WorldWideScience

Sample records for prf laser system

  1. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria

    International Nuclear Information System (INIS)

    Pudovkin, M S; Korableva, S L; Krasheninnicova, A O; Nizamutdinov, A S; Semashko, V V; Zelenihin, P V; Alakshin, E M; Nevzorova, T A

    2014-01-01

    The article is devoted to exploration of biological effects of crystalline PrF 3 nanoparticles toward Salmonella typhimurium TA 98 bacteria under the laser irradiation. Obtained results show bactericidal activity of PrF 3 nanoparticles and optimal parameters of laser irradiation (power of laser irradiation, wavelength, diameter of the laser spoil, and exposure time) have been found under which the effects of bactericidal activity become the most significant. Survival of bacterial cells under laser irradiation with wavelength 532 nm in colloidal solution of PrF 3 nanoparticles was 39%, 34%, 20% for exposure times 5 minutes, 15 minutes and 30 minutes, correspondingly

  2. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  3. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  4. Breakdown of Preservative Fluid MIL-PRF-46170 in Aircraft Hydraulic Systems

    National Research Council Canada - National Science Library

    Moorman, Jeffrey

    2001-01-01

    .... Additional information obtained from outside sources is also summarized for background. Laboratory pump testing showed rapid filter dogging with small amounts of preservative fluid (MU-PRF-46l70) in the system...

  5. PRF

    African Journals Online (AJOL)

    GB

    BACKGROUND: Multirooted teeth offer unique and challenging problems due to the furcation ... defect including autografts (7-11), demineralised ... treatment. Platelet-rich fibrin (PRF) developed in. France by Choukroun et al (14) is a second.

  6. Plutonium reclamation facility (PRF, building 236-Z) layup plan

    International Nuclear Information System (INIS)

    ANDERSON, R.N.

    1999-01-01

    This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future

  7. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  8. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  9. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    Science.gov (United States)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  10. Lyophilized Platelet-Rich Fibrin (PRF Promotes Craniofacial Bone Regeneration through Runx2

    Directory of Open Access Journals (Sweden)

    Qi Li

    2014-05-01

    Full Text Available Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF. LPRF caused a 4.8-fold ± 0.4-fold elevation in Runt-related transcription factor 2 (Runx2 expression in alveolar bone cells, compared to a 3.6-fold ± 0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p < 0.001 when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.

  11. In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate.

    Science.gov (United States)

    Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Fıratlı, Erhan

    2013-07-01

    We have developed a new, titanium-prepared, platelet-rich fibrin (T-PRF) together with the protocol for forming it, which is based on the hypothesis that titanium tubes may be more effective at activating platelets than the glass tubes used by Chouckroun in his platelet-rich fibrin (PRF) method. The aim of this study was to find a suitable animal model in which to evaluate the method and to investigate the efficacy of T-PRF for wound healing. Blood samples from 6 rabbits were used to confirm the protocol for formation of T-PRF. We evaluated T-PRF or T-PRF-like clots morphologically using scanning electron microscopy (EM). Blood samples from 5 rabbits were used to develop an experiment in which to evaluate the effects of T-PRF on wound healing. The mucoperiosteal flaps were filled with autologous T-PRF membranes from the vestibule in the anterior mandibular regions. Samples collected from the surgical sites were stained with haematoxylin and eosin. We found a mature fibrin network in T-PRF clots that had been centrifuged for 15 min at 3500 rpm and, 15 days after placement of the membrane, we found newly-forming connective tissue and islets of bony tissue in the T-PRF membrane. These results show that T-PRF could induce the formation of new bone with new connective tissue in a rabbit model of wound healing within 30 days of treatment. Published by Elsevier Ltd.

  12. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    International Nuclear Information System (INIS)

    Langley, Jason; Potter, William; Phipps, Corey; Zhao Qun; Huang Feng

    2011-01-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature. (note)

  13. Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2.

    Science.gov (United States)

    Li, Qi; Reed, David A; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G H

    2014-05-14

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold±0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold±0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (pfibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.

  14. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  15. Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study

    KAUST Repository

    Luong, Minh Bau

    2016-10-11

    The ignition characteristics of a lean primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated using 2-D direct numerical simulations (DNSs) with a 116-species reduced mechanism of PRF oxidation. For RCCI combustion, n-heptane and iso-octane are used as two different reactivity fuels and the corresponding global PRF number is PRF50 which is also used as a single fuel for SCCI combustion. The 2-D DNSs of RCCI/SCCI combustion are performed by varying degree of fuel stratification, r, and turbulence intensity, u\\', at different initial mean temperature, T , with negatively-correlated T-r fields. It is found that in the low- and intermediate-temperature regimes, the overall combustion of RCCI cases occurs earlier and its mean heat release rate (HRR) is more distributed over time than those of the corresponding SCCI cases. This is because PRF number stratification, PRF\\', plays a dominant role and T\\' has a negligible effect on the overall combustion within the negative temperature coefficient (NTC) regime. In the high-temperature regime, however, the difference between RCCI and SCCI combustion becomes marginal because the ignition of the PRF/air mixture is highly-sensitive to T\\' rather than PRF\\' and ϕ(symbol)\\'. The Damköhler number analysis verifies that the mean HRR is more distributed over time with increasing r because the portion of deflagration mode of combustion becomes larger with increasing fuel stratification. Finally, it is found that the overall combustion of both RCCI and SCCI cases becomes more like the 0-D ignition with increasing u\\' due to the homogenization of initial mixture by turbulent mixing.

  16. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  17. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke

    2017-01-01

    of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression...... antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act...... as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract....

  18. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  19. Leucocyte- and platelet-rich fibrin (L-PRF) as a regenerative medicine strategy for the treatment of refractory leg ulcers: a prospective cohort study.

    Science.gov (United States)

    Pinto, Nelson R; Ubilla, Matias; Zamora, Yelka; Del Rio, Verónica; Dohan Ehrenfest, David M; Quirynen, Marc

    2017-07-20

    Chronic wounds (VLU: venous leg ulcer, DFU: diabetic foot ulcer, PU: pressure ulcer, or complex wounds) affect a significant proportion of the population. Despite appropriate standard wound care, such ulcers unfortunately may remain open for months or even years. The use of leukocyte- and platelet-rich fibrin (L-PRF) to cure skin ulcers is a simple and inexpensive method, widely used in some countries but unknown or neglected in most others. This auto-controlled prospective cohort study explored and quantified accurately for the first time the adjunctive benefits of topical applications of L-PRF in the management of such refractory ulcers in a diverse group of patients. Forty-four consecutive patients with VLUs (n = 28, 32 wounds: 17 ≤ 10 cm 2 and 15 > 10 cm 2 ), DPUs (n = 9, 10 wounds), PUs (n = 5), or complex wounds (n = 2), all refractory to standard treatment for ≥3 months, received a weekly application of L-PRF membranes. L-PRF was prepared following the original L-PRF method developed more than 15 years ago (400g, 12 minutes) using the Intra-Spin L-PRF centrifuge/system and the XPression box kit (Intra-Lock, Boca Raton, FL, USA; the only CE/FDA cleared system for the preparation of L-PRF). Changes in wound area were recorded longitudinally via digital planimetry. Adverse events and pain levels were also registered. All wounds showed significant improvements after the L-PRF therapy. All VLUs ≤ 10 cm 2 , all DFUs, as well as the two complex wounds showed full closure within a 3-month period. All wounds of patients with VLUs > 10 cm 2 who continued therapy (10 wounds) could be closed, whereas in the five patients who discontinued therapy improvement of wound size was observed. Two out of the five PUs were closed, with improvement in the remaining three patients who again interrupted therapy (surface evolution from 7.35 ± 4.31 cm 2 to 5.78 ± 3.81 cm 2 ). No adverse events were observed. A topical application of L-PRF on

  20. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Pinto, Nelson R; Pereda, Andrea; Jiménez, Paula; Corso, Marco Del; Kang, Byung-Soo; Nally, Mauricio; Lanata, Nicole; Wang, Hom-Lay; Quirynen, Marc

    2018-03-01

    L-PRF (leukocyte- and platelet-rich fibrin) is one of the four families of platelet concentrates for surgical use and is widely used in oral and maxillofacial regenerative therapies. The first objective of this article was to evaluate the mechanical vibrations appearing during centrifugation in four models of commercially available table-top centrifuges used to produce L-PRF and the impact of the centrifuge characteristics on the cell and fibrin architecture of a L-PRF clot and membrane. The second objective of this article was to evaluate how changing some parameters of the L-PRF protocol may influence its biological signature, independently from the characteristics of the centrifuge. In the first part, four different commercially available centrifuges were used to produce L-PRF, following the original L-PRF production method (glass-coated plastic tubes, 400 g force, 12 minutes). The tested systems were the original L-PRF centrifuge (Intra-Spin, Intra-Lock, the only CE and FDA cleared system for the preparation of L-PRF) and three other laboratory centrifuges (not CE/FDA cleared for L-PRF): A-PRF 12 (Advanced PRF, Process), LW-UPD8 (LW Scientific) and Salvin 1310 (Salvin Dental). Each centrifuge was opened for inspection, two accelerometers were installed (one radial, one vertical), and data were collected with a spectrum analyzer in two configurations (full-load or half load). All clots and membranes were collected into a sterile surgical box (Xpression kit, Intra-Lock). The exact macroscopic (weights, sizes) and microscopic (photonic and scanning electron microscopy SEM) characteristics of the L-PRF produced with these four different machines were evaluated. In the second part, venous blood was taken in two groups, respectively, Intra-Spin 9 ml glass-coated plastic tubes (Intra-Lock) and A-PRF 10 ml glass tubes (Process). Tubes were immediately centrifuged at 2700 rpm (around 400 g) during 12 minutes to produce L-PRF or at 1500 rpm during 14 minutes to produce A-PRF

  1. Comparison between PRP, PRGF and PRF: lights and shadows in three similar but different protocols.

    Science.gov (United States)

    Giannini, S; Cielo, A; Bonanome, L; Rastelli, C; Derla, C; Corpaci, F; Falisi, G

    2015-01-01

    The main goal of the modern surgery is to get a low invasiveness and a high rate of clinical healing: in the last years, it has been introduced the concept of a "regenerative surgery", and many techniques has been widely described in the literature. The most used are PRP, PRGF and PRF techniques. Aim of this research is to compare the three protocol of PRP, PRF and PRGF in their essential features, so to suggest to the practitioners the best blood product to use in the regenerative surgery. Among the advantages that shows the PRF, compared to PRP and PRGF, we can cite a greater simplicity of production for the absence of manipulation that leads to a reduced possibility of alteration of the protocol due to an error of the operator. The special texture of the PRF and its biological features shows clearly an interesting surgical versatility and all the characteristics that can support a faster tissues regeneration and high-quality clinical outcomes.

  2. Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study

    Directory of Open Access Journals (Sweden)

    Marco Lollobrigida

    2018-01-01

    Full Text Available Objective. Platelet-rich fibrin (PRF clots and membranes are autologous blood concentrates widely used in oral surgical procedures; less is known, however, about the liquid formulations of such products. The aim of this in vitro study is to assess the behavior of different implant surfaces when in contact with two liquid leucocyte- and platelet-rich fibrin (L-PRF products. Methods. Six commercial pure titanium discs, of 9.5 mm diameter and 1.5 mm thickness, were used. Three of these samples had a micro/nano-rough surface; three were machined. Three different protocols were tested. Protocols involved the immersion of the samples in (1 a platelets, lymphocytes, and fibrinogen liquid concentrate (PLyF for 10 minutes, (2 an exudate obtained from L-PRF clots rich in fibronectin and vitronectin for 5 minutes, and (3 the fibronectin/vitronectin exudate for 2 minutes followed by immersion in the PLyF concentrate for further 8 minutes. After these treatments, the samples were fixed and observed using a scanning electron microscope (SEM. Results. Under microscopic observation, (1 the samples treated with the PLyF concentrate revealed a dense fibrin network in direct contact with the implant surface and a significant number of formed elements of blood; (2 in the samples treated with the fibronectin/vitronectin exudates, only a small number of white and red blood cells were detectable; and (3 in samples exposed to the combined treatment, there was an apparent increase in the thickness of the fibrin layer. When compared to the machined surface, the micro/nano-rough samples showed an overall increased retention of fibrin, leading to a thicker coating. Conclusions. Liquid L-PRF products promote the formation of a dense fibrin clot on micro/nano-rough implant surfaces in vitro. The adjunctive treatment of surfaces with the fibronectin/vitronectin exudate could provide support to contact of the fibrin with the surface, though it is not essential for the clot

  3. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  4. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    Science.gov (United States)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Laser melting of groove defect repair on high thermal conductivity steel (HTCS-150)

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Fazliana, F.; Reza, M. S.; Ismail, I.; Khairil, C. M.

    2018-02-01

    This paper presents laser melting repair of groove defect on HTCS-150 surface using Nd:YAG laser system. Laser melting process was conducted using JK300HPS Nd:YAG twin lamp laser source with 1064 nm wavelength and pulsed mode. The parameters are pulse repetition frequency (PRF) that is set from 70 to 100 Hz, average power ( P A) of 50-70 W, and laser spot size of 0.7 mm. HTCS-150 samples were prepared with groove dimension of 0.3 mm width and depths of 0.5 mm using EDM wire cut. Groove defect repaired using laser melting process on groove surface area with various parameters' process. The melted surface within the groove was characterized for subsurface hardness profile, roughness, phase identification, chemical composition, and metallographic study. The roughness analysis indicates high PRF at large spot size caused high surface roughness and low surface hardness. Grain refinement of repaired layer was analyzed within the groove as a result of rapid heating and cooling. The hardness properties of modified HTCS inside the groove and the bulk surface increased two times from as received HTCS due to grain refinement which is in agreement with Hall-Petch equation. These findings are significant to parameter design of die repair for optimum surface integrity and potential for repairing crack depth and width of less than 0.5 and 0.3 mm, respectively.

  6. Behavior of Gingival Fibroblasts on Titanium Implant Surfaces in Combination with either Injectable-PRF or PRP

    Directory of Open Access Journals (Sweden)

    Xuzhu Wang

    2017-02-01

    Full Text Available Various strategies have been employed to speed tissue regeneration using bioactive molecules. Interestingly, platelet concentrates derived from a patient’s own blood have been utilized as a regenerative strategy in recent years. In the present study, a novel liquid platelet formulation prepared without the use of anti-coagulants (injectable-platelet-rich fibrin, i-PRF was compared to standard platelet-rich plasma (PRP with gingival fibroblasts cultured on smooth and roughened titanium implant surfaces. Standard PRP and i-PRF (centrifuged at 700 rpm (60× g for 3 min were compared by assays for fibroblast biocompatibility, migration, adhesion, proliferation, as well as expression of platelet-derived growth factor (PDGF, transforming growth factor-β (TGF-β, collagen1 (COL1 and fibronectin (FN. The results demonstrate that i-PRF induced significantly higher cell migration, as well as higher messenger RNA (mRNA levels of PDGF, TGF-β, collagen1 and fibronectin when compared to PRP. Furthermore, collagen1 synthesis was highest in the i-PRF group. These findings demonstrate that liquid platelet concentrates can be formulated without the use of anticoagulants and present much translational potential for future research. Future animal and clinical trials are now necessary to further investigate the potential of utilizing i-PRF for soft tissue regenerative protocols in combination with various biomaterials.

  7. Determination of factor of hydrogen permeation reduction (PRF) for different protective coatings over vanadium

    International Nuclear Information System (INIS)

    Afanasyev, S.; Kulsartov, T.; Shestakov, V.; Chikhray, Y.; Smith, D.

    2002-01-01

    Selection of structural materials for liquid-metal system as well as for another system and constructions of nuclear energy plants must be carried out and based on specified demands depending on conditions of these materials functioning. Specific demand is its compatibility with liquid metals. Design of reactors with liquid-metal coolant (Li, PbLi 17 ) which reproduces tritium arise additional demand to structural materials. This demand is a creation of structural material or protective barrier with minimum acceptable value of tritium permeation through itself or with maximum permeation reduction factor (PRF). Vanadium and vanadium alloys are supposed to be use as a blanket structural material in such nuclear energy plants. Worked out at first stage of studies vanadium coatings should have stability of its characteristics at temperature 800 deg. C under influence of hydrogen. Given work shows the experimental results on testing of protective coatings over vanadium: glass-ceramic coating and CaO-base coating. PRF for every coating and its changes depending on thermo-capacity of vanadium sample with coating was determined by method of hydrogen permeation. The results of experiments would be used at the development of cooling loops of reactor core protection with liquid-metal coolant

  8. A Naturally Occurring Mutation K220T in the Pleiotropic Activator PrfA of Listeria Monocytogenes Results in a Loss of Virulence Due to Decreasing DNA-Binding Affinity

    Energy Technology Data Exchange (ETDEWEB)

    Velge,P.; Herler, M.; Johansson, J.; Roches, S.; Temoin, S.; Fedorov, A.; Gracieux, P.; Almo, S.; Goebel, W.; Cossart, P.

    2007-01-01

    The sequencing of prfA, encoding the transcriptional regulator of virulence genes, in 26 low-virulence field Listeria monocytogenes strains showed that eight strains exhibited the same single amino-acid substitution: PrfAK220T. These strains exhibited no expression of PrfA-regulated proteins and thus no virulence. This substitution inactivated PrfA, since expression of the PrfAK220T mutant gene in an EGD{Delta}prfA strain did not restore the haemolytic and phosphatidylcholine phospholipase C activities, in contrast to the wild-type prfA gene. The substitution of the lysine at position 220 occurred in the helix H. However, the data showed that the PrfAK220T protein is dimerized just as well as its wild-type counterpart, but does not bind to PrfA-boxes. PrfAK220T did not form a PrfA-DNA complex in electrophoretic mobility shift assays, but low concentrations of CI complexes (PrfAK220T-RNA polymerase-DNA complex) were formed by adding RNA polymerase, suggesting that PrfA interacted with RNA polymerase in solution in the absence of DNA. Formation of some transcriptionally active complexes was confirmed by in vitro runoff transcription assays and quantitative RT-PCR. Crystallographic analyses described the structure of native PrfA and highlighted the key role of allosteric changes in the activity of PrfA and especially the role of the Lys220 in the conformation of the helix-turn-helix (HTH) motif.

  9. Use of Leukocyte Platelet (L-PRF Rich Fibrin in Diabetic Foot Ulcer with Osteomyelitis (Three Clinical Cases Report

    Directory of Open Access Journals (Sweden)

    Alessandro Crisci

    2018-04-01

    Full Text Available In this study, the use of fibrin rich in leukocytes and platelets (L-PRF was explored to heal osteomyelitis ulcers in a diabetic foot. The goal was to standardize the utilization of L-PRF in patients with osteomyelitis to direct it for healing. L-PRF was obtained autologously from the peripheral blood of the diabetic patients (n = 3 having osteomyelitis and skin lesions for at least six months. The L-PRF and supernatant serum were inserted into the skin lesion to the bone after a surgical debridement. The evolution of lesions over time was analyzed. All three patients showed positivity to the Probe-to-Bone test and Nuclear Magnetic Resonance detected cortico-periosteal thickening and/or outbreaks of spongy cortical osteolysis in adjacency of the ulcer. The infections were caused by Cocci Gram-positive bacteria, such as S. Aureus, S. β-hemolytic, S. Viridans and Bacilli; and Gram-negative such as Pseudomonas, Proteus, Enterobacter; and yeast, Candida. The blood count did not show any significant alterations. To date, all three patients have healed skin lesions (in a patient for about two years with no evidence of infection. These preliminary results showed that L-PRF membranes could be a new method of therapy in such problematic diseases. Overall, the L-PRF treatment in osteomyelitis of a diabetic foot seems to be easy and cost-effective by regenerative therapy of chronic skin lesions. In addition, it will improve our understanding of wound healing.

  10. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    Science.gov (United States)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  11. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    Science.gov (United States)

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of the performance of quantitative detection of the Listeria monocytogenes prfA locus with droplet digital PCR.

    Science.gov (United States)

    Witte, Anna Kristina; Fister, Susanne; Mester, Patrick; Schoder, Dagmar; Rossmanith, Peter

    2016-11-01

    Fast and reliable pathogen detection is an important issue for human health. Since conventional microbiological methods are rather slow, there is growing interest in detection and quantification using molecular methods. The droplet digital polymerase chain reaction (ddPCR) is a relatively new PCR method for absolute and accurate quantification without external standards. Using the Listeria monocytogenes specific prfA assay, we focused on the questions of whether the assay was directly transferable to ddPCR and whether ddPCR was suitable for samples derived from heterogeneous matrices, such as foodstuffs that often included inhibitors and a non-target bacterial background flora. Although the prfA assay showed suboptimal cluster formation, use of ddPCR for quantification of L. monocytogenes from pure bacterial cultures, artificially contaminated cheese, and naturally contaminated foodstuff was satisfactory over a relatively broad dynamic range. Moreover, results demonstrated the outstanding detection limit of one copy. However, while poorer DNA quality, such as resulting from longer storage, can impair ddPCR, internal amplification control (IAC) of prfA by ddPCR, that is integrated in the genome of L. monocytogenes ΔprfA, showed even slightly better quantification over a broader dynamic range. Graphical Abstract Evaluating the absolute quantification potential of ddPCR targeting Listeria monocytogenes prfA.

  13. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    Science.gov (United States)

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  14. Laser safety in design of near-infrared scanning LIDARs

    Science.gov (United States)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  15. GrayQbTM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, J. R. [Savannah River Site (SRS), Aiken, SC (United States); Immel, D. M. [Savannah River Site (SRS), Aiken, SC (United States); Serrato, M. G. [Savannah River Site (SRS), Aiken, SC (United States); Dalmaso, M. J. [Savannah River Site (SRS), Aiken, SC (United States); Shull, D. J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQbTM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQbTM SF2 (Single Faced Version 2) is a non-destructive examination device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.

  16. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  17. SECEC Research Grant 2008 II: Use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study.

    Science.gov (United States)

    Zumstein, Matthias A; Rumian, Adam; Thélu, Charles Édouard; Lesbats, Virginie; O'Shea, Kieran; Schaer, Michael; Boileau, Pascal

    2016-01-01

    Because the retear rate after rotator cuff repairs remains high, methods to improve healing are very much needed. Platelet-rich concentrates have been shown to enhance tenocyte proliferation and promote extracellular matrix synthesis in vitro; however, their clinical benefit remains unclear. We hypothesized that arthroscopic rotator cuff repair with leucocyte- and platelet-rich fibrin (L-PRF) results in better clinical and radiographic outcome at 12 months of follow-up than without L-PRF. Thirty-five patients were randomized to receive arthroscopic rotator cuff repair with L-PRF locally applied to the repair site (L-PRF+ group, n = 17) or without L-PRF (L-PRF- group, n = 18). Preoperative and postoperative clinical evaluation included the Subjective Shoulder Value, visual analog score for pain, Simple Shoulder Test, and Constant-Murley score. The anatomic watertight healing, tendon thickness, and tendon quality was evaluated using magnetic resonance arthrography at 12 months of follow-up. No complications were reported in either group. The mean Subjective Shoulder Value, Simple Shoulder Test, and Constant-Murley scores increased from preoperatively to postoperatively, showing no significant differences between the groups. Complete anatomic watertight healing was found in 11 of 17 in the L-PRF+ group and in 11 of 18 in the L-PRP- group (P = .73). The mean postoperative defect size (214 ± 130 mm(2) in the L-PRF+ group vs 161 ± 149 mm(2) in the L-PRF- group; P = .391) and the mean postoperative tendon quality according to Sugaya (L-PRF+ group: 3.0 ± 1.4, L-PRF- group: 3.0 ± 0.9) were similar in both groups at 12 months of follow-up. Arthroscopic rotator cuff repair with application of L-PRF yields no beneficial effect in clinical outcome, anatomic healing rate, mean postoperative defect size, and tendon quality at 12 months of follow-up. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  19. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    Science.gov (United States)

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  20. A numerical study of HCCI combustion of PRF mixtures compared with PCCI experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijngaarden, B.

    2008-09-15

    For automotive applications engines that produce less soot and NOx are desired. For that reason the Homogeneous Charge Compression Ignition (HCCI) principle is investigated all over the world, including the technical universities of Berlin (TUB) and Eindhoven. HCCI combines a homogeneous charge, as in an Otto engine with the autoignition principle of a Diesel engine. Auto-ignition and almost instantaneous combustion of a homogeneous charge leads to almost zero soot emissions, lower temperatures and thereby much lower NOx emissions. Auto-ignition timing however, depends on the fuel and its chemistry, which is very sensitive to the applied conditions, being pressure, temperature, equivalence ratio ({phi}), dilution with EGR and engine speed. To study this systematically a 0D model with PRF fuels is used (Primary Reference Fuels are n-heptane, iso-octane and mixtures). A 0D model is chosen because it excludes complex fluid dynamics and thereby allows the use of detailed combustion mechanisms, describing the (PRF) chemistry. Furthermore the model has a multi zone possibility to evaluate in-homogeneities of the charge. PRF fuels are used because n-heptane (CN=55) auto-ignites like a diesel and iso-octane (ON=100) approaches gasoline. For the PRF chemistry three combustion mechanisms were selected, of which two were validated showing a great difference in predicted ignition delay and sensitivity to changes. Furthermore the model was validated with a PCCI (Premixed Charge Compression Ignition) experiment. Extensive comparisons with PCCI experiments from the TUB showed that when the moment of injection was used to launch the chemistry in the model, only the Soyhan mechanism predicted the ignition close to the experimental ignition moment. Furthermore a 7 zone model was able to approach the experimental CO and NOX emissions. Finally none of the mechanisms was able to predict a pressure profile similar to the experiments. More zones and or a better mechanism could improve

  1. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  2. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP

  3. Platelet Rich Fibrin (P.R.F.) in Reconstructive Surgery of Atrophied Maxillary Bones: Clinical and Histological Evaluations

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Cassetta, Michele; Pacifici, Andrea; Stefanelli, Luigi Vito; Scacco, Salvatore; Dipalma, Gianna; Pacifici, Luciano; Inchingolo, Francesco

    2012-01-01

    Introduction. Maxillary bone losses often require additional regenerative procedures: as a supplement to the procedures of tissue regeneration, a platelet concentrate called PRF (Platelet Rich Fibrin) was tested for the first time in France by Dr. Choukroun. Aim of the present study is to investigate, clinically and histologically, the potential use of PRF, associated with deproteinized bovine bone (Bio-Oss), as grafting materials in pre-implantology sinus grafting of severe maxillary atrophy, in comparison with a control group, in which only deproteinized bovine bone (Bio-Oss) was used as reconstructive material. Materials and Methods. 60 patients were recruited using the cluster-sampling method; inclusion criteria were maxillary atrophy with residual ridge piezosurgery in order to reduce trauma and to optimize the design of the operculum on the cortical bone. The reopening of the surgical area was scheduled at 3 different times. Results. 72 sinus lifts were performed with subsequent implants insertions. We want to underline how the histological results proved that the samples collected after 106 days (Early protocol) with the adding of PRF were constituted by lamellar bone tissue with an interposed stroma that appeared relaxed and richly vascularized. Conclusions. The use of PRF and piezosurgery reduced the healing time, compared to the 150 days described in literature, favoring optimal bone regeneration. At 106 days, it is already possible to achieve good primary stability of endosseous implants, though lacking of functional loading. PMID:23155361

  4. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    Science.gov (United States)

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  5. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, Florian; Walter, Thula; Bucourt, Maximilian de; Freyhardt, Patrick; Maurer, Martin; Renz, Diane; Gebauer, Bernhard; Hamm, Bernd; Teichgraeber, Ulf K.M. [Charite, Humboldt-University Medical School, Department of Radiology, Berlin (Germany); Hartwig, Tony; Putzier, Michael; Strube, Patrick [Charite, Humboldt-University, Center for Musculoskeletal Surgery, Berlin (Germany); Bretschneider, Tina [University of Magdeburg, Department of Radiology, Magdeburg (Germany)

    2013-10-15

    To assess the feasibility, safety and efficacy of real-time MR guidance and thermometry of percutaneous laser disc decompression (PLDD). Twenty-four discs in 22 patients with chronic low-back and radicular pain were treated by PLDD using open 1.0-T magnetic-resonance imaging (MRI). A fluoroscopic proton-density-weighted turbo spin-echo (PDw TSE) sequence was used to position the laser fibre. Non-spoiled gradient-echo (GRE) sequences were employed for real-time thermal monitoring based on proton resonance frequency (PRF). Radicular pain was assessed over 6 months with a numerical rating scale (NRS). PLDD was technically successful in all cases, with adequate image quality for laser positioning. The PRF-based real-time temperature monitoring was found to be feasible in practice. After 6 months, 21 % reported complete remission of radicular pain, 63 % at least great pain relief and 74 % at least mild relief. We found a significant decrease in the NRS score between the pre-intervention and the 6-month follow-up assessment (P < 0.001). No major complications occurred; the single adverse event recorded, moderate motor impairment, resolved. Real-time MR guidance and PRF-based thermometry of PLDD in the lumbar spine under open 1.0-T MRI appears feasible, safe and effective and may pave the way to more precise operating procedures. (orig.)

