp to undergo ecdysis. Direct DNA sequencing results revealed that FmMstn gene is highly polymorphic and several potential SNPs have been identified. Some SNPs are associated with the size difference of the shrimp. In summary, the result of this study indicates that shrimp FmMstn gene is molt/growth-related and the presence of SNP suggests that it could be a candidate gene for shrimp genetic improvement research. Copyright © 2017. Published by Elsevier Inc.

  20. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese

    OpenAIRE

    Mayumi Enya; Yukio Horikawa; Katsumi Iizuka; Jun Takeda

    2014-01-01

    Background: None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. Method: We screened all exons of the incretin-related genes (GCG, GLP1R, DPP4, PCSK1, GIP, and GIPR) in 96 patients with type 2 diabetes and investigated for association of...

  1. Identification of new ovulation-related genes in humans by comparing the transcriptome of granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation cycle

    DEFF Research Database (Denmark)

    Wissing, M L; Kristensen, S G; Andersen, C Y

    2014-01-01

    . Many new ovulation-related genes were revealed, such as CD24, ANKRD22, CLDN11 and FBXO32. FF estrogen, androstenedione and anti-Müllerian hormone decreased significantly while progesterone increased, accompanied by radical changes in the expression of steroidogenic genes (CYP17A, CYP19A, HSD11B1......, REASONS FOR CAUTION: The present dataset was generated from women under hormonal stimulation. However, comparison with a macaque natural cycle whole follicle ovulation dataset revealed major overlap, supporting the idea that the ovulation-related genes found in this study are relevant in the human natural...... cycle. WIDER IMPLICATIONS OF THE FINDINGS: These data will serve as a research resource for genes involved in human ovulation and final oocyte maturation. Ovulation-related genes might be good candidate biomarkers of follicle and oocyte health. Further, some of the ovulation-related genes may serve...

  2. Histological analysis and identification of spermatogenesis-related genes in 2-, 6-, and 12-month-old sheep testes

    Science.gov (United States)

    Bai, Man; Sun, Limin; Zhao, Jia; Xiang, Lujie; Cheng, Xiaoyin; Li, Jiarong; Jia, Chao; Jiang, Huaizhi

    2017-10-01

    Testis development and spermatogenesis are vital factors that influence male animal fertility. In order to identify spermatogenesis-related genes and further provide a theory basis for finding biomarkers related to male sheep fertility, 2-, 6-, and 12-month-old Small Tail Han Sheep testes were selected to investigate the dynamic changes of sheep testis development. Hematoxylin-eosin routine staining and RNA-Seq technique were used to perform histological and transcriptome analysis for these testes. The results showed that 630, 102, and 322 differentially expressed genes (DEGs) were identified in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes, respectively. GO and KEGG analysis showed the following: DEGs in 2- vs 6-month-old testes were mainly related to the GO terms of sexual maturation and the pathways of multiple metabolism and biosynthesis; in 6- vs 12-month-old testes, most of the GO terms that DEGs involved in were related to metabolism and translation processes; the most significantly enriched pathway is the ribosome pathway. The union of DEGs in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes was categorized into eight profiles by series cluster. Subsequently, the eight profiles were classified into four model profiles and four co-expression networks were constructed based on the DEGs in these model profiles. Finally, 29 key regulatory genes related to spermatogenesis were identified in the four co-expression networks. The expression of 13 DEGs (CA3, APOH, MYOC, CATSPER4, SYT6, SERPINA10, DAZL, ADIPOR2, RAB13, CEP41, SPAG4, ODF1, and FRG1) was validated by RT-PCR.

  3. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    Science.gov (United States)

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  4. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC......) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177- subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177- subsets in microarray analysis were re-assessed using...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  5. The Ciona intestinalis immune-related galectin genes (CiLgals-a and CiLgals-b) are expressed by the gastric epithelium.

    Science.gov (United States)

    Parrinello, Daniela; Sanfratello, Maria Antonietta; Vizzini, Aiti; Testasecca, Lelia; Parrinello, Nicolò; Cammarata, Matteo

    2017-03-01

    The transcription of two Ciona intestinalis galectin genes (CiLgals-a and CiLgals-b) is uparegulated by LPS in the pharynxis (hemocytes, vessel epithelium, endostilar zones) which is retained the main organ of the immunity. In this ascidian, for the first time we show, by immunohistochemistry and in situ hybridization methods, that these two immune-related genes are expressed in the gastric epithelium of naïve ascidians, whereas the galectins appear to be only contained in the intestine columnar epithelium. In addition, according to previous results on the pharynx, the genes are also expressed and galectins produced by hemocytes scattered in the connective tissue surrounding the gut. The genes expression and galectin localization in several tissues, including the previous findings on the transcription upregulation, the constitutive expression of these genes by endostylar zones and by the gastric epithelium suggest a potential multifunctional role of these galectins. In this respect, it is of interest to define where the CiLgals are normally found as related to the tissue functions. Such an approach should be a starting point for further investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene.

