WorldWideScience

Sample records for prey fish populations

  1. Sub-indicator: Prey fish

    Science.gov (United States)

    Weidel, Brian C.; Dunlop, Erin

    2017-01-01

    , native species in Lake Huron comprised less than 10% of the community in 1970, but since alewife have declined, now represent nearly 80% of the community (Figure 2). Prey fish data are most consistent for in-lake populations, which are reported here; data from connecting channels was not consistently available across the basin. Abundance was not used to judge prey fish status since successful, basin-wide management actions, including mineral nutrient input reductions and piscivore restoration, both inherently reduce prey fish abundance. However, recent abundance trends as they relate to predator prey balance are referenced, such as in Lakes Michigan and Huron where piscivore stocking is being reduced to lower predation demand on prey fish populations and maintain sport fisheries.

  2. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  3. Behavior of prey links midwater and demersal piscivorous reef fishes

    Directory of Open Access Journals (Sweden)

    Peter J. Auster

    Full Text Available Pelagic and demersal guilds of piscivorous fishes are linked by a variety of biological and physical processes that mediate interactions with common prey species. Understanding the behaviors of predators and prey can provide insight into the conditions that make such linkages possible. Here we report on the behaviors of mid-water piscivorous fishes and the responses of prey that produce feeding opportunities for demersal piscivorous fishes associated with "live bottom" ledge habitats off the coast of Georgia (northwest Atlantic Ocean. Prey taxa reduced nearest neighbor distances and retreated towards the seafloor during predatory attacks by mid-water fishes. Demersal fishes subsequently attacked and consumed prey in these ephemeral high density patches. No predation by demersal fishes was observed when prey species were at background densities. If the predator-prey interactions of demersal piscivorous fishes are commonly mediated by the predatory behavior of midwater piscivorous fishes and their prey, such indirect facilitative behaviors may be important in terms of the population processes (e.g., prey consumption and growth rates of these demersal fishes.

  4. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  5. Status and trends of prey fish populations in Lake Michigan, 2013

    Science.gov (United States)

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt. Overall, the total

  6. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  7. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Directory of Open Access Journals (Sweden)

    Serena Hackerott

    2017-05-01

    Full Text Available Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  8. Bottom trawl assessment of Lake Ontario prey fishes

    Science.gov (United States)

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but

  9. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  10. The diet of otters ( Lutra lutra L.) in Danish freshwater habitats : comparisons of prey fish populations

    DEFF Research Database (Denmark)

    Taastrom, H.M.; Jacobsen, Lene

    1999-01-01

    Otter spraints from five Danish freshwater localities were analysed. In all localities fish was the main prey (76-99% of estimated bulk), especially in winter. Depending on locality, the prey fish mainly consisted of cyprinids (Cyprinidae), percids (Percidae) or salmonids (Salmonidae). Seasonal v...

  11. Prey selectivity affects reproductive success of a corallivorous reef fish.

    Science.gov (United States)

    Brooker, Rohan M; Jones, Geoffrey P; Munday, Philip L

    2013-06-01

    Most animals consume a narrower range of food resources than is potentially available in the environment, but the underlying basis for these preferences is often poorly understood. Foraging theory predicts that prey selection should represent a trade-off between prey preferences based on nutritional value and prey availability. That is, species should consume preferred prey when available, but select less preferred prey when preferred prey is rare. We employed both field observation and laboratory experiments to examine the relationship between prey selection and preferences in the obligate coral-feeding filefish, Oxymonacanthus longirostris. To determine the drivers of prey selection, we experimentally established prey preferences in choice arenas and tested the consequences of prey preferences for key fitness-related parameters. Field studies showed that individuals fed almost exclusively on live corals from the genus Acropora. While diet was dominated by the most abundant species, Acropora nobilis, fish appeared to preferentially select rarer acroporids, such as A. millepora and A. hyacinthus. Prey choice experiments confirmed strong preferences for these corals, suggesting that field consumption is constrained by availability. In a longer-term feeding experiment, reproductive pairs fed on non-preferred corals exhibited dramatic reductions to body weight, and in hepatic and gonad condition, compared with those fed preferred corals. The majority of pairs fed preferred corals spawned frequently, while no spawning was observed for any pairs fed a non-preferred species of coral. These experiments suggest that fish distinguish between available corals based on their intrinsic value as prey, that reproductive success is dependent on the presence of particular coral species, and that differential loss of preferred corals could have serious consequences for the population success of these dietary specialists.

  12. Prediction of fish biomass, harvest and prey--predator relations in reservoirs

    International Nuclear Information System (INIS)

    Jenkins, R.M.

    1977-01-01

    Regression analyses of the effect of total dissolved solids on fish standing crops in 166 reservoirs produced formulas with coefficients of determination of 0.63 to 0.81. These formulas provide indexes to average biotic conditions and help to identify stressed aquatic environments. Simple predictive formulas are also presented for clupeid crops in various reservoir types, as clupeids are the fishes most frequently impinged or entrained at southern power plants. A method of calculating the adequacy of the available prey crop in relation to the predator crop is advanced to further aid in identification of perturbed prey populations. Assessment of stress as reflected by changes in sport fishing success can also be approached by comparison of the predicted harvest potential with actual fish harvest data. Use of these predictive indexes is recommended until more elaborate models are developed to identify power plant effects

  13. Production of live prey for marine fish larvae

    OpenAIRE

    Kraul, S

    1989-01-01

    Tropical marine fish larvae vary in their requirements for live planktonic food. Selection of live prey species for culture depends on larval size and larval tolerance of water quality. This report describes some of the cultured prey species, and their uses and limits as effective food for fish larvae. Methods are presented for the culture of phytoplankton, rotifers, copepods, and other live feeds.

  14. Process-based models of feeding and prey selection in larval fish

    DEFF Research Database (Denmark)

    Fiksen, O.; MacKenzie, Brian

    2002-01-01

    believed to be important to prey selectivity and environmental regulation of feeding in fish. We include the sensitivity of prey to the hydrodynamic signal generated by approaching larval fish and a simple model of the potential loss of prey due to turbulence whereby prey is lost if it leaves...... jig dry wt l(-1). The spatio-temporal fluctuation of turbulence (tidal cycle) and light (sun height) over the bank generates complex structure in the patterns of food intake of larval fish, with different patterns emerging for small and large larvae....

  15. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  16. Pollutants and fish predator/prey behavior: A review of laboratory and field approaches

    Directory of Open Access Journals (Sweden)

    Judith S. WEIS, Allison CANDELMO

    2012-02-01

    Full Text Available Fish behavior can be altered by contaminants. There is an extensive literature on laboratory behavioral assays, with many chemicals impairing feeding or predator avoidance. However, there is not extensive work on fishes that live in contaminated environments. Therefore, we then review our recent research on feeding and trophic relations of populations from contaminated estuaries compared with relatively unpolluted sites. The mummichog Fundulus heteroclitus, is a non-migratory fish; those from more contaminated areas are poor predators and slower to capture active prey (grass shrimp, Palaemonetes pugio. In the field, they consume much detritus and sediment, which is not nutritious. They are less active than fish from cleaner sites and more vulnerable to predation. They have altered thyroid glands and neurotransmitter levels, which may underlie altered behaviors. Fish from the reference site kept in tanks with sediment and food from the polluted site showed bioaccumulation and reduced prey capture after two months, although fish from the polluted site did not show significant improvement when maintained in a clean environment. Poor nutrition and predator avoidance may be responsible for their being smaller and having a shorter life span than reference fish. Bluefish Pomatomus saltatrix, are a marine species in which the young-of-the-year spend their first summer in estuaries. We found bioaccumulation of contaminants and reduced activity, schooling, and feeding in young-of-the-year bluefish from a relatively unpolluted site that were fed prey fish from a contaminated site. They also had altered thyroid glands and neurotransmitter levels. Many field-caught specimens had empty stomachs, which is rare in this species. In the fall, when they migrate back out to the ocean, they are smaller, slower, and more likely to starve or to be eaten than those that spent their summer in cleaner estuaries [Current Zoology 58 (1: 9-20, 2012].

  17. Within and between population variation in epidermal club cell investment in a freshwater prey fish: a cautionary tale for evolutionary ecologists.

    Directory of Open Access Journals (Sweden)

    Aditya K Manek

    Full Text Available Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging.

  18. Prey selection by North Sea herring (Clupea harengus) with special reference to fish eggs

    NARCIS (Netherlands)

    Segers, F.H.I.D.; Dickey-Collas, M.; Rijnsdorp, A.D.

    2007-01-01

    The herring stock in the North Sea in recent years has recovered to a relatively high biomass, and here we investigate prey selection of individual North Sea herring when population numbers are high. The diet composition, and specifically pelagic fish eggs, was investigated in February 2004. Samples

  19. Benthic prey fish assessment, Lake Ontario 2013

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.

    2014-01-01

    The 2013 benthic fish assessment was delayed and shortened as a result of the U.S. Government shutdown, however the assessment collected 51 of the 62 planned bottom trawls. Over the past 34 years, Slimy Sculpin abundance in Lake Ontario has fluctuated, but ultimately decreased by two orders of magnitude, with a substantial decline occurring in the past 10 years. The 2013 Slimy Sculpin mean bottom trawl catch density (0.001 ind.·m-2, s.d.= 0.0017, n = 52) and mean biomass density (0.015 g·m-2 , s.d.= 0.038, n = 52) were the lowest recorded in the 27 years of sampling using the original bottom trawl design. From 2011-2013, the Slimy Sculpin density and biomass density has decreased by approximately 50% each year. Spring bottom trawl catches illustrate Slimy Sculpin and Round Goby Neogobius melanostoma winter habitat overlaps for as much as 7 months out of a year, providing opportunities for competition and predation. Invasive species, salmonid piscivory, and declines in native benthic invertebrates are likely all important drivers of Slimy Sculpin population dynamics in Lake Ontario. Deepwater Sculpin Myoxocephalus thompsonii, considered rare or absent from Lake Ontario for 30 years, have generally increased over the past eight years. For the first time since they were caught in this assessment, Deepwater Sculpin density and biomass density estimates declined from the previous year. The 2013 abundance and density estimates for trawls covering the standard depths from 60m to 150m was 0.0001 fish per square meter and 0.0028 grams per square meter. In 2013, very few small (recruitment. Nonnative Round Gobies were first detected in the USGS/NYSDEC Lake Ontario spring Alewife assessment in 2002. Since that assessment, observations indicate their population has expanded and they are now found along the entire south shore of Lake Ontario, with the highest densities in U.S. waters just east of the Niagara River confluence. In the 2013 spring-based assessment, both the

  20. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes.

    Science.gov (United States)

    Peiffer, Friederike; Bejarano, Sonia; Palavicini de Witte, Giacomo; Wild, Christian

    2017-01-01

    The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month -1 ) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher -1 h -1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

  1. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes

    Directory of Open Access Journals (Sweden)

    Friederike Peiffer

    2017-10-01

    Full Text Available The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras a local non-governmental organisation (i.e. Roatan Marine Park trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month−1 with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher−1 h−1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

  2. Models of prey capture in larval fish

    NARCIS (Netherlands)

    Drost, M.R.

    1986-01-01

    The food uptake of larval carp and pike is described from high speed movies with synchronous lateral and ventral views.

    During prey intake by larval fishes the velocities of the created suction flow are high relative to their own size: 0.3 m/s for carp larvae of 6

  3. The importance of lipid-rich fish prey for Cape gannet chick growth : are fishery discards an alternative?

    NARCIS (Netherlands)

    Mullers, Ralf H. E.; Navarro, Rene A.; Crawford, Robert J. M.; Underhill, Les G.

    2009-01-01

    A recent decline in population numbers of Cape gannets (Morus capensis) breeding off the west coast of South Africa coincided with decreased availability of lipid-rich fish prey: anchovy (Engraulis encrasicolus) and sardine (Sardinops sagax). Seabirds can use fishery discards as an alternative, but

  4. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    Science.gov (United States)

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  5. Prey fish returned to Forster's tern colonies suggest spatial and temporal differences in fish composition and availability.

    Science.gov (United States)

    Peterson, Sarah H; Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster's tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster's terns are limited in the distance they forage; thus, changes in the prey species returned to Forster's tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.

  6. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.

    Science.gov (United States)

    Green, Stephanie J; Côté, Isabelle M

    2014-11-01

    Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly

  7. Vertical migrations of a deep-sea fish and its prey.

    Directory of Open Access Journals (Sweden)

    Pedro Afonso

    Full Text Available It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL. This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel as well as long-term (seasonal scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.

  8. Prey fish returned to Forster’s tern colonies suggest spatial and temporal differences in fish composition and availability

    Science.gov (United States)

    Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, C. Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster’s tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster’s terns are limited in the distance they forage; thus, changes in the prey species returned to Forster’s tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available

  9. Factors mediating co-occurrence of an economically valuable introduced fish and its native frog prey.

    Science.gov (United States)

    Hartman, Rosemary; Pope, Karen; Lawler, Sharon

    2014-06-01

    Habitat characteristics mediate predator-prey coexistence in many ecological systems but are seldom considered in species introductions. When economically important introduced predators are stocked despite known negative impacts on native species, understanding the role of refuges, landscape configurations, and community interactions can inform habitat management plans. We measured these factors in basins with introduced trout (Salmonidae) and the Cascades frog (Rana cascadae) to determine, which are responsible for observed patterns of co-occurrence of this economically important predator and its native prey. Large, vegetated shallows were strongly correlated to co-occurrence, and R. cascadae larvae occur in shallower water when fish are present, presumably to escape predation. The number of nearby breeding sites of R. cascadae was also correlated to co-occurrence, but only when the western toad (Anaxyrus boreas) was present. Because A. boreas larvae are unpalatable to fish and resemble R. cascadae, they may provide protection from trout via Batesian mimicry. Although rescue-effect dispersal from nearby populations may maintain co-occurrence, within-lake factors proved more important for predicting co-occurrence. Learning which factors allow co-occurrence between economically important introduced species and their native prey enables managers to make better-informed stocking decisions. © 2013 Society for Conservation Biology.

  10. The effect of turbidity and prey fish density on consumption rates of piscivorous Eurasian perch Perca fluviatilis

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Berg, Søren; Baktoft, Henrik

    2014-01-01

    piscivorous Eurasian perch Perca fluviatilis L. This was done in outdoor mesocosm (16 m2) experiments with clear water and two levels of turbidity (25 and 105 NTU) and two prey fish densities [3.1 and 12.5 roach Rutilus rutilus (L.) individuals m–2]. Perch consumption rates were affected by visibility less...... than expected, while they were highly affected by increased prey fish density. Perch responded to high prey density in all visibility conditions, indicating that prey density is more crucial for consumption than visibility in turbid lakes...

  11. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  12. Does colour polymorphism enhance survival of prey populations?

    Science.gov (United States)

    Wennersten, Lena; Forsman, Anders

    2009-01-01

    That colour polymorphism may protect prey populations from predation is an old but rarely tested hypothesis. We examine whether colour polymorphic populations of prey exposed to avian predators in an ecologically valid visual context were exposed to increased extinction risk compared with monomorphic populations. We made 2976 artificial pastry prey, resembling Lepidoptera larvae, in four different colours and presented them in 124 monomorphic and 124 tetramorphic populations on tree trunks and branches such that they would be exposed to predation by free-living birds, and monitored their ‘survival’. Among monomorphic populations, there was a significant effect of prey coloration on survival, confirming that coloration influenced susceptibility to visually oriented predators. Survival of polymorphic populations was inferior to that of monomorphic green populations, but did not differ significantly from monomorphic brown, yellow or red populations. Differences in survival within polymorphic populations paralleled those seen among monomorphic populations; the red morph most frequently went extinct first and the green morph most frequently survived the longest. Our findings do not support the traditional protective polymorphism hypothesis and are in conflict with those of earlier studies. As a possible explanation to our findings, we offer a competing ‘giveaway cue’ hypothesis: that polymorphic populations may include one morph that attracts the attention of predators and that polymorphic populations therefore may suffer increased predation compared with some monomorphic populations. PMID:19324729

  13. Modelling prey consumption and switching by UK grey seals

    DEFF Research Database (Denmark)

    Smout, Sophie; Rindorf, Anna; Hammond, Philip S.

    2014-01-01

    Grey seals (Halichoerus grypus) are adaptable generalist predatorswhose diet includes commercial fish species such as cod. Consumption by the seals may reduce the size of some fish stocks or have an adverse effect on stock recovery programmes, especially because predation may trap sparse prey...... populations in a “predator pit”. To assess the likely impact of such effects, it is important to know how consumption and consequent predation mortality respond to the changing availability of prey.Wepresent a model of grey seal consumption as a function of the availability of multiple prey types [a Multi...

  14. Prey life-history and bioenergetic responses across a predation gradient.

    Science.gov (United States)

    Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E

    2010-10-01

    To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  15. Stochastic population oscillations in spatial predator-prey models

    International Nuclear Information System (INIS)

    Taeuber, Uwe C

    2011-01-01

    It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.

  16. Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes

    Science.gov (United States)

    Happell, Austin; Pattridge, Robert; Rinchard, Jacques; Walsh, Maureen

    2017-01-01

    Fatty acid profiles are used in food web studies to assess trophic interactions between predator and prey. The present study provides the first comprehensive fatty acid dataset for important prey and predator species in Lake Ontario. Three major prey fish (alewife, rainbow smelt, and round goby) were collected at three sites along the southern shore of Lake Ontario during the spring and fall of 2013, and predator species were collected in similar locations during the summer of 2013. Fatty acid compositions were compared among all prey species, all predator species, and information from both predator and prey was used to infer foraging differences among predators. Seasonal differences in fatty acids were found within each prey species studied. Differences among prey species were greater than any spatio-temporal differences detected within species. Fatty acids of predators revealed species-specific differences that matched known foraging habits. Chinook and Coho salmon, which are known to select alewife as their dominant prey item, had relatively little variation in fatty acid profiles. Conversely, brown trout, lake trout, yellow perch and esocids had highly variable fatty acid profiles and likely highly variable diet compositions. In general, our data suggested three dominant foraging patterns: 1) diet composed of nearly exclusively alewife for Chinook and Coho Salmon; 2) a mixed diet of alewife and round goby for brown and lake trout, and both rock and smallmouth bass; 3) a diet that is likely comprised of forage fishes other than those included in our study for northern pike and chain pickerel.

  17. Local extinction of a coral reef fish explained by inflexible prey choice

    Science.gov (United States)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  18. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  19. Information Dynamics in the Interaction between a Prey and a Predator Fish

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-10-01

    Full Text Available Accessing information efficiently is vital for animals to make the optimal decisions, and it is particularly important when they are facing predators. Yet until now, very few quantitative conclusions have been drawn about the information dynamics in the interaction between animals due to the lack of appropriate theoretic measures. Here, we employ transfer entropy (TE, a new information-theoretic and model-free measure, to explore the information dynamics in the interaction between a predator and a prey fish. We conduct experiments in which a predator and a prey fish are confined in separate parts of an arena, but can communicate with each other visually and tactilely. TE is calculated on the pair’s coarse-grained state of the trajectories. We find that the prey’s TE is generally significantly bigger than the predator’s during trials, which indicates that the dominant information is transmitted from predator to prey. We then demonstrate that the direction of information flow is irrelevant to the parameters used in the coarse-grained procedures. We further calculate the prey’s TE at different distances between it and the predator. The resulted figure shows that there is a high plateau in the mid-range of the distance and that drops quickly at both the near and the far ends. This result reflects that there is a sensitive space zone where the prey is highly vigilant of the predator’s position.

  20. Relationships of body lengths with mouth opening and prey length of nemipterid fishes (Regan, 1913 in the Gulf of Thailand

    Directory of Open Access Journals (Sweden)

    Mithun Paul

    2017-12-01

    Full Text Available This study aims to investigate the relationship among total length (TL of fish with mouth opening namely horizontal opening (MH, vertical opening (VH, mouth area (MA and fork length (FL of seven sympatric nemipterid fish species and to know the relationship between total length and consumed prey length of five sympatric species sampled from the Gulf of Thailand in 2015. A total 883 fish were investigated collected from both cruise surveys and fishing port survey. TL was linearly and log-linearly related with both MV and MH for three and four species, respectively. MA’s were always the log linear relation of TL and shapes were nearly oval for all species. FL in all TL-FL relationships were proportional to the TL’s in all species (r2 = 0.94, P  .5 and in invertebrate prey items for N. tambuloides (P > .5. So, this study clearly confirms that nemipterid fishes of different sizes feed on all different specific prey items according to its own body size and feed according to size class for prey items available nearby.

  1. Acquired versus innate prey capturing skills in super-precocial live-bearing fish

    NARCIS (Netherlands)

    Lankheet, Martin J.; Stoffers, Twan; Leeuwen, van Johan L.; Pollux, Bart J.A.

    2016-01-01

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate,

  2. The Dynamical Analysis of a Prey-Predator Model with a Refuge-Stage Structure Prey Population

    Directory of Open Access Journals (Sweden)

    Raid Kamel Naji

    2016-01-01

    Full Text Available We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.

  3. Early life-history predator-prey reversal in two cyprinid fishes

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, Marek; Baran, Roman; Blabolil, Petr; Vejřík, Lukáš; Prchalová, Marie; Bartoň, Daniel; Mrkvička, Tomáš; Kubečka, Jan

    2017-01-01

    Roč. 7, JUL (2017), č. článku 6924. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) 7F14316; GA ČR GPP505/12/P647 Grant - others:AV ČR(CZ) StrategieAV21/9 Program:StrategieAV Institutional support: RVO:60077344 Keywords : predator-prey relationship * fish spawning * bleak * asp Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.259, year: 2016

  4. Competition and Facilitation between a Disease and a Predator in a Stunted Prey Population.

    Directory of Open Access Journals (Sweden)

    Maarten C Boerlijst

    Full Text Available The role of diseases and parasites has received relatively little attention in modelling ecological dynamics despite mounting evidence of their importance in structuring communities. In contrast to predators, parasites do not necessarily kill their host but instead they may change host life history. Here, we study the impact of a parasite that selectively infects juvenile prey individuals and prevents them from maturing into adults. The model is inspired by the Ligula intestinalis tape worm and its cyprinid fish host Rutilis rutilis. We demonstrate that the parasite can promote as well as demote the so-called stunting in its host population, that is, the accumulation of juvenile prey, which leads to strong exploitation competition and consequently to a bottleneck in maturation. If competition between infected and uninfected individuals is strong, stunting will be enhanced and bistability between a stunted and non-stunted prey population occurs. In this case, the disease competes with the predator of its host species, possibly leading to predator extinction. In contrast, if the competition between infected and uninfected individuals is weak, the stunting is relieved, and epi-zoonotic cycles will occur, with recurrent epidemic outbreaks. Here, the disease facilitates the predator, and predator density will be substantially increased. We discuss the implications of our results for the dynamics and structure of the natural Ligula-Roach system.

  5. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    Science.gov (United States)

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as

  6. Stable isotopes and mercury in a model estuarine fish: Multibasin comparisons with water quality, community structure, and available prey base

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Douglas H., E-mail: Doug.Adams@MyFWC.com; Paperno, Richard

    2012-01-01

    Stable-isotope ratios ({delta}{sup 13}C and {delta}{sup 15}N) and mercury in a model predator, and associated prey community assessments were used to make inferences regarding food web relationships and how these relationships are influenced by habitat variability and anthropogenic factors. Although interconnected, the three major basins of the Indian River Lagoon system on the Atlantic coast of Florida comprise noticeably different available habitat types with spatially distinct faunal communities and available prey for spotted seatrout, Cynoscion nebulosus, a model predatory fish species. Water quality, degree of urbanization, human population density, and levels of nitrogen enrichment clearly differ between these representative estuarine basins. The differences can influence feeding ecology and therefore result in different mercury concentrations and different stable-isotope signatures of spotted seatrout between basins. Mercury concentrations in spotted seatrout were greatest in Mosquito Lagoon (ML) and least in the Indian River Lagoon proper (IRL), although concentrations were low for all basins. Spotted seatrout from IRL were carbon-depleted and nitrogen-enriched compared with those from the other basins; this suggests either that the fish's primary source of carbon in IRL is an algae- or phytoplankton-based food web or that the pathway through the food web is shorter there. The {delta}{sup 15}N values of IRL spotted seatrout were greater than those in the Banana River Lagoon or ML, suggesting slightly different trophic positioning of fish in these basins. The greater {delta}{sup 15}N values in IRL spotted seatrout may also reflect the greater human population density and resultant anthropogenic inputs (e.g., observed higher total nitrogen levels) in IRL compared with the other more pristine basins examined. Understanding species' responses to broad-scale habitat heterogeneity in estuaries and knowing basin-specific differences in stable isotopes

  7. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  8. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations

    Science.gov (United States)

    Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

    2013-09-01

    Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our

  9. Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system

    Science.gov (United States)

    Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit

    2018-01-01

    Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.

  10. How well can fishes prey on zebra mussels in eastern North America?

    Science.gov (United States)

    French, John R. P.

    1993-01-01

    Literature on mollusk-eating fishes was reviewed to determine the potential for different species of fish to control zebra mussels in eastern North America. At least six species are potential predators of zebra mussels because they possess (1) both upper and lower pharyngeal teeth or (2) lower pharyngeal teeth and chewing pads located on the dorsal roof for crushing mollusk shells. Freshwater drum (Aplodinotus grunniens) and two centrarchids, redear sunfish (Lepomis microlophus) and pumpkinseed (L. gibbosus), possess both upper and lower pharyngeal teeth and are likely to consume more zebra mussels than fishes with only lower pharyngeal teeth. Only two catostomid species, copper and river redhorses (Moxostoma hubbsi and M. carinatum), have chewing pads that enable them to crush mollusks. The exotic omnivorous common carp (Cyprinus carpio), possessing lower teeth and a chewing pad, may prey on zebra mussels when aquatic insect larvae, its preferred food, become rare. Managing populations of drum, sunfishes and redhorses to reduce exploitation of large individuals and improve their habitats are suggested as means to intensify biological control of zebra mussels in eastern North America. Other Eurasian molluscivores, the roach (Rutilus rutilus) and the black carp (Mylopharyngodon piceus) should not be introduced into North America because research has shown repeatedly that an introduced biological controller usually does not forage for unwanted pests or reside only in preferred habitats of pests. Drum, sunfishes and redhorses should be preferred over these exotics as biological controllers of zebra mussels in North America because these native fishes will likely occupy newly established habitats of zebra mussels.