  6. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation

    International Nuclear Information System (INIS)

    Streitparth, Florian; Walter, Thula; Bucourt, Maximilian de; Freyhardt, Patrick; Maurer, Martin; Renz, Diane; Gebauer, Bernhard; Hamm, Bernd; Teichgraeber, Ulf K.M.; Hartwig, Tony; Putzier, Michael; Strube, Patrick; Bretschneider, Tina

    2013-01-01

    To assess the feasibility, safety and efficacy of real-time MR guidance and thermometry of percutaneous laser disc decompression (PLDD). Twenty-four discs in 22 patients with chronic low-back and radicular pain were treated by PLDD using open 1.0-T magnetic-resonance imaging (MRI). A fluoroscopic proton-density-weighted turbo spin-echo (PDw TSE) sequence was used to position the laser fibre. Non-spoiled gradient-echo (GRE) sequences were employed for real-time thermal monitoring based on proton resonance frequency (PRF). Radicular pain was assessed over 6 months with a numerical rating scale (NRS). PLDD was technically successful in all cases, with adequate image quality for laser positioning. The PRF-based real-time temperature monitoring was found to be feasible in practice. After 6 months, 21 % reported complete remission of radicular pain, 63 % at least great pain relief and 74 % at least mild relief. We found a significant decrease in the NRS score between the pre-intervention and the 6-month follow-up assessment (P < 0.001). No major complications occurred; the single adverse event recorded, moderate motor impairment, resolved. Real-time MR guidance and PRF-based thermometry of PLDD in the lumbar spine under open 1.0-T MRI appears feasible, safe and effective and may pave the way to more precise operating procedures. (orig.)

  7. Advanced-laser development for isotope separation. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    To address a number of the issues associated with lasers appropriate for both atomic vapor and molecular laser enrichment schemes, MSNW developed pertinent technologies on two test devices. These were a high pulse rate, 100 watt excimer laser named Mistral, and a 20 watt copper-vapor laser (CVL). Mistral is a closed-loop, 100 W, kilohertz rare-gas halide laser system. The first half of the Mistral effort dealt with the study of gas flow and acoustic effects in high PRF rare-gas halide lasers. In burst-mode operation, 1250 Hz operation was demonstrated, the effects on flow quality of acoustic dampers were measured, and gas clearing factors of 2.5 at 1 kHz were demonstrated. The second half of the Mistral program dealt with extending the run time capability of the laser. This effort culminated with the continuous operation of Mistral for almost eight hours at 500 ppS, producing over 50 mJ/pulse at 308 nm on a single fill of XeCl gas mixture. At the end of the program, the effectiveness of using magnetic pulse compression in the modulator circuit of a copper-vapor laser (CVL) was also verified. The magnetic switching/pulse compression scheme as used on both the CVL and Mistral greatly extends thyratron lifetime

  8. Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner.

    Science.gov (United States)

    Wonneberger, Uta; Schnackenburg, Bernhard; Wlodarczyk, Waldemar; Rump, Jens; Walter, Thula; Streitparth, Florian; Teichgräber, Ulf Karl Mart

    2010-01-01

    The purpose of this study was to evaluate different methods of magnetic resonance thermometry (MRTh) for the monitoring of intradiscal laser ablation therapy in an open 1.0 Tesla magnetic resonance (MR) scanner. MRTh methods based on the two endogenous MR temperature indicators of spin-lattice relaxation time T1 and water proton resonance frequency (PRF) shift were optimised and compared in vitro. For the latter, we measured the effective spin-spin relaxation times T2* in intervertebral discs of volunteers. Then we compared four gradient echo-based imaging techniques to monitor laser ablations in human disc specimens. Criteria of assessment were outline of anatomic detail, immunity against needle artefacts, signal-to-noise ratio (SNR) and accuracy of the calculated temperature. T2* decreased in an inverse and almost linear manner with the patients' age (r = 0.9) from 70 to 30 ms (mean of 49 ms). The optimum image quality (anatomic details, needle artefacts, SNR) and temperature accuracy (+/-1.09 degrees C for T1-based and +/-1.11 degrees C for PRF-based MRTh) was achieved with a non-spoiled gradient-echo sequence with an echo time of TE = 10 ms. Combination of anatomic and thermometric non-invasive monitoring of laser ablations in the lumbar spine is feasible. The temperature accuracy of the investigated T1- and PRF-based MRTh methods in vitro is high enough and promises to be reliable in vivo as well.

  9. In search of a consensus terminology in the field of platelet concentrates for surgical use: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), fibrin gel polymerization and leukocytes.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Bielecki, Tomasz; Mishra, Allan; Borzini, Piero; Inchingolo, Francesco; Sammartino, Gilberto; Rasmusson, Lars; Everts, Peter A

    2012-06-01

    In the field of platelet concentrates for surgical use, most products are termed Platelet-Rich Plasma (PRP). Unfortunately, this term is very general and incomplete, leading to many confusions in the scientific database. In this article, a panel of experts discusses this issue and proposes an accurate and simple terminology system for platelet concentrates for surgical use. Four main categories of products can be easily defined, depending on their leukocyte content and fibrin architecture: Pure Platelet-Rich Plasma (P-PRP), such as cell separator PRP, Vivostat PRF or Anitua's PRGF; Leukocyteand Platelet-Rich Plasma (L-PRP), such as Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan, Angel or GPS PRP; Pure Plaletet-Rich Fibrin (P-PRF), such as Fibrinet; and Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Choukroun's PRF. P-PRP and L-PRP refer to the unactivated liquid form of these products, their activated versions being respectively named P-PRP gels and L-PRP gels. The purpose of this search for a terminology consensus is to plead for a more serious characterization of these products. Researchers have to be aware of the complex nature of these living biomaterials, in order to avoid misunderstandings and erroneous conclusions. Understanding the biomaterials or believing in the magic of growth factors ? From this choice depends the future of the field.

  10. In-vitro release pharmacokinetics of amikacin, teicoplanin and polyhexanide in a platelet rich fibrin-layer (PRF-a laboratory evaluation of a modern, autologous wound treatment.

    Directory of Open Access Journals (Sweden)

    Daniela Knafl

    Full Text Available Platelet rich fibrin (PRF is an autologous fibrin glue, produced from patients' blood, which, besides intraoperative use, has applications in the treatment of infected wounds. The combination with antimicrobial agents results in a prolonged antibacterial effect allowing for wound dressing change intervals of seven days even in infected wounds. The aim of this study was to evaluate release kinetics of amikacin, teicoplanin or polyhexanide from a PRF-layer.PRF mixed with teicoplanin, amikacin or polyhexanide was sprayed on a silicon gauze patch and put on a colombia agar with bacteria with known minimal inhibitory concentration (MIC and incubated for 24 hours and afterwards transferred to another agar with the same bacterial strain. Inhibition zones were measured every 24 hours. This was repeated on 7 consecutive days. Antibiotic concentrations were calculated by interpolation.More than 1000 mg/L teicoplanin were released within the first 24 hours and 28.22 mg/L after 168 hours. Amikacin release was above 10,000 mg/L within the first 24 hours and still 120.8 mg/L after 120 hours. A release of polyhexanide could be verified for the first 24 hours only. Consequently teicoplanin and amikacin released from PRF showed antimicrobial in-vitro effects for almost a week, whereas an antimicrobial effect of polyhexanide could only be verified for the first 24 hours.Our Results show that a weekly dressing regimen may be justified in wounds treated with PRF plus amikacin or teicoplanin, since bacteria will be eradicated over a considerable period of time after a single application of PRF.

  11. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  12. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  13. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  14. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer; Atef, Nour; Singh, Eshan; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry

  15. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ormeño-Orrillo Ernesto

    2012-12-01

    Full Text Available Abstract Background Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. Results Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. Conclusions Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical

  16. Purification of Contaminated MIL-PRF-83282 Hydraulic Fluid Using the Pall Purifier and Multiple Process Configurations (Preprint)

    National Research Council Canada - National Science Library

    Snyder, Jr., Carl E; Gschwender, Lois J; Gunderson, Stephen L; Fultz, George W

    2006-01-01

    .... This report describes a project that evaluated the effectiveness of various hydraulic fluid purification process configurations on the removal of water and particulate contaminants from MIL-PRF-83282...

  17. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow

    Science.gov (United States)

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-01

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s-1, for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L

  18. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow.

    Science.gov (United States)

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-09

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s -1 , for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L

  19. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  20. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  1. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  2. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    Science.gov (United States)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  3. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle

    DEFF Research Database (Denmark)

    De Poorter, J; De Wagter, C; De Deene, Y

    1995-01-01

    The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused on the...

  4. Application of Various Lasers to Laser Trimming Resistance System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  5. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  6. Laser transmitter system

    International Nuclear Information System (INIS)

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  7. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.

    Science.gov (United States)

    Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A

    2017-06-01

    Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.

  8. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  9. XeF pump laser. Final technical report

    International Nuclear Information System (INIS)

    1980-03-01

    The goal of this program was to demonstrate operation of an XeF laser of adequate energy, efficiency and beam quality at high repetition rates. The specific design goals were: PRF greater than or equal to 10 kHz, energy output greater than or equal to 50 mJ/pulse, efficiency greater than or equal to 0.3%, and beam divergence angle less than or equal to 20x diffraction limited. In the following sections of this report we will discuss how these goals have been met

  10. Target isolation system, high power laser and laser peening method and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  11. Pulse repetition frequency effects in a high average power x-ray preionized excimer laser

    International Nuclear Information System (INIS)

    Fontaine, B.; Forestier, B.; Delaporte, P.; Canarelli, P.

    1989-01-01

    Experimental study of waves damping in a high repetition rate excimer laser is undertaken. Excitation of laser active medium in a subsonic loop is achieved by means of a classical discharge, through transfer capacitors. The discharge stability is controlled by a wire ion plasma (w.i.p.) X-rays gun. The strong acoustic waves induced by the active medium excitation may lead to a decrease, at high PRF, of the energy per pulse. First results of the influence of a damping of induced density perturbations between two successive pulses are presented

  12. Femtosecond laser processing of photovoltaic and transparent materials

    Science.gov (United States)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  13. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  14. Leukocyte- and platelet-rich fibrin (L-PRF) for long-term delivery of growth factor in rotator cuff repair: review, preliminary results and future directions.

    Science.gov (United States)

    Zumstein, Matthias A; Berger, Simon; Schober, Martin; Boileau, Pascal; Nyffeler, Richard W; Horn, Michael; Dahinden, Clemens A

    2012-06-01

    Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.

  15. Infrared laser system

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  16. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  17. Increased vascularization during early healing after biologic augmentation in repair of chronic rotator cuff tears using autologous leukocyte- and platelet-rich fibrin (L-PRF): a prospective randomized controlled pilot trial.

    Science.gov (United States)

    Zumstein, Matthias A; Rumian, Adam; Lesbats, Virginie; Schaer, Michael; Boileau, Pascal

    2014-01-01

    We hypothesized that arthroscopic rotator cuff repairs using leukocyte- and platelet-rich fibrin (L-PRF) in a standardized, modified protocol is technically feasible and results in a higher vascularization response and watertight healing rate during early healing. Twenty patients with chronic rotator cuff tears were randomly assigned to 2 treatment groups. In the test group (N = 10), L-PRF was added in between the tendon and the bone during arthroscopic rotator cuff repair. The second group served as control (N = 10). They received the same arthroscopic treatment without the use of L-PRF. We used a double-row tension band technique. Clinical examinations including subjective shoulder value, visual analog scale, Constant, and Simple Shoulder Test scores and measurement of the vascularization with power Doppler ultrasonography were made at 6 and 12 weeks. There have been no postoperative complications. At 6 and 12 weeks, there was no significant difference in the clinical scores between the test and the control groups. The mean vascularization index of the surgical tendon-to-bone insertions was always significantly higher in the L-PRF group than in the contralateral healthy shoulders at 6 and 12 weeks (P = .0001). Whereas the L-PRF group showed a higher vascularization compared with the control group at 6 weeks (P = .001), there was no difference after 12 weeks of follow-up (P = .889). Watertight healing was obtained in 89% of the repaired cuffs. Arthroscopic rotator cuff repair with the application of L-PRF is technically feasible and yields higher early vascularization. Increased vascularization may potentially predispose to an increased and earlier cellular response and an increased healing rate. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  18. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer

    2017-09-04

    The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis. LTHR formation depended on the base fuel type and the engine operating conditions suggesting that the base fuel composition has an important role in the formation of LTHR. The effect of ethanol on LTHR was explained by low temperature chemistry reactions and OH/HO evolution. A strong correlation of low temperature oxidation reactions of base fuels with ethanol was found to be responsible for the observed blending effects.

  19. Laser systems for on-line laser ion sources

    International Nuclear Information System (INIS)

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  20. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy.

    Science.gov (United States)

    Kulikov, Alexei N; Maltsev, Dmitrii S; Boiko, Ernest V

    2016-01-01

    Purpose . To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods . Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results . In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively ( p > 0.05). Conclusion . The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser.

  1. System for manufacturing ash products and energy from refuse waste

    Energy Technology Data Exchange (ETDEWEB)

    Sutin, G.L.; Mahoney, P.F.

    1996-01-04

    The present invention provides a system of manufacturing energy and ash products from solid waste. The system includes apparatus for receiving solid waste for processing, apparatus for shredding the received solid waste, apparatus for removing ferrous material from the shredded solid waste to create processed refuse fuel (PRF) and apparatus for efficiently combusting the PRF. A conveyor transfers the PRF to the combusting apparatus such that the density of the PRF is always controlled for continuous non-problematic flow. Apparatus for recovering residual combustion particulate from the combustion residual gases and for recovering solid ash residue provides the system with the ability to generate steam and electrical energy, and to recover for reuse and recycling valuable materials from the solid ash residue. (author) figs.

  2. Laser Megajoule synchronization system

    International Nuclear Information System (INIS)

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  3. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  4. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  5. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  6. CO laser angioplasty system: efficacy of manipulatable laser angioscope catheter

    Science.gov (United States)

    Arai, Tsunenori; Kikuchi, Makoto; Mizuno, Kyoichi; Sakurada, Masami; Miyamoto, Akira; Arakawa, Koh; Kurita, Akira; Nakamura, Haruo; Takeuchi, Kiyoshi; Utsumi, Atsushi; Akai, Yoshiro

    1992-08-01

    A percutaneous transluminal coronary angioplasty system using a unique combination of CO laser (5 micrometers ) and As-S infrared glass fiber under the guidance of a manipulatable laser angioscope catheter is described. The ablation and guidance functions of this system are evaluated. The angioplasty treatment procedure under angioscope guidance was studied by in vitro model experiment and in vivo animal experiment. The whole angioplasty system is newly developed. That is, a transportable compact medical CO laser device which can emit up to 10 W, a 5 F manipulatable laser angioscope catheter, a thin CO laser cable of which the diameter is 0.6 mm, an angioscope imaging system for laser ablation guidance, and a system controller were developed. Anesthetized adult mongrel dogs (n equals 5) with an artificial complete occlusion in the femoral artery and an artificial human vessel model including occluded or stenotic coronary artery were used. The manipulatability of the catheter was drastically improved (both rotation and bending), therefore, precise control of ablation to expand stenosis was obtained. A 90% artificial stenosis made of human yellow plaque in 4.0 mm diameter in the vessel was expanded to 70% stenosis by repetitive CO laser ablations of which total energy was 220 J. All procedures were performed and controlled under angioscope visualization.

  7. Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm

    Science.gov (United States)

    DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.

    2018-02-01

    Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.

  8. National Ignition Facility system design requirements Laser System SDR002

    International Nuclear Information System (INIS)

    Larson, D.W.; Bowers, J.M.; Bliss, E.S.; Karpenko, V.P.; English, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIP Laser System. The Laser System generates and delivers high-power optical pulses to the target chamber, and is composed of all optical puke creating and transport elements from Puke Generation through Final Optics as well as the special equipment that supports, energizes and controls them. The Laser System consists of the following WBS elements: 1.3 Laser System 1.4 Beam Transport System 1.6 Optical Components 1.7 Laser Control 1.8.7 Final Optics

  9. Laser surveillance system (LASSY)

    International Nuclear Information System (INIS)

    Boeck, H.

    1991-09-01

    Laser Surveillance System (LASSY) is a beam of laser light which scans a plane above the water or under-water in a spent-fuel pond. The system can detect different objects and estimates its coordinates and distance as well. LASSY can operate in stand-alone configuration or in combination with a video surveillance to trigger signal to a videorecorder. The recorded information on LASSY computer's disk comprises date, time, start and stop angle of detected alarm, the size of the disturbance indicated in number of deviated points and some other information. The information given by the laser system cannot be fully substituted by TV camera pictures since the scanning beam creates a horizontal surveillance plan. The engineered prototype laser system long-term field test has been carried out in Soluggia (Italy) and has shown its feasibility and reliability under the conditions of real spent fuel storage pond. The verification of the alarm table on the LASSY computer with the recorded video pictures of TV surveillance system confirmed that all alarm situations have been detected. 5 refs

  10. Aurora laser optical system

    International Nuclear Information System (INIS)

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  11. Recent laser experiments on the Aurora KrF/ICF laser system

    International Nuclear Information System (INIS)

    Turner, T.P.; Jones, J.E.; Czuchlewski, S.J.; Watt, R.G.; Thomas, S.J.; Kang, M.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    The Aurora KrF/ICF Laser Facility at Los Alamos is operational at the kilojoule-level for both laser and target experiments. We report on recent laser experiments on the system and resulting system improvements. 3 refs., 4 figs

  12. Atomic diffusion in laser surface modified AISI H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  13. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    Science.gov (United States)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness

  14. Analysis and prediction of dimensions and cost of laser micro-machining internal channel fabrication process

    Directory of Open Access Journals (Sweden)

    Brabazon D.

    2010-06-01

    Full Text Available This paper presents the utilisation of Response Surface Methodology (RSM as the prediction tool for the laser micro-machining process. Laser internal microchannels machined using pulsed Nd:YVO4 laser in polycarbonate were investigated. The experiments were carried out according to 33 factorial Design of Experiment (DoE. In this work the three input process set as control parameters were laser power, P; pulse repetition frequency, PRF; and sample translation speed, U. Measured responses were the channel width and the micro-machining operating cost per metre of produced microchannels. The responses were sufficiently predicted within the set micro-machining parameters limits. Two factorial interaction (2FI and quadratic polynomial regression equations for both responses were constructed. It is proposed that the developed prediction equations can be used to find locally optimal micro-machining process parameters under experimental and operational conditions.

  15. Some characteristics of isotopic separation laser systems

    International Nuclear Information System (INIS)

    Pochon, E.

    1988-01-01

    The principle of Laser Isotope Separation (LIS) is simple and based on either selective electronic photoexcitation and photoionization of atomic vapor, or selective vibrational photoexcitation and photodissociation of molecules in the gas phase. These processes, respectively called SILVA (AVLIS) and SILMO (MLIS) in France, both use specific laser systems with wavelengths spanning from infrared to ultraviolet. This article describes briefly some of the characteristics of a SILVA laser system. Following a three-step process, a SILVA laser system is based on dye copper vapor lasers. The pulse dye lasers provide the tunable laser light and are optically pumped by copper vapor laser operating at high repetition rates. In order to meet plant laser system requirements, the main improvements under way relate to copper vapor laser devices the power capability, efficiency, reliability and lifetime of which have to be increased. 1 fig

  16. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  17. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  18. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  19. Laser engineering of microbial systems

    Science.gov (United States)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  20. The Theory of Random Laser Systems

    International Nuclear Information System (INIS)

    Xunya Jiang

    2002-01-01

    Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge

  1. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B

    2002-01-01

    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  2. ISOLDE gets a new laser system

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    It's action stations at ISOLDE, the On-Line Isotope Mass Separator at CERN. The Laboratory is preparing to add a second laser ion source system to its arsenal. By alternating between two laser systems, the ISOLDE team will be able to switch from one type of beam to another in record time.   Bruce Marsh, from the EN-STI Group, with one of the lasers from ISOLDE's current system. The first laser source for producing radioactive ion beams (see box) was installed in the ISOLDE hall in the 1990s. This method, which was highly innovative for its time, has since been adopted by several laboratories all over the world. "This laser system allows us to control the ionisation wavelength with precision and thus to select specific atoms in order to produce very pure radioactive ion beams," explains Valentin Fedosseev of the EN Department. "These beams are then used for various experiments, in nuclear astrophysics and biology, for example. With two laser systems we will be able to do ...

  3. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures

  4. Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1977-01-01

    The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed

  5. Cord blood PRF1 methylation patterns and risk of lower respiratory tract infections in infants: findings from the Ulm Birth Cohort.

    Science.gov (United States)

    Elgizouli, Magdeldin; Logan, Chad; Nieters, Alexandra; Brenner, Hermann; Rothenbacher, Dietrich

    2015-01-01

    Lower respiratory tract infections (LRTIs) are a major cause of morbidity in children. DNA methylation provides a mechanism for transmitting environmental effects on the genome, but its potential role in LRTIs is not well studied. We investigated the methylation pattern of an enhancer region of the immune effector gene perforin-1 (PRF1), which encodes a cytolytic molecule of cytotoxic T lymphocytes (CTLs) and natural killer cells (NK), in cord blood DNA of children recruited in a German birth cohort in association with LRTIs in the first year of life.Pyrosequencing was used to determine the methylation levels of target cytosine-phosphate-guanines (CpGs) in a 2-stage case-control design. Cases were identified as children who developed ≥2 episodes of physician-recorded LRTIs during the first year of life and controls as children who had none. Discovery (n = 87) and replication (n = 90) sets were arranged in trios of 1 case and 2 controls matched for sex and season of birth.Logistic regression analysis revealed higher levels of methylation at a CpG that corresponds to a signal transducer and activator of transcription 5 (STAT5) responsive enhancer in the discovery (odds ratio [OR] per 1% methylation difference 1.24, 95% confidence interval [CI] 1.03-1.50) and replication (OR per 1% methylation difference 1.25, 95% CI 1.04-1.50) sets. Adjustment for having siblings blood PRF1 enhancer methylation patterns and subsequent risk of LRTIs in infants. Methylation levels at specific CpGs of the PRF1 enhancer varied according to maternal and family environmental factors suggesting a role for DNA methylation in mediating environmental influences on gene function.

  6. Nova laser alignment control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-01-01

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  7. Laser experimental system as teaching aid for demonstrating basic phenomena of laser feedback

    International Nuclear Information System (INIS)

    Xu, Ling; Zhao, Shijie; Zhang, Shulian

    2015-01-01

    An experimental laser teaching system is developed to demonstrate laser feedback phenomena, which bring great harm to optical communication and benefits to precision measurement. The system consists of an orthogonally polarized He-Ne laser, a feedback mirror which reflects the laser output light into the laser cavity, and an optical attenuator which changes the intensity of the feedback light. As the feedback mirror is driven by a piezoelectric ceramic, the attenuator is adjusted and the feedback mirror is tilted, the system can demonstrate many basic laser feedback phenomena, including weak, moderate and strong optical feedback, multiple feedback and polarization flipping. Demonstrations of these phenomena can give students a better understanding about the intensity and polarization of lasers. The system is well designed and assembled, simple to operate, and provides a valuable teaching aid at an undergraduate level. (paper)

  8. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon; Chung, Suk-Ho; Yoo, Chun Sang

    2017-01-01

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  9. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau

    2017-06-10

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  10. Continuous wave and AO Q-switch operation Tm,Ho:YAP laser pumped by a laser diode of 798 nm

    International Nuclear Information System (INIS)

    Li, L J; Yao, B Q; Song, C W; Wang, Y Z; Wang, Z G

    2009-01-01

    Continuous wave (CW) and acousto-optical (AO) Q-switch operation of Tm (5 at.%), Ho (0.3 at.%):YAP laser at 2.13 μm wavelength were reported in this paper. The Tm,Ho:YAP crystal was cooled by liquid nitrogen and double-end-pumped by a 14.2 W fiber-coupled laser diode at 798 nm. Different resonator lengths and output couplers for the pump power were tried. A maximum conversion efficiency of 31.3% and a maximum slope efficiency of 35.2% were acquired with CW output power of 4.45 W. Average power of 4.21 W was obtained at pulse repetition frequency (PRF) of 15 kHz, corresponding to an optical-to-optical conversion efficiency of 29.6% and a slope efficiency of 32.4%. The energy per pulse of 2.3 mJ in 64 ns was achieved at 1.5 kHz with the peak power of 35.8 kW

  11. Dynamically variable spot size laser system

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  12. Laser and plasma diagnostics for the OMEGA Upgrade Laser System (invited) (abstract)

    International Nuclear Information System (INIS)

    Letzring, S.A.

    1995-01-01

    The upgraded OMEGA laser system will be capable of delivering up to 30 kJ of 351-nm laser light with various temporal pulse shapes onto a variety of targets for both ICF and basic plasma physics experiments. ICF experiments will cover a wide parameter space up to near-ignition conditions, and basic interaction and plasma physics experiments will cover previously unattainable parameter spaces. The laser system is the tool with which the experiments are performed; the diagnostics, both of the laser system and the interaction between the laser and the target, form the heart of the experiment. A new suite of diagnostics is now being designed and constructed. Most of these are based on diagnostics previously fielded on the OMEGA laser system very successfully over the last ten years, but there are some new diagnostics, both for the laser and the interaction experiments, which have had to be invented. Laser system diagnostics include high-energy, full-beam calorimetry for all of the 60 beams of the upgrade; a novel, multispectral energy-measuring system for assessing the tuning of the frequency-multiplying crystals; a beam-balance diagnostic that forms the heart of the energy-balance system; and a peak power diagnostic that forms the heart of the power-balance system. Target diagnostics will include the usual time-integrated x-ray imaging systems, both pinhole cameras and x-ray microscopes; x-ray spectrometers, both imaging and spatially integrating; plamsa calorimeters, including x-ray calorimetry; and time-resolved x-ray diagnostics, both nonimaging and imaging in one and two dimensions. Neutron diagnostics will include several measurements of total yield, secondary, and possibly tertiary yield and neutron spectroscopy with several time-of-flight spectrometers. Other measurements will include ''knock-on'' particle measurements and neutron activation of shell materials as a diagnostic of compressed fuel and shell density

  13. Shiva laser system performance

    International Nuclear Information System (INIS)

    Glaze, J.; Godwin, R.O.; Holzrichter, J.F.

    1978-01-01

    On November 18, 1977, after four years of experimentation, innovation, and construction, the Shiva High Energy Laser facility produced 10.2 kJ of focusable laser energy delivered in a 0.95 ns pulse. The Shiva laser, with its computer control system and delta amplifiers, demonstrated its versatility on May 18, 1978, when the first 20-beam target shot with delta amplifiers focused 26 TW on a target and produced a yield of 7.5 x 10 9 neutrons

  14. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  15. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  16. ARGOS laser system mechanical design

    Science.gov (United States)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  17. Optical system for UV-laser technological equipment

    Science.gov (United States)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  18. Cost analysis of lasers for a laser isotope separation system. Final report

    International Nuclear Information System (INIS)

    Mail, R.A.; Markovich, F.J.; Carr, R.H.

    1977-01-01

    To be of practical significance, laser isotope separation (LIS) for separation of 235 U from 238 U must exhibit attributes which make it preferable to expansion of the present facilities. Clearly the most attractive such attribute is the prospect of significant cost reductions, which preliminary studies at LLL suggest will amount to a factor of three and perhaps as much as ten. From these preliminary studies, it appears that the lasers themselves account for a very substantial portion of the capital cost of a LIS system, and a significant portion of the equipment replacement costs. Since the laser costs are so pivotal to the system cost, and the system cost is so pivotal to the choice of separation techniques, it is clear that a more detailed investigation of laser costs is required. Results are presented of a study performed by General Research Corporation (GRC) to assess the cost of lasers in a production laser isotope separation (LIS) plant

  19. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  20. Laser Safety and Hazard Analysis for the Trailer (B70) Based AURA Laser System

    International Nuclear Information System (INIS)

    AUGUSTONI, ARNOLD L.

    2003-01-01

    A laser safety and hazard analysis was performed for the AURA laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for ''Safe Use of Lasers'' and the 2000 version of the ANSI Standard Z136.6, for ''Safe Use of Lasers Outdoors''. The trailer based AURA laser system is a mobile platform, which is used to perform laser interaction experiments and tests at various national test sites. The trailer (B70) based AURA laser system is generally operated on the United State Air Force Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances from the exit telescope. In order to protect personnel, who work inside the Nominal Hazard Zone (NHZ), from hazardous laser emission exposures it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (OD min ) of the laser safety eyewear used by authorized personnel and the Nominal Ocular Hazard Distance (NOHD) to protect unauthorized personnel who may have violated the boundaries of the control area and enter into the laser's NHZ

  1. Laser Pyro System Standardization and Man Rating

    Science.gov (United States)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  2. 21 CFR 884.6200 - Assisted reproduction laser system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device...