    Science.gov (United States)

    Charron, P; Dubourg, O; Desnos, M; Bennaceur, M; Carrier, L; Camproux, A C; Isnard, R; Hagege, A; Langlard, J M; Bonne, G; Richard, P; Hainque, B; Bouhour, J B; Schwartz, K; Komajda, M

    1998-06-09

    Little information is available on phenotype-genotype correlations in familial hypertrophic cardiomyopathy that are related to the cardiac myosin binding protein C (MYBPC3) gene. The aim of this study was to perform this type of analysis. We studied 76 genetically affected subjects from nine families with seven recently identified mutations (SASint20, SDSint7, SDSint23, branch point int23, Glu542Gln, a deletion in exon 25, and a duplication/deletion in exon 33) in the MYBPC3 gene. Detailed clinical, ECG, and echocardiographic parameters were analyzed. An intergene analysis was performed by comparing the MYBPC3 group to seven mutations in the beta-myosin heavy-chain gene (beta-MHC) group (n=52). There was no significant phenotypic difference among the different mutations in the MYBPC3 gene. However, in the MYBPC3 group compared with the beta-MHC group, (1) prognosis was significantly better (P<0.0001), and no deaths occurred before the age of 40 years; (2) the age at onset of symptoms was delayed (41+/-19 versus 35+/-17 years, P<0.002); and (3) before 30 years of age, the phenotype was particularly mild because penetrance was low (41% versus 62%), maximal wall thicknesses lower (12+/-4 versus 16+/-7 mm, P<0.03), and abnormal T waves less frequent (9% versus 45%, P<0.02). These results are consistent with specific clinical features related to the MYBPC3 gene: onset of the disease appears delayed and the prognosis is better than that associated with the beta-MHC gene. These findings could be particularly important for the purpose of clinical management and genetic counseling in familial hypertrophic cardiomyopathy.

  7. Identification of functionally related genes using data mining and data integration: a breast cancer case study

    Directory of Open Access Journals (Sweden)

    Zucchi Ileana

    2009-10-01

    Full Text Available Abstract Background The identification of the organisation and dynamics of molecular pathways is crucial for the understanding of cell function. In order to reconstruct the molecular pathways in which a gene of interest is involved in regulating a cell, it is important to identify the set of genes to which it interacts with to determine cell function. In this context, the mining and the integration of a large amount of publicly available data, regarding the transcriptome and the proteome states of a cell, are a useful resource to complement biological research. Results We describe an approach for the identification of genes that interact with each other to regulate cell function. The strategy relies on the analysis of gene expression profile similarity, considering large datasets of expression data. During the similarity evaluation, the methodology determines the most significant subset of samples in which the evaluated genes are highly correlated. Hence, the strategy enables the exclusion of samples that are not relevant for each gene pair analysed. This feature is important when considering a large set of samples characterised by heterogeneous experimental conditions where different pools of biological processes can be active across the samples. The putative partners of the studied gene are then further characterised, analysing the distribution of the Gene Ontology terms and integrating the protein-protein interaction (PPI data. The strategy was applied for the analysis of the functional relationships of a gene of known function, Pyruvate Kinase, and for the prediction of functional partners of the human transcription factor TBX3. In both cases the analysis was done on a dataset composed by breast primary tumour expression data derived from the literature. Integration and analysis of PPI data confirmed the prediction of the methodology, since the genes identified to be functionally related were associated to proteins close in the PPI network

  8. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  9. [Clinical significance of calcitonin gene-related peptide level before and after treatment in patients with chronic periodontitis].

    Science.gov (United States)

    Yan, Ying; Xiang, Xue-Rong; Wang, Chun; Ye, Guo; Fan, Xiao-Ping

    2016-08-01

    To explore the clinical significance of calcitonin gene-related peptide (CGRP) levels in patients with chronic periodontitis before and after treatment, and to detect the calcitonin gene-related peptide content in human venous blood. Thirty healthy controls and thirty patients with mild, moderate, severe periodontitis were enrolled from August 2014 to June 2015.CGRP level in the patients' peripheral blood was detected by ELISA. Three months after periodontal treatment, CGRP level in mild, moderate, severe periodontitis patients' peripheral blood was re-examined by ELISA. Then the correlation between calcitonin gene-related peptide and inflammation of chronic periodontitis was analyzed with SPSS 22.0 software package. The content of CGRP in healthy controls was significantly higher than that in patients with periodontitis. With the aggravation of periodontal inflammation, blood level of CGRP decreased gradually, and the lowest was in patients with severe periodontitis (Pperiodontal treatment, CGRP content was significantly higher compared with that before treatment (Pperiodontitis (P>0.05). The level of CGRP in venous blood decreased with the increasing severity of chronic periodontitis, and CGRP was negatively correlated with the degree of inflammation of chronic periodontitis. CGRP may be involved in the occurrence and development of chronic periodontitis. CGRP content in serum of patients with chronic periodontitis after treatment was significantly increased, CGRP may be used as the basis for clinical detection of chronic periodontitis.