  11. Data from: Acquired versus innate prey capturing skills in super-precocial live-bearing fish

    NARCIS (Netherlands)

    Lankheet, M.J.M.; Stoffers, Twan; Leeuwen, van J.L.; Pollux, B.J.A.

    2016-01-01

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate,

  12. Recreational Fish-Finders--An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey.

    Directory of Open Access Journals (Sweden)

    Alistair M McInnes

    Full Text Available Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98 and school area (R2 = 0.70. Estimates of relative school density (mean volume backscattering strength; Sv measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions.

  13. Recreational Fish-Finders—An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey

    Science.gov (United States)

    McInnes, Alistair M.; Khoosal, Arjun; Murrell, Ben; Merkle, Dagmar; Lacerda, Miguel; Nyengera, Reason; Coetzee, Janet C.; Edwards, Loyd C.; Ryan, Peter G.; Rademan, Johan; van der Westhuizen, Jan J; Pichegru, Lorien

    2015-01-01

    Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF) to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES) by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98) and school area (R2 = 0.70). Estimates of relative school density (mean volume backscattering strength; Sv) measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions. PMID:26600300

  14. Influences of potential predictor variables on gastric evacuation in Atlantic cod Gadus morhua L. feeding on fish prey

    DEFF Research Database (Denmark)

    Andersen, Niels Gerner

    2012-01-01

    of photoperiod and pre-experimental treatment of prey were also tested. Freshly killed A. tobianus were evacuated from the stomach of G. morhua at a rate similar to the value estimated from conspecifics kept deep-frozen and subsequently thawed prior to the evacuation experiment. The evacuation rate in G. morhua...... exposed to continuous light did not differ from the rate obtained from fish maintained under a 12L:12D photoperiod. The evacuation rates estimated from the latter fish in the dark and light periods, respectively, were likewise similar. These results indicate that the resistance of prey to the digestive...

  15. Habitat Requirements and Foraging Ecology of the Madagascar Fish-Eagle

    OpenAIRE

    Berkelman, James

    1997-01-01

    With a population estimate of 99 pairs, the Madagascar fish-eagle (Haliaeetus vociferoides) is one of the rarest birds of prey in the world. I investigated the ecological requirements of the Madagascar fish-eagle in 1994 and 1995 to help determine management action to prevent its extinction. I investigated fish-eagle foraging ecology in 1996 to determine its prey preference and whether fish abundance and availabi...

  16. Seasonal and among-stream variation in predator encounter rates for fish prey

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    2013-01-01

    Recognition that predators have indirect effects on prey populations that may exceed their direct consumptive effects highlights the need for a better understanding of spatiotemporal variation in predator–prey interactions. We used photographic monitoring of tethered Rainbow Trout Oncorhynchus mykiss and Cutthroat Trout O. clarkii to quantify predator encounter rates...

  17. Structuring of zooplankton and fish larvae assemblages in a freshwater-influenced Greenlandic fjord- influence from hydrography and prey availability

    DEFF Research Database (Denmark)

    Swalethorp, Rasmus; Malanski, Evandro; Munk, Peter

    2015-01-01

    The recent increase in temperature and freshwater runoff in the Arctic will influence the functioning of the plankton ecosystem and hence the life of the fish larvae residing in these areas. Here, we studied the strength of physical– biological linkages and the adaptability of individual larval...... of the individual larval fish species. Larvae were feeding on a variety of prey taxa and sizes; some larval species were generalists, while others were more specialized or fed on alternative prey taxa. Differences in feeding strategies might have the consequence that the species will be differently affected...

  18. Turbulence-enhanced prey encounter rates in larval fish : Effects of spatial scale, larval behaviour and size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; MacKenzie, Brian

    1995-01-01

    Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....

  19. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    Science.gov (United States)

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  20. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    Science.gov (United States)

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  1. Functional responses of human hunters to their prey - why harvest statistics may not always reflect changes in prey population abundance

    DEFF Research Database (Denmark)

    Kahlert, Johnny Abildgaard; Fox, Anthony David; Heldbjerg, Henning

    pigeon Columba palumbus, coot Fulica atra, grey partridge Perdix perdix, roe deer Capreolus capreolus and brown hare Lepus europaeus in Denmark. If we consider hunting a form of predator-prey interaction, the annual kill can be viewed as a predator functional response to prey population size. Convergence...

  2. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    Science.gov (United States)

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17°C to 32°C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years.

  3. Defining ecologically relevant scales for spatial protection with long-term data on an endangered seabird and local prey availability.

    Science.gov (United States)

    Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R

    2017-12-01

    Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without

  4. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior

    Directory of Open Access Journals (Sweden)

    Bruno Díaz LÓPEZ

    2009-08-01

    Full Text Available The extent to which prey abundance influences both bottlenose dolphin foraging behavior and group size in the presence of human activities has not previously been studied. The primary aim of this study was to identify and quantify how wild bottlenose dolphins respond, individually and as groups, to the relative abundance of prey around a fish farm. Detailed views of dolphins’ behavior were obtained by focal following individual animals whilst simultaneously collecting surface and underwater behavioral data. A total of 2150 dive intervals were analyzed, corresponding to 342 focal samples, lasting over 34 hours. Bottlenose dolphins remained submerged for a mean duration of 46.4 seconds and a maximum of 249 seconds. This study provides the first quantified data on bottlenose dolphin diving behavior in a marine fin-fish farm area. This study’s results indicate that within a fish farm area used intensively by bottlenose dolphins for feeding, dolphins did not modify dive duration. Additionally, underwater observations confirmed that dolphins find it easier to exploit a concentrated food source and it appears that hunting tactic and not group size plays an important role during feeding activities. Thus, bottlenose dolphins appear capable of modifying their hunting tactics according to the abundance of prey. When top predators display behavioral responses to activities not directed at them, the task of studying all possible effects of human activities can become even more challenging [Current Zoology 55(4: 243–248, 2009].

  5. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse.

    Science.gov (United States)

    Furey, Nathan B; Hinch, Scott G; Mesa, Matthew G; Beauchamp, David A

    2016-09-01

    Understanding the limits of consumption is important for determining trophic influences on ecosystems and predator adaptations to inconsistent prey availability. Fishes have been observed to consume beyond what is sustainable (i.e. digested on a daily basis), but this phenomenon of hyperphagia (or binge-feeding) is largely overlooked. We expect hyperphagia to be a short-term (1-day) event that is facilitated by gut volume providing capacity to store consumed food during periods of high prey availability to be later digested. We define how temperature, body size and food availability influence the degree of binge-feeding by comparing field observations with laboratory experiments of bull trout (Salvelinus confluentus), a large freshwater piscivore that experiences highly variable prey pulses. We also simulated bull trout consumption and growth during salmon smolt outmigrations under two scenarios: 1) daily consumption being dependent upon bioenergetically sustainable rates and 2) daily consumption being dependent upon available gut volume (i.e. consumption is equal to gut volume when empty and otherwise 'topping off' based on sustainable digestion rates). One-day consumption by laboratory-held bull trout during the first day of feeding experiments after fasting exceeded bioenergetically sustainable rates by 12- to 87-fold at low temperatures (3 °C) and by  ˜1·3-fold at 20 °C. The degree of binge-feeding by bull trout in the field was slightly reduced but largely in agreement with laboratory estimates, especially when prey availability was extremely high [during a sockeye salmon (Oncorhynchus nerka) smolt outmigration and at a counting fence where smolts are funnelled into high densities]. Consumption by bull trout at other settings were lower and more variable, but still regularly hyperphagic. Simulations demonstrated the ability to binge-feed increased cumulative consumption (16-32%) and cumulative growth (19-110%) relative to only feeding at

  6. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    Science.gov (United States)

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  7. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.

    Science.gov (United States)

    Gemmell, Brad J; Sheng, Jian; Buskey, Edward J

    2013-01-01

    Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV). We show that head morphology functions to create a reduced fluid deformation zone, minimizing hydrodynamic disturbance where feeding strikes occur (above the end of the snout), and permits syngnathid fish to approach highly sensitive copepod prey (Acartia tonsa) undetected. The results explain how these animals can successfully employ short range 'pivot' feeding effectively on evasive prey. The need to approach prey with stealth may have selected for a head shape that produces lower deformation rates than other fish.

  8. The hydrodynamics of predator-prey interactions in zebrafish

    Science.gov (United States)

    McHenry, Matthew; Soto, Alberto; Carrillo, Andres; Byron, Margaret

    2017-11-01

    Hydrodynamics govern the behavior of fishes when they operate as predators or prey. In addition to the role of fluid forces in propulsion, fishes relay on flow stimuli to sense a predatory threat and to localize palatable prey. We have performed a series of experiments on zebrafish (Danio rerio) that aim to resolve the major factors that determine whether prey survive an encounter with a predator. Zebrafish serve as a model system in this pursuit because the adults prey on larvae of the same species and the larvae are often successful in evading the attacks of the adults. We use a combination of theoretical and experimental approaches to resolve the behavioral algorithms and kinematics that determined the outcome of these interactions. In this context, the hydrodynamics of intermediate Reynolds numbers largely determines the range of flow stimuli and the limits to locomotor performance at dictate prey survival. These principles have the potential to apply to a broad diversity of fishes and other aquatic animals. ONR: N00014-15-1-2249.

  9. Prey selection by a reintroduced lion population in the Greater ...

    African Journals Online (AJOL)

    Prey selection by a reintroduced lion population in the Greater Makalali Conservancy, South Africa. Dave Druce, Heleen Genis, Jonathan Braak, Sophie Greatwood, Audrey Delsink, Ross Kettles, Luke Hunter, Rob Slotow ...

  10. Ocean acidification alters fish populations indirectly through habitat modification

    Science.gov (United States)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  11. Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Rob Williams

    Full Text Available Ecosystem-based management (EBM of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca and their primary prey, Chinook salmon (Oncorhynchus tshawytscha. Both species have at-risk conservation status and transboundary (Canada-US ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of

  12. Prey utilisation and trophic overlap between the non native mosquitofish and a native fish in two Mediterranean rivers

    Directory of Open Access Journals (Sweden)

    E. KALOGIANNI

    2014-04-01

    Full Text Available Non native freshwater fish species have been long implicated in the decline of native Mediterranean ichthyofauna, through hybridization, disease transmission, competition for food and habitat, predation and/or ecosystem alteration; our knowledge, however, on the underlying mechanisms of these ecological impacts remains very limited. To explore the potential for trophic competition between the widespread Eastern mosquitofish Gambusia holbrooki and its co-occurring native toothcarp Valencia letourneuxi we compared resource use, feeding strategies, trophic selectivities and diet niche overlap. For this purpose, we studied two populations of the two species from a freshwater and a brackish habitat respectively, characterized by different food resource availabilities. In both habitats, the mosquitofish consumed a greater diversity of invertebrates and preyed on terrestrial invertebrates more frequently than the native toothcarp. Furthermore, in the less diverse and less rich brackish habitat, the non native relied heavily on plant material to balance a decrease in animal prey consumption and modified its individual feeding strategy, whereas these adaptive changes were not apparent in the native species. Their diet overlapped, indicating trophic competition, but this overlap was affected by resource availability variation; in the freshwater habitat, there was limited overlap in their diet, whereas in the brackish habitat, their diets and prey selectivities converged and there was high overlap in resource use, indicative of intense interspecific trophic competition. Overall, it appears that the underlying mechanism of the putative negative impacts of the mosquitofish on the declining Corfu toothcarp is mainly trophic competition, regulated by resource variability, though there is also evidence of larvae predation by the mosquitofish.

  13. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea.

    Science.gov (United States)

    Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V

    2013-01-01

    Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.

  14. Killer whale prey - Determining prey selection by southern resident killer whales (SRKW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prey selectivity by southern resident killer whales is being determined by analyses of fish scales and tissue from predation events and feces. Information on killer...

  15. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    Science.gov (United States)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  16. Prey size selection and cannibalistic behaviour of juvenile barramundi Lates calcarifer.

    Science.gov (United States)

    Ribeiro, F F; Qin, J G

    2015-05-01

    This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities. © 2015 The Fisheries Society of the British Isles.

  17. Fish population dynamics

    National Research Council Canada - National Science Library

    Gulland, J. A

    1977-01-01

    This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...

  18. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  19. Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey

    Directory of Open Access Journals (Sweden)

    Malay Banerjee

    2018-03-01

    Full Text Available Spatiotemporal pattern formation in integro-differential equation models of interacting populations is an active area of research, which has emerged through the introduction of nonlocal intra- and inter-specific interactions. Stationary patterns are reported for nonlocal interactions in prey and predator populations for models with prey-dependent functional response, specialist predator and linear intrinsic death rate for predator species. The primary goal of our present work is to consider nonlocal consumption of resources in a spatiotemporal prey-predator model with bistable reaction kinetics for prey growth in the absence of predators. We derive the conditions of the Turing and of the spatial Hopf bifurcation around the coexisting homogeneous steady-state and verify the analytical results through extensive numerical simulations. Bifurcations of spatial patterns are also explored numerically.

  20. Molecular prey identification in Central European piscivores.

    Science.gov (United States)

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2016-01-01

    Diet analysis is an important aspect when investigating the ecology of fish-eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time-consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two-step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species-specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field-collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost-effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  1. Comparing climate change and species invasions as drivers of coldwater fish population extirpations.

    Directory of Open Access Journals (Sweden)

    Sapna Sharma

    Full Text Available Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax on cisco (Coregonus artedii population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.

  2. Population Viability Analysis of the Endangered Shortnose Sturgeon

    Science.gov (United States)

    2011-12-01

    ll- 1 ) 0.0 0.2 0.4 0.6 0.8 Sturgeon ( left ) Prey ( right ) Figure 11. Model-simulated shortnose sturgeon population dynamics and prey dynamics over a...indicate low substrate diversity dominated by silt/sand substrate. ix ACRONYMS DO Dissolved oxygen DOC Dissolved organic carbon EFDC...fewer fish than the largest known population in the Hudson River ( Bain et al. 2007). Population estimates for this population have varied between 75

  3. Always chew your food: freshwater stingrays use mastication to process tough insect prey.

    Science.gov (United States)

    Kolmann, Matthew A; Welch, Kenneth C; Summers, Adam P; Lovejoy, Nathan R

    2016-09-14

    Chewing, characterized by shearing jaw motions and high-crowned molar teeth, is considered an evolutionary innovation that spurred dietary diversification and evolutionary radiation of mammals. Complex prey-processing behaviours have been thought to be lacking in fishes and other vertebrates, despite the fact that many of these animals feed on tough prey, like insects or even grasses. We investigated prey capture and processing in the insect-feeding freshwater stingray Potamotrygon motoro using high-speed videography. We find that Potamotrygon motoro uses asymmetrical motion of the jaws, effectively chewing, to dismantle insect prey. However, CT scanning suggests that this species has simple teeth. These findings suggest that in contrast to mammalian chewing, asymmetrical jaw action is sufficient for mastication in other vertebrates. We also determined that prey capture in these rays occurs through rapid uplift of the pectoral fins, sucking prey beneath the ray's body, thereby dissociating the jaws from a prey capture role. We suggest that the decoupling of prey capture and processing facilitated the evolution of a highly kinetic feeding apparatus in batoid fishes, giving these animals an ability to consume a wide variety of prey, including molluscs, fishes, aquatic insect larvae and crustaceans. We propose Potamotrygon as a model system for understanding evolutionary convergence of prey processing and chewing in vertebrates. © 2016 The Author(s).

  4. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator–prey interaction

    International Nuclear Information System (INIS)

    Adhikari, Deepak; Longmire, Ellen K

    2013-01-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator–prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success. (paper)

  5. Environmental Assessment: Lake Yankton Fish Population Renovation Project Yankton County, South Dakota and Cedar County, Nebraska

    Science.gov (United States)

    2014-08-01

    respiration in fish, mammals, birds, insects, reptiles , amphibians , and plants. However, at concentrations used in fisheries management, rotenone is...prey upon fish, rodents, and small game. Lake Yankton supports many species of fish, reptiles , and amphibians . The Preferred Alternative is not...3‐4  3.2.1.3.  Amphibians

  6. Consequences of the size structure of fish populations for their effects on a generalist avian predator.

    Science.gov (United States)

    Kloskowski, Janusz

    2011-06-01

    Size-structured interspecific interactions can shift between predation and competition, depending on ontogenetic changes in size relationships. I examined the effects of common carp (Cyprinus carpio), an omnivorous fish, on the reproductive success of the red-necked grebe (Podiceps grisegena), an avian gape-limited predator, along a fish size gradient created by stocking distinct age-cohorts in seminatural ponds. Young-of-the-year (0+) carp were an essential food source for young grebes. Only adult birds were able to consume 1-year-old (1+) fish, while 2-year-old (2+) fish attained a size refuge from grebes. Amphibian larvae were the principal alternative prey to fish, followed by macroinvertebrates, but the abundance of both dramatically decreased along the carp size gradient. Fledging success was 2.8 times greater in ponds with 0+ versus 1+ carp; in ponds with 1+ carp, chicks received on average 2.6-3 times less prey biomass from their parents, and over 1/3 of broods suffered total failure. Breeding birds avoided settling on 2+ ponds. These results show that changes in prey fish size structure can account for shifts from positive trophic effects on the avian predator to a negative impact on the predator's alternative resources. However, competition did not fully explain the decrease in grebe food resources in the presence of large fish, as carp and grebes overlapped little in diet. In experimental cages, 1+ carp totally eliminated young larvae of amphibians palatable to fish. In field conditions, breeding adults of palatable taxa avoided ponds with 1+ and older carp. Non-trophic interactions such as habitat selection by amphibians or macroinvertebrates to avoid large fish may provide an indirect mechanism strengthening the adverse bottom-up effects of fish on birds.

  7. The economics of protecting tiger populations: Linking household behavior to poaching and prey depletion

    Science.gov (United States)

    Damania, R.; Stringer, R.; Karanth, K.U.; Stith, B.

    2003-01-01

    The tiger (Panthera tigris) is classified as endangered and populations continue to decline. This paper presents a formal economic analysis of the two most imminent threats to the survival of wild tigers: poaching tigers and hunting their prey. A model is developed to examine interactions between tigers and farm households living in and around tiger habitats. The analysis extends the existing literature on tiger demography, incorporating predator-prey interactions and exploring the sensitivity of tiger populations to key economic parameters. The analysis aims to contribute to policy debates on how best to protect one of the world's most endangered wild cats.

  8. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts.

    Science.gov (United States)

    Hunsicker, Mary E; Ciannelli, Lorenzo; Bailey, Kevin M; Buckel, Jeffrey A; Wilson White, J; Link, Jason S; Essington, Timothy E; Gaichas, Sarah; Anderson, Todd W; Brodeur, Richard D; Chan, Kung-Sik; Chen, Kun; Englund, Göran; Frank, Kenneth T; Freitas, Vânia; Hixon, Mark A; Hurst, Thomas; Johnson, Darren W; Kitchell, James F; Reese, Doug; Rose, George A; Sjodin, Henrik; Sydeman, William J; van der Veer, Henk W; Vollset, Knut; Zador, Stephani

    2011-12-01

    Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management. 2011 Blackwell Publishing Ltd/CNRS.

  9. Coexistence of structured populations with size-based prey selection

    DEFF Research Database (Denmark)

    Hartvig, Martin; Andersen, Ken Haste

    2013-01-01

    Abstract Species with a large adult-offspring size ratio and a preferred predator–prey mass ratio undergo ontogenetic trophic niche shift(s) throughout life. Trophic interactions between such species vary throughout life, resulting in different species-level interaction motifs depending on the ma......Abstract Species with a large adult-offspring size ratio and a preferred predator–prey mass ratio undergo ontogenetic trophic niche shift(s) throughout life. Trophic interactions between such species vary throughout life, resulting in different species-level interaction motifs depending...... on the maximum adult sizes and population size distributions. We explore the assembly and potential for coexistence of small communities where all species experience ontogenetic trophic niche shifts. The life-history of each species is described by a physiologically structured model and species identity...... there is a large scope for coexistence of two species, the scope for coexistence of three species is limited and we conclude that further trait differentiation is required for coexistence of more species-rich size-structured communities....

  10. Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

    Czech Academy of Sciences Publication Activity Database

    Ameixa, Olga; Messelink, G. J.; Kindlmann, Pavel

    2013-01-01

    Roč. 8, č. 4 (2013), e62530-e62530 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GEVOL/11/E036 Institutional support: RVO:67179843 Keywords : nonlinear system * population density * population dynamics * predator * predator prey interaction * qualitative analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.534, year: 2013

  11. Experimental assessment of the effects of a Neotropical nocturnal piscivore on juvenile native and invasive fishes

    Directory of Open Access Journals (Sweden)

    Alejandra F. G. N. Santos

    Full Text Available We experimentally examined the predator-prey relationships between juvenile spotted sorubim Pseudoplastystoma corruscans and young-of-the-year invasive and native fish species of the Paraná River basin, Brazil. Three invasive (peacock bass Cichla piquiti, Nile tilapia Oreochromis niloticus, and channel catfish Ictalurus punctatus and two native (yellowtail tetra Astyanax altiparanae and streaked prochilod Prochilodus lineatus fish species were offered as prey to P. corruscans in 300 L aquaria with three habitat complexity treatments (0%, 50% and 100% structure-covered. Prey survival was variable through time and among species (C. piquiti < O. niloticus < A. altiparanae < P. lineatus < I. punctatus, depending largely on species-specific prey behavior but also on prey size and morphological defenses. Habitat complexity did not directly affect P. corruscans piscivory but some prey species changed their microhabitat use and shoaling behavior among habitat treatments in predator's presence. Pseudoplatystoma corruscans preyed preferentially on smaller individuals of those invasive species with weak morphological defensive features that persisted in a non-shoaling behavior. Overall, our results contrast with those in a companion experiment using a diurnal predator, suggesting that nocturnal piscivores preferentially prey on different (rather diurnal fish species and are less affected by habitat complexity. Our findings suggest that recovering the native populations of P. corruscans might help controling some fish species introduced to the Paraná River basin, particularly C. piquiti and O. niloticus, whose parental care is expected to be weak or null at night.

  12. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.

    Science.gov (United States)

    Eide, Ragna M; Krause, Andrew L; Fadai, Nabil T; Van Gorder, Robert A

    2018-08-14

    We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Prey capture by harbour porpoises

    DEFF Research Database (Denmark)

    Verfuss, Ursula; Miller, Lee; Pilz, Peter

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication.  For studying wild animals, hydrophone arrays [Villadsgaard et al. J.Exp.Biol. 210 (2007)] and acoustic (time/depth) tags [Akamatsu et al. Deep Sea Research II 54...... (2007)] have been used.  For studying captive animals, arrays and video techniques [Verfuß et al. J.Exp.Biol. 208 (2005)] as well as miniature acoustic-behavioral tags [Deruiter et al. JASA 123 (2008)] have been used.  While searching for prey, harbor porpoises use clicks at long intervals (>50 ms......) that progressively decrease when closing on a landmark.  The source levels of captive animals reduce by about half for each halving of the distance to the target.  After detecting the prey, the click interval first stabilizes at about 50 ms and then becomes progressively shorter while approaching the prey...

  14. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  15. Prey capture by harbor porpoises

    DEFF Research Database (Denmark)

    Miller, Lee; Verfuss, Ursula

    2009-01-01

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication. For studying wild animals, hydrophone arrays and acoustic (time/depth) tags have been used. For studying captive animals, arrays and video techniques as well...

  16. Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator-prey interactions.

    Science.gov (United States)

    Niesterok, Benedikt; Hanke, Wolf

    2013-02-01

    Fast-starts are distributed over a wide phylogenetic range of fish and are used for different purposes such as striking at prey or escaping from predators. Here we investigated 42 fast-starts of rainbow trouts (Oncorhynchus mykiss) elicited by a startle stimulus. We investigated the patterns of water movements left behind by the escaping fish and their possible value as a source of information to piscivorous predators that rely on hydrodynamic sensory systems. Particle image velocimetry (PIV) measurements revealed a temporal extension of up to 25.5 min and a spatial extension of up to 1.53 m (extrapolated) for a certain flow structure called jet 1, that is the flow produced by the tail fin. Duration and spatial extension of jet 2, the flow produced by the body, were on average lower, and both jets differed in size. The fish escaped in a mean direction approximately parallel to jet 1, and antiparallel to jet 2, with a range well above 200°. This study quantified the flow patterns generated by escaping fish and, as piscivorous predators would greatly benefit from being able to analyse these flow patterns, provides cues for the behavioural and physiological investigation of hydrodynamic sensory systems.

  17. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  18. Euphausia mucronata: A keystone herbivore and prey of the Humboldt Current System

    Science.gov (United States)

    Antezana, Tarsicio

    2010-04-01

    Euphausiids are important components of many ecosystems, especially in productive regions of temperate and high latitudes. The present paper makes the case that E. mucronata plays a keystone role in the food web of the Humboldt Current System (HCS) based on a synthesis of new and published data supporting its potential role as a primary grazer, as well as a principal prey for upper trophic level fish. E. mucronata is an endemic species, concentrated in the coastal upwelling belt of the HCS, with morpho-physiological adaptations to vertically migrate into the Oxygen Minimum Zone (OMZ). Within the 100-km coastal belt of the HCS it accounts for ca. 50% of the meso zooplankton wet weight in winter. In the mixed layer, it is a herbivore with high night ingestion rates (612.2 ng Chl eq ind -1 h -1 or 1013.9 μg C ind -1 d -1, in winter), and accounted for a 19.3% impact on primary production in winter, at an intermediate population abundance (3.8 ind m -3). At higher abundances (50 ind m -3) equivalent to swarms, impact on primary production could reach 254%. Additionally E. mucronata is a common prey of numerous upper trophic level predators. The diet of jack mackerel ( Trachurus murphyi) off central Chile (34-39°S) indicates a striking dependence on E. mucronata prey (average of 75% of stomach content in weight). The fishing season off central Chile extended from austral fall (March-April) and continued at least until the end of austral winter (September). The average daily ration of jack mackerel was 17.4 g, which is equivalent to 2.3% of fish body weight per day. The total E. mucronata consumed in 1991 by the landed population of fish (3.7 million tons yr -1) amounted to 23.2 million tons yr -1. The total estimated population of jack mackerel that year (17.6 million tons) would have consumed ca. 110.2 million tons of E. mucronata. Based on stomach contents, consumption of E. mucronata by other nektonic predators off Chile and off Peru is also outstanding. Four

  19. Putting prey and predator into the CO2 equation--qualitative and quantitative effects of ocean acidification on predator-prey interactions.