  3. Repetitive output laser system and method using target reflectivity

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet is described in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target refγlection

  4. Compilation of PRF Canyon Floor Pan Sample Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wahl, Jon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, Lawrence R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Garrett N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clark, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showed some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of

  5. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly

  6. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  7. Improvements of the ruby laser oscillator system for laser scattering

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Kawakami, Tomohide; Matoba, Tohru; Funahashi, Akimasa

    1978-10-01

    A ruby laser oscillator system is used to measure electron temperatures of the Tokamak plasmas(JFT-2 and JFT-2a). Improvements have been made of the laser oscillator to obtain the correct values. Described are the improvements and the damages of a ruby rod and a KD*P crystal for Q-switching by laser beam. Improvement are the linear Xe lamp replaced by a helical Xe lamp and in the electrical circuit for Q-switching. The damage of an optical component by a laser beam should be clarified from the damage data; the cause is not found yet. (author)

  8. Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    International Nuclear Information System (INIS)

    Aleksandrov, B P; Bashkin, A S; Beznozdrev, V N; Parfen'ev, M V; Pirogov, N A; Semenov, S N

    2003-01-01

    The problems involved in designing autonomous mobile laser systems based on high-power cw chemical DF lasers, whose mass and size parameters would make it possible to install them on various vehicles, are discussed. The need for mobility of such lasers necessitates special attention to be paid to the quest for ways and means of reducing the mass and size of the main laser systems. The optimisation of the parameters of such lasers is studied for various methods of scaling their systems. A complex approach to analysis of the optical scheme of the laser system is developed. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  9. System for combining laser beams of diverse frequencies

    International Nuclear Information System (INIS)

    1980-01-01

    A system is described for combining laser beams of different frequencies into a number of beams each comprising laser radiation having components of each of the different frequencies. The system can be used in laser isotope separation facilities. (U.K.)

  10. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  11. Multiplex electric discharge gas laser system

    Science.gov (United States)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  12. Influence of Leukocyte- and Platelet-Rich Fibrin (L-PRF) in the Healing of Simple Postextraction Sockets: A Split-Mouth Study.

    Science.gov (United States)

    Marenzi, Gaetano; Riccitiello, Francesco; Tia, Mariano; di Lauro, Alessandro; Sammartino, Gilberto

    2015-01-01

    The aim of this study was to evaluate the effects of leukocyte- and platelet-rich fibrin (L-PRF) on the pain and soft tissue healing after tooth extractions. Twenty-six patients (9 males and 17 females) were treated with multiple extractions (2 to 8), with a total of 108 extractions. This was an exploratory single blinded randomized clinical trial with a split-mouth design. The pain after the surgery was assessed in each patient by the VAS scale (1 to 10) at intervals of 24-48-72-96 hours. The soft tissue healing was clinically evaluated at 3, 7, 14, and 21 days after surgery by the same examiner surgeon, using the modified Healing Index (4 to 12). The mean value of postextraction pain was 3.2 ± 0.3 in the experimental sides and 4.1 ± 0.1 in the control sides. After 7 days from the extractions, the values of modified Healing Index in the experimental and control groups were, respectively, 4.8 ± 0.6 and 5.1 ± 0.9. The use of L-PRF in postextraction sockets filling can be proposed as a useful procedure in order to manage the postoperative pain and to promote the soft tissue healing process, reducing the early adverse effects of the inflammation.

  13. Laser and photonic systems design and integration

    CERN Document Server

    Nof, Shimon Y; Cheng, Gary J

    2014-01-01

    New, significant scientific discoveries in laser and photonic technologies, systems perspectives, and integrated design approaches can improve even further the impact in critical areas of challenge. Yet this knowledge is dispersed across several disciplines and research arenas. Laser and Photonic Systems: Design and Integration brings together a multidisciplinary group of experts to increase understanding of the ways in which systems perspectives may influence laser and photonic innovations and application integration.By bringing together chapters from leading scientists and technologists, ind

  14. Lasers in tattoo and pigmentation control: role of the PicoSure(®) laser system.

    Science.gov (United States)

    Torbeck, Richard; Bankowski, Richard; Henize, Sarah; Saedi, Nazanin

    2016-01-01

    The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure(®) laser system (755/532 nm). Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure(®) laser system for tattoo removal. A PubMed search was conducted using the term "picosecond" combined with "laser", "dermatology", and "laser tattoo removal". A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow). Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change. Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure(®) laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments.

  15. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    Science.gov (United States)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  16. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  17. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  18. State of the art of CO laser angioplasty system

    Science.gov (United States)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  19. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  20. Performance of the Aurora KrF ICF laser system

    International Nuclear Information System (INIS)

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    Because short wavelength lasers are attractive for inertial confinement fusion (ICF), the Department of Energy is sponsoring work at Los Alamos National Laboratory in krypton-fluoride (KrF) laser technology. Aurora is a short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength ICF research. The system employs optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers. The 1 to 5 ns pulse of the Aurora front end is split into 96 beams which are angularly and temporally multiplexed to produce a 480 ns pulse train for amplification by four KrF laser amplifiers. In the present system configuration half (48) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. This paper discusses how the Aurora laser system has entered the initial operational phase by delivering pulse energies of greater than one kilojoule to target

  1. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.

    2016-03-31

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  2. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.; Wong, Aloysius Tze; Ng, Tien Khee

    2016-01-01

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  3. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  4. High power laser downhole cutting tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  5. CW and AO Q-switched operation of a dual-crystal Tm, Ho:GdVO4 laser pumped by two diodes

    International Nuclear Information System (INIS)

    Li, L J; Bai, Y F; Liu, Y W; He, Z L; Wang, J; Yao, B Q; Zhou, S; Xing, M N

    2013-01-01

    Continuous wave (CW) mode and acousto-optic (AO) Q-switched mode operation of a dual-crystal Tm, Ho:GdVO 4 laser is reported. The dual-crystal Tm, Ho:GdVO 4 laser with output wavelength of 2.05 μm was pumped by two laser diodes (LDs). The Tm, Ho:GdVO 4 crystals were cooled by liquid nitrogen and pumped by two fiber-coupled LDs with a center output wavelength of 801.0 nm. A 20.5 W output power was obtained at a 255 mm physical cavity length in CW mode operation, and a 19.6 W average power was obtained at a pulse repetition frequency (PRF) of 10 kHz with a 19 ns pulse duration. Also, the efficiency loss of the laser is not more than 4.4% from CW mode to Q-switch mode, and the M 2 factor, which is measured by the traveling knife-edge method, does not exceed 1.2. (paper)

  6. Logarithmic axicon characterized by scanning optical probe system.

    Science.gov (United States)

    Cao, Zhaolou; Wang, Keyi; Wu, Qinglin

    2013-05-15

    A scanning optical probe system is proposed to measure a logarithmic axicon (LA) with subwavelength resolution. Multiple plane intensity profiles measured by a fiber probe are interpreted by solving an optimization problem to get the phase retardation function (PRF) of the LA. Experimental results show that this approach can accurately obtain the PRF with which the optical path difference of the generated quasi-nondiffracting beam in the propagation is calculated.

  7. Lasers in tattoo and pigmentation control: role of the PicoSure® laser system

    Science.gov (United States)

    Torbeck, Richard; Bankowski, Richard; Henize, Sarah; Saedi, Nazanin

    2016-01-01

    Background and objectives The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure® laser system (755/532 nm). Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure® laser system for tattoo removal. Study design and methods A PubMed search was conducted using the term “picosecond” combined with “laser”, “dermatology”, and “laser tattoo removal”. Results A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow). Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change. Conclusion Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure® laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments. PMID:27194919

  8. Non-contact finger vein acquisition system using NIR laser

    Science.gov (United States)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  9. Demonstration of Laser Cutting System for Tube Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Kim, G. S.; Heo, G. S.; Baik, S. J.; Kim, H. M.; Ahn, S. B. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The oxide layer removal system was also developed because the oxide layer on the surface of the irradiated fuel cladding and components interrupted the applying the electric current during the processing. However, it was found that the mechanical testing data of the irradiated specimens with removal of oxide layer was less reliable than the specimens with oxide layer . The laser cutting system using Nd:YAG with fiber optic beam delivery has great potential in material processing applications of the irradiated fuel cladding and components due to non-contact process. Thus, the oxide layer doesn't interrupt the fabrication process during the laser cutting system. In the present study, the laser cutting system was designed to fabricate the mechanical testing specimens from the unirradiated fuel cladding with and without oxide. The feasibility of the laser cutting system was demonstrated for the fabrication of various types of unirradiated specimens. The effect of surface oxide layer was also investigated for machining process of the zirlo fuel cladding and it was found that laser beam machining could be a useful tool to fabricate the specimens with surface oxide layer. Based on the feasibility studies and demonstration, the design of the laser cutting machine for fully or partially automatic and remotely operable system will be proposed and made.

  10. Lasers in tattoo and pigmentation control: role of the PicoSure® laser system

    Directory of Open Access Journals (Sweden)

    Torbeck R

    2016-05-01

    Full Text Available Richard Torbeck,1 Richard Bankowski,2 Sarah Henize,3 Nazanin Saedi,11Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 2Cynosure, Inc, Westford, MA, 3Huron Consulting Group, Chicago, IL, USABackground and objectives: The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure® laser system (755/532 nm. Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure® laser system for tattoo removal.Study design and methods: A PubMed search was conducted using the term "picosecond" combined with "laser", "dermatology", and "laser tattoo removal".Results: A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow. Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change.Conclusion: Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure® laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments.Keywords: tattoo, removal, laser, picosecond 

  11. Laser fusion systems for industrial process heat. Third semiannual report

    International Nuclear Information System (INIS)

    Bates, F.J.; Denning, R.S.; Dykhuizen, R.C.; Goldthwaite, W.H.; Kok, K.D.; Skelton, J.C.

    1979-01-01

    This report concentrates not only on the design of the laser fusion system but also on the cost of this system and the costs of alternative sources of energy that are expected to be in competition with the laser fusion system. The absolute values of the cost of the laser fusion system are limited by the estimates of the cost of the components and subsystems making up the laser fusion energy station. The method used in calculating costs of the laser fusion and alternative systems are laid out in detail

  12. Laser surveillance system (LASSY)

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    The development progress during the reporting period 1988 of the laser surveillance system of spent fuel pools is summarized. The present engineered system comes close to a final version for field application as all technical questions have been solved in 1988. 14 figs., 1 tab. (Author)

  13. Influence of Leukocyte- and Platelet-Rich Fibrin (L-PRF) in the Healing of Simple Postextraction Sockets: A Split-Mouth Study

    Science.gov (United States)

    Riccitiello, Francesco; Tia, Mariano; di Lauro, Alessandro; Sammartino, Gilberto

    2015-01-01

    The aim of this study was to evaluate the effects of leukocyte- and platelet-rich fibrin (L-PRF) on the pain and soft tissue healing after tooth extractions. Twenty-six patients (9 males and 17 females) were treated with multiple extractions (2 to 8), with a total of 108 extractions. This was an exploratory single blinded randomized clinical trial with a split-mouth design. The pain after the surgery was assessed in each patient by the VAS scale (1 to 10) at intervals of 24-48-72-96 hours. The soft tissue healing was clinically evaluated at 3, 7, 14, and 21 days after surgery by the same examiner surgeon, using the modified Healing Index (4 to 12). The mean value of postextraction pain was 3.2 ± 0.3 in the experimental sides and 4.1 ± 0.1 in the control sides. After 7 days from the extractions, the values of modified Healing Index in the experimental and control groups were, respectively, 4.8 ± 0.6 and 5.1 ± 0.9. The use of L-PRF in postextraction sockets filling can be proposed as a useful procedure in order to manage the postoperative pain and to promote the soft tissue healing process, reducing the early adverse effects of the inflammation. PMID:26273612

  14. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  15. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  16. Comparison of three different laser systems for application in dentistry

    Science.gov (United States)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  17. A 1J LD pumped Nd:YAG pulsed laser system

    Science.gov (United States)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  18. Evolution of shiva laser alignment systems

    International Nuclear Information System (INIS)

    Boyd, R.D.

    1980-07-01

    The Shiva oscillator pulse is preamplified and divided into twenty beams. Each beam is then amplified, spatially filtered, directed, and focused onto a target a few hundred micrometers in size producing optical intensities up to 10 16 W/cm 2 . The laser was designed and built with three automatic alignment systems: the oscillator alignment system, which aligns each of the laser's three oscillators to a reference beamline; the chain input pointing system, which points each beam into its respective chain; and the chain output pointing, focusing and centering system which points, centers and focuses the beam onto the target. Recently the alignment of the laser's one hundred twenty spatial filter pinholes was also automated. This system uses digitized video images of back-illuminated pinholes and computer analysis to determine current positions. The offset of each current position from a desired center point is then translated into stepper motor commands and the pinhole is moved the proper distance. While motors for one pinhole are moving, the system can digitize, analyze, and send commands to other motors, allowing the system to efficiently align several pinholes in parallel

  19. Broadband supercontinuum generation in a telecommunication fibre pumped by a nanosecond Tm, Ho:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ren-Lai; Ren Jian-Cun; Lou Shu-Li [Department of control engineering, Naval Aeronautical and Astronautical University, Yantai 264001 (China); Ju You-Lun; Wang Yue-Zhu [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-31

    Broadband supercontinuum (SC) generation in a telecommunication fibre [8/125-μm single mode fibre (SMF) and 50/125-μm multimode fibre (MMF)] directly pumped by a nanosecond Q-switched Tm, Ho:YVO{sub 4} laser is demonstrated. At a 7-kHz pulse repetition frequency (PRF), an output average power of 0.53 W in the 1.95 – 2.5-μm spectral band and 3.51 W in the 1.9 – 2.6-μm spectral band are achieved in SMF and MMF, respectively (the corresponding optic-to-optic conversion efficiencies are 34.6% and 73.7%). The output spectra have extremely high flat segments in the range 2070 – 2390 nm and 2070 – 2475 nm with negligible intensity variation (less than 2%). The SC average power is scalable from 2.1 to 4.2 W by increasing the PRF from 5 to 15 kHz, while maintaining pump power. Compared with the input pump pulse, the output SC pulse width is broadened, and no split is found. The stability of the output SC power has been monitored for a week and the fluctuations being less than 6%. (control of radiation parameters)

  20. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  1. Fiber laser front end for high energy petawatt laser systems

    International Nuclear Information System (INIS)

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-01-01

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 (micro)J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces ∼1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  2. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...

  3. Development of portable laser peening systems for nuclear power reactors

    International Nuclear Information System (INIS)

    Chida, Itaru; Uehara, Takuya; Yoda, Masaki; Miyasaka, Hiroyuki; Kato, Hiromi

    2009-01-01

    Stress corrosion cracking (SCC) is the major factor to reduce the reliability of aged reactor components. Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening technology was developed and applied to reactor components in operating BWRs and PWRs. Laser peening is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water without any surface preparations. Laser peening systems, which deliver laser pulses with mirrors or through an optical fiber, were developed and have been applied to preventive maintenance against SCC in nuclear power reactors since 1999. Each system was composed of laser oscillators, a beam delivery system, a laser irradiation head, remote handling equipment and a monitor/control system. Beam delivery with mirrors was accomplished through alignment/tracking functions with sufficient accuracy. Reliable fiber-delivery was attained by the development of a novel input coupling optics and an irradiation head with auto-focusing. Recently, we have developed portable laser peening (PLP) system which could employ both mirror- and fiber- delivery technologies. Size and weight of the PLP system for BWR bottom was almost 1/25 compared to the previous system. PLP system would be the applicable to both BWRs and PWRs as one of the maintenance technologies. (author)

  4. Laser systems with diamond optical elements

    International Nuclear Information System (INIS)

    Seitz, J.R.

    1975-01-01

    High power laser systems with optical elements of diamond having a thermal conductivity of at least 10 W/cm. 0 K at 300 0 K and an optical absorption at the laser beam wavelength of no more than 10 to 20 percent are described. (U.S.)

  5. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  6. Infrared laser scattering system for the plasma diagnostics

    International Nuclear Information System (INIS)

    Hiraki, Naoji; Kawasaki, Shoji; Muraoka, Katsunori

    1975-01-01

    As the results of the parametric studies of the double discharge TEA CO 2 laser, the required properties on the laser system for the scattering diagnostics of plasmas are shown to be realized with our CO 2 laser. The direction of the future improvements of the laser performance is also discussed. (auth.)

  7. MR thermometry for laser-induced thermotherapy at 1.5 tesla; MR-Thermometrie bei 1,5 Tesla zur thermischen Ablation mittels laserinduzierter Thermotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Meister, D.; Huebner, F.; Mack, M.; Vogl, T.J. [Frankfurt Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2007-05-15

    Purpose: Evaluation of thermometry with fast MR sequences for laser-induced interstitial laser therapy (LITT) and verification of the thermometric results with a fiber-optic thermometer. Method and Materials: In vitro experiments were conducted using an agarose gel mixture and pig liver lobes. MR-guided LITT was performed using a laser power between 3 and 15?watts. Thermometry was performed using longitudinal relaxation time T1 and proton resonance frequency shift (PRF) methods under acquisition of amplitude and phase shift images. PRF was measured with a fast spoiled GRE sequence. Four different sequences were used for T1 thermometry: gradient echo (GE), TrueFISP (TRUFI), Saturation Recovery Turbo-FLASH (SRTF) and Inversion Recovery Turbo-FLASH (IRTF) sequences. The temperature was controlled using a fiber-optic Luxtron device and correlated with the MR temperature. The range of applied and monitored temperatures exceeded 80 degrees Celsius. Results: The temperature dependence showed a good linear relationship up to 60 degrees Celsius. Calibration experiments for the T1 method delivered coefficients of determination from 0.977 to 0.997 for agarose and from 0.958 to 0.995 for the pig liver samples. The IRTF sequence had the highest temperature sensitivity (agarose 0.99, liver 1.19). During LITT the TRUE-FISP sequence exhibited a strong nonlinear relationship. R{sup 2} of this sequence was 0.809 in the agarose experiments. The average temperature errors when heated up to 80 degrees Celsius were 3.86 - 11.38 degrees Celsius for Agarose gel and 5.7 - 12.16 degrees Celsius for the liver tissue. SRTF and IRTF sequences exhibited the most linear relationship with temperature but were more dependent on tissue differences. (orig.)

  8. Chaotic dynamics and chaos control in nonlinear laser systems

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    2001-01-01

    Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally

  9. Improvement of laser irradiation uniformity in GEKKO XII glass laser system

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Matsuoka, Shinichi; Ando, Akinobu; Amano, Shinji; Nakatsuka, Masahiro; Kanabe, Tadashi; Jitsuno, Takahisa; Nakai, Sadao

    1995-01-01

    The uniform laser irradiation is one of key issues in the direct drive laser fusion research. The several key technologies for the uniform laser irradiation are reported. This paper includes the uniformity performance as a result of the introduction of the random phase plate, the partially coherent light and the beam smoothing by spectral dispersion into the New Gekko XI glass laser system. Finally the authors summarize the overall irradiation uniformity on the spherical target surface by considering the power imbalance effect. The technologies developed for the beam smoothing and the power balance control enable them to achieve the irradiation nonuniformities of around 1% level for a foot pulse and of a few % for a main drive pulse, respectively

  10. Investigation of dye laser excitation of atomic systems

    International Nuclear Information System (INIS)

    Abate, J.A.

    1977-01-01

    A stabilized cw dye laser system and an optical pumping scheme for a sodium atomic beam were developed, and the improvements over previously existing systems are discussed. A method to stabilize both the output intensity and the frequency of the cw dye laser for periods of several hours is described. The fluctuation properties of this laser are investigated by photon counting and two-time correlation measurements. The results show significant departures from the usual single-mode laser theory in the region of threshold and below. The implications of the deviation from accepted theory are discussed. The atomic beam system that was constructed and tested is described. A method of preparing atomic sodium so that it behaves as a simple two-level atom is outlined, and the results of some experiments to study the resonant interaction between the atoms and the dye laser beam are presented

  11. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  12. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  13. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  14. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  15. High Power 1443.5 nm Laser with Nd:YAG Single Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Han Rao

    2017-07-01

    Full Text Available A high-power eye-safe 1443.5 nm laser was demonstrated with an Nd:YAG single crystal fiber (SCF as the gain medium. For continuous wave (CW operation, a maximum output power of 13.3 W was obtained under an absorbed pump power of 95.0 W, corresponding to an optical-to-optical conversion efficiency of 14.0%. For acousto-optically (AO Q-switched regime, an output power of 1.95 W was obtained at a pulse repetition frequency (PRF of 10 kHz. The pulse duration was 69.5 ns. The pulse energy and peak power were calculated to be 195 µJ and 2.81 kW, respectively.

  16. The copper-pumped dye laser system at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hackel, R.P.; Warner, B.E.

    1993-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Atomic Vapor Laser Isotope Separation (AVLIS) Program has developed a high-average-power, pulsed, tunable, visible laser system. Testing of this hardware is in progress at industrial scale. The LLNL copper-dye laser system is prototypical of a basic module of a uranium-AVLIS plant. The laser demonstration facility (LDF) system consists of copper vapor lasers arranged in oscillator-amplifier chains providing optical pump power to dye-laser master-oscillator-power-amplifier chains. This system is capable of thousands of watts (average) tunable between 550 and 650 mm. The copper laser system at LLNL consists of 12 chains operating continuously. The copper lasers operate at nominally 4.4 kHz, with 50 ns pulse widths and produce 20 W at near the diffraction limit from oscillators and >250 W from each amplifier. Chains consist of an oscillator and three amplifiers and produce >750 W average, with availabilities >95% (i.e., >8,300 h/y). The total copper laser system power averages ∼9,000 W and has operated at over 10,000 W for extended intervals. The 12 copper laser beams are multiplexed and delivered to the dye laser system where they pump multiple dye laser chains. Each dye chain consists of a master oscillator and three or four power amplifiers. The master oscillator operates at nominally 100 mW with a 50 MHz single mode bandwidth. Amplifiers are designed to efficiently amplify the dye beam with low ASE content and high optical quality. Sustained dye chain powers are up to 1,400 W with dye conversion efficiency >50%, ASE content <5%, and wavefront quality correctable to <λ/10 RMS, using deformable mirrors. Since the timing of the copper laser chains can be offset, the dye laser system is capable of repetition rates which are multiples of 4.4 kHz, up to 26 kHz, limited by the dye pumping system. Development of plant-scale copper and dye laser hardware is progressing in off-line facilities

  17. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  18. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  19. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  20. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-01-01

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  1. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  2. PEP Laser Surveying System

    International Nuclear Information System (INIS)

    Lauritzen, T.; Sah, R.C.

    1979-03-01

    A Laser Surveying System has been developed to survey the beam elements of the PEP storage ring. This system provides automatic data acquisition and analysis in order to increase survey speed and to minimize operator error. Two special instruments, the Automatic Readout Micrometer and the Small Automatic Micrometer, have been built for measuring the locations of fiducial points on beam elements with respect to the light beam from a laser. These instruments automatically encode offset distances and read them into the memory of an on-line computer. Distances along the beam line are automatically encoded with a third instrument, the Automatic Readout Tape Unit. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compared them with desired parameters, and calculates the required adjustments to beam element support stands

  3. Stability design considerations for mirror support systems in ICF lasers

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems

  4. Platelet rich fibrin (Prf) and β-tricalcium phosphate with coronally advanced flap for the management of grade-II furcation defect.

    Science.gov (United States)

    Sambhav, Jain; Rohit, Rai; Ranjana, Mohan; Shalabh, Mehrotra

    2014-07-01

    Multirooted teeth offer unique and challenging problems due to the furcation area, creates situations in which routine periodontal procedures are somewhat limited and special procedures are generally required. The present case was showing the management of grade II furcation defect by platelet rich fibrin (PRF) and β-Tricalcium phosphate with coronally advanced flap. Platelet rich fibrin and β-Tricalcium phosphate with coronally advanced flap have been shown to be a promising and successful approach for the treatment of furcation defect. Its gaining clinical attachment significantly manages both the gingival recession and furcation involvement simultaneously.

  5. Five Wavelength DFB Fibre Laser Source for WDM Systems

    DEFF Research Database (Denmark)

    Hübner, Jörg; Varming, Poul; Kristensen, Martin

    1997-01-01

    Singlemode UV-induced distributed feedback (DFB) fibre lasers with a linewidth of lasers is verified by a 10 Gbit/s transmission experiment. Five DFB fibre lasers are cascaded and pumped by a single...... semiconductor laser, thereby forming a multiwavelength source for WDM systems...

  6. Railgun system using a laser-induced plasma armature

    International Nuclear Information System (INIS)

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-01-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. copyright 1996 American Institute of Physics

  7. Railgun system using a laser-induced plasma armature

    Science.gov (United States)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun.

  8. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...... ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...

  9. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...

  10. Laser rangefinders for autonomous intelligent cruise control systems

    Science.gov (United States)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  11. Fiber laser master oscillators for optical synchronization systems

    International Nuclear Information System (INIS)

    Winter, A.

    2008-04-01

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  12. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  13. Multitube coaxial closed cycle gas laser system

    International Nuclear Information System (INIS)

    Davis, J.W.; Walch, A.P.

    1975-01-01

    A gas laser design capable of long term reliable operation in a commercial environment is disclosed. Various construction details which insulate the laser optics from mechanical distortions and vibrations inevitably present in the environment are developed. Also, a versatile optical cavity made up of modular units which render the basic laser configuration adaptable to alternate designs with different output capabilities is shown in detail. The system built around a convection laser operated in a closed cycle and the working medium is a gas which is excited by direct current electric discharges. (auth)

  14. Infrared laser scattering system for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, K; Hiraki, N; Kawasaki, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1975-05-01

    The possibility of observing the collective scattering of infrared laser light from plasmas is discussed in terms of the laser power requirement, the necessary optical system and the detector performance, and is shown to be feasible with the present day techniques to get the ion temperature by means of a CO/sub 2/ laser on theta pinch plasmas. Based on this estimate, the construction of the TEA CO/sub 2/ laser and the preparations of the optical components have been started and some preliminary results of these are described.

  15. Infrared laser scattering system for plasma diagnostics

    International Nuclear Information System (INIS)

    Muraoka, Katsunori; Hiraki, Naoji; Kawasaki, Shoji

    1975-01-01

    The possibility of observing the collective scattering of infrared laser light from plasmas is discussed in terms of the laser power requirement, the necessary optical system and the detector performance, and is shown to be feasible with the present day techniques to get the ion temperature by means of a CO 2 laser on theta pinch plasmas. Based on this estimate, the construction of the TEA CO 2 laser and the preparations of the optical components have been started and some preliminary results of these are described. (auth.)

  16. Mid-IR laser system for advanced neurosurgery

    Science.gov (United States)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  17. Commercialization plan laser-based decoating systems

    International Nuclear Information System (INIS)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ''document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.'' This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2's commercialization and marketing plans are described, including how F2's organization is structured to meet the needs of technology commercialization, F2's strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed

  18. A 1-kJ KrF laser system for laser fusion research

    International Nuclear Information System (INIS)

    Owadano, Y.; Okuda, I.; Tanimoto, M.; Matsumoto, Y.; Yaoita, A.; Komeiji, S.; Yano, M.

    1987-01-01

    Ultraviolet laser light has several advantages in coupling with a laser fusion target, and the KrF laser is considered to be a promising candidate for the driver because of its short wavelength, high overall efficiency, and scalability to a megajoule class system. The Electrotechnical Laboratory is developing a 1-kJ class KrF laser system to perform target-shooting experiments in the 10/sup 13/-10/sup 15/-W/cm/sup 2/, 10-20-ns range and to investigate the possibility of a compact laser fusion driver which operates at a high pumping density and high laser power density. Based on the pulsed-power technology used in Amp2 and the characteristics of the Kr-rich mixture measured, Amp3 was designed to operate at high optical power density with a Kr-rich mixture. Amp3 has four PFLs charged by a single 40-kJ Marx generator and four e-beam diodes (550 kV, 4 Ω) arranged cylindrically around the laser cell. The active volume is 660 cm/sup 2/ (29 cm in diameter) X 1 m, and 2-atm Kr is pumped at a density of 1.9 MW/cm/sup 3/. Output energy of 1 kJ is expected at an intrinsic efficiency of 8.3% and overall efficiency of 2.5%. Output energy fluence is 1.5 J/cm/sup 2/ (15 MW/cm/sup 2/) on average, which is lower than the damage threshold of our fully reflecting AR coatings (>3 J/cm/sup 2/)

  19. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  20. A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing

    Science.gov (United States)

    Ko, Woo-Hyun; Srinivasa, Arun; Kumar, P. R.

    2017-12-01

    Cyber-manufacturing systems can be enhanced by an integrated network architecture that is easily configurable, reliable, and scalable. We consider a cyber-physical system for use in an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are built around the laser processing machine. They include a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data and user’s job requests, a robotic arm manipulating the workpiece in the work space, and middleware, named Etherware, supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result.