  10. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba

    Directory of Open Access Journals (Sweden)

    Manhong Ye

    2016-07-01

    Full Text Available Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI’s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.

  11. Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration

    Science.gov (United States)

    Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...

  12. Osteoporosis and Related Genes: VDR, ESR And COL1A1

    Directory of Open Access Journals (Sweden)

    Sabriye Kocaturk Sel

    2011-08-01

    Full Text Available Osteoporosis is now considered as one of the major and growing health care problems around the world. Osteoporosis is the most prevalent metabolic bone disease among developed countries and it is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue with a consequent increase in bone fragility. Bone is a highly metabolically active tissue in which the processes of osteoblastic bone formation and osteoclastic bone resorption are continuous throughout life. Coupling of osteoblast and osteoclast action ensures that a normal bone structure is maintained. A loss of bone homeostasis may result in a decrease in bone mass leading to osteoporosis or in a defect in the mineralization of bone. Numerous genetic, hormonal, nutritional and life-style factors contribute to the acquisition and maintenance of bone mass. Among them, genetic variations explain as much as 50-80% of the variance for bone mineral density (BMD in the population. Many genes that could be related to osteoporosis have been studied and of them all Vitamin D receptor (VDR, estrogen receptor alpha (ESRα and collagen 1 alpha 1 chain (COL1A1 genes have been the most focused on. [Archives Medical Review Journal 2011; 20(4.000: 246-269

  13. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna

    International Nuclear Information System (INIS)

    Vandegehuchte, Michiel B.; De Coninck, Dieter; Vandenbrouck, Tine; De Coen, Wim M.; Janssen, Colin R.

    2010-01-01

    A reduced level of DNA methylation has recently been described in both Zn-exposed and non-exposed offspring of Daphnia magna exposed to Zn. The hypothesis examined in this study is that DNA hypomethylation has an effect on gene transcription. A second hypothesis is that accumulative epigenetic effects can affect gene transcription in non-exposed offspring from parents with an exposure history of more than one generation. Transcriptional gene regulation was studied with a cDNA microarray. In the exposed and non-exposed hypomethylated daphnids, a large proportion of common genes were similarly up- or down-regulated, indicating a possible effect of the DNA hypomethylation. Two of these genes can be mechanistically involved in DNA methylation reduction. The similar transcriptional regulation of two and three genes in the F 0 and F 1 exposed daphnids on one hand and their non-exposed offspring on the other hand, could be the result of a one-generation temporary transgenerational epigenetic effect, which was not accumulative. - Zn-induced DNA hypomethylation is related to gene transcription in Daphnia magna and Zn exposure potentially induced limited temporary transgenerational effects on gene transcription.

  14. Generation and Analysis of Expressed Sequence Tags (ESTs from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes

    Directory of Open Access Journals (Sweden)

    Jingtao Li

    2014-06-01

    Full Text Available Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs were also identified contributing to the study of A. canescens resources.

  15. A spatial assessment of Brassica napus gene flow potential to wild and weedy relatives in the Fynbos Biome

    Directory of Open Access Journals (Sweden)

    J. M. Kalwij

    2010-01-01

    Full Text Available Gene flow between related plant species, and between transgenic and non-transgenic crop varieties, may be considered a form of biological invasion. Brassica napus (oilseed rape or canola and its relatives are well known for intra- and inter-specific gene flow, hybridisation and weediness. Gene flow associated with B. napus poses a potential ecological risk in the Fynbos Biome of South Africa, because of the existence of both naturalised (alien, weedy and native relatives in this region. This risk is particularly pertinent given the proposed use of B. napus for biofuel and the potential future introduction of herbicide-tolerant transgenic B. napus. Here we quantify the presence and co-occurrence of B. napus and its wild and weedy relatives in the Fynbos Biome, as a first step in the ecological risk assessment for this crop. Several alien and at least one native relative of B. napus were found to be prevalent in the region, and to be spatially congruent with B. napus fields. The first requirement for potential gene flow to occur has thus been met. In addition, a number of these species have elsewhere been found to be reproductively compatible with B. napus. Further assessment of the potential ecological risks associated with B. napus in South Africa is constrained by uncertainties in the phylogeny of the Brassicaceae, difficulties with morphology-based identification, and poor knowledge of the biology of several of the species involved, particularly under South African conditions.