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Munday, Philip L; Meekan, Mark G; Dixson, Danielle L; Lonnstedt, Öona; Chivers, Douglas P

    2011-11-01

    Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems. © 2011 Blackwell Publishing Ltd/CNRS.

  20. Population structure and adaptation in fishes

    DEFF Research Database (Denmark)

    Limborg, Morten

    Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra-specific......Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra......-specific population structure and adaptive divergence. The large population sizes and high migration rates common to most marine fishes impede the differentiating effect of genetic drift, having led to expectations of no population structure and that the occurrence of local adaptation should be rare in these species....... Comprehensive genetic analyses on the small pelagic fish European sprat (Sprattus sprattus) revealed significant population structure throughout its distribution with an overall pattern of reduced connectivity across environmental transition zones. Population structure reflected both historical separations over...

  1. Population variance in prey, diets and their macronutrient composition in an endangered marine predator, the Franciscana dolphin

    Science.gov (United States)

    Denuncio, Pablo; Paso Viola, Maria N.; Machovsky-Capuska, Gabriel E.; Raubenheimer, David; Blasina, Gabriela; Machado, Rodrigo; Polizzi, Paula; Gerpe, Marcela; Cappozzo, Humberto L.; Rodriguez, Diego H.

    2017-11-01

    Disentangling the intricacies governing dietary breadth in wild predators is important for understanding their role in structuring ecological communities and provides critical information for the management and conservation of ecologically threatened species. Here we combined dietary analysis, nutritional composition analysis of prey, literature data and nutritional geometry (right-angled mixture triangle models -RMT-) to examine the diet of the most threatened small cetacean in the western South Atlantic Ocean, the Franciscana dolphin (Pontoporia blainvillei). We applied a recently developed extension of niche theory based on the RMT to help understand the dietary strategies of this species. Our results showed that across their range the Franciscanas consumed prey with variable protein-to-lipid energy ratios (LMM, p < 0.001). In an intensive study of one area, FMA IV, we found that dolphins sub-populations, which recent genetic evidence suggest should be differentiated into three management units, have diets with different protein energy and water mass compositions, but similar protein-to-lipid energy ratios. Furthermore, dolphins from the three areas mixed different combinations of prey in their diets to achieve the observed macronutrient ratios. These results suggest that the different habitats that each sub-population occupies (estuarine, north marine area and south marine) might be associated with different prey composition niches, but similar realized nutritional niches. Future priorities are to better comprehend possible geographical and long-term seasonal effects on prey consumption and dietary breadth of the different Franciscana populations to identify potential impacts (environmental and human-related), enhance the current management strategies to protect this endangered marine predator.

  2. Influence of prey abundance and abiotic factors on the long-term ...

    African Journals Online (AJOL)

    ... the home-range distribution of spotted grunter. Spatial distribution of prey appears to be a dominant factor influencing home-range parameters of this species within an intermittently open estuary. Keywords: acoustic telemetry, East Kleinemonde Estuary, estuarine fish, movement behaviour, prey abundance, South Africa ...

  3. Trophodynamics and diet overlap of small pelagic fish species in the Bay of Biscay

    KAUST Repository

    Bachiller, E

    2015-08-27

    Small pelagic fish are the link between planktonic production and higher trophic levels. Competition for resources may play a role in the population dynamics of species, some of them probably standing out from the others due to greater feeding success. It is therefore important to understand the trophic niche of species overlapping both spatially and temporally. In this study, we have investigated the diet, prey preference, trophic niche breadth and diet overlap of the 8 major small pelagic species (anchovy, sardine, sprat, Atlantic and Mediterranean horse mackerel, bogue, Atlantic mackerel and Atlantic chub mackerel) inhabiting the Bay of Biscay. Results indicate that all fish feed mainly on calanoid copepods, incorporating larger prey like euphausiids and decapods to complete their diet. Differences in ingested prey diversity seem to be more limited by the available zooplankton at sea than by a specific diet preference by fish species, resulting in an overall high diet overlap, especially within clupeids but also between clupeids and other (larger) predator species. Consumption estimations for different prey groups could therefore determine whether such a large diet overlap between small pelagic fish, together with spatial co-occurrence, results in competition or enhances the effects of intraguild predation, which is important in terms of an ecosystem approach to fisheries management.

  4. Trophodynamics and diet overlap of small pelagic fish species in the Bay of Biscay

    KAUST Repository

    Bachiller, E; Irigoien, Xabier

    2015-01-01

    Small pelagic fish are the link between planktonic production and higher trophic levels. Competition for resources may play a role in the population dynamics of species, some of them probably standing out from the others due to greater feeding success. It is therefore important to understand the trophic niche of species overlapping both spatially and temporally. In this study, we have investigated the diet, prey preference, trophic niche breadth and diet overlap of the 8 major small pelagic species (anchovy, sardine, sprat, Atlantic and Mediterranean horse mackerel, bogue, Atlantic mackerel and Atlantic chub mackerel) inhabiting the Bay of Biscay. Results indicate that all fish feed mainly on calanoid copepods, incorporating larger prey like euphausiids and decapods to complete their diet. Differences in ingested prey diversity seem to be more limited by the available zooplankton at sea than by a specific diet preference by fish species, resulting in an overall high diet overlap, especially within clupeids but also between clupeids and other (larger) predator species. Consumption estimations for different prey groups could therefore determine whether such a large diet overlap between small pelagic fish, together with spatial co-occurrence, results in competition or enhances the effects of intraguild predation, which is important in terms of an ecosystem approach to fisheries management.

  5. Individual prey choices of octopuses: Are they generalist or specialist?

    Directory of Open Access Journals (Sweden)

    Jennifer A. MATHER, Tatiana S. LEITE, Allan T. BATISTA

    2012-08-01

    Full Text Available Prey choice is often evaluated at the species or population level. Here, we analyzed the diet of octopuses of different populations with the aim to assess the importance of individual feeding habits as a factor affecting prey choice. Two methods were used, an assessment of the extent to which an individual octopus made choices of species representative of those population (PSi and IS and 25% cutoff values for number of choices and percentage intake of individual on their prey. In one population of Octopus cf vulgaris in Bermuda individuals were generalist by IS=0.77, but most chose many prey of the same species, and were specialists on it by >75% intake. Another population had a wider prey selection, still generalist with PSi=0.66, but two individuals specialized by choices. In Bonaire, there was a wide range of prey species chosen, and the population was specialists by IS= 0.42. Individual choices revealed seven specialists and four generalists. A population of Octopus cyanea in Hawaii all had similar choices of crustaceans, so the population was generalist by IS with 0.74. But by individual choices, three were considered a specialist. A population of Enteroctopus dofleini from Puget Sound had a wide range of preferences, in which seven were also specialists, IS=0.53. By individual choices, thirteen were also specialists. Given the octopus specialty of learning during foraging, we hypothesize that both localized prey availability and individual personality differences could influence the exploration for prey and this translates into different prey choices across individuals and populations showed in this study [Current Zoology 58 (4: 597-603, 2012].

  6. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types......Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  7. Rates of consumption of juvenile salmonids and alternative prey fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River

    International Nuclear Information System (INIS)

    Vigg, S.; Poe, T.P.; Prendergast, L.A.; Hansel, H.C.

    1991-01-01

    Adult northern squawfish Ptychocheilus oregonesis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983-1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes and smallmouth bass occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn and near midnight. Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length, for walleyes 201-250 mm, for smallmouth bass 176-200 mm, and for channel catfish 401-450 mm. Averaged over all predator sizes and sampling months (April-August), the total daily ration (fish plus other prey) of smallmouth bass was about twice that of channel catfish, northern squawfish, and walleyes. However, northern squawfish was clearly the major predator on juvenile salmonids

  8. The Dynamics of a Nonautonomous Predator-Prey Model with Infertility Control in the Prey

    Directory of Open Access Journals (Sweden)

    Xiaomei Feng

    2014-01-01

    Full Text Available A nonautonomous predator-prey model with infertility control in the prey is formulated and investigated. Threshold conditions for the permanence and extinction of fertility prey and infertility prey are established. Some new threshold values of integral form are obtained. For the periodic cases, these threshold conditions act as sharp threshold values for the permanence and extinction of fertility prey and infertility prey. There are also mounting concerns that the quantity of biological sterile drug is obtained in the process of the prevention and control of pest in the grasslands and farmland. Finally, two examples are given to illustrate the main results of this paper. The numerical simulations shown that, when the pest population is permanet, different dynamic behaviors may be found in this model, such as the global attractivity and the chaotic attractor.

  9. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  10. Competition and Dispersal in Predator-Prey Waves

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    1998-01-01

    Dispersing predators and prey can exhibit complex spatio-temporal wave-like patterns if the interactions between them cause oscillatory dynamics. We study the effect of these predator- prey density waves on the competition between prey populations and between predator popu- lations with different

  11. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  12. Disturbed flow in an aquatic environment may create a sensory refuge for aggregated prey

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2017-03-01

    Full Text Available Predators use olfactory cues moved within water and air to locate prey. Because prey aggregations may produce more cue and be easier to detect, predation could limit aggregation size. However, disturbance in the flow may diminish the reliability of odour as a prey cue, impeding predator foraging success and efficiency. We explore how different cue concentrations (as a proxy for prey group size affect risk to prey by fish predators in disturbed (more turbulent or mixed and non-disturbed (less mixed flowing water. We find that increasing odour cue concentration increases predation risk and disturbing the flow reduces predation risk. At high cue concentration fish were able to locate the cue source in both disturbed and non-disturbed flow, but at medium concentrations, predators only located the cue source more often than expected by chance in non-disturbed flow. This suggests that objects disturbing flow provide a sensory refuge allowing prey to form larger groups, but that group sizes may be limited by level of disturbance to the flow.

  13. Memory Function in Feeding Habit Transformation of Mandarin Fish (Siniperca chuatsi).

    Science.gov (United States)

    Dou, Yaqi; He, Shan; Liang, Xu-Fang; Cai, Wenjing; Wang, Jie; Shi, Linjie; Li, Jiao

    2018-04-22

    Mandarin fish refuse dead prey fish or artificial diets and can be trained to transform their inborn feeding habit. To investigate the effect of memory on feeding habit transformation, we compared the reaction time to dead prey fish and the success rate of feeding habit transformation to dead prey fish with training of mandarin fish in the 1st experimental group (trained once) and the 2nd experimental group (trained twice). The mandarin fish in the 2nd group had higher success rate of feeding habit transformation (100%) than those in the 1st group (67%), and shorter reaction time to dead prey fish (1 s). Gene expression of cAMP responsive element binding protein I ( Creb I ), brain-derived neurotrophic factor ( Bdnf ), CCAAT enhancer binding protein delta ( C/EBPD ), fos-related antigen 2 ( Fra2 ), and proto-oncogenes c-fos ( c-fos ) involved in long-term memory formation were significantly increased in the 2nd group after repeated training, and taste 1 receptor member 1 ( T1R1 ), involved in feeding habit formation, was significantly increased in brains of the 2nd group after repeated training. DNA methylation levels at five candidate CpG (cytosine⁻guanine) sites contained in the predicted CpG island in the 5′-flanking region of T1R1 were significantly decreased in brains of the 2nd group compared with that of the 1st group. These results indicated that the repeated training can improve the feeding habit transformation through the memory formation of accepting dead prey fish. DNA methylation of the T1R1 might be a regulatory factor for feeding habit transformation from live prey fish to dead prey fish in mandarin fish.

  14. Memory Function in Feeding Habit Transformation of Mandarin Fish (Siniperca chuatsi

    Directory of Open Access Journals (Sweden)

    Yaqi Dou

    2018-04-01

    Full Text Available Mandarin fish refuse dead prey fish or artificial diets and can be trained to transform their inborn feeding habit. To investigate the effect of memory on feeding habit transformation, we compared the reaction time to dead prey fish and the success rate of feeding habit transformation to dead prey fish with training of mandarin fish in the 1st experimental group (trained once and the 2nd experimental group (trained twice. The mandarin fish in the 2nd group had higher success rate of feeding habit transformation (100% than those in the 1st group (67%, and shorter reaction time to dead prey fish (<1 s than those in the 1st group (>1 s. Gene expression of cAMP responsive element binding protein I (Creb I, brain-derived neurotrophic factor (Bdnf, CCAAT enhancer binding protein delta (C/EBPD, fos-related antigen 2 (Fra2, and proto-oncogenes c-fos (c-fos involved in long-term memory formation were significantly increased in the 2nd group after repeated training, and taste 1 receptor member 1 (T1R1, involved in feeding habit formation, was significantly increased in brains of the 2nd group after repeated training. DNA methylation levels at five candidate CpG (cytosine–guanine sites contained in the predicted CpG island in the 5′-flanking region of T1R1 were significantly decreased in brains of the 2nd group compared with that of the 1st group. These results indicated that the repeated training can improve the feeding habit transformation through the memory formation of accepting dead prey fish. DNA methylation of the T1R1 might be a regulatory factor for feeding habit transformation from live prey fish to dead prey fish in mandarin fish.

  15. Fish and harlequin ducks compete on breeding streams

    NARCIS (Netherlands)

    LeBourdais, S.V.; Ydenberg, R.C.; Esler, D.

    2009-01-01

    We investigated interactions among harlequin ducks (Histrionicus histrionicus ( L., 1758)), fish, and their shared aquatic insect prey. We measured flow variability, benthic aquatic prey abundance, fish presence, and breeding density of harlequins on eight rivers in the Southern Coast Mountain Range

  16. Earning their stripes: The potential of tiger trout and other salmonids as biological controls of forage fishes in a western reservoir

    Science.gov (United States)

    Winters, Lisa K.; Budy, Phaedra; Thiede, Gary P.

    2017-01-01

    Maintaining a balance between predator and prey populations can be an ongoing challenge for fisheries managers, especially in managing artificial ecosystems such as reservoirs. In a high-elevation Utah reservoir, the unintentional introduction of the Utah Chub Gila atraria and its subsequent population expansion prompted managers to experimentally shift from exclusively stocking Rainbow Trout Oncorhynchus mykiss to also stocking tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah (hereafter, Cutthroat Trout) as potential biological control agents. We measured a combination of diet, growth, temperature, and abundance and used bioenergetic simulations to quantify predator demand versus prey supply. Utah Chub were the predominant prey type for tiger trout, contributing up to 80% of the diet depending on the season. Utah Chub represented up to 70% of the total diet consumed by Cutthroat Trout. Although Utah Chub dominated the fish biomass in the reservoir, we still estimated abundances of 238,000 tiger trout, 214,000 Cutthroat Trout, and 55,000 Rainbow Trout. Consequently, when expanded to the population level of each predator, tiger trout and Cutthroat Trout consumed large quantities of Utah Chub on an annual basis: tiger trout consumed 508,000 kg (2,660 g/predator) of the standing prey population, and Cutthroat Trout consumed an estimated 322,000 kg (1,820 g/predator). The estimated combined consumption by Cutthroat Trout and tiger trout exceeded the estimate of Utah Chub annual production. As such, our results suggest that the high rates of piscivory exhibited by Cutthroat Trout and tiger trout in artificial lentic ecosystems are likely sufficient to effectively reduce the overall abundance of forage fishes and to prevent forage fishes from dominating fish assemblages. Collectively, this research provides the first documented findings on tiger trout ecology and performance

  17. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy

    Science.gov (United States)

    Purnell, Mark A.; Darras, Laurent P. G.

    2016-03-01

    An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can

  18. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy

    International Nuclear Information System (INIS)

    Purnell, Mark A; Darras, Laurent P G

    2016-01-01

    An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can

  19. Influence of prey body characteristics and performance on predator selection.

    Science.gov (United States)

    Holmes, Thomas H; McCormick, Mark I

    2009-03-01

    At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and

  20. Molecular prey identification in Central European piscivores

    OpenAIRE

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2015-01-01

    Abstract Diet analysis is an important aspect when investigating the ecology of fish?eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time?consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two?step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection o...

  1. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  2. Prey consumed by Guiana dolphin Sotalia guianensis (Cetacea, Delphinidae and franciscana dolphin Pontoporia blainvillei (Cetacea, Pontoporiidae in an estuarine environment in southern Brazil

    Directory of Open Access Journals (Sweden)

    Marta J. Cremer

    2012-06-01

    Full Text Available The present study provides information about the diet of sympatric populations of small cetaceans in the Babitonga Bay estuary. This is the first study on the diet of these species in direct sympatry. The stomach contents of seven Guiana dolphins Sotalia guianensis and eight franciscanas Pontoporia blainvillei were analyzed. The prey of both cetaceans was mostly teleost fishes, followed by cephalopods. We identified 13 teleost fishes as part of the diet of the franciscanas, and 20 as part of the diet of Guiana dolphins. Lolliguncula brevis was the only cephalopod recorded, and was the most important prey for both cetaceans. Stellifer rastrifer and Gobionellus oceanicus were also important for franciscana, so as Mugil curema and Micropogonias furnieri were important for Guiana dolphins. Stellifer rastrifer and Cetengraulis edentulus were the fishes with the highest frequency of occurrence for franciscana (50%, while Achirus lineatus, C. edentulus, S. brasiliensis, Cynoscion leiarchus, M. furnieri, M. curema, Diapterus rhombeus, Eugerres brasilianus and G. oceanicus showed 28.6% of frequency of occurrence for Guiana dolphins. Franciscanas captured greater cephalopods than the Guiana dolphins in both total length (z= -3.38; n= 40; p< 0.05 and biomass (z = -2.46; n = 40; p<0.05. All of the prey species identified occur inside the estuary, which represents a safe habitat against predators and food availability, reinforcing the importance of the Babitonga Bay for these cetacean populations.

  3. To fear or to feed: the effects of turbidity on perception of risk by a marine fish.

    Science.gov (United States)

    Leahy, Susannah M; McCormick, Mark I; Mitchell, Matthew D; Ferrari, Maud C O

    2011-12-23

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats.

  4. To fear or to feed: the effects of turbidity on perception of risk by a marine fish

    Science.gov (United States)

    Leahy, Susannah M.; McCormick, Mark I.; Mitchell, Matthew D.; Ferrari, Maud C. O.

    2011-01-01

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats. PMID:21849308

  5. Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    Science.gov (United States)

    Catania, Kenneth C.

    2010-01-01

    Background Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. Conclusions The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive. PMID:20585384

  6. Fishing destabilizes the biomass flow in the marine size spectrum

    OpenAIRE

    Rochet, M.-J.; Benoît, E.

    2011-01-01

    Fishing impacts on marine food webs are predicted by simulations of a size spectrum community model. In this model, predation is determined by predator and prey size and abundance, and drives predator growth and prey mortality. Fishing amplifies temporal oscillations in the biomass flow. Oscillations appear at lower fishing intensity and have wider amplitude when fishing is selective (removes a narrow size range) and/or when large fish are targeted, than when fishing is more balanced (catchin...

  7. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  8. Modelling the dynamics of traits involved in fighting-predators-prey system.

    Science.gov (United States)

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  9. Macroinvertebrate Prey Availability and Fish Diet Selectivity in Relation to Environmental Variables in Natural and Restoring North San Francisco Bay Tidal Marsh Channels

    OpenAIRE

    Emily R. Howe; Charles A. Simenstad; Jason D. Toft; Jeffrey R. Cordell; Stephen M. Bollens

    2014-01-01

    Tidal marsh wetlands provide important foraging habitat for a variety of estuarine fishes. Prey organisms include benthic–epibenthic macroinvertebrates, neustonic arthropods, and zooplankton. Little is known about the abundance and distribution of interior marsh macroinvertebrate communities in the San Francisco Estuary (estuary). We describe seasonal, regional, and site variation in the composition and abundance of neuston and benthic–epibenthic macroinvertebrates that inhabit tidal marsh ch...

  10. Population and prey of the Bengal Tiger Panthera tigris tigris (Linnaeus, 1758 (Carnivora: Felidae in the Sundarbans, Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M.H. Khan

    2012-02-01

    Full Text Available The results from intensive small scale surveys are often difficult to extrapolate to wider spatial scales, yet an understanding at such scales is critical for assessing the minimum densities and populations of rare and wide ranging species. In this paper, the minimum size of population and minimum density estimates of Bengal Tigers Panthera tigris tigris and its prey were conducted from 2005 to 2007 using camera traps for 90 days and using distance sampling surveys for over 200 days, respectively. The results were extrapolated from the core study area in Katka-Kochikhali, southeastern Sundarbans, to five additional sites using indices of abundance. With the use of 10 camera-traps at 15 trap-points, field data provided a total of 829 photos, including seven photos of five individual tigers. A total of 5.0 (SE = 0.98 tigers (adults and sub-adults are thus estimated in the core area with an estimated density of 4.8 tigers/100km2. Distance sampling surveys conducted on large mammalian prey species obtained an overall density estimate of 27.9 individuals/km2 and a biomass density of 1,037kg/km2. Indices of abundance were obtained by using tiger track sighting rates (number of tracks/km of riverbank and the sighting rates of the prey species (number of prey/km of riverbank in the core area and in five additional sites across the region. The densities of tiger tracks and sighting rates of prey were strongly correlated suggesting a wide scale relationship between predator and prey in the region. By combining the estimates of absolute density with indices of abundance, an average of 3.7 tigers/100km2 across the region is estimated, which given an area of 5,770km2, predicts a minimum of approximately 200 tigers in the Bangladesh Sundarbans.

  11. Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    Science.gov (United States)

    Ayres, Katherine L.; Booth, Rebecca K.; Hempelmann, Jennifer A.; Koski, Kari L.; Emmons, Candice K.; Baird, Robin W.; Balcomb-Bartok, Kelley; Hanson, M. Bradley; Ford, Michael J.; Wasser, Samuel K.

    2012-01-01

    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery. PMID:22701560

  12. Fishes in a changing world: learning from the past to promote sustainability of fish populations.

    Science.gov (United States)

    Gordon, T A C; Harding, H R; Clever, F K; Davidson, I K; Davison, W; Montgomery, D W; Weatherhead, R C; Windsor, F M; Armstrong, J D; Bardonnet, A; Bergman, E; Britton, J R; Côté, I M; D'agostino, D; Greenberg, L A; Harborne, A R; Kahilainen, K K; Metcalfe, N B; Mills, S C; Milner, N J; Mittermayer, F H; Montorio, L; Nedelec, S L; Prokkola, J M; Rutterford, L A; Salvanes, A G V; Simpson, S D; Vainikka, A; Pinnegar, J K; Santos, E M

    2018-03-01

    Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future. © 2018 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  13. Senses & Sensibility: Predator-Prey Experiments Reveal How Fish Perceive & Respond to Threats

    Science.gov (United States)

    Jones, Jason; Holloway, Barbara; Ketcham, Elizabeth; Long, John

    2008-01-01

    The predator-prey relationship is one of the most recognizable and well-studied animal relationships. One of the more striking aspects of this relationship is the differential natural selection pressure placed on predators and their prey. This differential pressure results from differing costs of failure, the so-called life-dinner principle. If a…

  14. The curse of the prey: Sarcoptes mite molecular analysis reveals potential prey-to-predator parasitic infestation in wild animals from Masai Mara, Kenya

    Directory of Open Access Journals (Sweden)

    Soriguer Ramón C

    2011-10-01

    Full Text Available Abstract Background Recently, there have been attempts to understand the molecular epidemiology of Sarcoptes scabiei, to evaluate the gene flow between isolates of S. scabiei from different hosts and geographic regions. However, to our knowledge, a molecular study has not been carried out to assess the molecular diversity and gene flow of Sarcoptes mite in a predator/prey ecosystem. Results Our study revealed an absence of gene flow between the two herbivore (Thomson's gazelle and wildebeest- and between the two carnivore (lion and cheetah-derived Sarcoptes populations from Masai Mara (Kenya, which is in discrepancy with the host-taxon law described for wild animals in Europe. Lion- and wildebeest-derived Sarcoptes mite populations were similar yet different from the Thomson's gazelle-derived Sarcoptes population. This could be attributed to Sarcoptes cross-infestation from wildebeest ("favourite prey" of the lion, but not from Thomson's gazelle. The cheetah-derived Sarcoptes population had different subpopulations: one is cheetah-private, one similar to the wildebeest- and lion-derived Sarcoptes populations, and another similar to the Thomson's gazelle-derived Sarcoptes mite population, where both wildebeest and Thomson's gazelle are "favourite preys" for the cheetah. Conclusions In a predator/prey ecosystem, like Masai Mara in Kenya, it seems that Sarcoptes infestation in wild animals is prey-to-predator-wise, depending on the predator's "favourite prey". More studies on the lion and cheetah diet and behaviour could be of great help to clarify the addressed hypotheses. This study could have further ramification in the epidemiological studies and the monitoring protocols of the neglected Sarcoptes mite in predator/prey ecosystems.

  15. Allee effect in a discrete-time predator-prey system

    International Nuclear Information System (INIS)

    Celik, Canan; Duman, Oktay

    2009-01-01

    In this paper, we study the stability of a discrete-time predator-prey system with and without Allee effect. By analyzing both systems, we first obtain local stability conditions of the equilibrium points without the Allee effect and then exhibit the impact of the Allee effect on stability when it is imposed on prey population. We also show the stabilizing effect of Allee effect by numerical simulations and verify that when the prey population is subject to an Allee effect, the trajectory of the solutions approximates to the corresponding equilibrium point much faster. Furthermore, for some fixed parameter values satisfying necessary conditions, we show that the corresponding equilibrium point moves from instability to stability under the Allee effect on prey population.