  1. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  2. Alignment system for SGII-Up laser facility

    Science.gov (United States)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  3. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  4. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  5. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  6. Railgun system using a laser-induced plasma armature

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Oda, Y.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., 3-3-1, Minatomirai, Nishi-ku, Yokohama 220-84 (Japan)

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  7. A laser calibration system for the STAR TPC

    CERN Document Server

    Lebedev, A

    2002-01-01

    A Time Projection Chamber (TPC) is the primary tracking detector for the STAR experiment at RHIC. A laser calibration system was built to calibrate and monitor the TPC tracking performance. The laser system uses a novel design which produces approx 500 thin, ionizing beams distributed throughout the tracking volume. This new approach is significantly simpler than the traditional ones, and provides complete TPC coverage at a reduced cost. The laser system was used during the RHIC 2000 summer run to measure drift velocities with about 0.02% accuracy and to monitor the TPC performance. Calibration runs were made with and without a magnetic field to check B field map corrections.

  8. Thin-Film Polarizers for the OMEGA EP Laser System

    International Nuclear Information System (INIS)

    Oliver, J.B.; Rigatti, A.L.; Howe, J.D.; Keck, J.; Szczepanski, J.; Schmid, A.W.; Papernov, S.; Kozlov, A.; Kosc, T.Z.

    2006-01-01

    Thin-film polarizers are essential components of large laser systems such as OMEGA EP and the NIF because of the need to switch the beam out of the primary laser cavity (in conjunction with a plasma-electrode Pockels cell) as well as providing a well-defined linear polarization for frequency conversion and protecting the system from back-reflected light. The design and fabrication of polarizers for pulse-compressed laser systems is especially challenging because of the spectral bandwidth necessary for chirped-pulse amplification

  9. Control system for high power laser drilling workover and completion unit

    Science.gov (United States)

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  10. Blue laser phase change recording system

    International Nuclear Information System (INIS)

    Hofmann, Holger; Dambach, S.Soeren; Richter, Hartmut

    2002-01-01

    The migration paths from DVD phase change recording with red laser to the next generation optical disk formats with blue laser and high NA optics are discussed with respect to optical aberration margins and disc capacities. A test system for the evaluation of phase change disks with more than 20 GB capacity is presented and first results of the recording performance are shown

  11. Optimized laser system for decontamination of painted surfaces

    International Nuclear Information System (INIS)

    Champonnois, F.; Lascoutouna, C.; Long, H.; Thro, P.Y.; Mauchien, P.

    2010-01-01

    Laser systems have long been seen as potentially very interesting for removing contamination from surfaces. The main expected advantages are the possibility of remote process and the absence of secondary waste. However these systems were unable to find their way to an industrial deployment due to the lack of reliability of the laser and the difficulty to satisfactory collect the (contaminated) ablated matter. In this contribution we report on a compact, reliable and efficient laser decontaminating system called ASPILASERO. It is adapted to the constraints bound to a nuclear environment. It takes advantages of the recent progress made by the fibre lasers which have now a lifetime longer than 20000 hours without maintenance. The collecting system collects all the removed matter (gases and aerosols) on nuclear grade filters. The fully automated system has been successfully tested on a vertical wall of a stopped nuclear installation. It has demonstrated an efficiency of 1 m 2 /hr which is in the same order of other classical techniques but with a much lower quantity of waste and the ability to work continuously without human intervention. Measurements performed after the laser treatment have shown that the contamination was completely removed by removing the paint and that this contamination was not re-deposited elsewhere on the wall. The system will also be used in highly contaminated hot cells to decrease the radiation and allow maintenance or refurbishing in safe working conditions. (authors)

  12. Laser display system for multi-depth screen projection scenarios.

    Science.gov (United States)

    La Torre, J Pablo; Mayes, Nathan; Riza, Nabeel A

    2017-11-10

    Proposed is a laser projection display system that uses an electronically controlled variable focus lens (ECVFL) to achieve sharp and in-focus image projection over multi-distance three-dimensional (3D) conformal screens. The system also functions as an embedded distance sensor that enables 3D mapping of the multi-level screen platform before the desired laser scanned beam focused/defocused projected spot sizes are matched to the different localized screen distances on the 3D screen. Compared to conventional laser scanning and spatial light modulator (SLM) based projection systems, the proposed design offers in-focus non-distorted projection over a multi-distance screen zone with varying depths. An experimental projection system for a screen depth variation of 65 cm is demonstrated using a 633 nm laser beam, 3 KHz scan speed galvo-scanning mirrors, and a liquid-based ECVFL. As a basic demonstration, an in-house developed MATLAB based graphic user interface is deployed to work along with the laser projection display, enabling user inputs like text strings or predefined image projection. The user can specify projection screen distance, scanned laser linewidth, projected text font size, projected image dimensions, and laser scanning rate. Projected images are shown highlighting the 3D control capabilities of the display, including the production of a non-distorted image onto two-depths versus a distorted image via dominant prior-art projection methods.

  13. Energy storage and power conditioning system for the Shiva laser

    International Nuclear Information System (INIS)

    Allen, G.R.; Gagnon, W.L.; Rupert, P.R.; Trenholme, J.B.

    1975-01-01

    An optimal energy delivery system for the world's largest glass laser system has been designed based on computer modeling and operation of laser hardware. Components of the system have been tested on operating lasers at LLL. The Shiva system is now under construction and will be completed in 1977. The energy supply described here will provide cost-effective, reliable power and facilitate the gathering of data in pursuit of controlled thermonuclear reactions

  14. Magnetically switched power supply system for lasers

    Science.gov (United States)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  15. Versión española del perfil de salud infantil, cuestionario para padres y madres: Child Health and Illness Profile-Child Edition Parent Report Form (CHIP-CE/PRF Spanish version of the Child Health and Illness Profile-Child Edition Parent Report Form [CHIP-CE/PRF

    Directory of Open Access Journals (Sweden)

    Luis Rajmil

    2004-08-01

    Full Text Available Objetivos: Analizar la fiabilidad y validez de las dimensiones del Child Health and Illness Profile-Child Edition Parent Report Form (CHIP-CE/PRF incluidas en la Encuesta de Salud de Barcelona 2000 (ESB-2000 y obtener sus valores de referencia poblacional. Métodos: Los datos del estudio provienen de las entrevistas a los informadores indirectos de los menores de 5-14 años de edad (n = 836 participantes en la ESB-2000. Se analizaron 4 subdimensiones de la versión para padres del cuestionario CHIP-PRF: «satisfacción con la salud», y bienestar físico, bienestar emocional y limitación de actividad, que constituyen la dimensión de «bienestar». Se analizó la consistencia interna a partir del coeficiente α de Cronbach. Se realizσ un anαlisis factorial exploratorio y se compararon las puntuaciones medias mediante análisis de la covarianza para evaluar la validez de constructo de las subdimensiones. Resultados: El coeficiente alfa fue mayor de 0,70 en todas las subdimensiones analizadas (rango, 0,76-0,98. En el análisis factorial, casi todos los ítems (31/35 presentaron la carga más elevada en su subdimensión correspondiente. Se comprobó la mayoría de las diferencias estadísticas esperadas en las puntuaciones medias entre grupos. Las niñas de 10-14 años de edad presentaron las puntuaciones más bajas tanto en «satisfacción con la salud» (48,93; intervalo de confianza del 95% [IC del 95%], 47,40-50,47 como en «bienestar» (48,87; IC del 95%, 47,51-50,22. No se encontraron diferencias según la clase social de la persona cabeza de familia. Conclusiones: El estudio permite disponer de una medida de salud percibida útil en las encuestas de salud infantil.Objectives: To analyze the reliability and validity of the domains of the Child Health and Illness Profile-Child Edition Parent Report Form (CHIP-CE/PRF included in the Barcelona Health Survey conducted in 2000 and to obtain population-based reference values. Methods: Data were

  16. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    Science.gov (United States)

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  17. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  18. Blue laser diode (450 nm) systems for welding copper

    Science.gov (United States)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  19. A historical perspective on fifteen years of laser damage thresholds at LLNL

    International Nuclear Information System (INIS)

    Rainer, F.; De Marco, F.P.; Staggs, M.C.; Kozlowski, M.R.; Atherton, L.J.; Sheehan, L.M.

    1993-01-01

    We have completed a fifteen year, referenced and documented compilation of more than 15,000 measurements of laser-induced damage thresholds (LIDT) conducted at the Lawrence Livermore National Laboratory (LLNL). These measurements cover the spectrum from 248 to 1064 nm with pulse durations ranging from < 1 ns to 65 ns and at pulse-repetition frequencies (PRF) from single shots to 6.3 kHz. We emphasize the changes in LIDTs during the past two years since we last summarized our database. We relate these results to earlier data concentrating on improvements in processing methods, materials, and conditioning techniques. In particular, we highlight the current status of anti-reflective (AR) coatings, high reflectors (HR), polarizers, and frequency-conversion crystals used primarily at 355 nm and 1064 nm

  20. Development of the power control system for semiconductor lasers

    International Nuclear Information System (INIS)

    Kim, Kwang Suk; Kim, Cheol Jung

    1997-12-01

    For the first year plan of this program, we developed the power control system for semiconductor lasers. We applied the high-current switching mode techniques to fabricating a power control system. Then, we investigated the direct side pumping techniques with GaA1As diode laser bars to laser crystal without pumping optics. We obtained 0.5W average output power from this DPSSL. (author). 54 refs., 3 tabs., 18 figs

  1. Mechanical design for a large fusion laser system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1979-01-01

    The Nova Mechanical Systems Group at LLL is responsible for the design, fabrication, and installation of all laser chain components, for the stable support structure that holds them, and for the beam lines that transport the laser beam to the target system. This paper is an overview of the group's engineering effort, emphasizing new developments

  2. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  3. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  4. Development of an integrated automated retinal surgical laser system.

    Science.gov (United States)

    Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J

    1996-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.

  5. Synchronised laser chaos communication: statistical investigation of an experimental system

    OpenAIRE

    Lawrance, Anthony J.; Papamarkou, Theodore; Uchida, Atsushi

    2017-01-01

    The paper is concerned with analyzing data from an experimental antipodal laser-based chaos shift-keying communication system. Binary messages are embedded in a chaotically behaving laser wave which is transmitted through a fiber-optic cable and are decoded at the receiver using a second laser synchronized with the emitter laser. Instrumentation in the experimental system makes it particularly interesting to be able to empirically analyze both optical noise and synchronization error as well a...

  6. Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  7. Laser cutting system in bridge fabricating line; Kyoryo seisaku line ni okeru laser no setsudan system

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, Y.; Yokotani, K. [Hitachi Zosen Corp., Osaka (Japan)

    1994-11-01

    This paper describes the laser cutting system established at a new advanced plant that was constructed by Hitachi Shipbuilding and Engineering Co., Ltd. in 1993. At the plant, the cutting line consists of four NC cutting lines: the plasma cutting machine, gas cutting machine, frame planer, and laser cutting machine. The laser cutting machine is used to cut complex shapes of relatively thin (6 - 16 mm) materials with high accuracy. The machine consists of a 3 kW CO2 laser oscillator mounted gantry type NC cutter and a slat conveyor of about 30 m long, with the maximum cutting width of 3.6 m. The NC cutting machine is provided with the automatic printing function using NC data, marking function, scheduled operation function, steel plate detector, and coordinate rotation function, etc. These functions enable unattended operation of the machine to cut multiple materials. This NC laser cutting line has the same performance data collection function for data during the operating time as other production lines. Therefore, the NC laser cutting line can be subjected to the realtime centralized control together with the other lines. All these technologies have provided high accuracy and efficiency for production as well as an environment in which many female operators can successfully work. 10 figs., 4 tabs.

  8. Recent laser physics results on power balance and frequency conversion with the Phebus laser system

    International Nuclear Information System (INIS)

    Thiell, G.; Paye, J.; Graillot, H.; Mathieu, F.; Boscheron, A.; Reynier, F.; Estraillier, P.; Bruneau, J.L.

    1995-01-01

    The Phebus laser system has been mainly devoted to plasma physics experiments such as implosion and hydrodynamical instability studies since it was completed in 1985. But during the last two years, the three Phebus beamlines (2 main beams and a backlighter beam) are also utilized to perform some laser physics studies in view of the Megajoule laser project. The goal of the laser physics experiments conducted at the Phebus facility in 1994--1995 is to validate some design issues of the Megajoule Laser project concerning namely power balance and frequency conversion

  9. Development and application of an automatic system for measuring the laser camera

    International Nuclear Information System (INIS)

    Feng Shuli; Peng Mingchen; Li Kuncheng

    2004-01-01

    Objective: To provide an automatic system for measuring imaging quality of laser camera, and to make an automatic measurement and analysis system. Methods: On the special imaging workstation (SGI 540), the procedure was written by using Matlab language. An automatic measurement and analysis system of imaging quality for laser camera was developed and made according to the imaging quality measurement standard of laser camera of International Engineer Commission (IEC). The measurement system used the theories of digital signal processing, and was based on the characteristics of digital images, as well as put the automatic measurement and analysis of laser camera into practice by the affiliated sample pictures of the laser camera. Results: All the parameters of imaging quality of laser camera, including H-D and MTF curve, low and middle and high resolution of optical density, all kinds of geometry distort, maximum and minimum density, as well as the dynamic range of gray scale, could be measured by this system. The system was applied for measuring the laser cameras in 20 hospitals in Beijing. The measuring results showed that the system could provide objective and quantitative data, and could accurately evaluate the imaging quality of laser camera, as well as correct the results made by manual measurement based on the affiliated sample pictures of the laser camera. Conclusion: The automatic measuring system of laser camera is an effective and objective tool for testing the quality of the laser camera, and the system makes a foundation for the future research

  10. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    International Nuclear Information System (INIS)

    Malta, D A M P; De Andrade, M F; Costa, M M; Lizarelli, R F Z; Pelino, J E P

    2008-01-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm 2 . The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm 2 . Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser

  11. Optical system for laser triggering of PBFA II

    International Nuclear Information System (INIS)

    Hamil, R.A.; Seamons, L.O.; Schanwald, L.P.; Gerber, R.A.

    1985-01-01

    The PBFA II laser triggering optical system consists of nearly 300 optical components. These optics must be sufficiently precise to preserve the laser beam quality, as well as to equally distribute the energy of the UV laser beam to the 36, 5.5 MV gas-filled switches at precisely the same instant. Both index variation and cleanliness of the air long the laser path must be controlled. The manual alignment system is capable of alignment to better than the acceptable error of 200 microradians (laser to switches). A technique has been devised to ease the alignment procedure by using a special high gain video camera and a tool alignment telescope to view retroreflective tape targets having optical brightness gains over white surfaces of 10/sup 3/. The camera is a charge-coupled detector intensified by a double microchannel plate having an optical gain of between 10/sup 4/ and 10/sup 5/

  12. Lasers and power systems for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    After discussing the role of lasers in ICF and the candidate lasers, several important areas of technology requirements are discussed. These include the beam transport system, the pulsed power system and the gas flow system. The system requirements, state of the art, as well as needs and prospects for new technology developments are given. Other technology issues and promising developments are described briefly

  13. Vacuum mechatronic laser alignment system on the Nova laser

    International Nuclear Information System (INIS)

    Holliday, M.; Wong, K.; Shelton, R.

    1991-11-01

    The experiments conducted on NOVA are done to investigate inertially confined laser fusion reactions. To this end, the ten beams of the laser are aligned to within 30mm. The target chamber employs a vacuum mechatronic based reticle/target positioning system to accomplish this. It is a five degree-of-freedom chamber resident system, known as the Alignment Aids Positioner or AAP. The AAP aids in beam and diagnostic alignment by accurately positioning a reticle at target chamber center to with 7mm. The AAP system increases target positioning and alignment flexibility and accuracy through the use of a computer controlled multi degree-of-freedom stage assembly. This device uses microstepping DC stepper motors with encoders to achieve closed loop control in a 10 -6 torr vacuum. The AAP has two positioning regimes to move the alignment reticle and do beam alignment. One is course positioning in the Y-Z plane that moves a high resolution stage assembly to target chamber center. The other regime is high resolution movement in the X,Y,Z and q directions. 5 refs., 9 figs

  14. BENCHMARKING MOBILE LASER SCANNING SYSTEMS USING A PERMANENT TEST FIELD

    Directory of Open Access Journals (Sweden)

    H. Kaartinen

    2012-07-01

    Full Text Available The objective of the study was to benchmark the geometric accuracy of mobile laser scanning (MLS systems using a permanent test field under good coverage of GNSS. Mobile laser scanning, also called mobile terrestrial laser scanning, is currently a rapidly developing area in laser scanning where laser scanners, GNSS and IMU are mounted onboard a moving vehicle. MLS can be considered to fill the gap between airborne and terrestrial laser scanning. Data provided by MLS systems can be characterized with the following technical parameters: a point density in the range of 100-1000 points per m2 at 10 m distance, b distance measurement accuracy of 2-5 cm, and c operational scanning range from 1 to 100 m. Several commercial, including e.g. Riegl, Optech and others, and some research mobile laser scanning systems surveyed the test field using predefined driving speed and directions. The acquired georeferenced point clouds were delivered for analyzing. The geometric accuracy of the point clouds was determined using the reference targets that could be identified and measured from the point cloud. Results show that in good GNSS conditions most systems can reach an accuracy of 2 cm both in plane and elevation. The accuracy of a low cost system, the price of which is less than tenth of the other systems, seems to be within a few centimetres at least in ground elevation determination. Inaccuracies in the relative orientation of the instruments lead to systematic errors and when several scanners are used, in multiple reproductions of the objects. Mobile laser scanning systems can collect high density point cloud data with high accuracy. A permanent test field suits well for verifying and comparing the performance of different mobile laser scanning systems. The accuracy of the relative orientation between the mapping instruments needs more attention. For example, if the object is seen double in the point cloud due to imperfect boresight calibration between two

  15. Calibration method for a vision guiding-based laser-tracking measurement system

    International Nuclear Information System (INIS)

    Shao, Mingwei; Wei, Zhenzhong; Hu, Mengjie; Zhang, Guangjun

    2015-01-01

    Laser-tracking measurement systems (laser trackers) based on a vision-guiding device are widely used in industrial fields, and their calibration is important. As conventional methods typically have many disadvantages, such as difficult machining of the target and overdependence on the retroreflector, a novel calibration method is presented in this paper. The retroreflector, which is necessary in the normal calibration method, is unnecessary in our approach. As the laser beam is linear, points on the beam can be obtained with the help of a normal planar target. In this way, we can determine the function of a laser beam under the camera coordinate system, while its corresponding function under the laser-tracker coordinate system can be obtained from the encoder of the laser tracker. Clearly, when several groups of functions are confirmed, the rotation matrix can be solved from the direction vectors of the laser beams in different coordinate systems. As the intersection of the laser beams is the origin of the laser-tracker coordinate system, the translation matrix can also be determined. Our proposed method not only achieves the calibration of a single laser-tracking measurement system but also provides a reference for the calibration of a multistation system. Simulations to evaluate the effects of some critical factors were conducted. These simulations show the robustness and accuracy of our method. In real experiments, the root mean square error of the calibration result reached 1.46 mm within a range of 10 m, even though the vision-guiding device focuses on a point approximately 5 m away from the origin of its coordinate system, with a field of view of approximately 200 mm  ×  200 mm. (paper)

  16. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  17. Development of YAG laser cutting system for decommissioning nuclear equipments

    International Nuclear Information System (INIS)

    Kasai, Takeshi; Nitta, Kazuhiko; Hosoda, Hiroshi.

    1995-01-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. As a result, the stainless steel plate with a thickness of 22mm could be cut by using an optical fiber which can flexibly propagate laser power, and possibility of application of this laser cutting system to decommissioning nuclear equipments was verified. (author)

  18. Development of YAG laser cutting system for decommissioning nuclear equipments

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takeshi [Fuji Electric Co. Research and Development Ltd., Yokosuka, Kanagawa (Japan); Nitta, Kazuhiko; Hosoda, Hiroshi

    1995-07-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. As a result, the stainless steel plate with a thickness of 22mm could be cut by using an optical fiber which can flexibly propagate laser power, and possibility of application of this laser cutting system to decommissioning nuclear equipments was verified. (author).

  19. Optical response in a laser-driven quantum pseudodot system

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, D. Gul [Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35390 Izmir (Turkey); Sakiroglu, S., E-mail: serpil.sakiroglu@deu.edu.tr [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey); Ungan, F.; Yesilgul, U. [Department of Optical Engineering, Faculty of Technology, Cumhuriyet University, 58140 Sivas (Turkey); Kasapoglu, E. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Sari, H. [Department of Primary Education, Faculty of Education, Cumhuriyet University, 58140 Sivas (Turkey); Sokmen, I. [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey)

    2017-03-15

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  20. Optical response in a laser-driven quantum pseudodot system

    International Nuclear Information System (INIS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-01-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  1. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  2. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  3. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  4. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  5. Handling And Safety Aspects Of Fiber Optic Laser Beam Delivery Systems

    Science.gov (United States)

    Schonborn, K.-H.; Wodrich, W.

    1988-06-01

    Using lasers for therapeutic applications is getting more and more accepted. In ophthalmology Ar-lasers for intraocular applications are quite common. The Nd:YAG-laser is used as a high power tool in connection with silica fibers for different extracorporal and intracorporal applications. The CO2-laser is the cutting laser, one problem being the beam transmission: The state of the art in fibers is not sufficient up to now. Because of the high power used safety against laser radiation hazard is of great importance. The safety in laser use is primarily dependent on the surgeons cautiousness, e.g. using laser protection goggels, observing that the spot of the aiming beam is present etc. On the other hand the laser and fiber system has to be inherently safe by appropriate technical means as far as possible. An additional aspect adding to safety is the handling: With easier system handling less attention of the surgeon is necessary for driving the apparatus. Thus he can concentrate on the patient and on the procedure. In considering the fiber system one important point in handling and safety is the coupling of the fiber to the laser head. The development philosophy in this coupling may be divided into two groups: - one is trying to use standard connectors which were initially developed for data transmission; - the other is using special connectors. One example of the first group is the guiding of the laser beam from the Ar-laser to the slit-lamp in ophtalmology. Here the well-known F-SMA connectors together with a special fiber with adapted numerical aperture are used. The advantage of such a system is the low price of the connector. For high power lasers such as the clinical Nd:YAG lasers with 40 to 150 W those connectors are not suitable. Up to now every laser manufacturer developed his own connector system in this field.

  6. Pulse propagation properties in high-power CO2 laser system for laser fusion

    International Nuclear Information System (INIS)

    Daido, H.; Inoue, M.; Fujita, H.; Matoba, M.; Nakai, S.

    1981-01-01

    The simulation results of nonlinear propagation properties in the CO 2 laser system using a simulation model of the SF 6 saturable absorbers and the CO 2 laser amplifiers agree well with the experimental results. The technical problems of the simultaneous irradiation of the multi-beams to a target are also discussed. (author)

  7. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon

    Science.gov (United States)

    Guariglia-Oropeza, Veronica; Orsi, Renato H.; Guldimann, Claudia; Wiedmann, Martin; Boor, Kathryn J.

    2018-01-01

    Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters. PMID:29467736

  8. The study on laser photochemical process of Diazonaphthoquinon-Cresol system

    International Nuclear Information System (INIS)

    Wei Jie; Huang Yu Li; Wang Wenke

    1999-01-01

    The kinetic process of laser photochemical reaction of diazonaphthoquinon-cresol system was studied by using laser spectrophotofluorimetry and laser induced fluorescence attenuation method. The nonlinear relationship between photodecomposition rate of the sensitizer and laser power, exposure time and concentration of solutions was discussed in detail

  9. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  10. Field-Testing of an Active Laser Tracking System

    Science.gov (United States)

    Markov, V.; Khiznyak, A.; Woll, D.; Liu, S.

    Comprehensive space surveillance demands a more accurate technique in tracking multi-dimensional state vector (3D coordinate, velocity, vibration, etc.) of the space objects. RF radiometric techniques typically can not provide the needed accuracy, while passive optical (and laser) tracking systems can provide distance to the object and its angular position, but not a direct reading of velocity, the parameter of primary importance for space object tracking and characterization. Addressing this problem with active optical tracking techniques is challenging because of the great distances involved, the high velocity of the satellites, and the optical aberrations induced by the atmosphere. We have proposed a phase conjugation based laser tracking concept, and accomplished the first version of design and engineering of a prototype for an Active Laser Tracking System (ALTS). In its current state the ALTS is capable to demonstrate the very basics operational principles of the proposed active tracking technique. We then performed a number of experiments to prove operational capabilities of this prototype both at MetroLaser's lab environment and at Edwards AFB Test Range. In its current architecture the ALTS is comprised of two laser cavities, Master and Slave that are coupled through a Phase Conjugate Mirror (PCM) formed in a non-linear medium (NLM) set at Master laser cavity. By pumping NLM and forming PCM, Master laser establishes the cavities coupling mode and injects the photons in the slave cavity. It is essential that the specific features of the PCM not only serve to couple ALTS cavities, but also serves to compensate optical aberrations of the ALTS (gain media and optical elements of the laser resonator). Due to its ability to compensate optical aberrations, phase conjugate resonators are capable of sustaining oscillation with a remote target as an output coupler. The entire system comprises of several modules, including a laser, emitting/receiving telescope, gimbal

  11. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  12. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Zhao Jun; Ma Lianying; Yi Aiping; Liu Jingru

    2011-01-01

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  13. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This study investigated: (1) the formulation and evaluation of an alignment system to accomplish pointing, focusing, centering and translation for the 20-arm SHIVA laser, (2) the formulation and evaluation of concepts for the correction of static phase distortions introduced by the accumulated optical elements in the laser chains, (3) the formulation and evaluation of concepts for the correction of optical path length differences between the arms of the SHIVA system, and (4) the conceptual design of appropriate control system hardware. (U.S.)

  14. The laser-based calibration system of delta spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Malakhov, A.I. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Anisimov, Yu.S. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Gmuca, S. [Inst. of Physics, SAS, Bratislava (Slovakia); Kizka, V.A. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Kliman, J. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Inst. of Physics, SAS, Bratislava (Slovakia); Krasnov, V.A. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Kurepin, A.B. [Inst. for Nuclear Research RAS, Moscow (Russian Federation); Kuznetsov, S.N. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Livanov, A.N. [Veksler and Baldin Laboratory of High Energies, JINR, Dubna (Russian Federation); Matousek, V. [Inst. of Physics, SAS, Bratislava (Slovakia); Morhac, M. [Inst. of Physics, SAS, Bratislava (Slovakia)]. E-mail: Miroslav.Morhac@savba.sk; Turzo, I. [Inst. of Physics, SAS, Bratislava (Slovakia)

    2006-10-15

    We present a report on a laser calibration system of DELTA spectrometer that has been designed and developed in the Laboratory of High Energies, JINR, Dubna. The system is intended for monitoring and continuous stabilization of the outputs of the detectors of the spectrometer. The UV nitrogen pulse laser along with optical filters, collection of optical fibers and plastic scintillators serving for conversion of UV light pulses to longer wavelength and for diffusion of the light beam to illuminate 300 photomultipliers are used. We stabilize the positions of laser peaks by corrections of high voltages of the corresponding photomultipliers. The proposed system allows one to accomplish the stabilization during the experiment with the use of the same electronics. The control software together with the first results from test runs are described as well.

  15. Development of Blue Laser Direct-Write Lithography System

    Directory of Open Access Journals (Sweden)

    Hao-Wen Chang

    2012-01-01

    Full Text Available The optical lithography system researched in this study adopted the laser direct-write lithography technology with nano-positioning stage by using retailing blue ray optical pickup head contained 405nm wavelength and 0.85 numerical aperture of focus lens as the system lighting source. The system employed a photodiode received the focusing error signal reflected by the glass substrate to identify specimen position and automatic focused control with voice coil motor. The pattern substrate was loaded on a nano-positioning stage; input pattern path automatically and collocate with inner program at the same time. This research has successfully developed a blue laser lithography process system. The single spot size can be narrowed down to 3.07 μm and the linewidth is 3.3μm, time of laser control can reach to 450 ns and the exposure pattern can be controlled by program as well.

  16. Method and system for communicating with a laser power driver

    Science.gov (United States)

    Telford, Steven

    2017-07-18

    A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.

  17. Secondary waste characteristics and ITS filtration system on laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Kunio; Miyao, Hidehiko [Research Association for Facility Decommissioning (RANDEC), Tokai, Ibaraki (Japan); Nakazawa, Masaharu [Tokyo Univ. (Japan); Kataoka, Shinichi; Nagura, Yasumi; Saiki, Hideo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2001-03-01

    Technology of dismantling nuclear facilities has been developing in various fields for its evaluation and dismantling system. RANDEC has been studying remote dismantling system for highly activated equipments such as core internals with a laser using optical fiber. Recently a high power YAG laser having the advantage of application for remote dismantling on thick metallic material is the stage for practical use, and narrow kerf can bring the reduction of secondary waste as well. The present paper describes the experimental results and discussion on the laser cutting, including the secondary waste characteristics and its filtration system using the YAG laser. This study has been performed on consignment to RANDEC from the Science and Technology Agency of Japan. (author)

  18. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    International Nuclear Information System (INIS)

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  19. A supervisor system for computer aided laser machining

    International Nuclear Information System (INIS)

    Mukherjee, J.K.