  16. Cell cycle–related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients

    Science.gov (United States)

    Chen, Jinyun; Pande, Mala

    2013-01-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle–related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle–related genes and 31 DNA repair–related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan–Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P Lynch syndrome. PMID:23125224

  17. Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients.

    Science.gov (United States)

    Chen, Jinyun; Pande, Mala; Huang, Yu-Jing; Wei, Chongjuan; Amos, Christopher I; Talseth-Palmer, Bente A; Meldrum, Cliff J; Chen, Wei V; Gorlov, Ivan P; Lynch, Patrick M; Scott, Rodney J; Frazier, Marsha L

    2013-02-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle-related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle-related genes and 31 DNA repair-related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan-Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P Lynch syndrome.

  18. Expression Analysis of Stress-Related Genes in Kernels of Different Maize (Zea mays L.) Inbred Lines with Different Resistance to Aflatoxin Contamination

    Science.gov (United States)

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu

    2011-01-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  19. Reward-related genes and personality traits in alcohol-dependent individuals: a pilot case control study.

    Science.gov (United States)

    Landgren, Sara; Berglund, Kristina; Jerlhag, Elisabet; Fahlke, Claudia; Balldin, Jan; Berggren, Ulf; Zetterberg, Henrik; Blennow, Kaj; Engel, Jörgen A

    2011-01-01

    Components of the brain reward system, i.e. the mesolimbic dopamine, laterodorsal cholinergic and ghrelin signaling systems, have been implicated in alcohol reward in preclinical studies. Genetic variants of these systems have previously been linked to alcohol dependence. Here, we genotyped 31 single nucleotide polymorphisms (SNPs): 1 SNP in the dopamine D₂ receptor (DRD2) gene, 20 SNPs in 5 different nicotinic acetylcholine receptor subunit (CHRN*) genes, and 10 SNPs in the genes encoding pro-ghrelin (GHRL) and its receptor (GHSR), in a pilot study of type 1 alcoholics (n = 84) and healthy controls (n = 32). These individuals were characterized using the Temperament and Character Inventory. None of the SNPs were associated with risk of alcohol dependence in this population. The GG genotype of SNP rs13261190 in the CHRNB3 was associated with increased novelty seeking, while SNPs of the ghrelin signaling system were associated with decreased self-directedness (AA of rs495225, GHSR) and alterations in self-transcendence (AA of both rs42451 and rs35680, GHRL). In conclusion, this pilot study suggests that reward-related genes are associated with altered personality scores in type 1 alcohol dependence, which warrants future studies of these associations in larger study samples. Copyright © 2011 S. Karger AG, Basel.

  20. Bacterial feeding induces changes in immune-related gene expression and has trans-generational impacts in the cabbage looper (Trichoplusia ni

    Directory of Open Access Journals (Sweden)

    Vogel Heiko

    2009-05-01

    Full Text Available Abstract Background Poly- and oligophagous insects are able to feed on various host plants with a wide range of defense strategies. However, diverse food plants are also inhabited by microbiota differing in quality and quantity, posing a potential challenge for immune system mediated homeostasis in the herbivore. Recent studies highlight the complex interactions between environmentally encountered microorganisms and herbivorous insects, pointing to a potential adaptational alteration of the insects' physiology. We performed a differential gene expression analysis in whole larvae and eggs laid by parents grown on different diets to identify potential novel genes related to elevated microbial content in the caterpillars' food. Results We used GeneFishing, a novel differential display method, to study the effects of dietary bacteria on the general gene expression in different life stages and tissues of the cabbage looper (Trichoplusia ni. We were able to visualize several hundred transcripts on agarose gels, one fifth of which were differentially expressed between treatments. The largest number of differentially expressed genes was found in defense-related processes (13 and in recognition and metabolism (16. 21 genes were picked out and further tested for differential gene expression by an independent method (qRT-PCR in various tissues of larvae grown on bacterial and bacteria-free diet, and also in adults. We detected a number of genes indicative of an altered physiological status of the insect, depending on the diet, developmental stage and tissue. Conclusion Changes in immune status are accompanied by specific changes in the transcript levels of genes connected to metabolism and homeostasis of the organism. Our findings show that larval feeding on bacteria-rich diet leads to substantial gene expression changes, potentially resulting in a reorganization of the insects' metabolism to maintain organismal homeostasis, not only in the larval but also