  16. Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity

    DEFF Research Database (Denmark)

    Caparroy, P.; Thygesen, Uffe Høgsbro; Visser, Andre

    2000-01-01

    of being captured. By combining the attack success model with previously published hydrodynamic models of predator and prey perception, we examine how predator foraging behaviour and prey perceptive ability affect the size spectra of encountered and captured copepod prey. We examine food size spectra of (i......) a rheotactic cruising predator, (ii) a suspension-feeding hovering copepod and (iii) a larval fish. For rheotactic predators such as carnivorous copepods, a central assumption of the model is that attack is triggered by prey escape reaction, which in turn depends on the deformation rate of the fluid created...

  17. Prey responses to predator chemical cues: disentangling the importance of the number and biomass of prey consumed.

    Directory of Open Access Journals (Sweden)

    Michael W McCoy

    Full Text Available To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas to cues from a larval dragonfly (Anax amazili. Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.

  18. Fatty acids in six small pelagic fish species and their crustacean prey from the mindanao sea, southern Philippines.

    Science.gov (United States)

    Metillo, Ephrime Bicoy; Aspiras-Eya, Anna Arlene

    2014-08-01

    Fatty acids are important in human health and useful in the analysis of the marine food web, however information on tropical pelagic organisms is scarce. Six zooplanktivorous small pelagic fish species (Decapterus kurroides, Decapterus macarellus, Selar crumenophthalmus, Sardinella lemuru, Spratilloides gracilis and Stolephorus insularis) and four of their zooplanktonic crustacean prey [three sergestoid species (Acetes erythraeus, Acetes intermedius and Lucifer penicillifer) and one calanoid copepod (Acartia erythraea)] were collected from the Mindanao Sea, and their fatty acids were profiled. The resulting profiles revealed 17 fatty acids that were specific to certain species and 9 {myristic acid [C14:0], palmitic acid [C16:0], stearic acid [C18:0]; palmitoleic acid [C16:1], oleic acid [C18:1n9c], linoleic acid [C18:2n6c], linolenic acid [C18:3n3], eicosapentaenoic acid (EPA) [C20:5n3] and docosahexaenoic acid (DHA) [C22:6n3]} that were common to all species. Cluster analysis and non-metric multidimensional scaling (NMDS) of fatty acids indicate a high similarity in profiles in all species, but separate fish and zooplankton clusters were obtained. Mackerel species (D. macarellus, D. kurroides and S. crumenophthalmus) had concentrations of total n-3 fatty acids that match those of their Acetes prey. The copepod A. erythraea and the sergestoid L. penicillifer exhibited the lowest values of the EPA:DHA ratio, which was most likely due to their phytoplanktivorous feeding habits, but the occurrence of the highest values of the ratio in Acetes suggests the inclusion of plant detritus in their diet. DHA values appear to affirm the trophic link among copepod, Lucifer, Acetes and mackerel species.

  19. Modulation of shark prey capture kinematics in response to sensory deprivation.

    Science.gov (United States)

    Gardiner, Jayne M; Atema, Jelle; Hueter, Robert E; Motta, Philip J

    2017-02-01

    The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies

  20. Turbulence, larval fish ecology and fisheries recruitment : a review of field studies

    DEFF Research Database (Denmark)

    MacKenzie, Brian

    2000-01-01

    , and recruitment in entire populations. One of the main findings is that field studies show contrasting effects of turbulence on feeding, growth and mortality rates in nature and on recruitment. Coincident and multiple variations in ecosystem processes, lack of understanding of how some of these processes (e......Fish recruitment varies widely between years but much of this variability cannot be explained by most models of fish population dynamics. In this review, I examine the role of environmental variability on fish recruitment, and ill particular how turbulence affects feeding and growth of larval fish.......g. larval diet composition, feeding behaviour, growth rates, prey patchiness) respond to turbulence, and unavoidable sampling artifacts are mainly responsible for this result. Upwelling as well as frontal processes appear important for larval fish growth and survival, and turbulence levels vary both within...

  1. Prey capture in zebrafish larvae serves as a model to study cognitive functions

    Directory of Open Access Journals (Sweden)

    Akira eMuto

    2013-06-01

    Full Text Available Prey capture in zebrafish larvae is an innate behavior which can be observed as early as 4 days post fertilization, the day when they start to swim. This simple behavior apparently involves several neural processes including visual perception, recognition, decision-making, and motor control, and, therefore, serves as a good model system to study cognitive functions underlying natural behaviors in vertebrates. Recent progresses in imaging techniques provided us with a unique opportunity to image neuronal activity in the brain of an intact fish in real-time while the fish perceives a natural prey, paramecium. By expanding this approach, it would be possible to image entire brain areas at a single cell resolution in real-time during prey capture, and identify neuronal circuits important for cognitive functions. Further, activation or inhibition of those neuronal circuits with recently developed optogenetic tools or neurotoxins should shed light on their roles. Thus, we will be able to explore the prey capture in zebrafish larvae more thoroughly at cellular levels, which should establish a basis of understanding of the cognitive function in vertebrates.

  2. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  3. Prey resources before spawning influence gonadal investment of female, but not male, white crappie

    Science.gov (United States)

    Bunnell, D.B.; Thomas, S.E.; Stein, R.A.

    2007-01-01

    In this study, an outdoor pool experiment was used to evaluate the effect of prey resources during 4 months before spawning on the gonadal investments of male and female white crappie Pomoxis annularis, a popular freshwater sportfish that exhibits erratic recruitment. Fish were assigned one of three feeding treatments: starved, fed once every 5 days (intermediate) or fed daily (high). All measurements of male testes (i.e. wet mass, energy density and spermatocrit) were similar across treatments. Conversely, high-fed females produced larger ovaries than those of intermediate-fed and starved fish, and invested more energy in their ovaries than starved fish. Compared to pre-experiment fish, starved and intermediate-fed females appeared to increase their ovary size by relying on liver energy stores (‘capital’ spawning). Conversely, high-fed females increased liver and gonad mass, implying an ‘income’-spawning strategy (where gonads are built from recently acquired energy). Fecundity did not differ among treatments, but high-fed fish built larger eggs than those starved. Females rarely ‘skipped’ spawning opportunities when prey resources were low, as only 8% of starved females and 8% of intermediate-fed females lacked vitellogenic eggs. These results suggest that limited prey resources during the months before spawning can limit ovary production, which, in turn, can limit reproductive success of white crappies.

  4. Predicted bioaccumulation of PCBs and toxaphene in bottlenose dolphins (Tursiops truncatus): the contribution of contaminated prey

    Energy Technology Data Exchange (ETDEWEB)

    Maruya, K.; Smalling, K. [Skidaway Inst. of Oceanography, Savannah, GA (United States); Pulster, E. [Savannah State Univ., Savannah, GA (United States)

    2004-09-15

    Residues of two organochlorines (OCs) -- Aroclor 1268 (a highly chlorinated PCB formulation) and toxaphene (a DDT-replacement pesticide) -- are major persistent contaminants in St. Simons Sound near Brunswick, Georgia, USA. Although studies have recently documented OC levels in Brunswick area fish that are routinely consumed by humans, little is known about organochlorine body burdens in resident marine mammals. Sub-populations of the bottlenose dolphin (Tursiops truncatus), an abundant odontocete of the coastal mid-south Atlantic and Gulf of Mexico regions, have recently been shown to exhibit a limited home range and site fidelity in a northern Florida estuary, underscoring the need to assess the impact of OCs in individuals exposed via their natural prey (i.e. contaminated fish).

  5. Characterizing a novel predator–prey relationship between native Diplonychus esakii (Heteroptera: Belostomatidae and invasive Gambusia affinis (Teleostei: Poeciliidae in central China

    Directory of Open Access Journals (Sweden)

    Xu Ouyang

    2017-04-01

    Full Text Available Abstract A considerable body of the literature considers the potential impact of exotic predators on native prey organisms, while comparatively, few studies have asked whether and how native predators include novel prey types into their diet spectrum. Here, we asked whether the native aquatic heteropteran Diplonychus esakii preys on the highly invasive western mosquitofish (Gambusia affinis, which has been introduced to southern China and threatens native fish species through competition and predation on their fry. We conducted 48-h prey choice experiments under semi-natural conditions. In a ‘no-choice’ experiment (one predator and one potential prey; n = 200, we found the heteropterans to prey more on large-bodied fish, a pattern that was also described for other belostomatids, while prey sex had no effect on capture rates. Moreover, large-bodied heteropterans caught more fish than small-bodied individuals. However, overall capture rates in our study were low (11.5–30% compared to studies on other belostomatids, which explains why subsequent binary prey choice experiments using one predator and two prey—either large and small females or male and female (with smaller sample sizes of n = 20 and 30, respectively—did not confirm the results of our first experiment. Our study exemplifies how a pattern of body size-dependent predation can arise in a novel (not coevolved predator–prey interaction. We tentatively argue that the observed pattern could be driven by intrinsic features of the predator, namely, altered prey preferences with increasing age coupled with a general preference for large-bodied prey, or changing nutritional needs at different developmental stages.

  6. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

    Science.gov (United States)

    Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L

    2017-07-01

    Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

  7. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Directory of Open Access Journals (Sweden)

    Håkan Sand

    Full Text Available Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces and one small-sized ungulate; roe deer (Capreolus capreolus. Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  8. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  9. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  10. Prey detection and prey capture in copepod nauplii.

    Directory of Open Access Journals (Sweden)

    Eleonora Bruno

    Full Text Available Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae and by the nauplii of one feeding-current feeding species (Temora longicornis. We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey.

  11. Prey detection and prey capture in copepod nauplii

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Borg, Marc Andersen; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds...... (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding...

  12. Comparative analysis of marine ecosystems: workshop on predator-prey interactions

    DEFF Research Database (Denmark)

    Bailey, Kevin M.; Ciannelli, Lorenzo; Hunsicker, Mary

    2010-01-01

    in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16–18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling......Climate and human influences on marine ecosystems are largely manifested by changes in predator–prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator–prey interactions...

  13. Chemical basis of prey recognition in thamnophiine snakes: the unexpected new roles of parvalbumins.

    Directory of Open Access Journals (Sweden)

    Maïté Smargiassi

    Full Text Available Detecting and locating prey are key to predatory success within trophic chains. Predators use various signals through specialized visual, olfactory, auditory or tactile sensory systems to pinpoint their prey. Snakes chemically sense their prey through a highly developed auxiliary olfactory sense organ, the vomeronasal organ (VNO. In natricine snakes that are able to feed on land and water, the VNO plays a critical role in predatory behavior by detecting cues, known as vomodors, which are produced by their potential prey. However, the chemical nature of these cues remains unclear. Recently, we demonstrated that specific proteins-parvalbumins-present in the cutaneous mucus of the common frog (Rana temporaria may be natural chemoattractive proteins for these snakes. Here, we show that parvalbumins and parvalbumin-like proteins, which are mainly intracellular, are physiologically present in the epidermal mucous cells and mucus of several frog and fish genera from both fresh and salt water. These proteins are located in many tissues and function as Ca(2+ buffers. In addition, we clarified the intrinsic role of parvalbumins present in the cutaneous mucus of amphibians and fishes. We demonstrate that these Ca(2+-binding proteins participate in innate bacterial defense mechanisms by means of calcium chelation. We show that these parvalbumins are chemoattractive for three different thamnophiine snakes, suggesting that these chemicals play a key role in their prey-recognition mechanism. Therefore, we suggest that recognition of parvalbumin-like proteins or other calcium-binding proteins by the VNO could be a generalized prey-recognition process in snakes. Detecting innate prey defense mechanism compounds may have driven the evolution of this predator-prey interaction.

  14. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua

    International Nuclear Information System (INIS)

    Zhang Wei; Huang Liangmin; Wang Wenxiong

    2011-01-01

    Highlights: Radiotracer technique was used to quantify the biokinetics of As(V) in a marine fish. As(V) had a low bioavailability to Terapon jarbua. Dietary assimilation of As was only 3.1–7.4% for fish fed with different preys. Dietary uptake could be the primary route for As bioaccumulation in fish. - Abstract: Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L −1 , with a corresponding uptake rate constant of 0.0015 L g −1 d −1 . The assimilation efficiencies (AEs) of dietary As were only 3.1–7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d −1 . Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  15. Hydrodynamics of vertical jumping in Archer fish

    Science.gov (United States)

    Techet, Alexandra H.; Mendelson, Leah

    2017-11-01

    Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.

  16. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management

    Science.gov (United States)

    Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.

    2007-01-01

    Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.

  17. Dolphin underwater bait-balling behaviors in relation to group and prey ball sizes.

    Science.gov (United States)

    Vaughn-Hirshorn, Robin L; Muzi, Elisa; Richardson, Jessica L; Fox, Gabriella J; Hansen, Lauren N; Salley, Alyce M; Dudzinski, Kathleen M; Würsig, Bernd

    2013-09-01

    We characterized dusky dolphin (Lagenorhynchus obscurus) feeding behaviors recorded on underwater video, and related behaviors to variation in prey ball sizes, dolphin group sizes, and study site (Argentina versus New Zealand, NZ). Herding behaviors most often involved dolphins swimming around the side or under prey balls, but dolphins in Argentina more often swam under prey balls (48% of passes) than did dolphins in NZ (34% of passes). This result may have been due to differences in group sizes between sites, since groups are larger in Argentina. Additionally, in NZ, group size was positively correlated with proportion of passes that occurred under prey balls (pdolphins in Argentina more often swam through prey balls (8% of attempts) than did dolphins in NZ (4% of attempts). This result may have been due to differences in prey ball sizes between sites, since dolphins fed on larger prey balls in Argentina (>74m(2)) than in NZ (maximum 33m(2)). Additionally, in NZ, dolphins were more likely to swim through prey balls to capture fish when they fed on larger prey balls (p=0.025). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    Science.gov (United States)

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P insect predators can effectively reduce mosquito density in the presence of multiple alternative prey. © 2013 The Royal Entomological Society.

  19. A non-digging zoobenthivorous fish attracts two opportunistic predatory fish associates

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    Full Text Available Following behaviour among reef fishes involves mostly a digging nuclear species while foraging, which attracts opportunistic followers preying on the exposed organisms. The flying gurnard Dactylopterus volitans preys on benthic animals, mostly crustaceans and small fishes, scratching and probing the bottom with the inner rays of its pectoral fins. We recorded the flying gurnard being followed by two opportunistic predators, the yellow jack Caranx bartholomaei and the coney Cephalopholis fulva at Fernando de Noronha, off northeast Brazil. Albeit not actually digging the substrate, the flying gurnard acts as a nuclear species by exploring algae tufts and by its wandering near the boulders and ledges, disturbing and flushing out hidden animals which thus become available to predation.

  20. Quantifying relative fishing impact on fish populations based on spatio-temporal overlap of fishing effort and stock density

    DEFF Research Database (Denmark)

    Vinther, Morten; Eero, Margit

    2013-01-01

    Evaluations of the effects of management measures on fish populations are usually based on the analyses of population dynamics and estimates of fishing mortality from stock assessments. However, this approach may not be applicable in all cases, in particular for data-limited stocks, which may...... GAM analyses to predict local cod densities and combine this with spatio-temporal data of fishing effort based on VMS (Vessel Monitoring System). To quantify local fishing impact on the stock, retention probability of the gears is taken into account. The results indicate a substantial decline...... in the impact of the Danish demersal trawl fleet on cod in the Kattegat in recent years, due to a combination of closed areas, introduction of selective gears and changes in overall effort....

  1. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  2. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  3. Sex effect on polychlorinated biphenyl concentrations in fish: a synthesis

    Science.gov (United States)

    Madenjian, C.P.

    2011-01-01

    Polychlorinated biphenyls (PCBs) accumulate in fish primarily via food intake, and therefore, PCBs serve as a chemical tracer for food consumption. Sex differences in PCB concentrations of fish have been attributed to the following three mechanisms: (i) females losing a substantial portion of their PCB body burden during spawning and consequently their PCB concentration is considerably reduced immediately after spawning; (ii) sex differences in habitat utilization leading to sex differences in the PCB concentrations of the prey; and (iii) sex differences in gross growth efficiency, which is defined as growth divided by the amount of food consumption needed to achieve that growth. Based on my analyses and synthesis, mechanisms (i) and (ii) operate in relatively few fish populations, but can lead to mature males having PCB concentrations two to three times higher than mature female PCB concentrations. In contrast, mechanism (iii) operates in all fish populations, but typically, mechanism (iii) results in relatively modest sex differences, with mature males only between 15 and 35% higher in PCB concentration than mature females. In summary, the study of sex differences in PCB concentrations of fish has led to insights into fish behaviour and fish physiology.

  4. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    Science.gov (United States)

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the

  5. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    Science.gov (United States)

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  6. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay

    KAUST Repository

    Bachiller, Eneko

    2012-11-21

    The body size of fish is an important factor in determining their biology and ecology, as predators eat prey smaller than themselves. Predator mouth size restricts the availability of possible prey. In this paper we provide the allometric relationships of eight common, small pelagic fish species in the Bay of Biscay. In addition, we describe the predator-prey size ratios for different species, and we determine changes in their ratio-based trophic-niche breadth with increasing body size. Results suggest that gape size does not totally determine the predator-prey size ratio distribution, but predators use the entire available prey size range, including the smallest. As they grow they simply incorporate larger prey as their increased gape size permits. Accordingly, a large degree of overlap was found in the diet composition in terms of size and predator-prey ratios, even between fish of different sizes. Of the species studied, only horse mackerels seem to be clearly specialized in relatively large prey. © 2012 International Council for the Exploration of the Sea.

  7. Fishing destabilizes the biomass flow in the marine size spectrum.

    Science.gov (United States)

    Rochet, M-J; Benoît, E

    2012-01-22

    Fishing impacts on marine food webs are predicted by simulations of a size spectrum community model. In this model, predation is determined by predator and prey size and abundance, and drives predator growth and prey mortality. Fishing amplifies temporal oscillations in the biomass flow. Oscillations appear at lower fishing intensity and have wider amplitude when fishing is selective (removes a narrow size range) and/or when large fish are targeted, than when fishing is more balanced (catching a larger size range) or when small fish are targeted. A novel index of size diversity is developed, and is shown to be sensitive to both fishing intensity and selectivity. To avoid unstable food web dynamics with potential harmful consequences for fisheries, limiting both fishing intensity and selectivity might be an appropriate exploitation strategy.

  8. Sea urchins, their predators and prey in SW Portugal

    Directory of Open Access Journals (Sweden)

    Nuno Mamede

    2014-06-01

    Full Text Available Sea urchins play a key role structuring benthic communities of rocky shores through an intense herbivory. The most abundant sea urchin species on shallow rocky subtidal habitats of the SW coast of Portugal is Paracentrotus lividus (Echinodermata: Echinoidea. It is considered a key species in various locations throughout its geographical distribution by affecting the structure of macroalgae communities and may cause the abrupt transformation of habitats dominated by foliose algae to habitats dominated by encrusting algae - the urchin barrens. The removal of P. lividus predators by recreational and commercial fishing is considered a major cause of this phenomenon by affecting the trophic relationships between predators, sea urchins and algae communities. Marine protected areas (MPAs usually lead to the recovery of important predator species that control sea urchin populations and restore habitats dominated by foliose macroalgae. Therefore, MPAs provide a good opportunity to test cascading effects and indirect impacts of fishing at the ecosystem level. The ecological role of P. lividus was studied on rocky subtidal habitats of the SW coast of Portugal (Alentejo considering three trophic levels: population of P. lividus, their predators (fish and shellfish and their prey (macroalgae communities. Several studies were conducted: (1 a non-destructive observational study on the abundance and distribution patterns of P. lividus, their predators and preys, comparing areas with different protection; (2 a manipulative in situ study with cages to assess the role of P. lividus as an herbivore and the influence of predation; (3 a descriptive study of P. lividus predators based on underwater filming; (4 and a study of human perception on these trophic relationships and other issues on sea urchin ecology and fishery, based on surveys made to fishermen and divers. Subtidal studies were performed with SCUBA diving at 3-12 m deep. Results indicate that in the

  9. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  10. The functional response to prey density in an acarine system

    NARCIS (Netherlands)

    Fransz, H.G.

    1974-01-01

    Predacious mites are considered to be important natural enemies of phytophagous mites. Their efficiency in the natural control of prey populations depends on the relationships of the number of prey killed per predator per time unit and the oviposition rate on the one hand and prey density on the

  11. Estimation of feeding patterns for piscivorous fish using individual prey data from stomach contents

    DEFF Research Database (Denmark)

    Berg, Casper Willestofte; Temming, Axel

    2011-01-01

    The problem of estimating temporal feeding patterns using stomach data is considered, where the time of ingestion for each prey item can be predicted through a gastric evacuation model. The arrival of prey is modelled as a nonhomogeneous Poisson process with known periodic intensity. A maximum...

  12. Infomechanical specializations for prey capture in knifefish

    Science.gov (United States)

    Maciver, Malcolm; Patankar, Neelesh; Curet, Oscar; Shirgaonkar, Anup

    2007-11-01

    How does an animal's mechanics and its information acquisition system work together to solve crucial behavioral tasks? We examine this question for the black ghost weakly electric knifefish (Apteronotus albifrons), which is a leading model system for the study of sensory processing in vertebrates. These animals hunt at night by detecting perturbations of a self-generated electric field caused by prey. While the fish searches for prey, it pitches at 30 . Fully resolved Navier-Stokes simulations of their swimming, which occurs through undulations of a long ribbon-like fin along the bottom edge of the body, indicates that this configuration enables maximal thrust while minimizing pitch moment. However, pitching the body also increases drag. Our analysis of the sensory volume for detection of prey shows this volume to be similar to a cylinder around the body. Thus, pitching the body enables a greater swept volume of scanned fluid. Examining the mechanical and information acquisition demands on the animal in this task gives insight into how these sometimes conflicting demands are resolved.

  13. Hydrodynamics of prey capture in sharks : effects of substrate

    NARCIS (Netherlands)

    Nauwelaerts, Sandra; Wilga, Cheryl; Sanford, Christopher; Lauder, George

    2007-01-01

    In suction feeding, a volume of water is drawn into the mouth of a predator. Previous studies of suction feeding in fishes have shown that significant fluid velocities are confined to a region within one mouth width from the mouth. Therefore, the predator must be relatively close to the prey to

  14. Predator-induced demographic shifts in coral reef fish assemblages

    Science.gov (United States)

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  15. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  16. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    Science.gov (United States)

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  17. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  18. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  19. Prey change behaviour with predation threat, but demographic effects vary with prey density: experiments with grasshoppers and birds.

    Science.gov (United States)

    Belovsky, Gary E; Laws, Angela Nardoni; Slade, Jennifer B

    2011-04-01

    Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics. © 2011 Blackwell Publishing Ltd/CNRS.

  20. "Freshwater killer whales": beaching behavior of an alien fish to hunt land birds.

    Directory of Open Access Journals (Sweden)

    Julien Cucherousset

    Full Text Available The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis to capture birds on land (i.e. pigeons, Columbia livia. Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ(13C and δ(15N of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.

  1. Ecological dynamics of age selective harvesting of fish population: Maximum sustainable yield and its control strategy

    International Nuclear Information System (INIS)

    Jana, Debaldev; Agrawal, Rashmi; Upadhyay, Ranjit Kumar; Samanta, G.P.

    2016-01-01

    Highlights: • Age-selective harvesting of prey and predator are considered by multi-delayed prey-predator system. • System experiences stable coexistence to oscillatory mode and vice versa via Hopf-bifurcation depending upon the parametric restrictions. • MSY, bionomic equilibrium and optimal harvesting policy are also depending upon the age-selection of prey and predator. • All the analytic results are delay dependent. • Numerical examples support the analytical findings. - Abstract: Life history of ecological resource management and empirical studies are increasingly documenting the impact of selective harvesting process on the evolutionary stable strategy of both aquatic and terrestrial ecosystems. In the present study, the interaction between population and their independent and combined selective harvesting are framed by a multi-delayed prey-predator system. Depending upon the age selection strategy, system experiences stable coexistence to oscillatory mode and vice versa via Hopf-bifurcation. Economic evolution of the system which is mainly featured by maximum sustainable yield (MSY), bionomic equilibrium and optimal harvesting vary largely with the commensurate age selections of both population because equilibrium population abundance becomes age-selection dependent. Our study indicates that balance between harvesting delays and harvesting intensities should be maintained for better ecosystem management. Numerical examples support the analytical findings.

  2. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    Science.gov (United States)

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  3. Ultrasonic predator-prey interactions in water– convergent evolution with insects and bats in air?

    Directory of Open Access Journals (Sweden)

    Maria eWilson

    2013-06-01

    Full Text Available Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden. These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them.Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments however, show that neither fish with swim bladder, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  4. Rearing environment influences boldness and prey acquisition behavior, and brain and lens development of bull trout

    Science.gov (United States)

    Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.

    2018-01-01

    Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.

  5. Invasive lionfish drive Atlantic coral reef fish declines.

    Directory of Open Access Journals (Sweden)

    Stephanie J Green

    Full Text Available Indo-Pacific lionfish (Pterois volitans and P. miles have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.

  6. Invasive lionfish drive Atlantic coral reef fish declines.

    Science.gov (United States)

    Green, Stephanie J; Akins, John L; Maljković, Aleksandra; Côté, Isabelle M

    2012-01-01

    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.

  7. Lionfish misidentification circumvents an optimized escape response by prey.

    Science.gov (United States)

    McCormick, Mark I; Allan, Bridie J M

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish ( Pterois volitans ) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel ( Pomacentrus chrysurus ), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod ( Cephalopholis microprion ), a corallivorous butterflyfish ( Chaetodon trifasctiatus ) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators.

  8. Climate change effects on North American inland fish populations and assemblages

    Science.gov (United States)

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  9. A snail-eating snake recognizes prey handedness.

    Science.gov (United States)

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-04-05

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes' dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal.

  10. Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa

    Science.gov (United States)

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2004-01-01

    At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking

  11. First genealogy for a wild marine fish population reveals multigenerational philopatry

    KAUST Repository

    Salles, Océ ane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge

    2016-01-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  12. First genealogy for a wild marine fish population reveals multigenerational philopatry

    KAUST Repository

    Salles, Océane C.

    2016-11-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  13. Bifurcations and feedback control of a stage-structure exploited prey ...

    African Journals Online (AJOL)

    user

    Here, we have considered a stage structure prey-predator model with stage structure for ... N over the prey ,N β is the transition rate from mature predator population 2 ...... Mathematical Bioeconomics: The Optimal Management of Renewable ...