    1990-01-01

    Lasers achieve non divergent beam of short wavelength energy which can propagate through normal atmosphere with little divergence and can be focused on very fine points. The final high energy per unit area on target is highly localised and suitable for various types of machining at high speeds. The most notable factor is that this high energy spot can be located precisely using light-weight optical components. The laser-machining is very amenable to environmental conditions unlike electron beam and other techniques. Precision cutting and welding of nuclear materials in normal or non oxidising atmosphere can be done using this fairly easily. To achieve these objectives, development of a computer controlled laser machining system has been undertaken. The development project aims at building a computer aided machine with indegenous controller and medium power laser suitable for cutting, welding, and marking. This paper describes the integration of the various computer aided functions, spanning over the full range, from job-defining to final finished part-delivary, in computer aided laser machining. Various innovative features of the system that render it suitable for laser tool development as well as for special machining applications with user-friendliness have been covered. (author). 5 refs., 5 figs

  20. 970-nm ridge waveguide diode laser bars for high power DWBC systems

    Science.gov (United States)

    Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther

    2018-02-01

    de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.

  1. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  2. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    Science.gov (United States)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  3. Theory of superfluorescence-laser crossover in a cavity QED system

    Energy Technology Data Exchange (ETDEWEB)

    Sezaki, Riku; Ishikawa, Akira; Kobayashi, Kiyoshi [University of Yamanashi, Department of Science for Advanced Materials, Kofu, Yamanashi (Japan); Miyajima, Kensuke [Tokyo University of Science, Department of Applied Physics, Tokyo (Japan)

    2017-11-15

    Coherent emissions of photons, originating from coherently-coupled polarizations, are created by laser and superfluorescence, but the mechanisms remain obscure to be fully explored in nanophotonics from the application viewpoint to coherent-light sources. In this paper, we present a comprehensive full quantum theory to clarify the crossover between laser and superfluorescence caused by the competition between stimulated and spontaneous emissions in a cavity QED system. As a result, in case of steady-state emission, we show the feasibility of coherent-light emission by superfluorescence different from laser, depending on the quality factor of a cavity QED system. In particular, the coherence generation due to superfluorescence occurs in a shorter timescale in a cavity QED systems with a lower Q factor than laser due to stimulated emission. This result suggests that superfluorescence can be applied to a novel coherent-light source by a mechanism greatly different from laser. (orig.)

  4. The control and data acquisition system of a laser in-vessel viewing system

    International Nuclear Information System (INIS)

    Pereira, Rita C.; Cruz, Nuno; Neri, C.; Riva, M.; Correia, C.; Varandas, C.A.F.

    2000-01-01

    This paper presents the dedicated control and data acquisition system (CADAS) of a new laser in-vessel viewing system that has been developed for inspection purposes in fusion experiments. CADAS is based on a MC68060 microprocessor and on-site developed VME instrumentation. Its main aims are to simultaneously control the laser alignment system as well as the laser beam deflection for in-vessel scanning, acquire a high-resolution image and support real-time data flow rates up to 2 Mbyte/s from the acquisition modules to the hard disk and network. The hardware (modules for control and alignment acquisition, scanning acquisition and monitoring) as well as the three levels of software are described

  5. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  6. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  7. The Final Focus Test Beam laser referene system

    International Nuclear Information System (INIS)

    Bressler, V.E.; Ruland, R.E.

    1993-05-01

    The original design for the SLAC linac included an alignment reference system with 270 diffraction gratings situated along the 3000 meter linac. These gratings have provided SLAC with a global reference line repeatable to within 200 micro meters. For the Final Focus Test Beam, this laser system has been extended and 13 new diffraction gratings have been installed. Improvements targets and the availability of new instruments allows us to evaluate the performance of the laser reference system at the 510 micro meter level. An explanation of the system and the results of our evaluation are presented

  8. The development and progress of XeCl Excimer laser system

    Science.gov (United States)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  9. Relay telescope for high power laser alignment system

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  10. Micro Sampling System for Highly Radioactive Specimen by Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sun Ho; Ha, Yeong Keong; Han, Ki Chul; Park, Yang Soon; Jee, Kwang Yong; Kim, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Shielded laser ablation system composed of laser system, image analyser, XYZ translator with motion controller, ablation chamber, manipulator and various optics was designed. Nd:YAG laser which can be tunable from 1064 nm to 266 nm was selected as light source. CCD camera(< x 200) was chosen to analyze a crater less than 50 un in diameter. XYZ translator was composed of three linear stage which can travel 50 w with a minimum movement of 1 {mu}m and motion controller. Before the performance test, each part of system was optically aligned. To perform the ablation test, the specimen was ablated by 50 {mu}m interval and observed by image analyser The shape of crater was almost round, indicating laser beam has homogeneous energy distribution. The resolution and magnification of image system were compatible with the design.

  11. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Science.gov (United States)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  12. Acousto-optic laser projection systems for displaying TV information

    International Nuclear Information System (INIS)

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M; Shakin, O V

    2015-01-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  13. Acousto-optic laser projection systems for displaying TV information

    Science.gov (United States)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  14. Acousto-optic laser projection systems for displaying TV information

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu V [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Kazaryan, M A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mokrushin, Yu M [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Shakin, O V [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  15. Mercury: The Los Alamos ICF KrF laser system

    International Nuclear Information System (INIS)

    Czuchlewski, S.J.; York, G.W.; Bigio, I.J.; Brucker, J.; Hanson, D.; Honig, E.M.; Kurnit, N.; Leland, W.; McCown, A.W.; McLeod, J.; Rose, E.; Thomas, S.; Thompson, D.

    1993-01-01

    The Mercury KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora system. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a tested for a variety of advanced KrF technology concepts

  16. Land-Based Mobile Laser Scanning Systems: a Review

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  17. Wavefront compensation applied to AVLIS laser systems

    International Nuclear Information System (INIS)

    Gonsiorowski, T.; Wirth, A.

    1995-01-01

    The efficiency of an AVLIS system depends upon the power density and uniformity of the laser system. Because of wavefront aberrations the realized beam quality is not ideal. Wavefront compensation provides a means to improve beam quality and system efficiency. (author)

  18. Qualification testing of fiber-based laser transmitters and on-orbit validation of a commercial laser system

    Science.gov (United States)

    Wright, M. W.; Wilkerson, M. W.; Tang, R. R.

    2017-11-01

    Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.

  19. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  20. lambda-3, Sandia's 100-J HF laser system

    International Nuclear Information System (INIS)

    Klein, R.A.

    1979-09-01

    Sandia's lambda-geometry intermediate electron-beam-initiated HF amplifier is described in sufficient detail such that a similar system could be designed, constructed and characterized. Items included are the design of the laser cell, magnetic field design and measurements, electron-beam calorimetry, and typical laser results

  1. Study and design on USB wireless laser communication system

    Science.gov (United States)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  2. Real Time Trajectory Correction System Of Optical Head In Laser Welding

    Directory of Open Access Journals (Sweden)

    Cieszyński Wojciech

    2015-12-01

    Full Text Available Application of laser welding technology requires that the laser beam is guided through the whole length of the joint with sufficiently high accuracy. This paper describes result of research on development of optomechatronic system that allows for the precise positioning of the laser head’s TCP point on the edge of welded elements during laser processing. The developed system allows for compensation of workpiece’s fixture inaccuracies, precast distortions and workpiece deformations occurring during the process.

  3. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  4. Nano-pulsed laser irradiation scanning system for phase-change materials

    International Nuclear Information System (INIS)

    Kim, Sookyung; Li Xuezhe; Lee, Sangbin; Kim, Kyung-Ho; Lee, Seung-Yop

    2008-01-01

    Recently, the demand of a laser irradiation tester is increasing for phase change random access memory (PRAM) as well as conventional optical storage media. In this study, a nano-pulsed laser irradiation system is developed to characterize the optical property and writing performance of phase-change materials, based on a commercially available digital versatile disk (DVD) optical pick-up. The precisely controlled focusing and scanning on the material's surface are implemented using the auto-focusing mechanism and a voice coil motor (VCM) of the commercial DVD pick-up. The laser irradiation system provides various writing and reading functions such as adjustable laser power, pulse duration, recording pattern (spot, line and area), and writing/reading repetition, phase transition, and in situ reflectivity measurement before/after irradiation. Measurements of power time effect (PTE) diagram and reflectivity map of Ge 2 Sb 2 Te 5 samples show that the proposed laser irradiation system provides the powerful scanning tool to quantify the optical characteristics of phase-change materials

  5. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com [Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Ramsay, Elizabeth; Kazem, Mohammad; Peikari, Hamed [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5 (Canada); Mougenot, Charles [Philips Healthcare, 281 Hillmount Road, Markham, Ontario L6C 2S3 (Canada); Bronskill, Michael [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9 (Canada); Chopra, Rajiv [Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5 (Canada); Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9 (Canada)

    2016-01-15

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device

  6. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    International Nuclear Information System (INIS)

    Tatebe, Ken; Ramsay, Elizabeth; Kazem, Mohammad; Peikari, Hamed; Mougenot, Charles; Bronskill, Michael; Chopra, Rajiv

    2016-01-01

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device

  7. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  8. Applications of OALCLV in the high power laser systems

    Science.gov (United States)

    Huang, Dajie; Fan, Wei; Cheng, He; Wei, Hui; Wang, Jiangfeng; An, Honghai; Wang, Chao; Cheng, Yu; Xia, Gang; Li, Xuechun; Lin, Zunqi

    2017-10-01

    This paper introduces the recent development of our integrated optical addressed spatial light modulator and its applications in the high power laser systems. It can be used to convert the incident beam into uniform beam for high energy effiency, or it can realize special distribution to meet the requirements of physical experiment. The optical addressing method can avoid the problem of the black matrix effect of the electric addressing device. Its transmittance for 1053nm light is about 85% and the aperture of our device has reached 22mm× 22mm. As a transmissive device, it can be inserted into the system without affecting the original optical path. The applications of the device in the three laser systems are introduced in detail in this paper. In the SGII-Up laser facility, this device demonstrates its ability to shape the output laser beam of the fundamental frequency when the output energy reaches about 2000J. Meanwhile, there's no change in the time waveform and far field distribution. This means that it can effectively improve the capacity of the maximum output energy. In the 1J1Hz Nd-glass laser system, this device has been used to improve the uniformity of the output beam. As a result, the PV value reduces from 1.4 to 1.2, which means the beam quality has been improved effectively. In the 9th beam of SGII laser facility, the device has been used to meet the requirements of sampling the probe light. As the transmittance distribution of the laser beam can be adjusted, the sampling spot can be realized in real time. As a result, it's easy to make the sampled spot meet the requirements of physics experiment.

  9. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  10. Study on improvement of laser system performance for uranium isotope separation

    International Nuclear Information System (INIS)

    Fujii, Takashi

    1998-01-01

    For the purpose of reducing the cost of Atomic Vapor Laser Isotope Separation (AVLIS), I developed the following laser technologies. (1) I developed a solid-state pulse power supply, of which output power was the almost highest value achieved for a copper vapor laser in 1989, using a GTO as a switching device and a magnetic pulse compression circuit. (2) I developed a new technique of tuning the laser wavelength to an atomic absorption band using high-speed wavelength shift of a laser diode by direct modulation. (3) I developed a new technique of stabilizing the laser wavelength at an absorption band of a target atom, by locking the sideband generated by phase modulation of a laser beam to a Fabry-Perot interferometer. (4) I proposed the Cr 4+ -doped forsterite laser system as an all solid-state laser system for the AVLIS. I obtained the slope efficiency of 25%, which was the highest value achieved in the case of pulse operation of the Cr 4+ -doped forsterite laser in 1995, using the forsterite with high Cr 4+ -ion concentration. (author)

  11. Modeling of photoluminescence in laser-based lighting systems

    Science.gov (United States)

    Chatzizyrli, Elisavet; Tinne, Nadine; Lachmayer, Roland; Neumann, Jörg; Kracht, Dietmar

    2017-12-01

    The development of laser-based lighting systems has been the latest step towards a revolution in illumination technology brought about by solid-state lighting. Laser-activated remote phosphor systems produce white light sources with significantly higher luminance than LEDs. The weak point of such systems is often considered to be the conversion element. The high-intensity exciting laser beam in combination with the limited thermal conductivity of ceramic phosphor materials leads to thermal quenching, the phenomenon in which the emission efficiency decreases as temperature rises. For this reason, the aim of the presented study is the modeling of remote phosphor systems in order to investigate their thermal limitations and to calculate the parameters for optimizing the efficiency of such systems. The common approach to simulate remote phosphor systems utilizes a combination of different tools such as ray tracing algorithms and wave optics tools for describing the incident and converted light, whereas the modeling of the conversion process itself, i.e. photoluminescence, in most cases is circumvented by using the absorption and emission spectra of the phosphor material. In this study, we describe the processes involved in luminescence quantum-mechanically using the single-configurational-coordinate diagram as well as the Franck-Condon principle and propose a simulation model that incorporates the temperature dependence of these processes. Following an increasing awareness of climate change and environmental issues, the development of ecologically friendly lighting systems featuring low power consumption and high luminous efficiency is imperative more than ever. The better understanding of laser-based lighting systems is an important step towards that aim as they may improve on LEDs in the near future.

  12. A laser-powered hydrokinetic system for caries removal and cavity preparation.

    Science.gov (United States)

    Hadley, J; Young, D A; Eversole, L R; Gornbein, J A

    2000-06-01

    Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation. The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study. There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic. The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces. Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.

  13. Repetitive laser fusion experiment and operation using a target injection system

    International Nuclear Information System (INIS)

    Nishimura, Yasuhiko; Komeda, Osamu; Mori, Yoshitaka

    2017-01-01

    Since 2008, a collaborative research project on laser fusion development based on a high-speed ignition method using repetitive laser has been carried out with several collaborative research institutes. This paper reports the current state of operation of high repetition laser fusion experiments, such as target introduction and control based on a target injection system that allows free falling under 1 Hz, using a high repetition laser driver that has been under research and development, as well as the measurement of targets that freely fall. The HAMA laser driver that enabled high repetition fusion experiments is a titanium sapphire laser using a diode-pumped solid-state laser KURE-I of green light output as a driver pump light source. In order to carry out high repetition laser fusion experiments, the target injection device allows free falling of deuterated polystyrene solid sphere targets of 1 mm in diameter under 1 Hz. The authors integrated the developed laser and injection system, and succeeded first in the world in making the nuclear fusion reaction continuously by hitting the target to be injected with laser, which is essential technology for future laser nuclear fusion reactor. In order to realize repetition laser fusion experiments, stable laser, target synchronization control, and target position measurement technologies are indispensable. (A.O.)

  14. Free-space QKD system hacking by wavelength control using an external laser.

    Science.gov (United States)

    Lee, Min Soo; Woo, Min Ki; Jung, Jisung; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2017-05-15

    We develop a way to hack free-space quantum key distribution (QKD) systems by changing the wavelength of the quantum signal laser using an external laser. Most free-space QKD systems use four distinct lasers for each polarization, thereby making the characteristics of each laser indistinguishable. We also discover a side-channel that can distinguish the lasers by using an external laser. Our hacking scheme identifies the lasers by automatically applying the external laser to each signal laser at different intensities and detecting the wavelength variation according to the amount of incident external laser power. We conduct a proof-of-principle experiment to verify the proposed hacking structure and confirm that the wavelength varies by several gigahertzes to several nanometers, depending on the intensity of the external laser. The risk of hacking is successfully proven through the experimental results. Methods for prevention are also suggested.

  15. Design of single-longitudinal-mode laser oscillator for edge Thomson scattering system in ITER

    International Nuclear Information System (INIS)

    Hatae, Takaki; Kusama, Yoshinori; Kubomura, Hiroyuki; Matsuoka, Shin-ichi

    2006-06-01

    A high output energy (5J) and high repetition rate (100 Hz) laser system is required for the edge Thomson scattering system in ITER. A YAG laser (Nd:YAG laser) is a first candidate for the laser system satisfying the requirements. It is important to develop a high beam quality and single longitudinal mode (SLM) laser oscillator in order to realize this high power laser system. In this design work, following activities relating to the SLM laser oscillator have been carried out: design of the laser head and the resonator, estimation of the output power for the SLM laser oscillator, consideration of the feedback control scheme and consideration of interface for amplification system to achieve required performance (5J, 100 Hz). It is expected that the designed laser diode (LD) pumped SLM laser oscillator realizes: 100 Hz of repetition rate, 10 mJ of output energy, 10 ns of pulse width, single longitudinal mode, TEM 00 of transversal mode, divergence less than 4 times of the diffraction limit, energy stability within 5%. (author)

  16. Inhibitory effect of genistein on PLC/PRF5 hepatocellular carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Mehdi Nikbakht Dastjerdi

    2015-01-01

    Full Text Available Background: Natural compounds including flavonoids like genistein (GE are able to inhibit cell proliferation and induce apoptosis. GE is the main representative of these groups. GE inhibits carcinogenic tumors such as colon, stomach, lung, and pancreas tumors. The aim of the present study was to analyze the apoptotic effect of GE in the hepatocellular carcinoma (HCC PLC/PRF5 cell line. Methods: Cells were treated with various doses of GE (1, 5, 10, 25, 50, 75, and 100 μM/L at different times (24, 48, and 72 h and the MTT assay was commonly used. Furthermore, cells were treated with single dose of GE (25 μM at different times and flow cytometry was performed. Results: GE inhibited the growth of liver cancer cells significantly with a time- and dose-dependent manner. The percentage of living cells in GE treatment groups with a concentration of 25 μM at different times were 53, 48 and 47%, respectively (P < 0.001. Result of flow cytometry demonstrated that GE at a 25 μM concentration induces apoptosis significantly in a time-dependent manner. The percentage of apoptotic cells at different times were 44, 56, and 60%, respectively (P < 0.001. Conclusions: GE can significantly inhibit the growth of HCC cells and plays a significant role in apoptosis of this cell line.

  17. Quantum cascade lasers, systems, and applications in Europe

    Science.gov (United States)

    Lambrecht, Armin

    2005-03-01

    Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.

  18. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept.

    Science.gov (United States)

    Choukroun, J; Ghanaati, S

    2018-02-01

    The aim of this study was to analyze systematically the influence of the relative centrifugation force (RCF) on leukocytes, platelets and growth factor release within fluid platelet-rich fibrin matrices (PRF). Systematically using peripheral blood from six healthy volunteers, the RCF was reduced four times for each of the three experimental protocols (I-III) within the spectrum (710-44 g), while maintaining a constant centrifugation time. Flow cytometry was applied to determine the platelets and leukocyte number. The growth factor concentration was quantified 1 and 24 h after clotting using ELISA. Reducing RCF in accordance with protocol-II (177 g) led to a significantly higher platelets and leukocytes numbers compared to protocol-I (710 g). Protocol-III (44 g) showed a highly significant increase of leukocytes and platelets number in comparison to -I and -II. The growth factors' concentration of VEGF and TGF-β1 was significantly higher in protocol-II compared to -I, whereas protocol-III exhibited significantly higher growth factor concentration compared to protocols-I and -II. These findings were observed among 1 and 24 h after clotting, as well as the accumulated growth factor concentration over 24 h. Based on the results, it has been demonstrated that it is possible to enrich PRF-based fluid matrices with leukocytes, platelets and growth factors by means of a single alteration of the centrifugation settings within the clinical routine. We postulate that the so-called low speed centrifugation concept (LSCC) selectively enriches leukocytes, platelets and growth factors within fluid PRF-based matrices. Further studies are needed to evaluate the effect of cell and growth factor enrichment on wound healing and tissue regeneration while comparing blood concentrates gained by high and low RCF.

  19. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  20. Operative and economic evaluation of a 'Laser Printer Multimodality' System

    International Nuclear Information System (INIS)

    Battaglia, G.; Moscatelli, G.; Maroldi, R.; Chiesa, A.

    1991-01-01

    The increasing application of digital techniques to diagnostic imaging is causing significant changes in several related activities, such as a reproduction of digital images on film. In the Department of Diagnostic Imaging of the University of Brescia, about 70% of the whole of images are produced by digital techniques; at present, most of these images are reproduced on film with a Multimodality System interfacing CT, MR, DSA, and DR units with a single laser printer. Our analysis evaluates the operative and economics aspects of image reproduction, by comparing the 'single cassette' multiformat Camera and the Laser Printer Multimodality SAystem. Our results point out the advantages obtained by reproducing images with a Laser Printer Multimodality System: outstanding quality, reproduction of multiple originals, and marked reduction in the time needed for both image archiving and film handling. The Laser Printer Multimodality System allows over 5 hours/day to be saved -that is to say the working day of an operator, who can be thus shifted to other functions. The important economic aspect of the reproduction of digital images on film proves the Laser Printer Multimodality System to have some advantage over Cameras

  1. Approach to compact terawatt CO2 laser system for particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.

    1994-01-01

    A compact table-top 20-GW 50-ps CO 2 laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO 2 laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO 2 laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the ∼1-TW peak power level

  2. Conceptual design of a hybrid KrF laser system for ICF commercial applications

    International Nuclear Information System (INIS)

    Harris, D.B.; Lowenthal, D.D.

    1986-01-01

    KrF lasers appear to be the most efficient lasers operating near the optimal wavelength for laser fusion. Most high-efficiency, low-cost KrF laser designs use large electron-beam driven amplifiers and use pure angular multiplexing for the required pulse compression. A recent study carried out by Los Alamos and Spectra Technology has defined a high-efficiency hybrid KrF laser system architecture that uses both angular multiplexing and Raman beam combination. The high overall system efficiency of this hybrid design, approximately 12%, is achieved primarily through the use of e-beam sustained discharge lasers (EBSDL), and by using the efficient forward rotational Raman process in hydrogen. The new system appears attractive as a commercial-applications driver because the calculated efficiency is higher than the usual large e-beam pumped (EBP) KrF laser/pure angular multiplexing approach. In this paper, the hybrid system architecture is described, and the tradeoffs with respect to the large EBP amplifier/angular multiplexed system are discussed

  3. System for increasing laser pulse rate

    International Nuclear Information System (INIS)

    1980-01-01

    A technique of static elements is disclosed for combining a plurality of laser beams having time sequenced, pulsed radiation to achieve an augmented pulse rate. The technique may also be applied in a system for combining both time sequenced pulses and frequency distinct pulses for use in a system for isotope enrichment. (author)

  4. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  5. Aurora: A short-pulse multikilojoule KrF inertial fusion laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1985-01-01

    Aurora is a laser system that serves as an operating technology demonstration prototype for large-scale high-energy KrF laser systems of interest for inertial fusion applications. This system will incorporate the following elements to achieve an end-to-end 248-nm laser fusion concept demonstration: an injection-locked oscillator-amplifier front end; an optical angular multiplexer to produce 96 encoded optical channels each of 5-nsec duration; a chain of four electron-beam-driven KrF laser amplifiers; automated alignment systems for beam alignment; a decoder to provide for pulse compression of some fraction of the total beam train to be delivered to target, and a target chamber to house and diagnose fusion targets. The front end configuration uses a stable resonator master oscillator to drive an injection-locked unstable resonator slave oscillator. An extension of existing technology has been used to develop an electrooptic switchout at 248 nm that produces a 5-nsec pulse from the longer slave oscillator pulse. This short pulse is amplified by a postamplifier. Using these discharge lasers, the front end then delivers at least 250 mJ of KrF laser light output to the optical encoder

  6. Design of a laser scanner for a digital mammography system.

    Science.gov (United States)

    Rowlands, J A; Taylor, J E

    1996-05-01

    We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.

  7. Requirements and new materials for fusion laser systems

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n 2 ) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978

  8. Method of laser beam coding for control systems

    Science.gov (United States)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  9. Requirements and new materials for fusion laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n/sub 2/) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978.

  10. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  11. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  12. The design of laser atmosphere transmission characteristic measurement system based on virtual instrument

    Science.gov (United States)

    Zhang, Laixian; Sun, Huayan; Xu, Jiawen

    2010-10-01

    The laser atmosphere transmission characteristic affects the use of laser in engineering greatly. This paper designed a laser atmosphere transmission characteristic measurement system based on LabVIEW software, a product of NI. The system acquires laser spacial distribution by means of controlling NI image acquisition card and CCD through PCI, controls oscillograph to acquire laser time domain distribution through Ethernet and controls power meter to acquire energy of laser through RS-232. It processes the data acquired and analyses the laser atmosphere transmission characteristic using Matlab, which is powerful in data processing, through software interface. It provided a new way to study the laser atmosphere transmission characteristic.

  13. Feasibility Study for the CERN "CLIC" Photo-Injector Laser System

    CERN Document Server

    Ross, I N

    2000-01-01

    This study is designed to contribute to the development of the Cern Linear Collider (CLIC). One route to the generation of the required electron injection into this system is through the use of photo-cathodes illuminated with a suitably designed laser system. The requirements of the accelerator and photo-cathodes have led to a specification for the laser system given in Table 1. Because CLIC will not be built directly but in stages, notably via CLIC Test Facilities (CTF), this table also includes the specification for a photo-injector laser system for CTF3 which will be required before the final system for CLIC. Although there are significant differences between these two specifications it will be necessary to design the CTF3 system such that it can be easily upgraded to the system for CLIC and will be able to check all the critical issues necessary for CLIC.

  14. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  15. Oscillator and system development on the VULCAN glass laser system for the plasma beat-wave program

    International Nuclear Information System (INIS)

    Danson, C.N.

    1990-03-01

    This thesis describes the oscillator and system development on the VULCAN glass laser undertaken in support of the RAL Plasma Beat-wave experiments. This program seeks to evaluate advanced particle acceleration schemes for a new generation of machines for fundamental research in high energy physics. The experiments required two synchronised high power laser pulses of slightly different wavelength. These pulses were generated using two different laser media; Nd:YAG and Nd:YLF operating at 1.064 and 1.053 microns respectively. The first oscillator system developed operated with both lasing media housed in the same laser cavity. Problems with the stability of the optical output required the development of a second system which housed the two lasing media in separate cavities. The second aspect of the development work, described in this thesis, was the reconfiguration of the VULCAN glass laser system to amplify the two laser pulses to power levels of 0.5 TW per pulse. The first scheduled experiment required the two pulses to be propagated co-linearly. To amplify the pulses to the high output powers required two amplifying media to be used which preferentially amplify the two lasing wavelengths. For the later experiments the two laser pulses were amplified in separate amplifier chains which required the design of an efficient beam combiner. (author)

  16. A multi-laser system for a fast sampling Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Trost, P.K.; Carlstrom, T.N.; DeBoo, J.C.; Greenfield, C.M.; Hsieh, C.L.; Snider, R.T.

    1990-10-01

    A multi-laser system is being developed for the DIII-D Thomson scattering diagnostic. This system combines the beams from up to eight Nd:YAG lasers onto a common beamline in which the beams are nearly parallel and are all focused into a small, common area within the desired scattering volume. Each laser can be fired at a constant rate (20 Hz per laser) for a high average repetition rate, or together in a ''burst,'' which will give very high sampling rates (10--20 kHz) for short periods. The burst mode will be triggerable by plasma events, which will allow for study of transient phenomena, but will require non-periodic firing of the lasers. Beamline diagnostics include position sensitive detectors for computer controlled feedback alignment of the 35 m beamline, an image position detection system for monitoring the alignment of the collection lens to the scattering volume, and a 1-D reticon camera for divergence monitoring. The effects of the non-periodic firing of the lasers will be monitored with the reticon camera. 3 refs., 5 figs

  17. Development of tunable flashlamp excited dye laser system

    International Nuclear Information System (INIS)

    Bhanthumnavin, V.; Apikitmata, S.; Kochareon, P.

    1991-01-01

    A tunable flashlamp excited dye laser (FEDL) was successfully developed for the first time in Thailand by Thai scientists at KMIT Thonburi (Bangmod). The Rhodamine 6G dissolved in ethyl alcohol was utilized as a laser medium and circulated by a pump through a laser head. The dye cuvette had an inner diameter of 4.0 mm and was 90 mm long. The cavity mirrors M 1 , and M 2 were concave mirrors with reflectivities of 100% and 73% respectively. A power supply of 0-20 kV and current of 0-50 mA charged a capacitor of 0.3 μ f at 10-15 kV which was then discharged via a spark gap through the flashlamp. The output laser wavelengths was tunable from λ = 550-640 nm. It is the first FEDL system, locally developed, which has a tunable wavelength for the laser output. The laser pulse width is about 1.0 μs with energy of 20 mJ and peak power pf 20 KW. The repetition rate of the laser is 1/15 Hz. (author). 14 refs, 7 figs

  18. Conceptual design of a hybrid KrF laser system for ICF commercial applications

    International Nuclear Information System (INIS)

    Harris, D.B.; Lowenthal, D.D.