  14. Fine-scale tracking and diet information of a marine predator reveals the origin and contrasting spatial distribution of prey

    Science.gov (United States)

    Alonso, Hany; Granadeiro, José P.; Dias, Maria P.; Catry, Teresa; Catry, Paulo

    2018-03-01

    The distribution of many marine organisms is still poorly understood, particularly in oceanic regions. Seabirds, as aerial predators which cover extensive areas across the oceans, can potentially be used to enhance our knowledge on the distribution and abundance of their prey. In this study, we combined tracking data and dietary data from individual Cory's shearwaters Calonectris borealis (n = 68) breeding in Selvagens archipelago, Madeira, Portugal, during the chick-rearing periods of 2011 and 2016, in order to infer prey origin within shearwaters' main foraging areas. The digestion state of each prey item in the diet was assessed and classified; and compared to digestion states from known prey items fed to captive birds. In a novel approach, we combined tracking data with information on the prey digestion duration and data on the transit times from foraging grounds to the colony to estimate the location of prey capture. We found a consistent heterogeneity in prey distribution across four different marine domains: Selvagens, deep-sea, seamounts, and continental shelf. In oceanic areas, the chub mackerel Scomber colias, the main prey of Cory's shearwaters, was strongly associated with seamounts and insular shelves, whereas oceanic species like pilot-fish, flying-squid, flying-fish were clearly associated with deep-sea waters. Sardines Sardina pilchardus, anchovies Engraulis encrasicolus and other coastal species were associated with the African shelf. Prey origin assignment was robust across three different sets of assumptions, and was also supported by information on the digestion state of prey collected over a large independent sampling period (671 samples, collected in 2008-2010). The integration of fine-scale dietary and foraging trip data from marine predators provides a new framework to gain insights into the distribution and abundance of prey species in poorly known oceanic areas.

  15. Coexistence in a One-Predator, Two-Prey System with Indirect Effects

    Directory of Open Access Journals (Sweden)

    Renato Colucci

    2013-01-01

    Full Text Available We study the dynamics of a one-predator, two-prey system in which the predator has an indirect effect on the preys. We show that, in presence of the indirect effect term, the system admits coexistence of the three populations while, if we disregard it, at least one of the populations goes to extinction.

  16. Physiology, phenology and behavioural strategies of forage fish

    DEFF Research Database (Denmark)

    Frisk, Christina

    Forage fish are small individuals, and are very abundant in numbers and can form dense schools. Forage fish are important within the food webs of the oceans, as they are at the lower trophic levels. Forage fish prey on zooplankton and they are themselves preyed on by piscivore fish. The individual...... forage fish and its growth dynamics are governed by an interplay between physiological rates, e.g. metabolism and consumption and the ambient environment as the rates are temperature dependent. The topic of this thesis is to describe the strong link between the individual and the environment through....... The model includes an additional structure pool; gonads, to which energy is transferred during the spawning season. During periods of poor feeding, energy to cover metabolic costs are firstly taken from the reserve pool and secondly, if the reserves are depleted, from the somatic tissue pool. The model...

  17. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    Science.gov (United States)

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  18. Behind the impact of introduced trout in high altitude lakes: adult, not juvenile fish are responsible of the selective predation on crustacean zooplankton

    Directory of Open Access Journals (Sweden)

    Rocco Tiberti

    2014-05-01

    Full Text Available Introduced fish seriously affect zooplankton communities in mountain lakes, often leading to the loss of large species. Selective predation is recognized to be the ultimate cause of such a strong impact. Here we describe the selection of zooplankton prey by analyzing the stomach contents of more than 300 brook trout (Salvelinus fontinalis inhabiting seven alpine lakes in the Gran Paradiso National Park (western Italian Alps. Our results show that planktivory is much more common in young fish, which feed on a larger number of taxa, but also adult fish maintain the ability to feed on zooplankton. There is a direct dependence between the length of zooplankton prey and the length of their fish predators, and adult, not juvenile fish are responsible of the selective predation on large crustacean zooplankton, which drive the impact of introduced fish throughout the entire zooplankton community. In some rare cases, large zooplankton populations develop in the presence of brook trout, and planktivory can become an important temporary resource for adult fish during the ice-free season. Thus, in the early stages of the establishment of non-native trout in alpine lakes, large-bodied zooplankton may represent an important food resource.

  19. SRKW summer prey - Prey species and stock specific consumption estimates for SRKW in their summer range

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Southern Resident Killer Whales (SRKW) are listed as a Distinct Population Segment under the Endangered Species Act. Data concerning their prey species and stock...

  20. Population characteristics of channel catfish near the northern edge of their distribution: implications for management

    Science.gov (United States)

    Carter-Lynn, K. P.; Quist, Michael C.

    2015-01-01

    Channel catfish, Ictalurus punctatus (Rafinesque), populations in six lakes in northern Idaho, USA, were sampled to describe their population characteristics. During the summers of 2011 and 2012, 4864 channel catfish were sampled. Channel catfish populations had low to moderate catch rates, and length structure was dominated by fish Channel catfish were in good body condition. All populations were maintained by stocking age-1 or age-2 fish. Growth of fish reared in thermally enriched environments prior to stocking was fast compared to other North American channel catfish populations. After stocking, growth of channel catfish declined rapidly. Once stocked, cold water temperatures, prey resources and (or) genetic capabilities limited growth. Total annual mortality of age 2 and older channel catfish was generally channel catfish population dynamics and highlights important considerations associated with their ecology and management.

  1. Zebra mussel beds: an effective feeding ground for Ponto-Caspian gobies or suitable shelter for their prey?

    Science.gov (United States)

    Kobak, Jarosław; Poznańska, Małgorzata; Jermacz, Łukasz; Kakareko, Tomasz; Prądzynski, Daniel; Łodygowska, Małgorzata; Montowska, Karolina; Bącela-Spychalska, Karolina

    2016-01-01

    Aggregations of the Ponto-Caspian invasive zebra mussel ( Dreissena polymorpha ) constitute a suitable habitat for macroinvertebrates, considerably increasing their abundance and providing effective antipredator protection. Thus, the overall effect of a mussel bed on particular predator species may vary from positive to negative, depending on both prey density increase and predator ability to prey in a structurally complex habitat. Alien Ponto-Caspian goby fish are likely to be facilitated when introduced into new areas by zebra mussels, provided that they are capable of utilizing mussel beds as habitat and feeding grounds. We ran laboratory experiments to find which prey (chironomid larvae) densities (from ca. 500 to 2,000 individuals m -2 ) in a mussel bed make it a more beneficial feeding ground for the racer goby Babka gymnotrachelus (RG) and western tubenose goby Proterorhinus semilunaris (WTG) compared to sandy and stone substrata (containing the basic prey density of 500 ind. m -2 ). Moreover, we checked how food availability affects habitat selection by fish. Mussel beds became more suitable for fish than alternative mineral substrata when food abundance was at least two times higher (1,000 vs. 500 ind. m -2 ), regardless of fish size and species. WTG was associated with mussel beds regardless of its size and prey density, whereas RG switched to this habitat when it became a better feeding ground than alternative substrata. Larger RG exhibited a stronger affinity for mussels than small individuals. WTG fed more efficiently from a mussel bed at high food abundances than RG. A literature review has shown that increasing chironomid density, which in our study was sufficient to make a mussel habitat an attractive feeding ground for the gobies, is commonly observed in mussel beds in the field. Therefore, we conclude that zebra mussels may positively affect the alien goby species and are likely to facilitate their establishment in novel areas, contributing to an

  2. Zebra mussel beds: an effective feeding ground for Ponto-Caspian gobies or suitable shelter for their prey?

    Directory of Open Access Journals (Sweden)

    Jarosław Kobak

    2016-11-01

    Full Text Available Aggregations of the Ponto-Caspian invasive zebra mussel (Dreissena polymorpha constitute a suitable habitat for macroinvertebrates, considerably increasing their abundance and providing effective antipredator protection. Thus, the overall effect of a mussel bed on particular predator species may vary from positive to negative, depending on both prey density increase and predator ability to prey in a structurally complex habitat. Alien Ponto-Caspian goby fish are likely to be facilitated when introduced into new areas by zebra mussels, provided that they are capable of utilizing mussel beds as habitat and feeding grounds. We ran laboratory experiments to find which prey (chironomid larvae densities (from ca. 500 to 2,000 individuals m−2 in a mussel bed make it a more beneficial feeding ground for the racer goby Babka gymnotrachelus (RG and western tubenose goby Proterorhinus semilunaris (WTG compared to sandy and stone substrata (containing the basic prey density of 500 ind. m−2. Moreover, we checked how food availability affects habitat selection by fish. Mussel beds became more suitable for fish than alternative mineral substrata when food abundance was at least two times higher (1,000 vs. 500 ind. m−2, regardless of fish size and species. WTG was associated with mussel beds regardless of its size and prey density, whereas RG switched to this habitat when it became a better feeding ground than alternative substrata. Larger RG exhibited a stronger affinity for mussels than small individuals. WTG fed more efficiently from a mussel bed at high food abundances than RG. A literature review has shown that increasing chironomid density, which in our study was sufficient to make a mussel habitat an attractive feeding ground for the gobies, is commonly observed in mussel beds in the field. Therefore, we conclude that zebra mussels may positively affect the alien goby species and are likely to facilitate their establishment in novel areas

  3. STRUCTURE, GROWTH AND MORPHOLOGY OF FISH POPULATIONS FROM GRAVEL-PIT VUKOVINA

    Directory of Open Access Journals (Sweden)

    Ivan Jakovlić

    2001-12-01

    Full Text Available After the structure of fish populations from gravel-pit Vukovina was determined, those populations were checked for 10 morphometric and 4 meristic parameters, as well as for length-mass relationship. For chub (Leuciscus cephalus and pumpkinseed (Lepomis gibbosus some meristic characters expressed the values beyond those mentioned in the standard key for the freshwater fish species determination. When compared to other locations, length-mass relationship and condition factor (CF were significantly lower for all checked populations. This indicates that gravel-pit Vukovina is extremely oligotrophic and has very poor fish production.

  4. Predator-prey interactions between a recent invader, the Chinese sleeper (Perccottus glenii and the European pond turtle (Emys orbicularis: a case study from Lithuania

    Directory of Open Access Journals (Sweden)

    Vytautas Rakauskas

    2016-12-01

    Full Text Available The European pond turtle, Emys orbicularis, is a critically endangered species in most European countries. Habitat degradation and fragmentation are considered the main reasons for the decline of E. orbicularis. However, the spread of invasive species may also contribute to the disappearance of E. orbicularis populations. We examined the range overlap and predator-prey interactions between the invasive Chinese sleeper, Perccottus glenii, and E. orbicularis through controlled experiments and in field studies. Field surveys showed that both species occupied similar habitats. Predator-prey experiments suggested that newly hatched turtles are resistant to P. glenii predation. Conversely, adults of E. orbicularis consumed juvenile P. glenii even when other food sources were available. Overall, these findings suggested that E. orbicularis is not among the potential prey organisms in the diet of the invasive P. glenii, and that this fish does not directly contribute to the decline of E. orbicularis in Europe.

  5. Prey handling using whole-body fluid dynamics in batoids.

    Science.gov (United States)

    Wilga, Cheryl D; Maia, Anabela; Nauwelaerts, Sandra; Lauder, George V

    2012-02-01

    Fluid flow generated by body movements is a foraging tactic that has been exploited by many benthic species. In this study, the kinematics and hydrodynamics of prey handling behavior in little skates, Leucoraja erinacea, and round stingrays, Urobatis halleri, are compared using kinematics and particle image velocimetry. Both species use the body to form a tent to constrain the prey with the pectoral fin edges pressed against the substrate. Stingrays then elevate the head, which increases the volume between the body and the substrate to generate suction, while maintaining pectoral fin contact with the substrate. Meanwhile, the tip of the rostrum is curled upwards to create an opening where fluid is drawn under the body, functionally analogous to suction-feeding fishes. Skates also rotate the rostrum upwards although with the open rostral sides and the smaller fin area weaker fluid flow is generated. However, skates also use a rostral strike behavior in which the rostrum is rapidly rotated downwards pushing fluid towards the substrate to potentially stun or uncover prey. Thus, both species use the anterior portion of the body to direct fluid flow to handle prey albeit in different ways, which may be explained by differences in morphology. Rostral stiffness and pectoral fin insertion onto the rostrum differ between skates and rays and this corresponds to behavioral differences in prey handling resulting in distinct fluid flow patterns. The flexible muscular rostrum and greater fin area of stingrays allow more extensive use of suction to handle prey while the stiff cartilaginous rostrum of skates lacking extensive fin insertion is used as a paddle to strike prey as well as to clear away sand cover. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. A shallow-diving seabird predator as an indicator of prey availability in southern California waters: A longitudinal study

    Science.gov (United States)

    Horn, M. H.; Whitcombe, C. D.

    2015-06-01

    We tested the hypothesis that the Elegant Tern (Thalasseus elegans), a plunge-diving predator, is an indicator of changes in the prey community in southern California coastal waters. Shannon diversity (H‧) of the tern's diet determined from dropped fish collected variously at the three nesting sites for 18 years over a 21-year interval (1993-2013) showed no significant change in diet diversity. Based on a species-accumulation curve, total diet species represented about 70% of an extrapolated asymptotic richness. Abundance patterns of five prey species making up > 75% of prey numbers for all years were compared with abundance patterns of the same species in independent surveys obtained from zooplankton tows, bottom trawls and power-plant entrapments. Three of the five species - northern anchovy, kelp pipefish and California lizardfish - showed significant, positive correlations between diet and survey abundances. Even though the tern's diet has been dominated by anchovy and pipefish, its diet is still broad, with prey taxa representing > 75% of the 42 species groups making up the California shelf fish fauna. Altogether, our results support the hypothesis that the Elegant Tern, with its flexible diet, is a qualitative indicator, a sentinel, of changes in the prey communities in southern California coastal waters.

  7. Conflicts between sensory performance and locomotion in weakly electric fish

    Science.gov (United States)

    Maciver, Malcolm; Shirgaonkar, Anup; Patankar, Neelesh

    2008-11-01

    The knifefish Apteronotus albifrons hunts for small water insects at night using a self-generated electric field to perceive its world. Using this unique sensory adaptation, the fish senses prey that are near its body with a detection volume that approximates a cylinder that has a length ten times its radius, similar to the fish's elongated body plan. If the fish swims straight, then the back portion of the actively generated detection volume is scanning fluid already scanned by the front portion, but the energy expended to overcome drag is minimized. If it swims with the body pitched, then the rate of volume scanned for prey is increased, but the energy needed to overcome body drag is also increased. In this work we examine the compromise the fish makes between minimizing energy in overcoming drag and maximizing scan rate. We use computational fluid dynamics simulations to assess the impact of changes in body pitch angle on drag, and computational neuroscience simulations to assess the shape and size of the prey detection volume and how body angle changes the scan volume rate.

  8. A model for the interaction between gadoid larvae and their nauplii prey.

    Science.gov (United States)

    Johansen, Rune

    2007-07-01

    A continuous model for the growth and death of gadoid larvae, including ecological interactions with their nauplii prey, is examined. The present model has a simpler structure than the model due to Cushing and Horwood [D.H. Cushing, J.W. Horwood, The growth and death of fish larvae. J. Plankt. Res. 16 (3) (1994) 291-300] as it does not explicitly incorporate larval metabolism, although indirectly metabolism is included by means of equations for larval growth. Despite this, the model yields related, although not entirely equivalent, results to those obtained by Cushing and Horwood. In the present model, overcompensation (cf. [W.E. Ricker, Stock and Recruitment, J. Fish. Res. Board. Can. 11 (1954) 559-623]) occurs at limited initial food levels, while at infinite food levels, the recruitment curve becomes monotonically increasing towards an upper limit (cf. [R.J.H. Beverton, S.J. Holt, On the dynamics of exploited fish populations. Fish. Invest. Lond. I 19 (1957)]). Moreover, the present study suggests that the duration of the larval stage, the metamorphosis time tau is highly important to the recruitment process, in accordance with Cushing and Horwood. When food is limited the metamorphosis is delayed, causing the larval population to experience (density dependent) mortality for a sufficient long time to make the recruitment curve overcompensatory. It is not necessarily the desire to derive a particular formula for the recruitment curve, as this is probably impossible anyway, except for particular examples. However, reduced versions of the model that in some sense are close to the original model, are examined, and it is argued that many general features of the general model are retained in such examples.

  9. First record of predation by the alien invasive freshwater fish ...

    African Journals Online (AJOL)

    First record of predation by the alien invasive freshwater fish Micropterus salmoides L. (Centrarchidae) on migrating estuarine fishes in South Africa. ... Estuarine fish species, Monodactylus falciformis, and two species of the family Mugilidae, Mugil cephalus and Myxus capensis, were the most common fish prey in both size ...

  10. Metals and metalloids in Little Penguin (Eudyptula minor) prey, blood and faeces.

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Kowalczyk, Nicole D; Scarpaci, Carol; Nugegoda, Dayanthi; Orbell, John D

    2017-04-01

    Piscivorous species like the Little Penguin (Eudyptula minor) are particularly at risk of being negatively impacted by pollution due to their heightened exposure through aquatic food chains. Therefore, determining the concentration of heavy metals in the fish prey of seabirds is an essential component of assessing such risk. In this study, we report on arsenic, cadmium, mercury, lead and selenium concentrations in three fish species, which are known to comprise a substantial part of the diet of Little Penguins at the urban colony of St Kilda, Melbourne, Australia. Metal concentrations in the fish sampled were generally within the expected limits, however, arsenic and mercury were higher than reported elsewhere. Anchovy (Engraulis australis) and sandy sprat (Hyperlophus vittatus) contained higher Hg concentrations than pilchard (Sardinops sagax), while sandy sprat and pilchard contained more selenium. We present these findings together with metal concentrations in Little Penguin blood and faeces, sampled within weeks of the fish collection. Mercury concentrations were highest in the blood, while faeces and fish prey species contained similar concentrations of arsenic and lead, suggesting faeces as a primary route of detoxification for these elements. We also investigated paired blood - faecal samples and found a correlation for selenium only. Preliminary data from stable isotope ratios in penguin blood indicate that changes in penguin blood mercury concentrations cannot be explained by trophic changes in their diet alone, suggesting a variation of bioavailable Hg within this semi-enclosed bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    Science.gov (United States)

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Culling prey promotes predator recovery - Alternative states in a whole-lake experiment

    NARCIS (Netherlands)

    Persson, L.; Amundsen, P.A.; de Roos, A.M.; Klemetsen, A.; Knudsen, R.; Primicerio, R.

    2007-01-01

    Many top-predator fish stocks in both freshwater and marine systems have collapsed as a result of overharvesting. Consequently, some of these communities have shifted into seemingly irreversible new states. We showed, for predators feeding on prey that exhibit food-dependent growth, that culling of

  13. Fish Community Structure and Diet Responses to Newbury Weirs in a Low-Gradient River

    Science.gov (United States)

    Bonjour, Sophia M.; Rantala, Heidi M.; Bennett, Micah G.; Whiles, Matt R.

    2018-06-01

    Restoration projects are often implemented to address specific issues in the environment. Consequences of a restoration project, if any are measured, typically focus on direct changes to the projects focus. However, changing habitat structure likely results in changes to the environment that affect the communities living there. Rock weirs have been used for channel stabilization in many midwestern rivers. Previous research in a southern Illinois river found that weirs benefitted aquatic macroinvertebrate and riparian bird communities by enhancing habitat heterogeneity and insect emergence production. We hypothesized that fishes would also benefit from weirs through enhanced habitat and food availability. We collected fishes in the Cache River in southern Illinois using hand nets, seines, and electroshocking at sites where weirs had been installed and at non-weir sites. Gut contents were identified and individual food items measured. Fish species richness, but not diversity, was higher at weir sites. Fish communities also differed between site types, with benthic feeders characterizing weir sites. Gut content biomass and abundance differed among fish guilds but not between weir and non-weir sites. Fishes from both site types selected for prey taxa predominately found at weirs. Differences between site types were not always captured by univariate metrics, but connecting fish prey to habitat suggests a reach-scale benefit for fishes through increased abundance of favored prey and enhanced prey diversity. Additionally, given the paucity of rocky substrata in the river as a whole, rock weirs enhance fish species richness by providing habitat for less common benthic species.

  14. Angler-caught piscivore diets reflect fish community changes in Lake Huron

    Science.gov (United States)

    Roseman, Edward F.; Schaeffer, Jeff; Bright, Ethan; Fielder, David G.

    2014-01-01

    Examination of angler-caught piscivore stomachs revealed that Lake Trout Salvelinus namaycush, Chinook Salmon Oncorhynchus tshawytscha, and Walleyes Sander vitreus altered theirdiets in response to unprecedented declines in Lake Huron's main-basin prey fish community.Diets varied by predator species, season, and location but were nearly always dominated numerically by some combination of Alewife Alosa pseudoharengus, Rainbow Smelt Osmerus mordax, Emerald Shiner Notropis atherinoides, Round Goby Neogobius melanostomus, or terrestrial insects. Rainbow Trout Oncorhynchus mykiss (steelhead), Coho Salmon Oncorhynchus kisutch, and Atlantic Salmon Salmo salar had varied diets that reflected higher contributions of insects. Compared with an earlier (1983–1986) examination of angler-caught predator fishes from Lake Huron, the contemporary results showed an increase in consumption of nontraditional prey (including conspecifics), use of smaller prey, and an increase in insects in the diet, suggesting that piscivores were faced with chronic prey limitation during this study. The management of all piscivores in Lake Huron will likely require consideration of the pervasive effects of changes in food webs, especially if prey fish remain at low levels.

  15. Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Jessica, E-mail: dutton.jess@gmail.com; Fisher, Nicholas S., E-mail: nfisher@notes.cc.sunysb.edu

    2011-08-15

    Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (k{sub ef}s). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9-4.5%) and Cr (0.2-4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) k{sub ef}s were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and k{sub ef} could lead to an over- or underestimation of these parameters. - Highlights: {yields} We investigated the trophic transfer of metals to killifish from amphipod and worm prey. {yields} Prey choice influences metal accumulation from the diet. {yields} Only MeHg is likely to biomagnify at this trophic step.

  16. Prey selection and feeding habits of the large carnivores in the Southern Kalahari

    Directory of Open Access Journals (Sweden)

    M. G. L Mills

    1984-12-01

    Full Text Available Prey selection and feeding habits of lions Panthera leo, spotted hyaenas Crocuta crocuta, cheetahs Acinonyx jubatus and leopards Panthera pardus are investigated. Lions kill mainly adult gemsbok Oryx gazella and blue wildebeest Connochaetes taurinus, tending to select older animals of both species and males in the case of gemsbok. Spotted hyaenas also prey mainly on gemsbok and wildebeest, but select for juveniles, particularly from gemsbok. Cheetahs prey heavily on springbok Antidorcas marsupialis lambs and then on adult males and older individuals. Leopards also prey relatively heavily on springbok, but appear to have a wider diet than cheetahs do. It is concluded that predators generally have a small impact on their prey populations in the southern Kalahari, although in the case of springbok they do appear to influence the structure of the population.

  17. Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal

    Science.gov (United States)

    Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi

    2017-06-01

    The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.

  18. Fishing long-fingered bats (Myotis capaccinii) prey regularly upon exotic fish

    DEFF Research Database (Denmark)

    Aizpurua, Ostaizka; Garin, Inazio; Alberdi, Antton

    2013-01-01

    The long-fingered bat Myotis capaccinii is a European trawling bat reported to feed on fish in several Mediterranean locations, but the ecological circumstances of this behavior have not yet been studied. To elucidate the importance of fishing in this bat's diet, we evaluated the frequency...

  19. High activity and Levy searches: jellyfish can search the water column like fish.

    Science.gov (United States)

    Hays, Graeme C; Bastian, Thomas; Doyle, Thomas K; Fossette, Sabrina; Gleiss, Adrian C; Gravenor, Michael B; Hobson, Victoria J; Humphries, Nicolas E; Lilley, Martin K S; Pade, Nicolas G; Sims, David W

    2012-02-07

    Over-fishing may lead to a decrease in fish abundance and a proliferation of jellyfish. Active movements and prey search might be thought to provide a competitive advantage for fish, but here we use data-loggers to show that the frequently occurring coastal jellyfish (Rhizostoma octopus) does not simply passively drift to encounter prey. Jellyfish (327 days of data from 25 jellyfish with depth collected every 1 min) showed very dynamic vertical movements, with their integrated vertical movement averaging 619.2 m d(-1), more than 60 times the water depth where they were tagged. The majority of movement patterns were best approximated by exponential models describing normal random walks. However, jellyfish also showed switching behaviour from exponential patterns to patterns best fitted by a truncated Lévy distribution with exponents (mean μ=1.96, range 1.2-2.9) close to the theoretical optimum for searching for sparse prey (μopt≈2.0). Complex movements in these 'simple' animals may help jellyfish to compete effectively with fish for plankton prey, which may enhance their ability to increase in dominance in perturbed ocean systems.

  20. Effects of dams on downstream molluscan predator-prey interactions in the Colorado River estuary.

    Science.gov (United States)

    Smith, Jansen A; Handley, John C; Dietl, Gregory P

    2018-05-30

    River systems worldwide have been modified for human use and the downstream ecological consequences are often poorly understood. In the Colorado River estuary, where upstream water diversions have limited freshwater input during the last century, mollusc remains from the last several hundred years suggest widespread ecological change. The once abundant clam Mulinia modesta has undergone population declines of approximately 94% and populations of predators relying on this species as a food source have probably declined, switched to alternative prey species or both. We distinguish between the first two hypotheses using a null model of predation preference to test whether M. modesta was preyed upon selectively by the naticid snail, Neverita reclusiana , along the estuary's past salinity gradient. To evaluate the third hypothesis, we estimate available prey biomass today and in the past, assuming prey were a limiting resource. Data on the frequency of drill holes-identifiable traces of naticid predation on prey shells-showed several species, including M. modesta , were preferred prey. Neverita reclusiana was probably able to switch prey. Available prey biomass also declined, suggesting the N. reclusiana population probably also declined. These results indicate a substantial change to the structure of the benthic food web. Given the global scale of water management, such changes have probably also occurred in many of the world's estuaries. © 2018 The Author(s).