    1986-01-01

    KrF lasers appear to be the most efficient lasers operating near the optimal wavelength for laser fusion. Most high-efficiency, low-cost KrF laser designs use large electron-beam-driven amplifiers and use pure angular multiplexing for the required pulse compression. A recent study carried out by Los Alamos National Lab. and Spectra Technology has defied a high-efficiency hybrid KrF laser system architecture that uses both angular multiplexing and Raman beam combination. The high overall system efficiency of this hybrid design, ∼ 12%, is achieved primarily through the use of electron-beam sustained discharge lasers (EBSDL), and by using the efficient forward rotational Raman process in hydrogen. The new system appears attractive as a commercial-applications driver because the calculated efficiency is higher than the usual large electron-beam-pumped (EBP) KrF laser/pure angular multiplexing approach. In this paper, the hybrid system architecture will be described, and the trade-offs with respect to the large EBP amplifier/angular multiplexed system will be discussed

  19. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  20. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin

    1997-01-01

    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  1. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    Science.gov (United States)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  2. Development of laser marking system with electro-optic Q-switch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  3. Development of laser marking system with electro-optic Q-switch

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  4. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    International Nuclear Information System (INIS)

    Yoshimura, Koji; Nakamura, Isamu

    2012-01-01

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to ∼2μm diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  5. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Koji, E-mail: koji.yoshimura@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Isamu [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-12-11

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to {approx}2{mu}m diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  6. Influence of Atmospheric Propagation on Performance of Laser Active Imaging System

    International Nuclear Information System (INIS)

    Li Yingchun; Sun Huayan; Guo Huichao; Zhao Yun

    2011-01-01

    Atmospheric propagation has serious influence on the performance of a good designed laser active imaging system. Atmospheric attenuation and turbulence are two main effects on laser atmospheric propagation. Imaging SNR (Signal-Noise-Ratio) and resolution are two key indexes to describe the performance of a laser active imaging system. Establishing the relation between system performance index and atmospheric propagation effect is significant. The paper analyzed the relation between imaging performance and atmospheric attenuation and turbulence through simulation. And also the experiments were done under different weather to validate the conclusion of simulation.

  7. Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source

    CERN Document Server

    Gibson, David J; Betts, S; Crane, John; Jovanovic, Igor

    2005-01-01

    The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3 - 5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 μJ, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, an optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a...

  8. Design of remote laser-induced fluorescence system's acquisition circuit

    Science.gov (United States)

    Wang, Guoqing; Lou, Yue; Wang, Ran; Yan, Debao; Li, Xin; Zhao, Xin; Chen, Dong; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence system(LIfS) has been found its significant application in identifying one kind of substance from another by its properties even it's thimbleful, and becomes useful in plenty of fields. Many superior works have reported LIfS' theoretical analysis , designs and uses. However, the usual LIPS is always constructed in labs to detect matter quite closely, for the system using low-power laser as excitation source and charge coupled device (CCD) as detector. Promoting the detectivity of LIfS is of much concern to spread its application. Here, we take a high-energy narrow-pulse laser instead of commonly used continuous wave laser to operate sample, thus we can get strong fluorescent. Besides, photomultiplier (PMT) with high sensitivity is adopted in our system to detect extremely weak fluorescence after a long flight time from the sample to the detector. Another advantage in our system, as the fluorescence collected into spectroscopy, multiple wavelengths of light can be converted to the corresponding electrical signals with the linear array multichannel PMT. Therefore, at the cost of high-powered incentive and high-sensitive detector, a remote LIFS is get. In order to run this system, it is of importance to turn light signal to digital signal which can be processed by computer. The pulse width of fluorescence is deeply associated with excitation laser, at the nanosecond(ns) level, which has a high demand for acquisition circuit. We design an acquisition circuit including, I/V conversion circuit, amplifying circuit and peak-holding circuit. The simulation of circuit shows that peak-holding circuit can be one effective approach to reducing difficulty of acquisition circuit.

  9. New laser system for highly sensitive clinical pulse oximetry

    Science.gov (United States)

    Hamza, Mostafa; Hamza, Mohammad

    1996-04-01

    This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.

  10. Development of surgical CW Nd:YAG laser with optical fiber delivery system

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-06-01

    We developed a surgical CW Nd:YAG laser with optical fiber delivery system. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum power of our surgical laser was 150 W and the laser pulse width could be controlled to 99 sec continuously by 0.1 sec. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to find out the maintenance problem of this surgical laser, it was applicated to the production line of our joint company. (Author)

  11. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  12. Anticipated chaos in a nonsymmetric coupled external-cavity-laser system

    International Nuclear Information System (INIS)

    Rees, Paul; Spencer, Paul S.; Pierce, Iestyn; Sivaprakasam, S.; Shore, K. Alan

    2003-01-01

    We explain how the anticipation of chaos in a coupled external cavity laser system described by Sivaprakasam, Shahverdiev, Spencer, and Shore [Phys. Rev. Lett. 87, 154101 (2001)] is obtained. We show that the external cavity induces the required symmetry breaking necessary for the existence of a time delay between the synchronized output of the two laser diodes. The inclusion of a detuning between the two lasers causes one laser to anticipate the chaotic dynamics of the other

  13. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    Science.gov (United States)

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  14. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  15. [A Methane Detection System Using Distributed Feedback Laser at 1 654 nm].

    Science.gov (United States)

    Li, Bin; Liu, Hui-fang; He, Qi-xin; Zhai, Bing; Pan, Jiao-qing; Zheng, Chuan-tao; Wang, Yi-ding

    2016-01-01

    A methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) technique was experimentally demonstrated. A distributed feedback (DFB) laser around 1 654 nm, an open reflective sensing probe and two InGaAs photodiodes were adopted in the system. The electrical part of the system mainly includes the laser temperature control & modulation module and the orthogonal lock-in amplifier module. Temperature and spectrum tests on the DFB laser indicate that, the laser temperature fluctuation can be limited to the range of -0.02-0.02 degrees C, the laser's emitting wavelength varies linearly with the temperature and injection current, and also good operation stability of the laser was observed through experiments. Under a constant working temperature, the center wavelength of the laser is varied linearly by adjusting the driving current. Meanwhile, a 5 kHz sine wave signal and a 10 Hz saw wave signal were provided by the driving circuit for the harmonic extraction purpose. The developed orthogonal lock-in amplifier can extract the If and 2f harmonic signals with the extraction error of 3.55% and 5% respectively. By using the open optical probe, the effective optical pass length was doubled to 40 cm. Gas detection experiment was performed to derive the relation between the harmonic amplitude and the gas concentration. As the concentration increases from 1% to 5%, the amplitudes of the 1f harmonic and the 2f harmonic signal were obtained, and good linear ration between the concentration and the amplitude ratio was observed, which proves the normal function of the developed detection system. This system is capable to detect other trace gases by using relevant DFB lasers.

  16. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  17. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  18. Electronic Subsystems For Laser Communication System

    Science.gov (United States)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  19. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  20. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  1. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Science.gov (United States)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  2. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    higher RIN than a setup with only a single nonlinear crystal. The Ti:S is shown to have a cut-off frequency around 500 kHz, which means that noise structures of the pump laser above this frequency are strongly suppressed. Finally, the majority of the Ti:S noise seems to originate from the laser itself......In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...... electrical noise characterizations of the utilized power supplies, the optical noise of the fundamental light, the second harmonic light, and finally the optical noise of the femtosecond pulses emitted by the Ti:S laser. Noise features originating from the electric power supply are evident throughout...

  3. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  4. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  5. Recent developments in retinal lasers and delivery systems

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Yadav

    2014-01-01

    Full Text Available Photocoagulation is the standard of care for several ocular disorders and in particular retinal conditions. Technology has offered us newer lasing mediums, wavelengths and delivery systems. Pattern scan laser in proliferative diabetic retinopathy and diabetic macular edema allows laser treatment that is less time consuming and less painful. Now, it is possible to deliver a subthreshold micropulse laser that is above the threshold of biochemical effect but below the threshold of a visible, destructive lesion thereby preventing collateral damage. The advent of solid-state diode yellow laser allows us to treat closer to the fovea, is more effective for vascular structures and offers a more uniform effect in patients with light or irregular fundus pigmentation. Newer retinal photocoagulation options along with their advantages is discussed in this review.

  6. Improving the laser brightness of a commercial laser system

    Science.gov (United States)

    Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2016-02-01

    We investigate the selection of a flat-top beam and a Gaussian beam inside a laser cavity on opposing mirrors. The concept is tested external to the laser cavity in a single pass and double pass regime where the latter mimics a single round trip in the laser. We implement this intra-cavity selection through the use of two 16 level diffractive optical elements. We consider a solid-state diode side-pumped laser resonator in a typical commercial laser configuration that consists of two planar mirrors where the DOEs are positioned at the mirrors. We out couple the Gaussian and flat-top distributions and we show that we improve the brightness of the laser with active mode control. We also demonstrate that the quality of the beam transformations determine the brightness improvement.

  7. Laser Transmitters for the optical link systems used in CMS

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In the CMS experiment of the now new flagship LHC optical links will be used for the tracker readout system. One part of this components will be semiconductor laser (~50.000 !!!), named correctly: 1310 nm InGaAsP (DCPBH-MQW) edge-emitting laser. They are foreseen as transmitter in the Tx Hybrid part of the optical link system.

  8. Efficient TEA CO2 laser based coating removal system

    CSIR Research Space (South Africa)

    Prinsloo, FJ

    2007-04-01

    Full Text Available stream_source_info Prinsloo_2007.pdf.txt stream_content_type text/plain stream_size 11617 Content-Encoding UTF-8 stream_name Prinsloo_2007.pdf.txt Content-Type text/plain; charset=UTF-8 Efficient TEA CO2 laser based... by keeping energy density below the damage threshold. The advantage of a pulsed TEA CO2 laser system is that a laser frequency and temporal profile can be chosen to maximize paint removal and concurrently minimize substrate damage. To achieve...

  9. Optimized fiber delivery system for Q-switched, Nd:YAG lasers

    International Nuclear Information System (INIS)

    Setchell, R.E.

    1997-01-01

    Interest in the transmission of high intensities through optical fibers is being motivated by an increasing number of applications. Using different laser types and fiber materials, various studies are encountering transmission limitations due to laser-induced damage processes. For a number of years we have been investigating these limiting processes during the transmission of Q-switched, multimode, Nd:YAG laser pulses through step-index, multimode, fused-silica fiber. We have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. This breakdown can result in subtle surface modifications that leave the entrance face more resistant to further breakdown or damage events. Catastrophic fiber damage can also occur as a result of a variety of mechanisms, with damage appearing at fiber entrance and exit faces, within the initial entry segment of the fiber path, and at other internal sites due to fiber fixturing and routing effects. System attributes that will affect breakdown and damage thresholds include laser characteristics, the design and alignment of laser-to-fiber injection optics, and fiber end-face preparation. In the present work we have combined insights gained in past studies in order to establish what thresholds can be achieved if all system attributes can be optimized to some degree. Our multimode laser utilized past modifications that produced a relatively smooth, quasi-Gaussian profile. The laser-to-fiber injection system achieved a relatively low value for the ratio of peak-to-average fluences at the fiber entrance face, incorporated a mode scrambler to generate a broad mode power distribution within the initial segment of the fiber path, and had improved fixturing to insure that the fiber axis was collinear with the incident laser beam. Test fibers were from a particular production lot for which initial-strength characteristics were established and a high-stress proof test was performed

  10. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  11. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  12. Regenerative laser system

    International Nuclear Information System (INIS)

    Biancardi, F.R.; Landerman, A.; Melikian, G.

    1975-01-01

    Regenerative apparatus for exhausting the working medium from the optical cavity of a laser and for supplying preheated diluent to the reaction chamber of a laser is disclosed. In an aftercooler thermal energy is exchanged between the working medium exhausted from the optical cavity and a cryogenic coolant which is subsequently utilized as the motive fluid for an ejector and as a diluent in the production of laser gas. Highly toxic and corrosive gases are condensed out of the working medium as the cryogenic coolant is evaporated and superheated. A preheater transfers additional heat to the diluent before the diluent enters the reaction chamber. (U.S.)

  13. Uses of ORACLE in the Nova Laser Control System

    International Nuclear Information System (INIS)

    McGuigan, D.L.

    1983-01-01

    The Nova Laser System is a large-scale fusion experiment being constructed at the Lawrence Livermore National Laboratory. Modern control system technology is required to efficiently manage the thousands of devices needed to operate the system. In order to reduce the requirements on the operations staff, much of the system is being automated. This requires a significant knowledge base including frequently used system configurations and device parameters. We will be using ORACLE to provide this information to the control system. To insure the control-system integrity, ORACLE will be used to maintain information about the control-system software. This information will be used to document the system as well as help track down problems. ORACLE will also be used to maintain data on the system performance. This data will be analyzed to optimize the laser performance and point out when maintenance is required

  14. Review of technological advancements in calibration systems for laser vision correction

    Science.gov (United States)

    Arba-Mosquera, Samuel; Vinciguerra, Paolo; Verma, Shwetabh

    2018-02-01

    Using PubMed and our internal database, we extensively reviewed the literature on the technological advancements in calibration systems, with a motive to present an account of the development history, and latest developments in calibration systems used in refractive surgery laser systems. As a second motive, we explored the clinical impact of the error introduced due to the roughness in ablation and its corresponding effect on system calibration. The inclusion criterion for this review was strict relevance to the clinical questions under research. The existing calibration methods, including various plastic models, are highly affected by various factors involved in refractive surgery, such as temperature, airflow, and hydration. Surface roughness plays an important role in accurate measurement of ablation performance on calibration materials. The ratio of ablation efficiency between the human cornea and calibration material is very critical and highly dependent on the laser beam characteristics and test conditions. Objective evaluation of the calibration data and corresponding adjustment of the laser systems at regular intervals are essential for the continuing success and further improvements in outcomes of laser vision correction procedures.

  15. The evolution of the laser: A systems perspective on science, technology and society

    Science.gov (United States)

    Deruiter, Willem

    The evolution of laser technology is addressed, and an attempt is made to correlate this evolution to the macrosociological theory of Juergen Habermas. The economic and social consequences of innovations are evaluated. Different laser applications are described. The evolution of the semiconductor laser is discussed. The evolution of optical telecommunication systems is outlined. The Habermas theory of communicative action, focussing on the theoretical distinction between 'system' and 'lifeworld,' is treated. The modified theory of Habermas is applied to the evolution of the laser. The embedding of a number of laser applications in the social context is discussed: laser isotope separation, compact disc players, and the Strategic Defense Initiative.

  16. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  17. Iterative Decoding for an Optical CDMA based Laser communication System

    International Nuclear Information System (INIS)

    Kim, Jin Young; Kim, Eun Cheol; Cha, Jae Sang

    2008-01-01

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications

  18. Iterative Decoding for an Optical CDMA based Laser communication System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Kim, Eun Cheol [Kwangwoon Univ., Seoul (Korea, Republic of); Cha, Jae Sang [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2008-11-15

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications.

  19. In-system Performance of MQW Lasers Exposed to High Magnetic Field

    CERN Document Server

    Jensen, Fredrik Bjorn Henning; Azevedo, C S; Cervelli, Giovanni; Gill, Karl; Grabit, Robert; Vasey, François

    2000-01-01

    The effect of magnetic field has been investigated on 1310nm edge-emitting multi-quantum-well lasers. These lasers are candidate transmitters for the CMS tracker optical link, which will be operated in a 4T solenoidal magnetic field. In-situ measurements up to 2.4T of in-system laser analogue performance and laser spectral characteristics were carried out. No degradation of performance and spectral characteristics was observed

  20. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  1. An overview of Aurora: a multi-kilojoule KrF laser system for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Bowling, P.S.; Burrows, M.D.; Kang, M.; Hanlon, J.; McLeod, J.; York, G.W.

    1986-01-01

    Aurora is a short-pulse high-power krypton-fluoride laser system that serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength inertial confinement fusion (ICF) studies. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver 248 nm, 5-ns duration multi-kilojoule laser pulses to ICF targets using a beam train of approximately 1 km in length. The goals for the system are discussed and the design features of the major system components: front-end lasers, amplifier train, and the alignment and controls systems are summarised. (author)

  2. Producing a Linear Laser System for 3d Modelimg of Small Objects

    Science.gov (United States)

    Amini, A. Sh.; Mozaffar, M. H.

    2012-07-01

    Today, three dimensional modeling of objects is considered in many applications such as documentation of ancient heritage, quality control, reverse engineering and animation In this regard, there are a variety of methods for producing three-dimensional models. In this paper, a 3D modeling system is developed based on photogrammetry method using image processing and laser line extraction from images. In this method the laser beam profile is radiated on the body of the object and with video image acquisition, and extraction of laser line from the frames, three-dimensional coordinates of the objects can be achieved. In this regard, first the design and implementation of hardware, including cameras and laser systems was conducted. Afterwards, the system was calibrated. Finally, the software of the system was implemented for three dimensional data extraction. The system was investigated for modeling a number of objects. The results showed that the system can provide benefits such as low cost, appropriate speed and acceptable accuracy in 3D modeling of objects.

  3. Implementation of the laser-based femtosecond precision synchronization system at FLASH

    International Nuclear Information System (INIS)

    Schulz, Sebastian

    2011-05-01

    FLASH, the high-gain free-electron laser (FEL) in Hamburg, enables the generation of light pulses with wavelengths in the soft X-ray region and durations down to a few femtoseconds. To fully exploit this capability in time-resolved pump-probe experiments, and for the projected externally seeded operation, the critical components of the accelerator and several external laser systems have to be synchronized with a temporal accuracy at least in the same order of magnitude. This can not be realized purely with established RF-based systems and therefore, an optical, laser-based synchronization system is required. In this thesis, the optical synchronization system of FLASH has been, based on previous successful proof-of-principle experiments, massively extended. One major topic is the comprehensive characterization of the timing reference of the system and a comparison of different types of such master laser oscillators, as well as studies on their short- and long-term stability. Similar investigations have been carried out for the upgraded and newly installed length-stabilized fiber links, which connect the remote locations at the accelerator to the optical timing reference. The successful demonstration of an all-optical synchronization of a Ti:sapphire oscillator with sub-10 femtosecond timing jitter and the connection of the photo injector laser system to the synchronization system mark further important key experiments of this thesis. The robustness of the actual implementations played a key role, as the synchronization system forms the basis for the future, operator-friendly arrival time feedback.

  4. Picosecond high power laser systems and picosecond diagnostic technique in laser produced plasma

    International Nuclear Information System (INIS)

    Kuroda, Hiroto; Masuko, H.; Maekawa, Shigeru; Suzuki, Yoshiji; Sugiyama, Masaru.

    1979-01-01

    Highly repetitive, high power YAG and Glass laser systems have been developed and been successfully used for the studies of laser-plasma interactions. Various picosecond diagnostic techniques have been developed for such purposes in the regions from optical to X-ray frequency. Recently highly sensitive X-ray (1 - 10 KeV) streak camera for highly repetitive operations have been developed. Preliminary experiment shows the achievement of 28ps temporal resolution (100μm slit) and good sensitivity with detectable minimum number of 10E3-1KeV photons/shot/slit area. (author)

  5. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    Science.gov (United States)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  6. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  7. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  8. A New Remote Monitoring System Application in Laser Power Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Liu Gaoqiang

    2016-01-01

    Full Text Available In this paper, a new remote monitoring system based on LabVIEW was proposed to measure laser power automatically and remotely. This system consists of four basic components: an DH-JG2 optical power meter, a NI-USB 6008 data acquisition card, a personal computer (PC, and HP laserJet 1020 Plus printer. Since power output of laser is generally so unstable that abnormal work situation could not retroaction to inspectors right away, new system was designed to solve this problem. The detection system realized function of remote control by TCP protocol and mobile phone. Laser power curve that is measured by detection system demonstrated that the design has a good performance in real-time detection and operability.

  9. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  10. Correlation control theory of chaotic laser systems

    International Nuclear Information System (INIS)

    Li Fuli.

    1986-04-01

    A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)

  11. The development of the intelligent diagnostic expert system for high power dye-laser MOPA system

    International Nuclear Information System (INIS)

    Liu Lianhua; Yang Wenxi; Zhang Xiaowei; Dan Yongjun

    2014-01-01

    A intelligent diagnostic expert system was required to simulate the expert thinking process of solving problem in experiment and to real-time judge the running state of the experiment system. The intelligent diagnostic expert system for dye-laser MOPA system was build with the modular design of separated knowledge base and inference engine, the RETE algorithm rules match, the asynchronous operation, and multithreading technology. The experiment result indicated that the system could real-time analysis and diagnose the running state of dye-laser MOPA system with advantages of high diagnosis efficiency, good instantaneity and strong expansibility. (authors)

  12. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    International Nuclear Information System (INIS)

    Regoushevsky, V.I.; Tambovtsev, S.D.; Dvukhsherstnov, V.G.; Efimenko, V.F.; Ilyantsev, A.I.; Russ, G.P. III

    2009-01-01

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC and A items.

  13. Study and Development of a Laser Based Alignment System

    CERN Multimedia

    Stern, G

    2014-01-01

    CLIC (Compact Linear Collider) has tight requirements regarding pre-alignment of beam related components: 10 µm accuracy over a sliding window of 200 m along the 20 km of linac. To perform such an alignment, a new system is proposed combining laser beam as straight line reference and camera/shutter assemblies as sensors. The poster describes the alignment system and shows results regarding laser pointing stability with respect to time, shutter type, distance and environment. These results give a frame for future building and calibrating of sensors.

  14. Laser induced fragmentation of salivary stones: an in vitro comparison of two different, clinically approved laser systems.

    Science.gov (United States)

    Siedek, Vanessa; Betz, Christian S; Hecht, Volkmar; Blagova, Radka; Vogeser, Michael; Zengel, Pamela; Berghaus, Alexander; Leunig, Andreas; Sroka, Ronald

    2008-04-01

    Clinical laser lithotripsy in urology promises a good fragmentation combined with a minimal risk of soft tissue damage and low medical complications. This in vitro study investigates the fragmentation of salivary stones by means of two clinically used laser systems. The effects induced by the FREDDY laser (WOM, Germany, lambda = 532 nm/1,064 nm, E(pulse) = 120-160 mJ/pulse) and the Ho:YAG (AURIGA, StarMedTec, Germany, lambda = 2,100 nm, E(pulse) = 300-800 mJ/pulse) on clinical salivary calculi (n = 15) and on salivary gland tissue were investigated using clinical laser parameter settings. All experiments were performed in an under water experimental set-up using flexible fibres (core diameter 230 microm) positioned in front of each specimen. In order to assess fragmentation efficacy, each stone was placed on a grating (rhombic mash-diameter 1-3 mm). The fragmentation rate was calculated with respect to the energy applied (mg/J), to the number of pulses (mg/pulse), and to the time needed (mg/minute). In addition the composition of the stones were analysed spectrographically. The soft tissue interaction on human salivary duct mucosa was examined histologically (HE-staining). Spectrographic composition of the salivary stones showed a two component ratio of protein/carbonate apatite varying between 5/95 and 25/75. Stones treated by the Ho:YAG were vaporised in a milling-like process, while using the FREDDY laser stones are cracked into pieces and fragmentation failed in two cases. The fragmentation rates achieved by the FREDDY laser were greater than those of the Ho:YAG laser, but fragments mainly bigger. A dependency on the composition of the stones could not be found. Laser pulse effects on soft tissue were found slightly beyond the mucosa. This study clearly demonstrated the different processes of destroying salivary stones using two different laser systems. While the Ho:YAG vaporises the calculi in a more milling and soft sense, the FREDDY shows a more cracking and

  15. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  16. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    Directory of Open Access Journals (Sweden)

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  17. Time-resolved laser-induced fluorescence system

    Science.gov (United States)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  18. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  19. Recent progress on the Los Alamos Aurora ICF [inertial confinement fusion] laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1987-01-01

    Aurora is the Los Alamos short-pulse, high-power, krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF-relevant targets. This paper presents a summary of the Aurora system and a discussion of the progress achieved in the construction and integration of the laser system. We concentrate on the main features of the following major system components: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, and the associated optical alignment system. During the past year, two major construction and integration tasks have been accomplished. The first task is the demonstration of 96-beam multiplexing and amplified energy extraction, as evidenced by the integrated operation of the front end, the multiplexer (12-fold and 8-fold encoders), the optical relay train, and three electron-beam-driven amplifiers. The second task is the assembly and installation of the demultiplexer optical hardware, which consists of over 300 optical components ranging in size from several centimeters square to over a meter square. 13 refs., 13 figs

  20. Materials for spaceborne laser systems

    International Nuclear Information System (INIS)

    Gusarov, A.

    2006-01-01

    Advanced laser systems are attracting a growing interest for space missions, in particular for LIDAR (LIght Detection And Ranging) applications. An important issue for the LIDARs is the very strict requirements on the optical performance and more specifically the need for a high optical output power combined with a nearly perfect output beam quality. These features are traditionally in conflict with each other. Thermally induced phase distortions indeed corrupt the beam quality of high-power solid-state lasers and it becomes increasingly difficult to maintain a good beam quality while increasing the output power. A possible solution of the problem is to use the optical phase conjugation, which provides a method to dynamically correct for those aberrations. A process by which phase-conjugated waves can be generated is the SBS (stimulated Brillouin scattering). SBS mirrors commonly used in terrestrial application are based on liquids or gases, which are not 'space-friendly' and often toxic. The solid-state alternative seems the most appropriate for space. Such PCMs (Phase-Conjugating Mirrors) have been the subject of many research efforts in recent years and a significant progress in improving their characteristics has been achieved. However, the issue of space qualification remains open. To address it, the European Space Agency initiated in 2004 the research project named Solid-State Phase Conjugation, Radiation Testing and Evaluation for Core Laser Technologies with the TRT (Thales Research and Technology), France, as the prime contractor, and the CSL (Centre Spatial de Liege) and SCKCEN as the subcontractors. The project is to be completed in 2006. To qualify a PCM for a spaceborne laser system, one has to address a number of specific issues. Such a component must be mechanically rugged to sustain vibrations during the launch phase, provide a low out-gassing to prevent optical surfaces contamination in vacuum, be highly reliable to operate properly without

  1. Stretchers and compressors for ultra-high power laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  2. A laser metrology/viewing system for ITER in-vessel inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Herndon, J.N.; Menon, M.M.; Slotwinski, A.; Dagher, M.A.; Yuen, J.L.

    1998-01-01

    This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision surface mapping system. A metrology system capable of achieving sub-millimeter accuracy must operate in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser optics module linked through fiber optics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic-mast. Gamma irradiation to 10 7 Gy was conducted on critical sensor components at Oak Ridge National Laboratory, with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway. (orig.)

  3. Improved performance of the Aurora KrF/ICF laser system

    International Nuclear Information System (INIS)

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Figueira, J.F.

    1990-01-01

    This paper reports on Aurora the Los Alamos National Laboratory short pulse high power krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large scale UV laser systems for short wavelength inertial confinement fusion (ICF) research. The system employs optical angular multiplexing and serial amplification by electron-beam driven KrF laser amplifiers. The 1-5-ns pulse of the Aurora front end is split into ninety-six beams which are angularly and temporally multiplexed to produce a 480-ns pulse train for amplification by four KrF laser amplifiers. The largest amplifier, the large aperture module (LAM), has a 1-m square aperture and a gain length of 2 m. In the present system configuration half (forty-eight) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. The system has not been optimized, and several near term improvements are expected to result in significant increases in both delivered energy and target irradiance. Removing the twelve calorimeters from the lens plate and allowing forty-eight beams to go to target will increase delivered energy by 33%. Relatively minor modifications to the front end should result in a 30% increase in system output energy. Replacement of damaged optics will increase transmission into the preamplifier by at least 25%. New optics and reduction of retro-pulses will allow the preamplifier stage gain to be increased by 50%

  4. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  5. PRODUCING A LINEAR LASER SYSTEM FOR 3D MODELIMG OF SMALL OBJECTS

    Directory of Open Access Journals (Sweden)

    A. Sh. Amini

    2012-07-01

    Full Text Available Today, three dimensional modeling of objects is considered in many applications such as documentation of ancient heritage, quality control, reverse engineering and animation In this regard, there are a variety of methods for producing three-dimensional models. In this paper, a 3D modeling system is developed based on photogrammetry method using image processing and laser line extraction from images. In this method the laser beam profile is radiated on the body of the object and with video image acquisition, and extraction of laser line from the frames, three-dimensional coordinates of the objects can be achieved. In this regard, first the design and implementation of hardware, including cameras and laser systems was conducted. Afterwards, the system was calibrated. Finally, the software of the system was implemented for three dimensional data extraction. The system was investigated for modeling a number of objects. The results showed that the system can provide benefits such as low cost, appropriate speed and acceptable accuracy in 3D modeling of objects.