  1. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    Science.gov (United States)

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  2. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean

    Science.gov (United States)

    Bernal, Ainhoa; Olivar, M. Pilar; Maynou, Francesc; Fernández de Puelles, M. Luz

    2015-06-01

    Myctophids, gonostomatids and sternoptychids are the most abundant teleosteans worldwide and constitute an important assemblage of the mesopelagic ecosystem, functioning as vehicles of energy and matter through trophic webs. This study concentrates on the trophic ecology of the most abundant mesopelagic fishes of the western Mediterranean (WM) based on stomach content analysis. The myctophids (in this study: Benthosema glaciale, Ceratoscopelus maderensis, Lobianchia dofleini, Myctophum punctatum, Hygophum benoiti, Hygophum hygomii, Lampanyctus crocodilus, Lampanyctus pusillus and Notoscopelus elongatus) perform extensive diel migrations across the water column, between the surface to as deep as 1000 m, interacting with plankton and micronekton at multiple depths, and generally feeding in the epipelagic layers at night. In contrast, the gonostomatids Cyclothone braueri, Cyclothone pygmaea, and the sternoptychid Argyropelecus hemigymnus remain below epipelagic layers, feeding at different times throughout the day and night. The diet composition, trophic niche breadth and prey selectivity of 11 of these fish species were determined for juvenile and adult individuals from two surveys performed in December 2009 and July 2010 in the western Mediterranean Sea. The number of prey items varied among species, e.g. Myctophum punctatum was the species with the highest feeding intensity, reaching ca. 700 prey items in a stomach, whereas the mean number of prey in Cyclothone braueri was low (usually 1 or 2 prey per stomach). A dietary shift towards larger prey was evident from juveniles to the largest and oldest adult individuals, despite trophic niche breadths did not increase with body length for any of these mesopelagic species. The diets of the small gonostomatids, sternoptychid and early juveniles of myctophids were dominated by non-calanoid copepods, ostracods, and other small zooplankton, whereas medium-sized myctophids, e.g. L. dofleini or H. benoiti, preyed mainly on

  3. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    Full Text Available Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders. In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  4. Fish diets in a freshwater-deprived semiarid estuary (The Coorong, Australia) as inferred by stable isotope analysis

    Science.gov (United States)

    Lamontagne, S.; Deegan, B. M.; Aldridge, K. T.; Brookes, J. D.; Geddes, M. C.

    2016-09-01

    In 2007, high rates of water extraction combined with a regional drought stopped freshwater discharge to the Coorong, a ∼120 km estuarine and coastal lagoon system at the outlet of the River Murray (Australia). The sources of organic matter sustaining the Coorong food web in the absence of river-borne organic matter and nutrient inputs were evaluated by measuring δ13C, δ15N and δ34S in large-bodied fish and their prey. In general, the δ34S of the food web (mean = 11.3‰; range = 4.32-18.9‰) suggested a comparable contribution from autochthonous pelagic (∼21‰) and benthic (<5‰) primary production. A relatively high δ13C in all organisms (-20 to -9.2‰) was also consistent with a dominant contribution from autochtonous sources to the food web. A Bayesian mixing model framework (SIMMR) was used to estimate the diet of large-bodied fish for statistically-determined prey groups based on their similarity in isotopic composition. Argyrosomus japonicus preyed primarily on Fish Group 1 (small pelagic fish like galaxiids and Hyperlophus vittatus), Rhombosolea tapirina on Invertebrate Group 2 (polychaetes like Capitella spp.) but Acanthopagrus butcheri fed on a wide variety of fish and invertebrate groups. A partial switch in diet to other prey groups suggested larger Ar. japonicus fed on larger prey, such as crabs and adult Aldrichetta forsteri. Despite being numerically abundant at the time, Fish Group 2 (benthic species) was a relatively low proportion of large-bodied fish diets. This probably reflected the tendency of some salt-tolerant members of this group (such as Atherinosoma microstoma) to prefer hypersaline habitats, which the large-bodied fish avoided. As the heavily preyed-on Fish Group 1 included species with a marine component to their life-cycle, marine productivity may also help to maintain this estuarine ecosystem in the absence of river-borne organic matter inputs.

  5. Productivity and recovery of forage fish under climate change and fishing: North Sea sandeel as a case study

    DEFF Research Database (Denmark)

    Lindegren, Martin; van Deurs, Mikael; MacKenzie, Brian

    2018-01-01

    -east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long-term data and modelling. Our...... results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus...... and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible...

  6. Generalist feeding strategies in Arctic freshwater fish: A mechanism for dealing with extreme environments

    Science.gov (United States)

    Laske, Sarah M.; Rosenberger, Amanda E.; Wipfli, Mark S.; Zimmerman, Christian E.

    2018-01-01

    Generalist feeding strategies are favoured in stressful or variable environments where flexibility in ecological traits is beneficial. Species that feed across multiple habitat types and trophic levels may impart stability on food webs through the use of readily available, alternative energy pools. In lakes, generalist fish species may take advantage of spatially and temporally variable prey by consuming both benthic and pelagic prey to meet their energy demands. Using stomach content and stable isotope analyses, we examined the feeding habits of fish species in Alaska's Arctic Coastal Plain (ACP) lakes to determine the prevalence of generalist feeding strategies as a mechanism for persistence in extreme environments (e.g. low productivity, extreme cold and short growing season). Generalist and flexible feeding strategies were evident in five common fish species. Fish fed on benthic and pelagic (or nektonic) prey and across trophic levels. Three species were clearly omnivorous, feeding on fish and their shared invertebrate prey. Dietary differences based on stomach content analysis often exceeded 70%, and overlap in dietary niches based on shared isotopic space varied from zero to 40%. Metrics of community‐wide trophic structure varied with the number and identity of species involved and on the dietary overlap and niche size of individual fishes. Accumulation of energy from shared carbon sources by Arctic fishes creates redundancy in food webs, increasing likely resistance to perturbations or stochastic events. Therefore, the generalist and omnivorous feeding strategies employed by ACP fish may maintain energy flow and food web stability in extreme environments.

  7. Macrophytes shape trophic niche variation among generalist fishes.

    Directory of Open Access Journals (Sweden)

    Ivana Vejříková

    Full Text Available Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N and carbon (δ13C isotopic mixing models, perch (Perca fluviatilis L. and rudd (Scardinius erythrophthalmus (L. showed larger individual variation (i.e., variance in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.. Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence

  8. Macrophytes shape trophic niche variation among generalist fishes

    Science.gov (United States)

    Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  9. Effects of allochthonous inputs in the control of infectious disease of prey

    International Nuclear Information System (INIS)

    Sahoo, Banshidhar; Poria, Swarup

    2015-01-01

    Highlights: •Infected predator–prey model with allochthonous inputs is proposed. •Stability and persistence conditions are derived. •Bifurcation is determined with respect to allochthonous inputs. •Results show that system can not be disease free without allochthonous inputs. •Hopf and its continuation bifurcation is analysed numerically. -- Abstract: Allochthonous inputs are important sources of productivity in many food webs and their influences on food chain model demand further investigations. In this paper, assuming the existence of allochthonous inputs for intermediate predator, a food chain model is formulated with disease in the prey. The stability and persistence conditions of the equilibrium points are determined. Extinction criterion for infected prey population is obtained. It is shown that suitable amount of allochthonous inputs to intermediate predator can control infectious disease of prey population, provided initial intermediate predator population is above a critical value. This critical intermediate population size increases monotonically with the increase of infection rate. It is also shown that control of infectious disease of prey is possible in some cases of seasonally varying contact rate. Dynamical behaviours of the model are investigated numerically through one and two parameter bifurcation analysis using MATCONT 2.5.1 package. The occurrence of Hopf and its continuation curves are noted with the variation of infection rate and allochthonous food availability. The continuation curves of limit point cycle and Neimark Sacker bifurcation are drawn by varying the rate of infection and allochthonous inputs. This study introduces a novel natural non-toxic method for controlling infectious disease of prey in a food chain model

  10. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    Science.gov (United States)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted

  11. Feeding opportunities of larval and juvenile cod (Gadus morhua) in a Greenlandic fjord: temporal and spatial linkages between cod and their preferred prey

    DEFF Research Database (Denmark)

    Swalethorp, Rasmus; Kjellerup, Sanne; Malanski, Evandro

    2014-01-01

    preferences of the early-life stages of Atlantic cod (Gadus morhua) to quantify the availability of prey during a spring-summer season in a West Greenlandic fjord. We hypothesized that abundances of larval and juvenile cod at size were synchronized to optimal availability of preferred prey in space and time....... These findings stress the importance of focusing on abundance of preferred prey when assessing the actual prey availability to young fish. We found a spatio-temporal overlap between cod and their preferred prey, and observations suggest that advection of both zooplankton and cod contributed to this overlap...

  12. Fishing for lobsters indirectly increases epidemics in sea urchins

    Science.gov (United States)

    Lafferty, Kevin D.

    2004-01-01

    Two ecological paradigms, the trophic cascade and the host-density threshold in disease, interact in the kelp-forest ecosystem to structure the community. To investigate what happens when a trophic cascade pushes a host population over a host-threshold density, I analyzed a 20-year data set of kelp forest communities at 16 sites in the region of the Channel Islands National Park, California, USA. Historically, lobsters, and perhaps other predators, kept urchin populations at low levels and kelp forests developed a community-level trophic cascade. In geographic areas where the main predators on urchins were fished, urchin populations increased to the extent that they overgrazed algae and starvation eventually limited urchin-population growth. Despite the limitation of urchin population size by food availability, urchin densities, at times, well exceeded the host-density threshold for epidemics. An urchin-specific bacterial disease entered the region after 1992 and acted as a density-dependent mortality source. Dense populations were more likely to experience epidemics and suffer higher mortality. Disease did not reduce the urchin population at a site to the density that predators previously did. Therefore, disease did not fully replace predators in the trophic cascade. These results indicate how fishing top predators can indirectly favor disease transmission in prey populations.

  13. Subordinate Males Sire Offspring in Madagascar Fish-eagle (Haliaeetus Vociferoides) Polyandrous Breeding Groups

    OpenAIRE

    Tingay, Ruth E.; Culver, Melanie; Hallerman, Eric M.; Fraser, James D.; Watson, Richard T.

    2002-01-01

    The island endemic Madagascar Fish-Eagle (Haliaeetus vociferoides) is one of the most endangered birds of prey. Certain populations in west-central Madagascar sometimes exhibit a third, and sometimes a fourth, adult involved in breeding activities at a nest. We applied DNA fingerprinting to assess relatedness among 17 individuals at four nests. In all nests with young, a subordinate rather than the dominant male sired the offspring. Within-nest relatedness comparisons showed that some dominan...

  14. A Eulerian nutrient to fish model of the Baltic Sea — A feasibility-study

    Science.gov (United States)

    Radtke, Hagen; Neumann, Thomas; Fennel, Wolfgang

    2013-09-01

    A nutrient-to-fish-model with an explicit two-way interaction between a biogeochemical model of the lower food web and a fish model component is presented for the example of the Baltic Sea, demonstrating the feasibility of a consistent coupling of the upper and lower parts of the food web in a Eulerian model system. In the Baltic Sea, the fish stock is dominated by two prey species (sprat and herring) and one predator (cod). The dynamics of the fish model is driven by size (mass-class) dependent predator-prey interactions while the interaction between the biogeochemical and Fish model component is established through feeding of prey fish on zooplankton and recycling of fish biomass to nutrients and detritus. The fish model component is coupled to an advanced three dimensional biogeochemical model (ERGOM, Neumann et al., 2002). A horizontally explicit representation of fish requires the implementation of fish behavior. As a first step, we propose an algorithm to stimulate fish migration by letting the fish follow the food. Moreover, fish species are guided to their respective spawning areas. Results of first three-dimensional simulations are presented with emphasis on the transport of matter by moving fish. The spawning areas of cod and sprat are in the deep basins, which are not well reached by advective transport. Hence the deposition of matter in these areas by spawning fish could play some role in the distribution of matter. The approach is not limited to applications for the Baltic and the model can be transferred also to other systems.

  15. Why do fish school?

    Institute of Scientific and Technical Information of China (English)

    Matz LARSSON

    2012-01-01

    Synchronized movements (schooling) emit complex and overlapping sound and pressure curves that might confuse the inner ear and lateral line organ (LLO) of a predator.Moreover,prey-fish moving close to each other may blur the electro-sensory perception of predators.The aim of this review is to explore mechanisms associated with synchronous swimming that may have contributed to increased adaptation and as a consequence may have influenced the evolution of schooling.The evolutionary development of the inner ear and the LLO increased the capacity to detect potential prey,possibly leading to an increased potential for cannibalism in the shoal,but also helped small fish to avoid joining larger fish,resulting in size homogeneity and,accordingly,an increased capacity for moving in synchrony.Water-movements and incidental sound produced as by-product of locomotion (ISOL) may provide fish with potentially useful information during swimming,such as neighbour body-size,speed,and location.When many fish move close to one another ISOL will be energetic and complex.Quiet intervals will be few.Fish moving in synchrony will have the capacity to discontinue movements simultaneously,providing relatively quiet intervals to allow the reception of potentially critical environmental signals.Besides,synchronized movements may facilitate auditory grouping of ISOL.Turning preference bias,well-functioning sense organs,good health,and skillful motor performance might be important to achieving an appropriate distance to school neighbors und aid the individual fish in reducing time spent in the comparatively less safe school periphery.Turning preferences in ancestral fish shoals might have helped fish to maintain groups and stay in formarion,reinforcing aforementioned predator confusion mechanisms,which possibly played a role in the lateralization of the vertebrate brain [Current Zoology 58 (1):116-128,2012].

  16. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.

    Science.gov (United States)

    Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C

    2016-04-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  17. Predator-induced flow disturbances alert prey, from the onset of an attack

    Science.gov (United States)

    Casas, Jérôme; Steinmann, Thomas

    2014-01-01

    Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator–prey systems with sensory ecologies based on flow sensing, in air and water. PMID:25030986

  18. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  19. Maximum sustainable yield and species extinction in a prey-predator system: some new results.

    Science.gov (United States)

    Ghosh, Bapan; Kar, T K

    2013-06-01

    Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.

  20. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle

    Science.gov (United States)

    Johnson, J.A.; Tingay, R.E.; Culver, M.; Hailer, F.; Clarke, M.L.; Mindell, D.P.

    2009-01-01

    The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape. ?? 2008 The Authors.

  1. Reconstruction of historical changes in northern fur seal prey availability and diversity in the western North Pacific through individual-based analysis of dietary records

    Science.gov (United States)

    Kiyota, Masashi; Yonezaki, Shiroh

    2017-06-01

    We analyzed long-term dietary records of northern fur seals (Callorhinus ursinus) to reconstruct historical changes in prey availability and diversity in the western North Pacific off northeastern Japan. The nominal relationships between the occurrence frequencies of fishes or squids in fur seal stomachs and the sampling locations reflected the spatial heterogeneity of fish and squid distributions along the shelf-slope-offshore continuum off northeastern Japan, whereas changes in the temporal occurrence frequencies reflected mainly the migration and foraging patterns of the fur seals. The occurrence probabilities of fishes and squids in fur seal stomachs were standardized by using generalized linear models to compensate for sampling biases in space and time. The reconstructed historical trends revealed decadal shifts in relatively high prey abundance-from mackerels in the 1970s to Japanese sardine in the 1980s and myctophids/sparkling enope squids in the 1990s-that were related to decadal shifts in the oceanographic regime. The sequential increase in mackerel and Japanese sardine abundances coincided with the annual catch trends of commercial fisheries. The index of overall prey availability calculated from the standardized occurrence probabilities of fishes and squids in fur seal stomachs was fairly stable over the decades.

  2. Prey size spectra and prey availability of larval and small juvenile cod

    DEFF Research Database (Denmark)

    Munk, Peter

    1997-01-01

    The aim of the present study is to describe the prey preference characteristics of cod larvae and assess preference variability in relation to species and size composition of copepod prey. A further aim is to examine the hypothesis that dietary prey size spectra remain the same during the larval ...... were indicated, dependent on location. The findings illustrate the usefulness of coupling dietary prey size spectra and biomass spectra of available prey sizes during studies of ichthyoplankton feeding ecology. (C) 1997 The Fisheries Society of the British Isles....

  3. Studies on food organisms of pelagic fishes as revealed by the 1979 North Atlantic Eel Expedition

    Science.gov (United States)

    Appelbaum, S.

    1982-09-01

    The extent to which pelagic fishes occurring in the Sargasso Sea and adjacent parts of the Atlantic prey on leptocephali (Anguilliformes) was investigated. Most of the fishes examined (c. 95%) were collected using a commercial pelagical trawl. The stomach contents of about 1000 fishes (25 species of 10 families), mostly belonging to the suborders Myctophoidei, Stomiatoidei and the order Anguilliformes, were examined. The remains of invertebrates, mainly crustaceans, molluscs, tunicates, chaetognaths, and siphonophores were found in 28.8 % of the stomachs. Fishes, mostly myctophids or fish remains, were observed in 11.2 % of the stomachs; 18.7 % contained unidentified items and 40.6 % were empty. Leptocephali ( Ariosoma spp. and Gnathophis sp.) were found in the alimentary tract of 0.5 % of the fishes examined, exclusively represented by the myctophid, Ceratoscopelus warmingii. This report indicates that the Sargasso Sea population of Anguilla leptocephali, economically the most important eel, is not seriously affected by predation of oceanic fish species considered in this study.

  4. Aquatic pollution increases use of terrestrial prey subsidies by stream fish

    Science.gov (United States)

    Kraus, Johanna M.; Pomeranz, Justin F.; Todd, Andrew S.; Walters, David M.; Schmidt, Travis S.; Wanty, Richard B.

    2016-01-01

    Stream food webs are connected with their riparian zones through cross-ecosystem movements of energy and nutrients. The use and impact of terrestrial subsidies on aquatic consumers is determined in part by in situ biomass of aquatic prey. Thus, stressors such as aquatic pollutants that greatly reduce aquatic secondary production could increase the need for and reliance of stream consumers on terrestrial resource subsidies.

  5. Stochastic analysis of a pulse-type prey-predator model

    Science.gov (United States)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  6. Is the red spotted green frog Hypsiboas punctatus (Anura: Hylidae) selecting its preys? The importance of prey availability.

    Science.gov (United States)

    López, Javier A; Scarabotti, Pablo A; Medrano, María C; Ghirardi, Romina

    2009-09-01

    The study of the feeding ecology of amphibians is an old issue in herpetology. Notwithstanding, the lack of food resources data in many studies of amphibians feeding has lead to partial understanding of frog feeding strategies. In this study we evaluate the trophic selectivity of a red spotted green frog (Hypsiboas punctatus) population from a Middle Paraná River floodplain pond in Argentina, and discuss the importance of prey availability data when interpreting results from diet analysis. We analyzed the gut contents of 47 H. punctatus adults and compared frog's diet with the environmental food resources. Prey availability was estimated by systematically seep-netting the microhabitat where anurans were localized foraging. We identified 33 taxonomic categories from gastrointestinal contents. Numerically, the most important prey categories were dipterans, followed by hemipterans, homopterans and coleopterans. The diet similarity between males and females was high and no statistical differences in diet composition were found. The most abundant food resources in the environment were dipterans, coleopterans, homopterans and collembolans. In order to assess whether frogs were selecting their preys, we calculated Pianka's niche overlap index and Jacobs' electivity index comparing gut contents to prey availability data. Trophic niche overlap was medium but significantly higher than expected by chance. The electivity index indicated that H. punctatus foraged dipterans slightly above their environmental abundance. Among the secondary preys, hemipterans were foraged selectively, homopterans were consumed in the same proportion to their occurrence in the environment, coleopterans were foraged quite under their availability and collembolans were practically ignored by frogs. Without food resources data, H. punctatus could be classified as a specialist feeder, but dipterans also were quite abundant in the environment. Our results show that H. punctatus fit better as a

  7. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    Science.gov (United States)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  8. Otolith Length-Fish Length Relationships of Eleven US Arctic Fish Species and Their Application to Ice Seal Diet Studies

    Science.gov (United States)

    Walker, K. L.; Norcross, B.

    2016-02-01

    The Arctic ecosystem has moved into the spotlight of scientific research in recent years due to increased climate change and oil and gas exploration. Arctic fishes and Arctic marine mammals represent key parts of this ecosystem, with fish being a common part of ice seal diets in the Arctic. Determining sizes of fish consumed by ice seals is difficult because otoliths are often the only part left of the fish after digestion. Otolith length is known to be positively related to fish length. By developing species-specific otolith-body morphometric relationships for Arctic marine fishes, fish length can be determined for fish prey found in seal stomachs. Fish were collected during ice free months in the Beaufort and Chukchi seas 2009 - 2014, and the most prevalent species captured were chosen for analysis. Otoliths from eleven fish species from seven families were measured. All species had strong linear relationships between otolith length and fish total length. Nine species had coefficient of determination values over 0.75, indicating that most of the variability in the otolith to fish length relationship was explained by the linear regression. These relationships will be applied to otoliths found in stomachs of three species of ice seals (spotted Phoca largha, ringed Pusa hispida, and bearded Erignathus barbatus) and used to estimate fish total length at time of consumption. Fish lengths can in turn be used to calculate fish weight, enabling further investigation into ice seal energetic demands. This application will aid in understanding how ice seals interact with fish communities in the US Arctic and directly contribute to diet comparisons among and within ice seal species. A better understanding of predator-prey interactions in the US Arctic will aid in predicting how ice seal and fish species will adapt to a changing Arctic.

  9. Bottom-up effects of climate on fish populations: data from the Continuous Plankton Recorder

    DEFF Research Database (Denmark)

    Pitois, S.G.; Lynam, C.P.; Jansen, Teunis

    2012-01-01

    The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers...... in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting...... with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability...

  10. Information theory and robotics meet to study predator-prey interactions

    Science.gov (United States)

    Neri, Daniele; Ruberto, Tommaso; Cord-Cruz, Gabrielle; Porfiri, Maurizio

    2017-07-01

    Transfer entropy holds promise to advance our understanding of animal behavior, by affording the identification of causal relationships that underlie animal interactions. A critical step toward the reliable implementation of this powerful information-theoretic concept entails the design of experiments in which causal relationships could be systematically controlled. Here, we put forward a robotics-based experimental approach to test the validity of transfer entropy in the study of predator-prey interactions. We investigate the behavioral response of zebrafish to a fear-evoking robotic stimulus, designed after the morpho-physiology of the red tiger oscar and actuated along preprogrammed trajectories. From the time series of the positions of the zebrafish and the robotic stimulus, we demonstrate that transfer entropy correctly identifies the influence of the stimulus on the focal subject. Building on this evidence, we apply transfer entropy to study the interactions between zebrafish and a live red tiger oscar. The analysis of transfer entropy reveals a change in the direction of the information flow, suggesting a mutual influence between the predator and the prey, where the predator adapts its strategy as a function of the movement of the prey, which, in turn, adjusts its escape as a function of the predator motion. Through the integration of information theory and robotics, this study posits a new approach to study predator-prey interactions in freshwater fish.

  11. Environmental versus demographic variability in stochastic predator–prey models

    International Nuclear Information System (INIS)

    Dobramysl, U; Täuber, U C

    2013-01-01

    In contrast to the neutral population cycles of the deterministic mean-field Lotka–Volterra rate equations, including spatial structure and stochastic noise in models for predator–prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Our previous study showed that population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization. (paper)

  12. Comparative growth and development of spiders reared on live and dead prey.

    Science.gov (United States)

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.

  13. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species.

    Science.gov (United States)

    Meng, Xin-You; Qin, Ni-Ni; Huo, Hai-Feng

    2018-12-01

    In this paper, a predator-prey system with harvesting prey and disease in prey species is given. In the absence of time delay, the existence and stability of all equilibria are investigated. In the presence of time delay, some sufficient conditions of the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analysing the corresponding characteristic equation, and the properties of Hopf bifurcation are given by using the normal form theory and centre manifold theorem. Furthermore, an optimal harvesting policy is investigated by applying the Pontryagin's Maximum Principle. Numerical simulations are performed to support our analytic results.

  14. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.

    Science.gov (United States)

    Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D

    2015-03-03

    Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.

  15. Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.

    Science.gov (United States)

    Kindinger, Tye L

    2018-04-01

    The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in

  16. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay

    KAUST Repository

    Bachiller, Eneko; Irigoien, Xabier

    2012-01-01

    The body size of fish is an important factor in determining their biology and ecology, as predators eat prey smaller than themselves. Predator mouth size restricts the availability of possible prey. In this paper we provide the allometric

  17. Adelie penguin population diet monitoring by analysis of food DNA in scats.

    Directory of Open Access Journals (Sweden)

    Simon N Jarman

    Full Text Available The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  18. Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type

    International Nuclear Information System (INIS)

    Lopez-Ruiz, Ricardo; Fournier-Prunaret, Daniele

    2005-01-01

    A cubic discrete coupled logistic equation is proposed to model the predator-prey problem. The coupling depends on the population size of both species and on a positive constant λ, which could depend on the prey reproduction rate and on the predator hunting strategy. Different dynamical regimes are obtained when λ is modified. For small λ, the species become extinct. For a bigger λ, the preys survive but the predators extinguish. Only when the prey population reaches a critical value then predators can coexist with preys. For increasing λ, a bistable regime appears where the populations apart of being stabilized in fixed quantities can present periodic, quasiperiodic and chaotic oscillations. Finally, bistability is lost and the system settles down in a steady state, or, for the biggest permitted λ, in an invariant curve. We also present the basins for the different regimes. The use of the critical curves lets us determine the influence of the zones with different number of first rank preimages in the bifurcation mechanisms of those basins

  19. Coral reef fish populations can persist without immigration

    KAUST Repository

    Salles, Océane C.

    2015-11-18

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase.