  6. Integrated Laser Characterization, Data Acquisition, and Command and Control Test System

    Science.gov (United States)

    Stysley, Paul; Coyle, Barry; Lyness, Eric

    2012-01-01

    Satellite-based laser technology has been developed for topographical measurements of the Earth and of other planets. Lasers for such missions must be highly efficient and stable over long periods in the temperature variations of orbit. In this innovation, LabVIEW is used on an Apple Macintosh to acquire and analyze images of the laser beam as it exits the laser cavity to evaluate the laser s performance over time, and to monitor and control the environmental conditions under which the laser is tested. One computer attached to multiple cameras and instruments running LabVIEW-based software replaces a conglomeration of computers and software packages, saving hours in maintenance and data analysis, and making very longterm tests possible. This all-in-one system was written primarily using LabVIEW for Mac OS X, which allows the combining of data from multiple RS-232, USB, and Ethernet instruments for comprehensive laser analysis and control. The system acquires data from CCDs (charge coupled devices), power meters, thermistors, and oscilloscopes over a controllable period of time. This data is saved to an html file that can be accessed later from a variety of data analysis programs. Also, through the LabVIEW interface, engineers can easily control laser input parameters such as current, pulse width, chiller temperature, and repetition rates. All of these parameters can be adapted and cycled over a period of time.

  7. University of Hawaii Lure Observatory. [lunar laser ranging system construction

    Science.gov (United States)

    Carter, W. E.; Williams, J. D.

    1973-01-01

    The University of Hawaii's Institute for Astronomy is currently constructing a lunar laser ranging observatory at the 3050-meter summit of Mt. Haleakala, Hawaii. The Nd YAG laser system to be employed provides three pulses per second, each pulse being approximately 200 picoseconds in duration. The energy contained in one pulse at 5320 A lies in the range from 250 to 350 millijoules. Details of observatory construction are provided together with transmitter design data and information concerning the lunastat, the feed telescope, the relative pointing system, the receiver, and the event timer system.

  8. Study on APD real time compensation methods of laser Detection system

    International Nuclear Information System (INIS)

    Feng Ying; Zhang He; Zhang Xiangjin; Liu Kun

    2011-01-01

    With the monochromatic and the directional capability of the laser, laser detection system is confidential in anti-jamming. Detection accuracy is improved significantly as the result of laser's good orientation ability. Sensitivity is enhanced as laser's high-brightness characteristic. With the development of laser technology and laser devices, laser detections are developed both in civilian and military areas. In the military field, laser detection system has been widely applied in various types of tactical missiles, the technique is more mature. Because photo detectors receive the backscattering echo signal of target in laser detection system, they are required sensitive enough to weak signal. With APD's salient features of high sensitivity, rapid response speed, high response frequency and low noise equivalent power, etc.; PIN is replaced by APD to improve sensitivity of laser detection system in recent years. The signal magnification is inadequate in laser detection system, the detector output is usually amplified by multistage amplifiers. And then the system noise includes detector noise and latter amplifiers noise. With its high internal gain, APD becomes the primary noise source of receiving system. This point can be attested by analyzing the transfer function of laser detection system receiver. To ensure the system detecting ability, APD noise must be mitigated as low as possible. According to a large number of experiments, the power signal-to-noise (SNR) and the best multiplication factor of APD are mostly affected by background radiation and temperature. In order to make APD operate at state of the best multiplication factor, the optimum bias must be selected due to the actual operating circumstance. Therefore, APD realtime compensation must be adopted. The existing APD compensation includes the constant false alarm rate compensation, the noise compensation and the temperature compensation. The features of these compensations are obtained by analyzing

  9. Study on APD real time compensation methods of laser Detection system

    Energy Technology Data Exchange (ETDEWEB)

    Feng Ying; Zhang He; Zhang Xiangjin; Liu Kun, E-mail: fy_caimi@163.com [ZNDY of Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-02-01

    With the monochromatic and the directional capability of the laser, laser detection system is confidential in anti-jamming. Detection accuracy is improved significantly as the result of laser's good orientation ability. Sensitivity is enhanced as laser's high-brightness characteristic. With the development of laser technology and laser devices, laser detections are developed both in civilian and military areas. In the military field, laser detection system has been widely applied in various types of tactical missiles, the technique is more mature. Because photo detectors receive the backscattering echo signal of target in laser detection system, they are required sensitive enough to weak signal. With APD's salient features of high sensitivity, rapid response speed, high response frequency and low noise equivalent power, etc.; PIN is replaced by APD to improve sensitivity of laser detection system in recent years. The signal magnification is inadequate in laser detection system, the detector output is usually amplified by multistage amplifiers. And then the system noise includes detector noise and latter amplifiers noise. With its high internal gain, APD becomes the primary noise source of receiving system. This point can be attested by analyzing the transfer function of laser detection system receiver. To ensure the system detecting ability, APD noise must be mitigated as low as possible. According to a large number of experiments, the power signal-to-noise (SNR) and the best multiplication factor of APD are mostly affected by background radiation and temperature. In order to make APD operate at state of the best multiplication factor, the optimum bias must be selected due to the actual operating circumstance. Therefore, APD realtime compensation must be adopted. The existing APD compensation includes the constant false alarm rate compensation, the noise compensation and the temperature compensation. The features of these compensations are obtained

  10. Study on APD real time compensation methods of laser Detection system

    Science.gov (United States)

    Ying, Feng; He, Zhang; Xiangjin, Zhang; Kun, Liu

    2011-02-01

    With the monochromatic and the directional capability of the laser, laser detection system is confidential in anti-jamming. Detection accuracy is improved significantly as the result of laser's good orientation ability. Sensitivity is enhanced as laser's high-brightness characteristic. With the development of laser technology and laser devices, laser detections are developed both in civilian and military areas. In the military field, laser detection system has been widely applied in various types of tactical missiles, the technique is more mature. Because photo detectors receive the backscattering echo signal of target in laser detection system, they are required sensitive enough to weak signal. With APD's salient features of high sensitivity, rapid response speed, high response frequency and low noise equivalent power, etc.; PIN is replaced by APD to improve sensitivity of laser detection system in recent years. The signal magnification is inadequate in laser detection system, the detector output is usually amplified by multistage amplifiers. And then the system noise includes detector noise and latter amplifiers noise. With its high internal gain, APD becomes the primary noise source of receiving system. This point can be attested by analyzing the transfer function of laser detection system receiver. To ensure the system detecting ability, APD noise must be mitigated as low as possible. According to a large number of experiments, the power signal-to-noise (SNR) and the best multiplication factor of APD are mostly affected by background radiation and temperature. In order to make APD operate at state of the best multiplication factor, the optimum bias must be selected due to the actual operating circumstance. Therefore, APD realtime compensation must be adopted. The existing APD compensation includes the constant false alarm rate compensation, the noise compensation and the temperature compensation. The features of these compensations are obtained by analyzing

  11. A new design of pulsed laser diode driver system for multistate quantum key distribution

    Science.gov (United States)

    Abdullah, M. S.; Jamaludin, M. Z.; Witjaksono, G.; Mokhtar, M. H. H.

    2011-07-01

    In this paper, we describe a new design of laser diode driver system based on MOSFET current mirror and digital signal controller (DSC). The system is designed to emit stream pairs of photons from three semiconductor laser diodes. The DSC is able to switch between the three laser diodes at constant rate. The duty cycle is maintained at 1% in order to reduce its thermal effect and thus prolong the laser diodes' life cycles. The MOSFET current mirror circuits are capable of delivering constant modulation current with peak current up to 58 mA to each laser diode. This laser driver system will allow the generating biphotons automatically with qubit rate around 8-13% for μ less than or equal to 1, thus making it practical for six-states quantum key distribution implementation.

  12. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  13. Automatic Laser Pointer Detection Algorithm for Environment Control Device Systems Based on Template Matching and Genetic Tuning of Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    F.

    2012-04-01

    Full Text Available In this paper we propose a new approach for laser-based environment device control systems based on the automatic design of a Fuzzy Rule-Based System for laser pointer detection. The idea is to improve the success rate of the previous approaches decreasing as much as possible the false offs and increasing the success rate in images with laser spot, i.e., the detection of a false laser spot (since this could lead to dangerous situations. To this end, we propose to analyze both, the morphology and color of a laser spot image together, thus developing a new robust algorithm. Genetic Fuzzy Systems have also been employed to improve the laser spot system detection by means of a fine tuning of the involved membership functions thus reducing the system false offs, which is the main objective in this problem. The system presented in this paper, makes use of a Fuzzy Rule-Based System adjusted by a Genetic Algorithm, which, based on laser morphology and color analysis, shows a better success rate than previous approaches.

  14. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    was obtained by Raman amplification of a distributed feedback diode laser in a variably strained polarization- maintaining fiber with a record-high...Calia, D.B., “50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fiber amplifiers...AFRL-RD-PS- TP-2016-0009 AFRL-RD-PS- TP-2016-0009 INVESTIGATIONS OF A DUAL SEEDED 1178 NM RAMAN LASER SYSTEM Leanne Henry, et al. 14 January

  15. MBE System for Antimonide Based Semiconductor Lasers

    National Research Council Canada - National Science Library

    Lester, Luke

    1999-01-01

    .... SLR-770 inductively coupled plasma (ICP) processing system. The SLR-770 has been invaluable in the study of plasma etching of AlGaAsSb and GaSb-materials that form the backbone of antimonide-based semiconductor lasers...

  16. Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: Chemical aspects

    KAUST Repository

    Luong, Minh Bau

    2016-10-10

    Chemical aspects of the ignition of a primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated by analyzing two-dimensional direct numerical simulation (DNS) data with chemical explosive mode (CEM) analysis. CEMA is adopted to provide fundamental insights into the ignition process by identifying controlling species and elementary reactions at different locations and times. It is found that at the first ignition delay, low-temperature chemistry (LTC) represented by the isomerization of alkylperoxy radical, chain branching reactions of keto-hydroperoxide, and H-atom abstraction of n-heptane is predominant for both RCCI and SCCI combustion. In addition, explosion index and participation index analyses together with conditional means on temperature verify that low-temperature heat release (LTHR) from local mixtures with relatively-high n-heptane concentration occurs more intensively in RCCI combustion than in SCCI combustion, which ultimately advances the overall RCCI combustion and distributes its heat release rate over time. It is also found that at the onset of the main combustion, high-temperature heat release (HTHR) occurs primarily in thin deflagrations where temperature, CO, and OH are found to be the most important species for the combustion. The conversion reaction of CO to CO and hydrogen chemistry are identified as important reactions for HTHR. The overall RCCI/SCCI combustion can be understood by mapping the variation of 2-D RCCI/SCCI combustion in temperature space onto the temporal evolution of 0-D ignition.

  17. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  18. Charging-circuit study for copper-vapor lasers. Final report, 29 June 1981-30 November 1981

    International Nuclear Information System (INIS)

    1981-01-01

    This study is divided into three tasks whose combined purpose is to evaluate methods of charging high PRF pulsed power subsystems required in a proposed laser isotope separation (LIS) plant. The work performed in this program follows directly from designs and experiments carried out in a recently-completed study and, in fact, utilizes much of the same apparatus described previously. The first task required the preparation and vugraph presentation of a review of eight potential charging methods. This review and the associated evaluation criteria are described. Tasks II and III entailed the experimental evaluation of the deQing methods of regulating the charging voltage of a pulse power conditioning module with respect to limitations imposed by continuous operation and the efficiency of recovery of energy diverted by the deQing circuitry. The results of these tasks are described

  19. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture

    KAUST Repository

    Javed, Tamour

    2015-01-01

    Ignition delay times and CO, H2O, OH and CO2 time-histories were measured behind reflected shock waves for two FACE (Fuels for Advanced Combustion Engines) gasolines and one PRF (Primary Reference Fuel) blend. The FACE gasolines chosen for this work are primarily paraffinic and have the same octane rating (∼RON = 84) as the PRF blend, but contain varying amounts of iso- and n-paraffins. Species time-histories and ignition delay times were measured using laser absorption methods over a temperature range of 1350-1550 K and pressures near 2 atm. Measured species time-histories and ignition delay times of the PRF blend and the two FACE fuels agreed reasonably well. However, when compared to recent gasoline surrogate mechanisms, the simulations did not capture some of the kinetic trends found in the species profiles. To our knowledge, this work provides some of the first shock tube species time-history data for gasoline fuels and PRF surrogates and should enable further improvements in detailed kinetic mechanisms of gasoline fuels.

  20. Use of the smartt interferometer as an alignement tool for infrared laser systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Bolen, P.D.

    1979-01-01

    The ability to minimize the pointing and focusing errors at the focal plane is crucial in many applications involving infrared laser systems. This is particularly the case for systems involving multiple beams reaching the focal plane, as in the case of the LASL CO 2 laser fusion systems. For example, the LASL Helios CO 2 Laser Fusion System has eight 34-cm diameter beams each with an f number of approximately 2.4 coming to focus, the last element being an off-aperture parabola with a focal length of approximately 77.3 cm. The design tolerance for pointing accuracy is + 25 microns and for focusing acccuracy is +- 50 microns for the Helios system. The Smartt interferometer shows promise of not only evaluating the optical quality of the beam, but it can be used to align the beam to the tolerance levels stated above. This paper describes the procedure, as well as experimental results obtained, which show that pointing accuracies of +-12.5 microns and focusing accuracies of +- 25 microns are obtained at the focus of a CO 2 laser beam in a setup which duplicates the target regionn of the Helios CO 2 Laser Fusion System

  1. lambda-3, Sandia's 100-J HF laser system

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.A.

    1979-09-01

    Sandia's lambda-geometry intermediate electron-beam-initiated HF amplifier is described in sufficient detail such that a similar system could be designed, constructed and characterized. Items included are the design of the laser cell, magnetic field design and measurements, electron-beam calorimetry, and typical laser results.

  2. The development of a low-cost laser communication system for the classroom

    Science.gov (United States)

    Sparks, Robert T.; Pompea, Stephen M.; Walker, Constance E.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to underserved middle school students. We have developed the culminating module (Module 6) on laser communication. Students learn how lasers can be modulated to carry information. The main activity of this module is the construction of a low-cost laser communication system. The system can be built using parts readily available at a local electronics store for approximately US $60. The system can be used to transmit a person's voice or music from sources such as an mp3 player or radio over a distance of 350 feet. We will provide detailed plans on how to build the system in this paper.

  3. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  4. A novel laser alignment system for tracking detectors using transparent silicon strip sensors

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-02-01

    Modern large-area precision tracking detectors require increasing accuracy of the geometrical alignment over large distances. A novel optical multi-point alignment system has been developed for the muon spectrometer of the ATLAS detector at the Large Hadron Collider. The system uses collimated laser beams as alignment references which are monitored by semi-transparent optical position sensors. The custom designed sensors provide very precise and uniform position information on the order of 1 μm over a wide measurement range. At suitable laser wavelengths, produced by laser diodes, transmission rates above 90% have been achieved which allow to align more than 30 sensors along one laser beam. With this capability and equipped with integrated readout electronics, the alignment system offers high flexibility for precision applications in a wide range of detector systems. (orig.)

  5. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  6. Reliability and validity of the Spanish version of the Child Health and Illness Profile (CHIP Child-Edition, Parent Report Form (CHIP-CE/PRF

    Directory of Open Access Journals (Sweden)

    Tebé Cristian

    2010-08-01

    Full Text Available Abstract Background The objectives of the study were to assess the reliability, and the content, construct, and convergent validity of the Spanish version of the CHIP-CE/PRF, to analyze parent-child agreement, and compare the results with those of the original U.S. version. Methods Parents from a representative sample of children aged 6-12 years were selected from 9 primary schools in Barcelona. Test-retest reliability was assessed in a convenience subsample of parents from 2 schools. Parents completed the Spanish version of the CHIP-CE/PRF. The Achenbach Child Behavioural Checklist (CBCL was administered to a convenience subsample. Results The overall response rate was 67% (n = 871. There was no floor effect. A ceiling effect was found in 4 subdomains. Reliability was acceptable at the domain level (internal consistency = 0.68-0.86; test-retest intraclass correlation coefficients = 0.69-0.85. Younger girls had better scores on Satisfaction and Achievement than older girls. Comfort domain score was lower (worse in children with a probable mental health problem, with high effect size (ES = 1.45. The level of parent-child agreement was low (0.22-0.37. Conclusions The results of this study suggest that the parent version of the Spanish CHIP-CE has acceptable psychometric properties although further research is needed to check reliability at sub-domain level. The CHIP-CE parent report form provides a comprehensive, psychometrically sound measure of health for Spanish children 6 to 12 years old. It can be a complementary perspective to the self-reported measure or an alternative when the child is unable to complete the questionnaire. In general, the results are similar to the original U.S. version.

  7. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yalin, Azer [Seaforth, LLC

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  8. The Laser Guide Star System for Adaptive Optics at Subaru Telescope

    Science.gov (United States)

    Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.

    We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high

  9. Influence of Signal and Noise on Statistical Fluctuation of Single-Mode Laser System

    International Nuclear Information System (INIS)

    Xu Dahai; Cheng Qinghua; Cao Li; Wu Dajin

    2006-01-01

    On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The statistical fluctuation of the laser system can be restrained by reducing the intensity of pump noise and quantum noise. Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coefficient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.

  10. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  11. Laser control of natural disperse systems

    Science.gov (United States)

    Vlasova, Olga L.; Bezrukova, Alexandra G.

    2003-10-01

    Different water disperse systems were studied by integral (spectroturbidemetry) and differential light scattering method with a laser as a source of light. The investigation done concerns the state of kaolin dispersions at storage and under dilution as an example of mineral dispersion systems such as natural water. The role of some light scattering parameters for an optical analysis of water dispersions, like the dispersion of erythrocytes and bacterial cells -Escherichia coli is discussed. The results obtained can help to elaborate the methods for on-line optical control fo natural disperse systems (water, air) with mineral and biological particles.

  12. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Rosoche, L.A.; Mc Leod, J.; Hanlon, J.A.

    1987-01-01

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  13. Fiber optic analog and timing monitoring system for the antares laser fusion program

    International Nuclear Information System (INIS)

    Longmire, J.L.; Thuot, M.E.

    1981-01-01

    The development and use of two optical fiber systems for the Antares 40 kJ CO 2 laser is described. In the Antares power amplifier, electron guns produce a discharge-sustaining B kA beam of 500 kV electrons. Eight 300 kJ, 3 μs Marx pulsers provide a direct electrical pumping discharge through the laser gas. The electro-optic systems developed allow the measurement of pulsed analog waveforms and trigger timing information within the laser and power systems by a computer based control and data acquisition network

  14. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  15. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  16. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  17. Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization

    International Nuclear Information System (INIS)

    Pal, Vishwa; Ghosh, R; Prasad, Awadhesh

    2011-01-01

    We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.

  18. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Science.gov (United States)

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  19. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  20. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  1. High-level PC-based laser system modeling

    Science.gov (United States)

    Taylor, Michael S.

    1991-05-01

    Since the inception of the Strategic Defense Initiative (SDI) there have been a multitude of comparison studies done in an attempt to evaluate the effectiveness and relative sizes of complementary, and sometimes competitive, laser weapon systems. It became more and more apparent that what the systems analyst needed was not only a fast, but a cost effective way to perform high-level trade studies. In the present investigation, a general procedure is presented for the development of PC-based algorithmic systems models for laser systems. This procedure points out all of the major issues that should be addressed in the design and development of such a model. Issues addressed include defining the problem to be modeled, defining a strategy for development, and finally, effective use of the model once developed. Being a general procedure, it will allow a systems analyst to develop a model to meet specific needs. To illustrate this method of model development, a description of the Strategic Defense Simulation - Design To (SDS-DT) model developed and used by Science Applications International Corporation (SAIC) is presented. SDS-DT is a menu-driven, fast executing, PC-based program that can be used to either calculate performance, weight, volume, and cost values for a particular design or, alternatively, to run parametrics on particular system parameters to perhaps optimize a design.

  2. CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems

    DEFF Research Database (Denmark)

    Klank, Henning; Kutter, Jörg Peter; Geschke, Oliver

    2002-01-01

    , a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO2-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful......In this article, we focus on the enormous potential of a CO2-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel...... for microstructured PMMA [poly( methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding...

  3. Alignment and focusing device for a multibeam laser system

    International Nuclear Information System (INIS)

    Sweatt, W.C.

    1980-01-01

    Large inertial confinement fusion laser systems have many beams focusing on a small target. The Antares system is a 24-beam CO 2 pulse laser. To produce uniform illumination, the 24 beams must be individually focused on (or near) the target's surface in a symmetric pattern. To assess the quality of a given beam, we will locate a Smartt (point diffraction) interferometer at the desired focal point and illuminate it with an alignment laser. The resulting fringe pattern shows defocus, lateral misalignment, and beam aberrations; all of which can be minimized by tilting and translating the focusing mirror and the preceding flat mirror. The device described in this paper will remotely translate the Smartt interferometer to any position in the target space and point it in any direction using a two-axis gimbal. The fringes produced by the interferometer are relayed out of the target vacuum shell to a vidicon by a train or prisms. We are designing four separate snap-in heads to mount on the gimbal; two of which are Smartt interferometers (for 10.6 μm and 633 nm) and two for pinholes, should we wish to put an alignment beam backwards through the system

  4. Advanced wavefront measurement and analysis of laser system modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.; Auerback, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.

  5. Research on the automatic laser navigation system of the tunnel boring machine

    Science.gov (United States)

    Liu, Yake; Li, Yueqiang

    2011-12-01

    By establishing relevant coordinates of the Automatic Laser Navigation System, the basic principle of the system which accesses the TBM three-dimensional reference point and yawing angle by mathematical transformation between TBM, target prism and earth coordinate systems is discussed deeply in details. According to the way of rigid body descriptions of its posture, TBM attitude parameters measurement and data acquisition methods are proposed, and measures to improve the accuracy of the Laser Navigation System are summarized.

  6. Directivity measurements in aluminum using a laser ultrasonics system

    International Nuclear Information System (INIS)

    Sakamoto, J M S; Pacheco, G M; Tittmann, B R; Baba, A

    2011-01-01

    A laser ultrasonics system was setup to measure the directivity (angular dependence pattern) of the amplitude of ultrasonic waves generated in aluminum samples. A pulsed Nd:YAG laser operating at 1064 nm optical wavelength, with typical pulse width (FWHM) of 8 ns, and energy per pulse of 450 mJ, was used to generate the ultrasound waves in the samples. The laser detection system was a Mach-Zehnder interferometer with typical noise-limited resolution of 0.25 nm (rms), frequency range from 50 kHz to 20 MHz, and measurement range from -75 nm/V to +75 nm/V. Two different optical spot sizes of the Nd:YAG laser were used to generate waves in the ablation regime: one was focused and the other was unfocused. Using the obtained data, the directivity graphics were drawn and compared with the theoretical curves, showing a good agreement. The experiments showed the directivity as a function of the optical spot size. For a point ultrasonic source (or focused optical spot), the directivity shows that the longitudinal waves present considerable amplitude in all directions. For a larger ultrasonic source (or an unfocused optical spot) the directivity shows that the longitudinal waves are generated with the higher amplitudes inside angles around ±10 0 .

  7. Femtosecond Synchronization of Laser Systems for the LCLS

    International Nuclear Information System (INIS)

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William

    2012-01-01

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  8. CW Yb:YAG LASER FOR PORTABLE MEASURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2014-01-01

    Full Text Available The theoretical and experimental results of longitudinally continuous-wave diode-pumped Yb:Y3Al5O12 (YAG laser performance for compact field-condition measuring systems were demonstrated. Optimization of laser setup in terms of operation condition in the range of -40 ˚С – +65 ˚С without active thermal stabilization was carried out. Using Yb (10 ат.%:YAG crystal with the length of 3 mm the maximal output power more than 2 W was obtained in the whole of temperature range.

  9. Development of the laser alignment system with PSD used for shaft calibration

    Science.gov (United States)

    Jiao, Guohua; Li, Yulin; Hu, Baowen

    2006-02-01

    Shaft calibration is an important technique during installation and maintenance of a rotating machine. It requires unique and high-precision measurement instruments with calculation capability, and relies on experience on heavy, high-speed, or high-temperature machines. A high-precision laser alignment system has been designed using PSD (Position Sensing Detector) to change traditional manual way of shaft calibration and to make the measurement easier and more accurate. The system is comprised of two small measuring units (Laser transmitter and detector) and a hand operated control unit or a PC. Such a laser alignment system has been used in some actual shaft alignment with offset resolution 1.5μm and angular resolution 0.1°.

  10. Optical system design with common aperture for mid-infrared and laser composite guidance

    Science.gov (United States)

    Zhang, Xuanzhi; Yang, Zijian; Sun, Ting; Yang, Huamei; Han, Kunye; Hu, Bo

    2017-02-01

    When the field of operation of precision strike missiles is more and more complicated, autonomous seekers will soon encounter serious difficulties, especially with regard to low signature targets and complex scenarios. So the dual-mode sensors combining an imaging sensor with a semi-active laser seeker are conceived to overcome these specific problems. Here the sensors composed a dual field of view mid-infrared thermal imaging camera and a laser range finder have the common optical aperture which produced the minization of seeker construction. The common aperture optical systems for mid-infrared and laser dual-mode guildance have been developed, which could meet the passive middle infrared high-resolution imaging and the active laser high-precision indication and ranging. The optical system had good image quality, and fulfilled the performance requirement of seeker system. The design and expected performance of such a dual-mode optical system will be discussed.

  11. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  12. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  13. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  14. Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments.

    Science.gov (United States)

    Kakkar, Aditya; Rodrigo Navarro, Jaime; Schatz, Richard; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Louchet, Hadrien; Popov, Sergei; Jacobsen, Gunnar

    2017-04-12

    Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.

  15. Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code

    Science.gov (United States)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.

    2017-10-01

    A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.

  16. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels

    KAUST Repository

    Wang, Libing

    2016-11-18

    Characterization of the spray angle, penetration, and droplet size distribution is important to analyze the spray and atomization quality. In this paper, the spray structure development and atomization characterization of two naphtha fuels, namely light naphtha (LN) and whole naphtha (WN) and two reference fuel surrogates, i.e. toluene primary reference fuel (TPRF) and primary reference fuel (PRF) were investigated using a gasoline direct injection (GDI) fuel injector. The experimental setup included a fuel injection system, a high-speed imaging system, and a droplet size measurement system. Spray images were taken by using a high-speed camera for spray angle and penetration analysis. Sauter mean diameter, Dv(10), Dv(50), Dv(90), and particle size distribution were measured using a laser diffraction technique. Results show that the injection process is very consistent for different runs and the time averaged spray angles during the measuring period are 103.45°, 102.84°, 102.46° and 107.61° for LN, WN, TPRF and PRF, respectively. The spray front remains relatively flat during the early stage of the fuel injection process. The peak penetration velocities are 80 m/s, 75 m/s, 75 m/s and 79 m/s for LN, WN, TPRF and PRF, respectively. Then velocities decrease until the end of the injection and stay relatively stable. The transient particle size and the time-averaged particle size were also analyzed and discussed. The concentration weighted average value generally shows higher values than the arithmetic average results. The average data for WN is usually the second smallest except for Dv90, of which WN is the biggest. Generally the arithmetic average particle sizes of PRF are usually the smallest, and the sizes does not change much with the measuring locations. For droplet size distribution results, LN and WN show bimodal distributions for all the locations while TPRF and PRF shows both bimodal and single peak distribution patterns. The results imply that droplet size

  17. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  18. Measurements of laser parameters for the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Ozarski, R.G.

    1979-01-01

    Large laser systems require numerous laser diagnostics to provide configuration, performance and maintenance data to permit efficient operation. The following diagnostics for a large laser system named Shiva are discussed: (1) description of Shiva laser system, (2) what measurements are desired and or required and why, (3) what measurement techniques and packages are employed and a brief description of the operating principles of the sensors employed, and (4) the laser diagnostic data acquisition and display system

  19. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  20. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  1. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    Science.gov (United States)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  2. The laser control system for the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Kadantsev, S.G.; Levy, C.D.P.; Mouat, M.M.

    1994-08-01

    The optically pumped polarized H - ion source at TRIUMF produces up to 100 μΑ dc of 78% polarized beam within an emittance of 1.0 π mm mrad and is now being prepared for an upcoming experiment at TRIUMF that will measure parity violation in pp scattering at 230 MeV. The optical pumping is accomplished by argon laser pumped Ti-sapphire lasers. The laser control system provides monitoring and precision control of the lasers for fast spin reversal up to 200 s -1 . To solve the problems of laser power and frequency stabilization during fast spin flipping, techniques and algorithms have been developed that significantly reduce the variation of laser frequency and power between spin states. The upgraded Faraday rotation system allows synchronous measurement of Rb thickness and polarization while spin flipping. The X Window environment provides both local and remote control to laser operators via a local area network and X window terminals. In this new environment issues such as access authorization, response time, operator interface consistency and ease of use are of particular importance. (author)

  3. Cannonball target experiment with the GEKKO laser system at ILE Osaka

    International Nuclear Information System (INIS)

    Yamanaka, C.; Azechi, H.; Fujiwara, E.