  20. Best practices for assessing forage fish fisheries-seabird resource competition

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Anker-Nilssen, Tycho; Arimitsu, Mayumi L.; Bennison, Ashley; Bertrand, Sophie; Boersch-Supan, Philipp; Boyd, Charlotte; Bransome, Nicole C.; Crawford, Robert J.M.; Daunt, Francis; Furness, Robert W.; Gianuca, Dimas; Gladics, Amanda; Koehn, Laura; Lang, Jennifer W.; Loggerwell, Elizabeth; Morris, Taryn L.; Phillips, Elizabeth M.; Provencher, Jennifer; Punt, André E..; Saraux, Claire; Shannon, Lynne; Sherley, Richard B.; Simeone, Alejandro; Wanless, Ross M.; Wanless, Sarah; Zador, Stephani

    2017-01-01

    Worldwide, in recent years capture fisheries targeting lower-trophic level forage fish and euphausiid crustaceans have been substantial (∼20 million metric tons [MT] annually). Landings of forage species are projected to increase in the future, and this harvest may affect marine ecosystems and predator-prey interactions by removal or redistribution of biomass central to pelagic food webs. In particular, fisheries targeting forage fish and euphausiids may be in competition with seabirds, likely the most sensitive of marine vertebrates given limitations in their foraging abilities (ambit and gape size) and high metabolic rate, for food resources. Lately, apparent competition between fisheries and seabirds has led to numerous high-profile conflicts over interpretations, as well as the approaches that could and should be used to assess the magnitude and consequences of fisheries-seabird resource competition. In this paper, we review the methods used to date to study fisheries competition with seabirds, and present “best practices” for future resource competition assessments. Documenting current fisheries competition with seabirds generally involves addressing two major issues: 1) are fisheries causing localized prey depletion that is sufficient to affect the birds? (i.e., are fisheries limiting food resources?), and 2) how are fisheries-induced changes to forage stocks affecting seabird populations given the associated functional or numerical response relationships? Previous studies have been hampered by mismatches in the scale of fisheries, fish, and seabird data, and a lack of causal understanding due to confounding by climatic and other ecosystem factors (e.g., removal of predatory fish). Best practices for fisheries-seabird competition research should include i) clear articulation of hypotheses, ii) data collection (or summation) of fisheries, fish, and seabirds on matched spatio-temporal scales, and iii) integration of observational and experimental

  1. Invasive lionfish preying on critically endangered reef fish

    Science.gov (United States)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  2. Do top predators cue on sound production by mesopelagic prey?

    Science.gov (United States)

    Baumann-Pickering, S.; Checkley, D. M., Jr.; Demer, D. A.

    2016-02-01

    Deep-scattering layer (DSL) organisms, comprising a variety of mesopelagic fishes, and squids, siphonophores, crustaceans, and other invertebrates, are preferred prey for numerous large marine predators, e.g. cetaceans, seabirds, and fishes. Some of the DSL species migrate from depth during daylight to feed near the surface at night, transitioning during dusk and dawn. We investigated if any DSL organisms create sound, particularly during the crepuscular periods. Over several nights in summer 2015, underwater sound was recorded in the San Diego Trough using a high-frequency acoustic recording package (HARP, 10 Hz to 100 kHz), suspended from a drifting surface float. Acoustic backscatter from the DSL was monitored nearby using a calibrated multiple-frequency (38, 70, 120, and 200 kHz) split-beam echosounder (Simrad EK60) on a small boat. DSL organisms produced sound, between 300 and 1000 Hz, and the received levels were highest when the animals migrated past the recorder during ascent and descent. The DSL are globally present, so the observed acoustic phenomenon, if also ubiquitous, has wide-reaching implications. Sound travels farther than light or chemicals and thus can be sensed at greater distances by predators, prey, and mates. If sound is a characteristic feature of pelagic ecosystems, it likely plays a role in predator-prey relationships and overall ecosystem dynamics. Our new finding inspires numerous questions such as: Which, how, and why have DSL organisms evolved to create sound, for what do they use it and under what circumstances? Is sound production by DSL organisms truly ubiquitous, or does it depend on the local environment and species composition? How may sound production and perception be adapted to a changing environment? Do predators react to changes in sound? Can sound be used to quantify the composition of mixed-species assemblages, component densities and abundances, and hence be used in stock assessment or predictive modeling?

  3. Rapid changes in small fish mercury concentrations in estuarine wetlands: Implications for wildlife risk and monitoring programs

    Science.gov (United States)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2009-01-01

    Small fish are commonly used to assess mercury (Hg) risk to wildlife and monitor Hg in wetlands. However, limited research has evaluated short-term Hg variability in small fish, which can have important implications for monitoring programs and risk assessment. We conducted a time-series study of Hg concentrations in two small fish species representing benthic (longjaw mudsuckers [Gillichthys mirabilis]) and pelagic (threespine sticklebacks [Gasterosteus aculeatus]) food-webs within three wetland habitats in San Francisco Bay Estuary. We simultaneously monitored prey deliveries, nest initiation, and chick hatching dates of breeding Forster's terns (Sterna forsteri), the most abundant nesting piscivore in the region. Mudsuckers and sticklebacks were the predominant prey fish, comprising 36% and 25% of tern diet, and Hg concentrations averaged (geometric mean ?? SE, ??g/g dw) 0.44 ?? 0.01 and 0.68 ?? 0.03, respectively. Fish Hg concentrations varied substantially over time following a quadratic form in both species, increasing 40% between March and May then decreasing 40% between May and July. Importantly, Forster's terns initiated 68% of nests and 31% of chicks hatched during the period of peak Hg concentrations in prey fish. These results illustrate the importance of short-term temporal variation in small fish Hg concentrations for both Hg monitoring programs and assessing wildlife risk.

  4. Linking Deep-Waer Prey Fields with Odontocete Population Structure and Behavior

    Science.gov (United States)

    2015-09-30

    potentially mitigate beaked whale responses to disturbance, providing direct input data to PCOD models for beaked whales • Leverage previous...principles of cetacean foraging ecology and responses to disturbance • Identify key prey metrics for future analyses and incorporation into PCOD

  5. Forage fish, their fisheries, and their predators: who drives whom?

    DEFF Research Database (Denmark)

    Engelhard, Georg H.; Peck, Myron A.; Rindorf, Anna

    2014-01-01

    exist, as in the North Sea. Sandeel appears to be the most important prey forage fish. Seabirds are most dependent on forage fish, due to specialized diet and distributional constraints (breeding colonies). Other than fisheries, key predators of forage fish are a few piscivorous fish species including...... saithe, whiting, mackerel, and horse-mackerel, exploited in turn by fisheries; seabirds and seals have a more modest impact. Size-based foodwebmodelling suggests that reducing fishing mortality may not necessarily lead to larger stocks of piscivorous fish, especially if their early life stages compete...

  6. Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects

    International Nuclear Information System (INIS)

    Hui Jing; Zhu Deming

    2006-01-01

    In this paper, we consider the prey-dependent consumption predator-prey (natural enemy-pest) models with age structure for the predator, immature and mature natural enemies are released and pesticide is applied impulsively. We prove that, when the impulsive period is no longer than some threshold, the pest-eradication solution is globally asymptotically stable, or say, the pest population can be eradicated totally. But from the point of ecological balance and saving resources, we only need to control the pest population under the economic threshold level instead of eradicating it totally, so we further prove that, when the impulsive period is longer than the threshold, pest population and natural enemy population can coexist, i.e., the system is uniformly permanent. Considering population communities always are imbedded in periodically varying environments, and the parameters in ecosystem models may oscillate simultaneously with the periodically varying environments, we add a forcing term into the prey population's intrinsic growth rate. From two aspects, i.e., when the period of forcing term is same as the impulsive period and when the two periods are different, we illustrate that, the dynamical behaviors of corresponding impulsive system are very complex

  7. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana

    Science.gov (United States)

    Winterbach, Christiaan W.; Boast, Lorraine K.; Klein, Rebecca; Somers, Michael J.

    2015-01-01

    Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs’ preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana’s agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana’s still large and contiguous cheetah population. PMID:26213646

  8. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana.

    Science.gov (United States)

    Winterbach, Hanlie E K; Winterbach, Christiaan W; Boast, Lorraine K; Klein, Rebecca; Somers, Michael J

    2015-01-01

    Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs' preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana's agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana's still large and contiguous cheetah population.

  9. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana

    Directory of Open Access Journals (Sweden)

    Hanlie E.K. Winterbach

    2015-07-01

    Full Text Available Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus, additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs’ preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana’s agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana’s still large and contiguous cheetah population.

  10. Kelp Forests versus Urchin Barrens: Alternate Stable States and Their Effect on Sea Otter Prey Quality in the Aleutian Islands

    Directory of Open Access Journals (Sweden)

    Nathan L. Stewart

    2012-01-01

    Full Text Available Macroalgal and urchin barren communities are alternately stable and persist in the Aleutians due to sea otter presence and absence. In the early 1990s a rapid otter population decline released urchins from predation and caused a shift to the urchin-dominated state. Despite increases in urchin abundance, otter numbers continued to decline. Although debated, prey quality changes have been implicated in current otter population status. This study examined otter prey abundance, size, biomass, and potential energy density in remnant kelp forest and urchin-dominated communities to determine if alternate stable states affect prey quality. Findings suggest that although urchin barrens provide more abundant urchin prey, individual urchins are smaller and provide lower biomass and potential energy density compared to kelp forests. Shifts to urchin barrens do affect prey quality but changes are likely compensated by increased prey densities and are insufficient in explaining current otter population status in the Aleutians.

  11. Importance of small fishes and invasive crayfish in otter Lutra lutra diet in an English chalk stream

    Directory of Open Access Journals (Sweden)

    Britton J. Robert

    2017-01-01

    Full Text Available The diet composition of the European otter Lutra lutra was assessed using spraint analysis in the Hampshire Avon, a lowland chalk stream in Southern England, over an 18-month period. Small cyprinid fishes were the main prey item taken in all seasons, with bullhead Cottus gobio and stone loach Barbatula barbatula also important; there were relatively few larger fishes of interest to fisheries found. There were significant seasonal differences in diet composition by season, with signal crayfish Pacifastacus leniusculus only being prominent prey items in warmer months and amphibians in winter, revealing that non-fish resources were seasonally important dietary components. Reconstructed body lengths of prey revealed the only species present in diet >350 mm was pike Esox lucius. These dietary data thus provide important information for informing conservation conflicts between otters and fishery interests.

  12. Assessment of Competition between Fisheries and Steller Sea Lions in Alaska Based on Estimated Prey Biomass, Fisheries Removals and Predator Foraging Behaviour.

    Directory of Open Access Journals (Sweden)

    Tabitha C Y Hui

    Full Text Available A leading hypothesis to explain the dramatic decline of Steller sea lions (Eumetopias jubatus in western Alaska during the latter part of the 20th century is a change in prey availability due to commercial fisheries. We tested this hypothesis by exploring the relationships between sea lion population trends, fishery catches, and the prey biomass accessible to sea lions around 33 rookeries between 2000 and 2008. We focused on three commercially important species that have dominated the sea lion diet during the population decline: walleye pollock, Pacific cod and Atka mackerel. We estimated available prey biomass by removing fishery catches from predicted prey biomass distributions in the Aleutian Islands, Bering Sea and Gulf of Alaska; and modelled the likelihood of sea lions foraging at different distances from rookeries (accessibility using satellite telemetry locations of tracked animals. We combined this accessibility model with the prey distributions to estimate the prey biomass accessible to sea lions by rookery. For each rookery, we compared sea lion population change to accessible prey biomass. Of 304 comparisons, we found 3 statistically significant relationships, all suggesting that sea lion populations increased with increasing prey accessibility. Given that the majority of comparisons showed no significant effect, it seems unlikely that the availability of pollock, cod or Atka mackerel was limiting sea lion populations in the 2000s.

  13. The Allometry of Prey Preferences

    Science.gov (United States)

    Kalinkat, Gregor; Rall, Björn Christian; Vucic-Pestic, Olivera; Brose, Ulrich

    2011-01-01

    The distribution of weak and strong non-linear feeding interactions (i.e., functional responses) across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles) simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses) as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems. PMID:21998724

  14. The allometry of prey preferences.

    Directory of Open Access Journals (Sweden)

    Gregor Kalinkat

    Full Text Available The distribution of weak and strong non-linear feeding interactions (i.e., functional responses across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems.

  15. Gluttonous predators: how to estimate prey size when there are too many prey

    Directory of Open Access Journals (Sweden)

    MS. Araújo

    Full Text Available Prey size is an important factor in food consumption. In studies of feeding ecology, prey items are usually measured individually using calipers or ocular micrometers. Among amphibians and reptiles, there are species that feed on large numbers of small prey items (e.g. ants, termites. This high intake makes it difficult to estimate prey size consumed by these animals. We addressed this problem by developing and evaluating a procedure for subsampling the stomach contents of such predators in order to estimate prey size. Specifically, we developed a protocol based on a bootstrap procedure to obtain a subsample with a precision error of at the most 5%, with a confidence level of at least 95%. This guideline should reduce the sampling effort and facilitate future studies on the feeding habits of amphibians and reptiles, and also provide a means of obtaining precise estimates of prey size.

  16. On the Gause predator-prey model with a refuge: a fresh look at the history.

    Science.gov (United States)

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in

  18. Prey preferences of the jaguar Panthera onca reflect the post-Pleistocene demise of large prey.

    Directory of Open Access Journals (Sweden)

    Matt W Hayward

    2016-01-01

    Full Text Available Documenting the impacts of the Pleistocene megafaunal extinctions on predator-prey interactions is a challenge because of the incomplete fossil record and depauperate extant community structure. We used a comparative ecological approach to investigate whether the existing prey preference patterns of jaguars Panthera onca were potentially affected by the Pleistocene extinctions in the Americas compared with large felids in Africa and Asia. We reviewed the literature and found 25 studies reporting 3214 jaguar kills recorded throughout the species’ distribution. We found that jaguars significantly preferred capybara Hydrochaeris hydrochaeris and giant anteater Myrmecophaga tridactyla, and avoided agoutis, carnivorans, primates, black-eared opossum Didelphis marsupialis and tapirs. Generalised linear models showed that jaguars select prey primarily based on socio-ecological and behavioural traits (abundance and herd size, rather than morphological characteristics (body size. Nonetheless, their accessible prey weight range was 6-60 kg, preferred prey weight range was 45-85 kg, and mean mass of significantly preferred prey was 32 ± 13 kg leading to a predator to prey body mass ratio of 1:0.53, which is much less than that of other solitary felids. Compared with other large, solitary felids, jaguars have an unusual predator to prey body mass ratio, show limited effect of prey morphology as a driver of prey selection, lack evidence of optimal foraging beyond their preferred prey, and an absence of preferentially hunting on Cetartiodactyla herbivores. These features, coupled with the reduction in jaguar body mass since the Pleistocene, suggest that the loss of larger potential prey items within the preferred and accessible weight ranges at the end-Pleistocene still affects jaguar predatory behaviour. It may be that jaguars survived this mass extinction event by preferentially preying on relatively small species.

  19. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  20. Interactions between walleyes and smallmouth bass in a Missouri River reservoir with consideration of the influence of temperature and prey

    Science.gov (United States)

    Wuellner, Melissa R.; Chipps, Steven R.; Willis, David W.; Adams, Wells E.

    2010-01-01

    Walleyes Sander vitreus are the most popular fish among South Dakota anglers, but smallmouth bass Micropterus dolomieu were introduced to provide new angling opportunities. Some walleye anglers have reported reductions in the quality of walleye fisheries since the introduction of smallmouth bass and attribute this to the consumption of young walleyes by smallmouth bass and competition for shared prey resources. We quantified the diets of walleyes and smallmouth bass in the lower reaches of Lake Sharpe (a Missouri River reservoir), calculated the diet overlap between the two predators, and determined whether they partitioned shared prey based on size. We also quantified walleye diets in the upper reach of the reservoir, which has a different prey base and allowed us to compare the growth rates of walleyes within Lake Sharpe. Age-0 gizzard shad Dorosoma cepedianum composed a substantial proportion of the diets of both predators, regardless of location, for most of the growing season; the patterns in shad vulnerability appeared to drive the observed patterns in diet overlap. Smallmouth bass appeared to consume a smaller size range of gizzard shad than did walleyes, which consumed a wide range. Smallmouth bass consumed Sander spp. in some months, but in very low quantities. Given that global climate change is expected to alter the population and community dynamics in Great Plains reservoirs, we also used a bioenergetics approach to predict the potential effects of limiting prey availability (specifically, the absence of gizzard shad and rainbow smelt Osmerus mordax) and increased water temperatures (as projected from global climate change models) on walleye and smallmouth bass growth. The models indicated that the absence of rainbow smelt from the diets of walleyes in upper Lake Sharpe would reduce growth but that the absence of gizzard shad would have a more marked negative effect on both predators at both locations. The models also indicated that higher

  1. Experimental and observational evidence reveals that predators in natural environments do not regulate their prey: They are passengers, not drivers

    Science.gov (United States)

    White, T. C. R.

    2013-11-01

    Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.

  2. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.

    Science.gov (United States)

    Johansen, J L; Messmer, V; Coker, D J; Hoey, A S; Pratchett, M S

    2014-04-01

    Large-bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West-Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24-27 °C, spontaneous swimming speeds of common coral trout were 0.43-0.45 body lengths per second (bls(-1)), but dropped sharply to 0.29 bls(-1) at 30 °C and 0.25 bls(-1) at 33 °C. Concurrently, individuals spent 9.3-10.6% of their time resting motionless on the bottom at 24-27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high-latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low-latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and survival of individuals and populations. © 2013 John Wiley & Sons Ltd.

  3. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    Science.gov (United States)

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  4. Testing the junk-food hypothesis on marine birds: Effects of prey type on growth and development

    Science.gov (United States)

    Romano, Marc D.; Piatt, John F.; Roby, D.D.

    2006-01-01

    The junk-food hypothesis attributes declines in productivity of marine birds and mammals to changes in the species of prey they consume and corresponding differences in nutritional quality of those prey. To test this hypothesis nestling Black-legged Kittiwakes (Rissa tridactyla) and Tufted Puffins (Fratercula cirrhata) were raised in captivity under controlled conditions to determine whether the type and quality of fish consumed by young seabirds constrains their growth and development. Some nestlings were fed rations of Capelin (Mallotus villosus), Herring (Clupea pallasi) or Sand Lance (Ammodytes hexapterus) and their growth was compared with nestlings raised on equal biomass rations of Walleye Pollock (Theragra chalcograma). Nestlings fed rations of herring, sand lance, or capelin experienced higher growth increments than nestlings fed pollock. The energy density of forage fish fed to nestlings had a marked effect on growth increments and could be expected to have an effect on pre- and post-fledging survival of nestlings in the wild. These results provide empirical support for the junk-food hypothesis.

  5. Distribution of 137Cs among individuals in fish and mammal populations in Chornobyl

    International Nuclear Information System (INIS)

    Smith, M.; Glenn, T.; Oleksyk, T.; Gashchak, S.; Zalissky, A.

    2001-01-01

    The frequency distribution of 137 Cs in populations of fish and mammals is not normal, because there is a strong relationship between the standard deviation and the mean of the distributions for both fish and mammals. The distribution for mammals is more skewed than for fish. These two types of vertebrates probably use their environment in fundamentally different ways and/or 137 Cs is distributed more heterogeneously in terrestrial than in aquatic environments. The greatest risk from the contaminant is confined to a few individuals in each population

  6. Prey capture kinematics and four-bar linkages in the bay pipefish, Syngnathus leptorhynchus.

    Science.gov (United States)

    Flammang, Brooke E; Ferry-Graham, Lara A; Rinewalt, Christopher; Ardizzone, Daniele; Davis, Chante; Trejo, Tonatiuh

    2009-01-01

    Because of their modified cranial morphology, syngnathid pipefishes have been described as extreme suction feeders. The presumption is that these fishes use their elongate snout much like a pipette in capturing planktonic prey. In this study, we quantify the contribution of suction to the feeding strike and quantitatively describe the prey capture mechanics of the bay pipefish Syngnathus leptorhynchus, focusing specifically on the role of both cranial elevation and snout movement. We used high-speed video to capture feeding sequences from nine individuals feeding on live brine shrimp. Sequences were digitized in order to calculate kinematic variables that could be used to describe prey capture. Prey capture was very rapid, from 2 to 6 ms from the onset of cranial rotation. We found that suction contributed at most about one-eighth as much as ram to the reduction of the distance between predator and prey. This movement of the predator was due almost exclusively to movement of the snout and neurocranium rather than movement of the whole body. The body was positioned ventral and posterior to the prey and the snout was rotated dorsally by as much as 21 degrees, thereby placing the mouth immediately behind the prey for capture. The snout did not follow the identical trajectory as the neurocranium, however, and reached a maximum angle of only about 10 degrees. The snout consists, in part, of elongate suspensorial elements and the linkages among these elements are retained despite changes in shape. Thus, when the neurocranium is rotated, the four-bar linkage that connects this action with hyoid depression simultaneously acts to expand and straighten the snout relative to the neurocranium. We confirm the presence of a four-bar linkage that facilitates these kinematics by couplings between the pectoral girdle, urohyal, hyoid complex, and the neurocranium-suspensorium complex.

  7. The effects of river flooding on the fish populations of two eastern ...

    African Journals Online (AJOL)

    fish populations in two eastern Cape estuaries is compared. .... Methods. Catch per unit effort (CPUE) of fish in the Swartkops and Sundays estuaries was obtained by means of gill-nets. ..... Abundance of other species was little affected ex-.

  8. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model

    Science.gov (United States)

    Toaha, S.; Azis, M. I.

    2018-03-01

    This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.

  9. Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant.

    Science.gov (United States)

    Bertol, Nils; Paniw, Maria; Ojeda, Fernando

    2015-05-01

    Carnivorous plants have unusually modified leaves to trap insects as an adaptation to low-nutrient environments. Disparate mechanisms have been suggested as luring traits to attract prey insects into their deadly leaves, ranging from very elaborate to none at all. Drosophyllum lusitanicum is a rare carnivorous plant with a common flypaper-trap mechanism. Here we tested whether Drosophyllum plants lure prey insects into their leaves or they act just as passive traps. We compared prey capture between live, potted plants and Drosophyllum-shaped artificial mimics coated with odorless glue. Since this species is insect-pollinated, we also explored the possible existence of a pollinator-prey conflict by quantifying the similarity between the pollination and prey guilds in a natural population. All experiments were done in southern Spain. The sticky leaves of Drosophyllum captured significantly more prey than mimics, particularly small dipterans. Prey attraction, likely exerted by scent or visual cues, seems to be unrelated to pollinator attraction by flowers, as inferred from the low similarity between pollinator and prey insect faunas found in this species. Our results illustrate the effectiveness of this carnivorous species at attracting insects to their flypaper-trap leaves. © 2015 Botanical Society of America, Inc.

  10. Do low-mercury terrestrial resources subsidize low-mercury growth of stream fish? Differences between species along a productivity gradient.

    Directory of Open Access Journals (Sweden)

    Darren M Ward

    Full Text Available Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis and Atlantic salmon (Salmo salar, potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation.

  11. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  12. Fish population responses to hydrological variation in a seasonal wetland in southeast México

    Directory of Open Access Journals (Sweden)

    Luis H. Escalera-Vázquez

    2017-06-01

    Full Text Available ABSTRACT Hydrological variation differently affects fish species. In the present study, the response of local populations of 13 fish local species to hydrological variation in a tropical wetland was evaluated. The objectives were to analyze the abundance response of fish species with distinct life history strategies and to assess the role of hydrological variation on fish population patterns. We found that opportunistic strategists were favored by high hydrological variation in drought periods, the equilibrium strategists were related to stable habitats, and periodic strategists were regulated by floods and temperature. However, the life history strategies identified for some species in this study do not correspond to the classification reported in other studies. Our results highlight the importance to study the abundance responses of species at local and regional scales to identify variations in life-history strategies, which can reflect local adaptations of species to hydrological changes, this is useful in order to understand and predict the responses of fish populations to the local environment.

  13. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    Science.gov (United States)

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  14. Prey diversity is affected by climate and differs between age classes in the Red-backed Shrike (Lanius collurio)

    DEFF Research Database (Denmark)

    Pedersen, Lykke; Geertsma, Marten; Tøttrup, Anders P.

    2012-01-01

    -backed Shrike (Lanius collurio) populations in Denmark, based onmore than 11,000 prey items covering seven years.We found a negative correlation between prey diversity and temperature, indicating that Red-backed Shrikes feed on preferred prey items in warmer summers (low diversity)while forced to feed...

  15. The threshold of coexistence and critical behaviour of a predator-prey cellular automaton

    International Nuclear Information System (INIS)

    Arashiro, Everaldo; Tome, Tania

    2007-01-01

    We study a probabilistic cellular automaton to describe two population biology problems: the threshold of species coexistence in a predator-prey system and the spreading of an epidemic in a population. By carrying out mean-field approximations and numerical simulations we obtain the phase boundaries (thresholds) related to the transition between an active state, where prey and predators present a stable coexistence, and a prey absorbing state. The numerical estimates for the critical exponents show that the transition belongs to the directed percolation universality class. In the limit where the cellular automaton maps into a model for the spreading of an epidemic with immunization we observe a crossover from directed percolation class to the dynamic percolation class. Patterns of growing clusters related to species coexistence and spreading of epidemic are shown and discussed

  16. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    Science.gov (United States)

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  17. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.

    Science.gov (United States)

    Persson, Karl-Johan; Bergström, Kristofer; Mazur-Marzec, Hannah; Legrand, Catherine

    2013-12-15

    Toxic cyanobacterial blooms are an important problem worldwide. Cyanobacteria may negatively impact young-of-the-year (YOY) fish directly (toxin production, turbidity, decrease in water quality) or indirectly (trophic toxin transfer, changes in prey species composition). Here we test whether there are any differences in cyanobacterial tolerance between four geographically distinct populations of European perch (Perca fluviatilis). We show that P. fluviatilis may develop tolerance against cyanobacteria demonstrated by the ability of individuals from a marine site (exposed to annual cyanobacterial blooms) to increase their detoxification more than individuals from an oligotrophic site (rarely exposed to cyanobacteria). Our results also revealed significant interaction effects between genotypes within a population and response to cyanobacterial exposure in terms of absolute growth and detoxification activity. This genotype by treatment interaction may result in local adaptations to cyanobacterial exposure in P. fluviatilis. Hence, the sensitivity against cyanobacterial exposure may differ between within species populations increasing the importance of local management of fish populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multi-camera volumetric PIV for the study of jumping fish

    Science.gov (United States)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  19. Prey capture behaviour evoked by simple visual stimuli in larval zebrafish

    Directory of Open Access Journals (Sweden)

    Isaac Henry Bianco

    2011-12-01

    Full Text Available Understanding how the nervous system recognises salient stimuli in the environ- ment and selects and executes the appropriate behavioural responses is a fundamen- tal question in systems neuroscience. To facilitate the neuroethological study of visually-guided behaviour in larval zebrafish, we developed virtual reality assays in which precisely controlled visual cues can be presented to larvae whilst their behaviour is automatically monitored using machine-vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼ 20◦ towards small moving spots (1◦ but reacted to larger spots (10◦ with high-amplitude aversive turns (∼ 60◦. The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analysing movie sequences of larvae hunting parame- cia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behaviour in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey.