    1985-01-01

    The GEKKO series glass laser systems are now in operation for the Cannonball target experiments. GEKKO XII is a twelve-beam 30 kJ, 50 TW laser provided with two target chambers. Three types of GEKKO lasers cover the UV, blue, green and red frequency ranges. The Cannonball target displays an excellent performance in implosion. Two kinds of Cannonball target are proposed: the plasma Cannonball and the radiation Cannonball. The neutron yield is 4x10 10 , and the DT fuel density attains 10 g.cm -3 . Laser-to-X-ray conversion has been investigated. Cryogenic target implosion has been performed by using a tailored laser pulse to produce the flush at the core. Various kinds of new diagnostics are being developed. (author)

  4. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    Science.gov (United States)

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  5. Development of laser cladding system to repair wall thinning of 1-inch heat exchanger tube

    International Nuclear Information System (INIS)

    Terada, Takaya

    2013-01-01

    We developed a laser cladding system to repair the inner wall wastage of heat exchanger tubes. Our system, which is designed to repair thinning tube walls within 100 mm from the edge of a heat exchanger tube, consists of a fiber laser, a composite-type optical fiberscope, a coupling device, a laser processing head, and a wire-feeding device. All of these components were reconfigured from the technologies of FBR maintenance. The laser processing head, which has a 15-mm outer diameter, was designed to be inserted into a 1-inch heat exchanger tube. We mounted a heatproof broadband mirror for laser cladding and fiberscope observation with visible light inside the laser processing head. The wire-feeding device continuously supplied 0.4-mm wire to the laser irradiation spot with variable feeding speeds from 0.5 to 20 mm/s. We are planning to apply our proposed system to the maintenance of aging industrial plants. (author)

  6. Fiber laser-microscope system for femtosecond photodisruption of biological samples.

    Science.gov (United States)

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F Ömer; Eldeniz, Y Burak; Tazebay, Uygar H

    2012-03-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

  7. Recommendations for the design and the installation of large laser scanning microscopy systems

    Science.gov (United States)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  8. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  9. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  10. Long life gas laser system and method

    International Nuclear Information System (INIS)

    Hochuli, E.E.

    1975-01-01

    A long life gas discharge laser having an improved self-repairing cathode system is described. In a specific embodiment, water vapor having a partial pressure below about 10 -5 torr incorporated in a molecular sieve is used to provide impurities (in this case water vapor) for repairing the cathode surface by regenerating the oxide surface and/or preventing same from deteriorating. Other impurities may be incorporated in the molecular sieve such as hydrogen, oxygen, for example. In some cases CO 2 may be used. This application includes material disclosed in a paper entitled ''Continuation of the Investigation into Material Properties Affecting the Frequency Stability and Reliability of He-Ne Laser Structures'' submitted to the Office of Naval Research dated June 1972 by the inventor hereof and also a paper entitled ''Investigations of the Long Term Frequency Stability of Stable Laser Structures'' Progress Report for ONR Contract N00014-67-A-D239-0016 July 1972 by the inventor hereof. A royalty free license is hereby granted to the United States for use of the invention for all government purposes. (auth)

  11. High resolution Fresnel zone plate laser alignment system

    International Nuclear Information System (INIS)

    Bressler, V.E.; Fischer, G.E.; Ruland, R.E.; Wang, T.

    1992-03-01

    The existing Fresnel zone plate laser alignment system is currently being extended and upgraded for the Final Focus Test Beam (FFTB). Previously, the resolution of this system has been several tens of micrometers. After the upgrade, the resolution will be a few micrometers. Details of the upgrade as well as simulation and experimental results will be presented

  12. Demonstration and Validation of a High-Performance Floor-Sealant System to Reduce Concrete Degradation

    Science.gov (United States)

    2015-05-01

    1 Recycled Antifreeze 01-197-7692 MIL-PRF-10924H GAA Grease 01-102-9455 MIL-PRF-46176B Brake Fluid 00-252-6383 MIL-PRF-5606H Hydraulic Fluid H515...contaminated clothing , clean thoroughly before reuse. Inhalation: Move to fresh air. If not breathing, give rescue breathing. I f breathing is...material to absorb the spill, use plastic shovel to pick up absorbent for disposal Spills and Leaks: Dispose in accordance to local, state or federal

  13. Research on heightening of performance of optical system for free electron laser

    International Nuclear Information System (INIS)

    Kumagai, Hiroshi; Kawamura, Yoshiyuki; Toyada, Koichi

    1996-01-01

    Free electron laser will become in future the center of industrial laser technology as a high efficiency, high power output laser. For the development of free electron laser, the development of the elementary technologies such as accelerator, wiggler, optical system and so on must be carried out. For the stable functioning of free electron laser for long hours, the innovative technical development of the optical technology has been strongly desired. In this research, the development of the method of manufacturing a new high performance, multilayer film reflection mirror and the research on compound optical damage by new high energy photon generation process were advanced. The research on the formation of aluminum oxide thin films by using surface reaction, the development of the technology for forming high accuracy, multi-layer thin films and the evaluation of the optical performance of multi-layer films are reported. The constitution of compound optical damage evaluation system, the calculation of the luminance of high energy photons and the experiment on the generation of photons by a carbon dioxide gas laser are described regarding the compound optical damage research. (K.I.)

  14. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser...

  15. Low Probability of Intercept Laser Range Finder

    Science.gov (United States)

    2017-07-19

    time of arrival, and it may also include wavelength, pulse width, and pulse repetition frequency (PRF). Second photodetector 38 in conjunction with... conjunction with lens 32 and telescope 36 that can correct for turbulence along the free space path. [0024] In all embodiments, the time interval

  16. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  17. Z-Beamlet: a multikilojoule, terawatt-class laser system

    International Nuclear Information System (INIS)

    Rambo, Patrick K.; Smith, Ian C.; Porter, John L. Jr.; Hurst, Michael J.; Speas, C. Shane; Adams, Richard G.; Garcia, Antonio J.; Dawson, Ellis; Thurston, Benjamin D.; Wakefield, Colleen; Kellogg, Jeff W.; Slattery, Michael J.; Ives III, Harry C.; Broyles, Robin S.; Caird, John A.; Erlandson, Alvin C.; Murray, James E.; Behrendt, William C.; Neilsen, Norman D.; Narduzzi, Joseph M.

    2005-01-01

    A large-aperture (30-cm) kilojoule-class Nd:glass laser system known as Z-Beamlet has been constructed to perform x-ray radiography of high-energy-density science experiments conducted on the Z facility at Sandia National Laboratories, Albuquerque, New Mexico. The laser, operating with typical pulse durations from 0.3 to 1.5 ns, employs a sequence of successively larger multipass amplifiers to achieve up to 3-kJ energy at 1054 nm. Large-aperture frequency conversion and long-distance beam transport can provide on-target energies of up to 1.5 kJ at 527 nm

  18. System and method for laser assisted sample transfer to solution for chemical analysis

    Science.gov (United States)

    Van Berkel, Gary J; Kertesz, Vilmos

    2014-01-28

    A system and method for laser desorption of an analyte from a specimen and capturing of the analyte in a suspended solvent to form a testing solution are described. The method can include providing a specimen supported by a desorption region of a specimen stage and desorbing an analyte from a target site of the specimen with a laser beam centered at a radiation wavelength (.lamda.). The desorption region is transparent to the radiation wavelength (.lamda.) and the sampling probe and a laser source emitting the laser beam are on opposite sides of a primary surface of the specimen stage. The system can also be arranged where the laser source and the sampling probe are on the same side of a primary surface of the specimen stage. The testing solution can then be analyzed using an analytical instrument or undergo further processing.

  19. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    Science.gov (United States)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  20. Study and development of a laser based alignment system for the compact linear collider

    CERN Document Server

    AUTHOR|(CDS)2083149

    The first objective of the PhD thesis is to develop a new type of positioning sensor to align components at micrometre level over 200 m with respect to a laser beam as straight line reference. The second objective is to estimate the measurement accuracy of the total alignment system over 200 m. The context of the PhD thesis is the Compact Linear Collider project, which is a study for a future particle accelerator. The proposed positioning sensor is made of a camera and an open/close shutter. The sensor can measure the position of the laser beam with respect to its own coordinate system. To do a measurement, the shutter closes, a laser spot appears on it, the camera captures a picture of the laser spot and the coordinates of the laser spot centre are reconstructed in the sensor coordinate system with image processing. Such a measurement requires reference targets on the positioning sensor. To reach the rst objective of the PhD thesis, we used laser theory...

  1. Overview of laser systems for the Orion facility at the AWE.

    Science.gov (United States)

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  2. Laser application for nuclear reaction product detecting system alignment

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Dryapachenko, I.P.; Kornilov, V.A.; Nemets, O.F.; Rudenko, B.A.; Sokolov, M.V.; Struzhko, B.G.; Gnatovskij, A.V.; Bojchuk, V.N.

    1982-01-01

    A method for optical alignment of nuclear particle detector system using a laser beam and hologram is described. The method permits to arrange detectors very precisely in accordance with any chosen space coordinate values. The results of modelling the geometry of an experiment based on using the suggested method on cyclotron beams are described. A gas helium-neon laser with wavelength of 0.63 μm radiation power of an order of 2 MW and angular beam divergence less than 10 angular minutes is used for modelling. It is concluded that the laser and hologram application provides large possibilities for the modelling the geometry of experiments on nuclear reaction investigation. When necessary it is possible to obtain small nonius scale of reference beams by means of multiplicating properties of the wave front modulator-hologram system. It is also possible to record holograms shaping the reference beams in two or several planes crossing along the central beam direction. Such holograms can be used for modelling the noncoplanar geometry of correlation experiments [ru

  3. Development of Laser Based Remote Sensing System for Inner-Concrete Defects

    Science.gov (United States)

    Shimada, Yoshinori; Kotyaev, Oleg

    Laser-based remote sensing using a vibration detection system has been developed using a photorefractive crystal to reduce the effect of concrete surface-roughness. An electric field was applied to the crystal and the reference beam was phase shifted to increase the detection efficiency (DE). The DE increased by factor of 8.5 times compared to that when no voltage and no phase shifting were applied. Vibration from concrete defects can be detected at a distance of 5 m from the system. A vibration-canceling system has also developed that appears to be promising for canceling vibrations between the laser system and the concrete. Finally, we have constructed a prototype system that can be transported in a small truck.

  4. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles

    Science.gov (United States)

    Motohiro, Tomoyoshi; Takeda, Yasuhiko; Ito, Hiroshi; Hasegawa, Kazuo; Ikesue, Akio; Ichikawa, Tadashi; Higuchi, Kazuo; Ichiki, Akihisa; Mizuno, Shintaro; Ito, Tadashi; Yamada, Noboru; Nath Luitel, Hom; Kajino, Tsutomu; Terazawa, Hidetaka; Takimoto, Satoshi; Watanabe, Kemmei

    2017-08-01

    We have developed a compact solar-pumped laser (µSPL) employing an off-axis parabolic mirror with an aperture of 76.2 mm diameter and an yttrium aluminum garnet (YAG) ceramic rod of φ1 mm × 10 mm doped with 1% Nd and 0.1% Cr as a laser medium. The laser oscillation wavelength of 1.06 µm, just below the optical absorption edge of Si cells, is suitable for photoelectric conversion with minimal thermal loss. The concept of laser beam power feeding to an electric vehicle equipped with a photovoltaic panel on the roof was proposed by Ueda in 2010, in which the electricity generated by solar panels over the road is utilized to drive a semiconductor laser located on each traffic signal along the road. By substituting this solar-electricity-driven semiconductor laser with a solar-pumped laser, the energy loss of over 50% in converting the solar electricity to a laser beam can be eliminated. The overall feasibility of this system in an urban area such as Tokyo was investigated.

  5. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  6. Investigation into the accuracy of a proposed laser diode based multilateration machine tool calibration system

    International Nuclear Information System (INIS)

    Fletcher, S; Longstaff, A P; Myers, A

    2005-01-01

    Geometric and thermal calibration of CNC machine tools is required in modern machine shops with volumetric accuracy assessment becoming the standard machine tool qualification in many industries. Laser interferometry is a popular method of measuring the errors but this, and other alternatives, tend to be expensive, time consuming or both. This paper investigates the feasibility of using a laser diode based system that capitalises on the low cost nature of the diode to provide multiple laser sources for fast error measurement using multilateration. Laser diode module technology enables improved wavelength stability and spectral linewidth which are important factors for laser interferometry. With more than three laser sources, the set-up process can be greatly simplified while providing flexibility in the location of the laser sources improving the accuracy of the system

  7. A NEW ELECTRONIC BOARD TO DRIVE THE LASER CALIBRATION SYSTEM OF THE ATLAS HADRON CALORIMETER

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00086824; The ATLAS collaboration

    2016-01-01

    The LASER calibration system of the ATLAS hadron calorimeter aims at monitoring the ~10000 PMTs of the TileCal. The LASER light injected in the PMTs is measured by sets of photodiodes at several stages of the optical path. The monitoring of the photodiodes is performed by a redundant internal calibration system using an LED, a radioactive source, and a charge injection system. The LASer Calibration Rod (LASCAR) electronics card is a major component of the LASER calibration scheme. Housed in a VME crate, its main components include a charge ADC, a TTCRx, a HOLA part, an interface to control the LASER, and a charge injection system. The 13 bits ADC is a 2000pc full-scale converter that processes up to 16 signals stemming from 11 photodiodes, 2 PMTs, and 3 charge injection channels. Two gains are used (x1 and x4) to increase the dynamic range and avoid a saturation of the LASER signal for high intensities. The TTCRx chip (designed by CERN) retrieves LHC signals to synchronize the LASCAR card with the collider. T...

  8. High efficiency pump combiner fabricated by CO2 laser splicing system

    Science.gov (United States)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  9. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  10. Development of a Fibre-Phased Array Laser-EMAT Ultrasonic System for Defect Inspection

    International Nuclear Information System (INIS)

    Pei, C; Demachi, K; Koyama, K; Uesaka, M; Fukuchi, T; Chen, Z

    2014-01-01

    In this work, a phased array laser ultrasound system with using fibre optic delivery and a custom-designed focusing objective lens has been developed for enhancing the ultrasound generation. The fibre-phased array method is applied to improve the sensitivity and detecting ability of the laser-EMAT system for defect inspection

  11. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  12. Laser Demonstration and Performance Characterization of an Optically Pumped Alkali Laser System

    Science.gov (United States)

    2010-09-01

    ground state 2S1/2 on the D1 line. An example of this is shown in Figure 1 from Krupke’s original paper for the rubidium transitions. In addition to...any of the alkali’s listed in Table 1 can be used in a three-level laser system to create a DPAL system. However, for practical applications...Figure 39, the pump energy per pulse is 3 mJ, providing a pump intensity of ≅ 2 x 106 W/cm2, much higher than the saturation intensity of Isat = (hν

  13. Multifunction laser systems in clinical and resort practice

    OpenAIRE

    Zabulonov, Yuriy; Vladimirov, Alexander; Chukhraiev, Nikolay; Elmehsenawi, Yousry; Zukow, Walery

    2016-01-01

    SHUPYKNATIONALMEDICALACADEMY OF POSTGRADUATE EDUCATION UKRAINIANSOCIETY OFPHYSICAL AND REHABILITATION MEDICINE RADOM UNIVERSITY Yuriy Zabulonov, Alexander Vladimirov, Nikolay Chukhraiev, Yousry Elmehsenawi, Walery Zukow MULTIFUNCTION LASER SYSTEMS IN CLINICAL AND RESORT PRACTICE Edited by Yuriy Zabulonov, Alexander Vladimirov, Nikolay Chukhraiev, Yousry Elmehsenawi, Walery Zukow ...

  14. Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications

    Science.gov (United States)

    Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.

    2018-02-01

    We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.

  15. Altimetric surveying with airborne laser system; Medicao altimetrica utilizando sistema a laser aerotransportado

    Energy Technology Data Exchange (ETDEWEB)

    Sallem Filho, Silas; Paoletto, Silvia M.; Bonatto, Amarildo [Esteio Engenharia, Curitiba, PR (Brazil)

    2003-07-01

    Airborne Laser Scanning (ALS) makes faster and more accurate the obtaining of Digital Elevation Model and Digital Terrain Model compared to conventional photogrammetry. The system generates Laser pulses towards the terrain, perpendicular to the flight line, scanning the terrain surface and recording the distances from the sensor to the soil for each pulse . The main characteristics of the system is the measurement of the first and the last return for each pulse, allowing the objects identification that are above the ground like vegetation. With this function it is possible the determination of volumes and biomass estimate, besides the virtual removal of vegetation covering. The Digital Terrain Models are used for Digital Orthophotos rectification and to obtain contour lines for topography maps. The correct points classification according the elevation, allows the identification of man-made features road and river crossings and human use in the the pipeline corridor. Some additional products, as hypsometric images and intensity images helps in the identification of features on pipeline projects as well as the obtaining of the obstacles height. (author)

  16. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    International Nuclear Information System (INIS)

    Nostrand, M.C.; Weiland, T.L.; Luthi, R.L.; Vickers, J.L.; Sell, W.D.; Stanley, J.A.; Honig, J.; Auerbach, J.; Hackel, R.P.; Wegner, P.J.

    2003-01-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm 2 high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics

  17. Lifetime of chaotic attractors in a multidimensional laser system

    International Nuclear Information System (INIS)

    Pando L, C.L.; Cerdeira, H.A.

    1995-01-01

    We study the lifetimes of chaotic attractors at crises in a multidimensional laser system. This system describes the CO 2 laser with modulated losses and is known as the four-level model. The critical exponents which are related to the lifetimes of the attractors are estimated in terms of the corresponding eigenvalues and the measured characteristic lifetime in the model. The critical exponents in this model and those of its center manifold version are in good agreement. We conjecture that generically in the four-level model the critical exponents are close to 1/2 at crises. In addition, we compare predictions of a simpler and popular model known as the two-level model with those of the above mentioned models. (author). 21 refs, 2 figs, 3 tabs

  18. New CO2 laser waveguide systems: advances in surgery of tracheal stenosis

    Science.gov (United States)

    Stasche, Norbert; Bernecker, Frank; Hoermann, Karl

    1996-01-01

    The carbon dioxide laser is a well established tool in the surgical treatment of laryngeal and tracheal stenosis. Usually the laser beam is applied by a microscope/micromanipulator device. Different types of rigid laryngoscopes and bronchoscopes provide access to nearly every area of larynx, trachea and main bronchi. In order to be treated with this equipment the target tissue has to be in a straight optical axis with the laser beam output at the micromanipulator. We report about one patient who presented with severe dyspnea due to granulation tissue directly below his left vocal cord. He was suffering from tracheomalacia for several years and was successfully treated by tracheostomy and a Montgomery's silicone T-tube as a stent. Then granulation tissue blocked the upper orifice of the Montgomery's T-tube. First removal by a carbon dioxide laser beam through the laryngoscope would have required sacrificing his intact left vocal cord. We removed the obstructing tissue by using the ArthroLaseTM System: the carbon dioxide laser beam was conducted through a 90 degree bent rigid probe, using the tracheostomy as an access. This ArthroLaseTM System was originally designed for arthroscopic surgery. In this special case however it successfully extends the use of the carbon dioxide laser in otolaryngology.

  19. Advances in lasers and optical micro-nano-systems

    Science.gov (United States)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  20. Characterization of silicon microstrip sensors with a pulsed infrared laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe Univ., Frankfurt (Germany); GSI (Germany); Eschke, Juergen [GSI (Germany); FAIR (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The Silicon Tracking System (STS) for the Compressed Baryonic Matter (CBM) experiment at FAIR will comprise more than 1200 double-sided silicon microstrip sensors. For the quality assurance of the prototype sensors a laser test system has been built up. The aim of the sensor scans with the pulsed infrared laser system is to determine the charge sharing between strips and to measure the uniformity of the sensor response over the whole active area. The laser system measures the sensor response in an automatized procedure at several thousand positions across the sensor with focused infrared laser light (σ∼15 μm, λ=1060 nm). The duration (5 ns) and power (few mW) of the laser pulses are selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24k electrons, which is similar to the charge created by minimum ionizing particles in these sensors. Results from the characterization of monolithic active pixel sensors, to understand the spot-size of the laser, and laser scans for different sensors are presented.

  1. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  2. Near-infrared laser, time domain, breast tumour detection system

    International Nuclear Information System (INIS)

    Joblin, A.J.

    1996-01-01

    Full text: The use of near-infrared laser, time domain techniques have been proposed for some time now as an alternative to X-ray mammography, as a means of mass screening for breast disease. The great driving force behind this research has been that near-infrared photons are a non-ionising radiation, which affords a greater degree of patient safety than when using X-rays. This would mean that women at risk of breast disease could be screened with a near-infrared laser imaging system, much more regularly than with an X-ray mammography system, which should allow for the earlier detection and treatment of breast disease. This paper presents a theoretical investigation of the performance of a near-infrared, time domain breast imaging system. The performance of the imaging system is characterised by the resolution and contrast parameters, which were studied using a numerical finite difference calculation method. The finite difference method is used to solve the diffusion equation for the photon transport through the inhomogeneous breast tissue medium. Optimal performance was found to be obtained with short photon times of flight. However the signal to noise ratio decreases rapidly as the photon time of flight is decreased. The system performance will therefore be limited by the noise equivalent power of the time resolved detection system, which is the signal incident on the time resolved detection system which gives a signal to noise ratio of 1:1. Photon times of flight shorter than 500 ps are not practical with current technology, which places limits on the resolution and contrast. The photon signal throughput can be increased by increasing the size of the laser beam width, by increasing the size of the aperture stop of the detector, by increasing the laser pulse duration or decreasing the detector time resolution. Best system performance is found by optimising these parameters for a given time gating and detector system characteristic (NEP). It was found that the

  3. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    Science.gov (United States)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  4. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    Science.gov (United States)

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  5. Design and Study of a Next-Generation Computer-Assisted System for Transoral Laser Microsurgery

    Directory of Open Access Journals (Sweden)

    Nikhil Deshpande PhD

    2018-05-01

    Full Text Available Objective To present a new computer-assisted system for improved usability, intuitiveness, efficiency, and controllability in transoral laser microsurgery (TLM. Study Design Pilot technology feasibility study. Setting A dedicated room with a simulated TLM surgical setup: surgical microscope, surgical laser system, instruments, ex vivo pig larynxes, and computer-assisted system. Subjects and Methods The computer-assisted laser microsurgery (CALM system consists of a novel motorized laser micromanipulator and a tablet- and stylus-based control interface. The system setup includes the Leica 2 surgical microscope and the DEKA HiScan Surgical laser system. The system was validated through a first-of-its-kind observational study with 57 international surgeons with varied experience in TLM. The subjects performed real surgical tasks on ex vivo pig larynxes in a simulated TLM scenario. The qualitative aspects were established with a newly devised questionnaire assessing the usability, efficiency, and suitability of the system. Results The surgeons evaluated the CALM system with an average score of 6.29 (out of 7 in ease of use and ease of learning, while an average score of 5.96 was assigned for controllability and safety. A score of 1.51 indicated reduced workload for the subjects. Of 57 subjects, 41 stated that the CALM system allows better surgical quality than the existing TLM systems. Conclusions The CALM system augments the usability, controllability, and efficiency in TLM. It enhances the ergonomics and accuracy beyond the current state of the art, potentially improving the surgical safety and quality. The system offers the intraoperative automated scanning of customized long incisions achieving uniform resections at the surgical site.

  6. Laser fusion system design study. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    The following studies were completed: (1) The synthesis of a pointing/control system compatible with existing and advanced laser opto-mechanical configurations. (2) Attainment of the required pointing angle, longitudinal focus, and differential pathlength accuracies. (3) Maximum modularization of the sensor and gimbal assemblies to provide the required accuracies at minimum cost. Detailed information is given on each. (MOW)

  7. Recent advancements in system design for miniaturized MEMS-based laser projectors

    Science.gov (United States)

    Scholles, M.; Frommhagen, K.; Gerwig, Ch.; Knobbe, J.; Lakner, H.; Schlebusch, D.; Schwarzenberg, M.; Vogel, U.

    2008-02-01

    Laser projection systems that use the flying spot principle and which are based on a single MEMS micro scanning mirrors are a very promising way to build ultra-compact projectors that may fit into mobile devices. First demonstrators that show the feasibility of this approach and the applicability of the micro scanning mirror developed by Fraunhofer IPMS for these systems have already been presented. However, a number of items still have to be resolved until miniaturized laser projectors are ready for the market. This contribution describes progress on several different items, each of them of major importance for laser projection systems. First of all, the overall performance of the system has been increased from VGA resolution to SVGA (800×600 pixels) with easy connection to a PC via DVI interface or by using the projector as embedded system with direct camera interface. Secondly, the degree of integration of the electronics has been enhanced by design of an application specific analog front end IC for the micro scanning mirror. It has been fabricated in a special high voltage technology and does not only allow to generate driving signals for the scanning mirror with amplitudes of up to 200V but also integrates position detection of the mirror by several methods. Thirdly, first results concerning Speckle reduction have been achieved, which is necessary for generation of images with high quality. Other aspects include laser modulation and solutions regarding projection on tilted screens which is possible because of the unlimited depth of focus.

  8. Performance of a MOPA laser system for photocathode research

    NARCIS (Netherlands)

    Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; Ernst, G.J.

    1994-01-01

    A Nd:YLF laser system with frequency doubled output is described. Several aspects concerning energy and stability of the pulses will be discussed. The system consists of a CW mode locked Nd:YLF oscillator and two double pass amplifiers having a total small signal gain of about a million which means

  9. Qualification and issues with space flight laser systems and components

    Science.gov (United States)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  10. Infrared cavity ring-down spectroscopy with a CW diode laser system

    NARCIS (Netherlands)

    Hemerik, M.M.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    We report on the first measurements with our CRDS setup. Although the diode laser system was out of order, we were able to test the most important parts with the use of a CO laser. The first results show a ring-down time of 1.54 ~is, which is in perfect agreement with the predicted reflectivity of

  11. Real-time operating system for a multi-laser/multi-detector system

    Science.gov (United States)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  12. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  13. Development of control and data processing system for CO2 laser interferometer

    International Nuclear Information System (INIS)

    Chiba, Shinichi; Kawano, Yasunori; Tsuchiya, Katsuhiko; Inoue, Akira

    2001-11-01

    CO 2 laser interferometer diagnostic has been operating to measure the central electron density in JT-60U plasmas. We have developed a control and data processing system for the CO 2 laser interferometer with flexible functions of data acquisition, data processing and data transfer in accordance with the sequence of JT-60U discharges. This system is mainly composed of two UNIX workstations and CAMAC clusters, in which the high reliability was obtained by sharing the data process functions to the each workstations. Consequently, the control and data processing system becomes to be able to provide electron density data immediately after a JT-60U discharge, routinely. The realtime feedback control of electron density in JT-60U also becomes to be available by using a reference density signal from the CO 2 laser interferometer. (author)

  14. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    Science.gov (United States)

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  15. INITIAL TESTS AND ACCURACY ASSESMENT OF A COMPACT MOBILE LASER SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Julge

    2016-06-01

    Full Text Available Mobile laser scanning (MLS is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  16. Petawatt laser and target irradiation system at LLNL

    International Nuclear Information System (INIS)

    Pennington, D.M.; Perry, M.D.; Britten, J.A.; Brown, C.G.; Herman, S.; Homer, J.; Miller, J.L.; Stuart, B.C.; Tietbohl, G.; Van Lue, J.; Yanovsky, V.

    1997-01-01

    In May, 1996, we demonstrated the production over a petawatt of peak power in the Nova/Petawatt Laser Facility, generating 620 J in ∼ 430 fs. Results of the first focused irradiance tests, and recent deployment of a novel targeting system will be presented

  17. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  18. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  19. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  20. Research on calibration algorithm in laser scanning projection system

    Science.gov (United States)

    Li, Li Juan; Qu, Song; Hou, Mao Sheng

    2017-10-01

    Laser scanning projection technology can project the image defined by the existing CAD digital model to the working surface, in the form of a laser harness profile. This projection is in accordance with the ratio of 1: 1. Through the laser harness contours with high positioning quality, the technical staff can carry out the operation with high precision. In a typical process of the projection, in order to determine the relative positional relationship between the laser projection instrument and the target, it is necessary to place several fixed reference points on the projection target and perform the calibration of projection. This position relationship is the transformation from projection coordinate system to the global coordinate system. The entire projection work is divided into two steps: the first step, the calculation of the projector six position parameters is performed, that is, the projector calibration. In the second step, the deflection angle is calculated by the known projector position parameter and the known coordinate points, and then the actual model is projected. Typically, the calibration requires the establishment of six reference points to reduce the possibility of divergence of the nonlinear equations, but the whole solution is very complex and the solution may still diverge. In this paper, the distance is detected combined with the calculation so that the position parameters of the projector can be solved by using the coordinate values of three reference points and the distance of at least one reference point to the projector. The addition of the distance measurement increases the stability of the solution of the nonlinear system and avoids the problem of divergence of the solution caused by the reference point which is directly under the projector. Through the actual analysis and calculation, the Taylor expansion method combined with the least squares method is used to obtain the solution of the system. Finally, the simulation experiment is