  20. Fish predation by semi-aquatic spiders: a global pattern.

    Directory of Open Access Journals (Sweden)

    Martin Nyffeler

    Full Text Available More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil. Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae, in two species of the superfamily Ctenoidea (family Ctenidae, and in one species of the superfamily Corinnoidea (family Liocranidae. The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences. There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae] predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders. Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  1. Fish predation by semi-aquatic spiders: a global pattern.

    Science.gov (United States)

    Nyffeler, Martin; Pusey, Bradley J

    2014-01-01

    More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  2. Seasonal foraging ecology of non-migratory cougars in a system with migrating prey.

    Directory of Open Access Journals (Sweden)

    L Mark Elbroch

    Full Text Available We tested for seasonal differences in cougar (Puma concolor foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus and moose (Alces alces than females, while females killed greater proportions of bighorn sheep (Ovis canadensis, pronghorn (Antilocapra americana, mule deer (Odocoileus hemionus and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1 elevation decreased, 2 distance to edge habitat decreased, 3 distance to large bodies of water decreased, and 4 steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1 elevation decreased, 2 distance to edge habitat decreased, and 3 distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.

  3. Changing tides: ecological and historical perspectives on fish cognition.

    Science.gov (United States)

    Patton, B Wren; Braithwaite, Victoria A

    2015-01-01

    The capacity for specialization and radiation make fish an excellent group in which to investigate the depth and variety of animal cognition. Even though early observations of fish using tools predates the discovery of tool use in chimpanzees, fish cognition has historically been somewhat overlooked. However, a recent surge of interest is now providing a wealth of material on which to draw examples, and this has required a selective approach to choosing the research described below. Our goal is to illustrate the necessity for basing cognitive investigations on the ecological and evolutionary context of the species at hand. We also seek to illustrate the importance of ecology and the environment in honing a range of sensory systems that allow fish to glean information and support informed decision-making. The various environments and challenges with which fish interact require equally varied cognitive skills, and the solutions that fish have developed are truly impressive. Similarly, we illustrate how common ecological problems will frequently produce common cognitive solutions. Below, we focus on four topics: spatial learning and memory, avoiding predators and catching prey, communication, and innovation. These are used to illustrate how both simple and sophisticated cognitive processes underpin much of the adaptive behavioral flexibility exhibited throughout fish phylogeny. Never before has the field had such a wide array of interdisciplinary techniques available to access both cognitive and mechanistic processes underpinning fish behavior. This capacity comes at a critical time to predict and manage fish populations in an era of unprecedented global change. © 2015 John Wiley & Sons, Ltd.

  4. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish.

    Directory of Open Access Journals (Sweden)

    Bruce G Hammock

    Full Text Available Diadromy affords fish access to productive ecosystems, increasing growth and ultimately fitness, but it is unclear whether these advantages persist for species migrating within highly altered habitat. Here, we compared the foraging success of wild Delta Smelt-an endangered, zooplanktivorous, annual, semi-anadromous fish that is endemic to the highly altered San Francisco Estuary (SFE-collected from freshwater (<0.55 psu and brackish habitat (≥0.55 psu. Stomach fullness, averaged across three generations of wild Delta Smelt sampled from juvenile through adult life stages (n = 1,318, was 1.5-fold higher in brackish than in freshwater habitat. However, salinity and season interacted, with higher fullness (1.7-fold in freshwater than in brackish habitat in summer, but far higher fullness in brackish than freshwater habitat during fall/winter and winter/spring (1.8 and 2.0-fold, respectively. To examine potential causes of this interaction we compared mesozooplankton abundance, collected concurrently with the Delta Smelt, in freshwater and brackish habitat during summer and fall/winter, and the metabolic rate of sub-adult Delta Smelt acclimated to salinities of 0.4, 2.0, and 12.0 psu in a laboratory experiment. A seasonal peak in mesozooplankton density coincided with the summer peak in Delta Smelt foraging success in freshwater, and a pronounced decline in freshwater mesozooplankton abundance in the fall coincided with declining stomach fullness, which persisted for the remainder of the year (fall, winter and spring. In brackish habitat, greater foraging 'efficiency' (prey items in stomachs/mesozooplankton abundance led to more prey items per fish and generally higher stomach fullness (i.e., a higher proportion of mesozooplankton detected in concurrent trawls were eaten by fish in brackish habitat. Delta Smelt exhibited no difference in metabolic rate across the three salinities, indicating that metabolic responses to salinity are unlikely to have

  5. "Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game

    Science.gov (United States)

    Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

    2012-01-01

    "Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

  6. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews

    Science.gov (United States)

    2012-01-01

    Background Killer whales (Orcinus orca) are the most widely distributed cetacean, occurring in all oceans worldwide, and within ocean regions different ecotypes are defined based on prey preferences. Prey items are largely unknown in the eastern Canadian Arctic and therefore we conducted a survey of Inuit Traditional Ecological Knowledge (TEK) to provide information on the feeding ecology of killer whales. We compiled Inuit observations on killer whales and their prey items via 105 semi-directed interviews conducted in 11 eastern Nunavut communities (Kivalliq and Qikiqtaaluk regions) from 2007-2010. Results Results detail local knowledge of killer whale prey items, hunting behaviour, prey responses, distribution of predation events, and prey capture techniques. Inuit TEK and published literature agree that killer whales at times eat only certain parts of prey, particularly of large whales, that attacks on large whales entail relatively small groups of killer whales, and that they hunt cooperatively. Inuit observations suggest that there is little prey specialization beyond marine mammals and there are no definitive observations of fish in the diet. Inuit hunters and elders also documented the use of sea ice and shallow water as prey refugia. Conclusions By combining TEK and scientific approaches we provide a more holistic view of killer whale predation in the eastern Canadian Arctic relevant to management and policy. Continuing the long-term relationship between scientists and hunters will provide for successful knowledge integration and has resulted in considerable improvement in understanding of killer whale ecology relevant to management of prey species. Combining scientists and Inuit knowledge will assist in northerners adapting to the restructuring of the Arctic marine ecosystem associated with warming and loss of sea ice. PMID:22520955

  7. Hopf bifurcation of a ratio-dependent predator-prey system with time delay

    International Nuclear Information System (INIS)

    Celik, Canan

    2009-01-01

    In this paper, we consider a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying capacity proportional to prey population. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the system based on the normal form approach and the center manifold theory. Finally, we illustrate our theoretical results by numerical simulations.

  8. Estuarine fish biodiversity of Socotra Island (N.W. Indian Ocean): from the fish community to the functioning of Terapon jarbua populations

    OpenAIRE

    Lavergne, Edouard

    2012-01-01

    Understanding connectivity between estuarine nurseries and marine habitats is fundamental to explore fish population dynamics and to the design of effective conservation and fisheries management strategies. The aim of this work was to provide the first faunistic and ecological baseline of Socotra Island (North-Western Indian Ocean) estuaries and lagoon fishes for governmental coastal managers and decision makers, with a particular focus on the population functioning of a sentinel species: Ter...

  9. Air-to-Air and Air-to-Ground Attack Strategies in Trained Birds of Prey

    Science.gov (United States)

    2014-09-30

    running   after   prey   (Gilbert,   1997),   and   fish   swimming   after   sinking   food   ( Lanchester   &   Mark...J.  Exp.  Biol.  217,  225-­‐234.   Lanchester  B.  S.,  and  Mark  R.  F.  (1975).  Pursuit  and  prediction  in

  10. Assessing risks to fish populations near a proposed disposal facility for used nuclear fuel

    International Nuclear Information System (INIS)

    Hart, D.; Miesenheimer, P.; Hull, R.

    1995-01-01

    The concept of used nuclear fuel disposal in the Canadian Shield is currently undergoing a federal environmental assessment review process. As part of this review, potential risks to brook trout populations in the vicinity of such an underground repository were considered. Chemical fate, transport and exposure models have been utilized to estimate the dose rates from released radionuclides and other fuel constituents, and these likely will not be sufficient to harm fish in nearby streams. However, other stressors such as habitat alteration (e.g., loss of upwelling) and/or fishing pressure associated with increased public access could have significant population impacts if the site is located in a pristine northern region. Population models are utilized to explore the risks of local population reduction for different combinations of fishing pressure and habitat degradation

  11. Macroinvertebrate Prey Availability and Fish Diet Selectivity in Relation to Environmental Variables in Natural and Restoring North San Francisco Bay Tidal Marsh Channels

    Directory of Open Access Journals (Sweden)

    Emily R. Howe

    2014-03-01

    Full Text Available Tidal marsh wetlands provide important foraging habitat for a variety of estuarine fishes. Prey organisms include benthic–epibenthic macroinvertebrates, neustonic arthropods, and zooplankton. Little is known about the abundance and distribution of interior marsh macroinvertebrate communities in the San Francisco Estuary (estuary. We describe seasonal, regional, and site variation in the composition and abundance of neuston and benthic–epibenthic macroinvertebrates that inhabit tidal marsh channels, and relate these patterns to environmental conditions. We also describe spatial and temporal variation in diets of marsh-associated inland silverside, yellowfin goby, and western mosquitofish. Fish and invertebrates were sampled quarterly from October 2003 to June 2005 at six marsh sites located in three river systems of the northern estuary: Petaluma River, Napa River, and  the west Delta. Benthic/epibenthic macroinvertebrates and neuston responded to environmental variables related to seasonal changes (i.e., temperature, salinity, as well as those related to marsh structure (i.e., vegetation, channel edge. The greatest variation in abundance occurred seasonally for neuston and spatially for benthic–epibenthic organisms, suggesting that each community responds to different environmental drivers. Benthic/epibenthic invertebrate abundance and diversity was lowest in the west Delta, and increased with increasing salinity. Insect abundance increased during the spring and summer, while Collembolan (springtail abundance increased during the winter. Benthic/epibenthic macroinvertebrates dominated fish diets, supplemented by insects, with zooplankton playing a minor role. Diet compositions of the three fish species overlapped considerably, with strong selection indicated for epibenthic crustaceans—a surprising result given the typical classification of Menidia beryllina as a planktivore, Acanthogobius flavimanus as a benthic predator, and Gambusia

  12. Low leopard populations in protected areas of Maputaland: a consequence of poaching, habitat condition, abundance of prey, and a top predator.

    Science.gov (United States)

    Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T

    2017-03-01

    Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.

  13. Do nursery habitats provide shelter from flow for juvenile fish?

    Directory of Open Access Journals (Sweden)

    Darren M Parsons

    Full Text Available Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  14. Do nursery habitats provide shelter from flow for juvenile fish?

    Science.gov (United States)

    Parsons, Darren M; MacDonald, Iain; Buckthought, Dane; Middleton, Crispin

    2018-01-01

    Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus) has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs) modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  15. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850

    Directory of Open Access Journals (Sweden)

    A Sanches

    Full Text Available Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil. Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  16. An examination of the population dynamics of syngnathid fishes within Tampa Bay, Florida, USA

    Directory of Open Access Journals (Sweden)

    Heather D. MASONJONES, Emily ROSE, Lori Benson McRAE,Danielle L. DIXSON

    2010-02-01

    Full Text Available Seagrass ecosystems worldwide have been declining, leading to a decrease in associated fish populations, especially those with low mobility such as syngnathids (pipefish and seahorses. This two-year pilot study investigated seasonal patterns in density, growth, site fidelity, and population dynamics of Tampa Bay (FL syngnathid fishes at a site adjacent to two marinas under construction. Using a modified mark-recapture technique, fish were collected periodically from three closely located sites that varied in seagrass species (Thalassia spp., Syringodium spp., and mixed-grass sites and their distance from open water, but had consistent physical/chemical environmental characteristics. Fish were marked, photographed for body size and gender measurements, and released the same day at the capture site. Of the 5695 individuals surveyed, 49 individuals were recaptured, indicating a large, flexible population. Population density peaks were observed in July of both years, with low densities in late winter and late summer. Spatially, syngnathid densities were highest closest to the mouth of the bay and lowest near the shoreline. Seven species of syngnathid fishes were observed, and species-specific patterns of seagrass use emerged during the study. However, only two species, Syngnathus scovelli and Hippocampus zosterae, were observed at high frequencies. For these two species, body size decreased across the study period, but while S. scovelli’s population density decreased, H. zosterae’s increased. Across six of the seven species, population size declined over the course of this preliminary study; however, seasonal shifts were impossible to distinguish from potential anthropogenic effects of construction [Current Zoology 56 (1: 118–133, 2010].

  17. Monitoring of fish species in the Lamone river: distribution and morphometric measures of the populations

    Directory of Open Access Journals (Sweden)

    Riccardo Bozzi

    2010-01-01

    Full Text Available Fish samplings were carried out monthly from spring to autumn during 2008, on the Lamone river and the Campigno stream by an electrofishing, in order to verify the presence of fish populations and the most common species represented. Barb, Barbus plebejus, Blageon, Leuciscus muticellus, Chub, Leuciscus cephalus, South European Nase, Chondrostoma genei were identified. A small population of Brown trout, Salmo trutta fario was also recognized. Barb is the most represented species in all the sites. The samplings highlight that Lamone river presented conditions suitable to fully guarantee the life of the fish populations.

  18. Population genomics of marine fishes: next generation prospects and challenges

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Therkildsen, Nina Overgaard; Pujolar, J.M.

    2014-01-01

    Over the past few years, technological advances have facilitated giant leaps forward in our ability to generate genome-wide molecular data, offering exciting opportunities for gaining new insights into the ecology and evolution of species where genomic information is still limited. Marine fishes...... time scales, identifying genomic signatures associated with population divergence under gene flow, and determining the genetic basis of phenotypic traits. We also consider future challenges pertaining to the implementation of genome-wide coverage through next-generation sequencing and genotyping...... methods in marine fishes. Complications associated with fast decay of linkage disequilibrium, as expected for species with large effective population sizes, and the possibility that adaptation is associated with both soft selective sweeps and polygenic selection, leaving complex genomic signatures...

  19. Diet, Prey Selection, and Body Condition of Age-0 Delta Smelt, Hypomesus transpacificus, in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Steven B. Slater

    2014-09-01

    Full Text Available Steven B. Slater and Randall D. Baxterdoi: http://dx.doi.org/10.15447/sfews.2014v12iss3art1The Delta Smelt, an endangered fish, has suffered a long-term decline in abundance, believed to result from, in part, to changes in the pelagic food web of the upper San Francisco Estuary. To investigate the current role of food as a factor in Delta Smelt well-being, we developed reference criteria for gut fullness and body condition based on allometric growth. We then examined monthly diet, prey selectivity, and gut fullness of larvae and juvenile Delta Smelt collected April through September in 2005 and 2006 for evidence of feeding difficulties leading to reduced body condition. Calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi remained major food items during spring and from early summer through fall, respectively. Other much larger copepods and macroinvertebrates contributed in lesser numbers to the diet of older juvenile fish from mid-summer through fall. In fall, juvenile Delta Smelt periodically relied heavily on very small prey and prey potentially associated with demersal habitat, suggesting typical pelagic food items were in short supply. We found a strong positive selection for E. affinis and P. forbesi, neutral to negative selection for evasive calanoid Sinocalanus doerrii, and neutral to negative selection for the small cyclopoid copepod Limnoithona tetraspina and copepod nauplii, which were consumed only when extremely numerous in the environment. Feeding incidence was significantly higher in 2006, but among successfully feeding fish we found no between year difference in gut fullness. However, we did detect differences in fullness across months in both years. We found no difference in body condition of Delta Smelt between years yet our sample sizes were low in September when Delta Smelt reverted to feeding on very small organisms and fullness declined, so the longer-term effect remains unknown. Our findings suggest that: Delta

  20. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    Science.gov (United States)

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  1. Feeding preference of adult females of ribbonfish Trichiurus lepturus through prey proximate-composition and caloric values

    Directory of Open Access Journals (Sweden)

    Vanessa Trindade Bittar

    Full Text Available In the present study we analysed the proximate-composition and caloric values of the preferred prey consumed by ribbonfish, Trichiurus lepturus L. 1758 (adult females, that are distributed in the inner continental shelf from northern Rio de Janeiro State, southeastern Brazil (~22ºS, assessing the potential of nutritional and energetic approach as a tool to understand the feeding selective pattern of this marine top carnivore. The preferred prey of this predator composed of fish co-specifics, Pellona harroweri, Chirocentrodon bleekerianus, Lycengraulis grossidens, Peprilus paru, squid Doryteuthis plei, and shrimp Xiphopenaeus kroyeri were collected from 2007 to 2010 for proximate-composition (water, protein, lipid, ash, and carbohydrate and caloric value analyses. The correspondence analysis showed that protein is the main component in the prey species (61.32% of variance explained, standing out from the other nutrients. Lipid has the highest percentage related to L. grossidens, ash to X. kroyeri and carbohydrate to D. plei. The strong correlations between protein and caloric value (positive and lipid and caloric value (negative indicated that T. lepturus is attending its energy demand through the prey protein content. This work elucidated the feeding preference of adult females of T. lepturus in relation to nutritional and caloric content of their preferred prey. The species showed food selectivity to prey that provide more energy per ingested biomass, so that the feeding events can maximize the predator's caloric gain, which is obtained by a protein-based diet.

  2. Prey-predator dynamics driven by the solar radiation - Part 1

    International Nuclear Information System (INIS)

    Sertorio, L.

    2000-01-01

    In this paper is studied a model ecosystem represented by two components: prey and predator. The predator feeds only on the prey, the prey, in turn, feeds on the solar radiation. In this scheme the two-species dynamics is no longer independent of the external physical conditions. Such independence was instead postulated in the Lotka-Volterra scheme. In this paper is considered the growth of the prey not unbounded (exponential), but logistic, where the saturation factor is governed by the available solar flux, more precisely by the percent of the solar flux that contains the photon frequencies which can drive the photosynthesis. In this way the solar flux represents the driving term of the dynamics, as it is expected in general for a realistic ecosystem. The system is asymptotically stable. The equilibrium values of the prey and predator numbers depend on several parameters. The system contains two nonlinear coupling terms and two coupling parameters. The dependence of the equilibrium point on the coupling parameters is studied in detail. According to this model, it can be defined a predator efficiency and a global solar efficiency. It is discussed the relationship between these two functions of the coupling parameters and the maximum value that the predator population can reach

  3. Parasites as prey

    NARCIS (Netherlands)

    Goedknegt, M.A.; Welsh, J.E.; Thieltges, D.W.

    2012-01-01

    Parasites are usually considered to use their hosts as a resource for energy. However, there is increasing awareness that parasites can also become a resource themselves and serve as prey for other organisms. Here we describe various types of predation in which parasites act as prey for other

  4. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    Science.gov (United States)

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  5. Assessing breeding potential of peregrine falcons based on chlorinated hydrocarbon concentrations in prey

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.E. [Canadian Wildlife Service, Pacific Wildlife Research Centre, 5421 Robertson Rd., RR no. 1, Delta, British Columbia, V4K 3N2 (Canada)]. E-mail: john.elliott@ec.gc.ca; Miller, M.J. [Iolaire Ecological Consulting, 7899 Thrasher St., Mission, British Columbia, V2V 5H3 (Canada); Wilson, L.K. [Canadian Wildlife Service, Pacific Wildlife Research Centre, 5421 Robertson Rd., RR no. 1, Delta, British Columbia, V4K 3N2 (Canada)

    2005-03-01

    Peregrine falcons (Falco peregrinus) now breed successfully in most areas of North America from which they were previously extirpated. The loss during the mid-part of the last century of many of the world's peregrine populations was largely a consequence of impaired reproduction caused by the effects of DDE on eggshell quality and embryo hatchability. Population recovery has been attributed to re-introduction efforts, coupled with regulatory restrictions on the use of organochlorine pesticides. Peregrines have not returned to breed in some areas, such as the Okanagan Valley of British Columbia. That region has been extensively planted in fruit orchards which were treated annually with DDT during the early 1950s to the 1970s. Ongoing contamination of avian species, including potential peregrine prey, inhabiting orchards has been documented. In response to an initiative to release peregrines around the city of Kelowna in the Okanagan Valley, we collected potential peregrine prey species and analyzed whole bodies for chlorinated hydrocarbon residues. We used a simple bioaccumulation model to predict concentrations of DDE in peregrine eggs using concentrations in prey and estimates of dietary makeup as input. Peregrines would be expected to breed successfully only if they fed on a diet primarily of doves. Feeding on as little as 10% of other species such as starlings, robins, gulls and magpies would produce DDE concentrations in peregrine eggs greater than the threshold of 15 mg/kg. We also estimated the critical concentration of DDE in total prey to be about 0.5 mg/kg, one half of the previous most conservative criterion for peregrine prey. Concentrations of dieldrin and PCBs in peregrine prey are less than suggested critical levels. - Based on the level of DDE contamination of prey items, it seems unlikely that peregrine falcons could breed successfully throughout most of the Okanagan Valley of British Columbia.

  6. Fewer but not smaller schools in declining fish and krill populations.

    Science.gov (United States)

    Brierley, Andrew S; Cox, Martin J

    2015-01-05

    Many pelagic species (species that live in the water column), including herring and krill, aggregate to form schools, shoals, or swarms (hereafter simply "schools," although the words are not synonyms). Schools provide benefits to individual members, including locomotory economy and protection from predators that prey on individuals, but paradoxically make schooling species energetically viable and commercially attractive targets for predators of groups and for fishers. Large schools are easier to find and yield greater prey/catch than small schools, and there is a requirement from fields as diverse as theoretical ecology and fisheries management to understand whether and how aggregation sizes change with changing population size. We collated data from vertical echosounder surveys of taxonomically diverse pelagic stocks from geographically diverse ecosystems. The data contain common significant positive linear stock-biomass to school-number relationships. They show that the numbers of schools in the stocks change with changing stock biomass and suggest that the distributions of school sizes do not change with stock biomass. New data that we collected using a multibeam sonar, which can image entire schools, contained the same stock-biomass to school-number relationship and confirm that the distribution of school sizes is not related to changing stock size: put simply, as stocks decline, individuals are distributed among fewer schools, not smaller schools. Since school characteristics affect catchability (the ease or difficulty with which fishers can capture target species) and availability of prey to predators, our findings have commercial and ecological implications, particularly within the aspirational framework of ecosystem-based management of marine systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  8. The effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and Tramitichromis sp.

    Science.gov (United States)

    Schwalbe, Margot A B; Webb, Jacqueline F

    2015-04-01

    Two sand-dwelling cichlids from Lake Malawi (Aulonocara stuartgranti, Tramitichromis sp.) that feed on benthic invertebrates, but have different lateral line phenotypes, use lateral line and/or visual cues to detect prey under light versus dark conditions. The current study examined how ecologically relevant variation in light intensity [0-800 lux (lx)] influences detection of prey (mobile, immobile) in each species by analyzing six behavioral parameters. Both species fed at light intensities ≥1 lx and trends in behavior among light intensities were informative. However, prey type and/or time of day (but not light intensity) predicted all four parameters analyzed with generalized linear mixed models in A. stuartgranti, whereas the interaction of light intensity and time of day predicted three of these parameters in Tramitichromis sp. Data suggest that the critical light intensity is 1-12 lx for both species, that the integration of visual and lateral line input explains differences in detection of mobile and immobile prey and behavioral changes at the transition from 1 to 0 lx in A. stuartgranti, and that Tramitichromis sp. likely uses binocular vision to locate prey. Differences in the sensory biology of species that exploit similar prey will have important implications for the trophic ecology of African cichlid fishes.

  9. Are invasive populations characterized by a broader diet than native populations?

    Directory of Open Access Journals (Sweden)

    Julien Courant

    2017-05-01

    Full Text Available Background Invasive species are among the most significant threats to biodiversity. The diet of invasive animal populations is a crucial factor that must be considered in the context of biological invasions. A broad dietary spectrum is a frequently cited characteristic of invasive species, allowing them to thrive in a wide range of environments. Therefore, empirical studies comparing diet in invasive and native populations are necessary to understand dietary requirements, dietary flexibility, and the associated impacts of invasive species. Methods In this study, we compared the diet of populations of the African clawed frog, Xenopus laevis in its native range, with several areas where it has become invasive. Each prey category detected in stomach contents was assigned to an ecological category, allowing a comparison of the diversity of ecological traits among the prey items in the diet of native and introduced populations. The comparison of diets was also performed using evenness as a niche breadth index on all sampled populations, and electivity as a prey selection index for three out of the six sampled populations. Results Our results showed that diet breadth could be either narrow or broad in invasive populations. According to diet and prey availability, zooplankton was strongly preferred in most cases. In lotic environments, zooplankton was replaced by benthic preys, such as ephemeropteran larvae. Discussion The relative proportions of prey with different ecological traits, and dietary variability within and between areas of occurrence, suggest that X. laevis is a generalist predator in both native and invasive populations. Shifts in the realized trophic niche are observed, and appear related to resource availability. Xenopus laevis may strongly impact aquatic ecosystems because of its near complete aquatic lifestyle and its significant consumption of key taxa for the trophic relationships in ponds.

  10. Prey perception in feeding-current feeding copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Goncalves, Rodrigo J.; Florian Couespel, Damien

    2016-01-01

    We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey concentrati......We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey...... cells have short intense leakage burst, only a very small fraction of prey cells would be available to the copepod at any instance in time and, thus would be inefficient at low prey concentration. Finally, we report a few new observations of prey capture in two species of copepods, Temora longicornis...... and Centropages hamatus, offered a 45-μm sized dinoflagellate at very low concentration. The observed short prey detection distances, up to a few prey cell radii, are consistent with mechanoreception and we argue briefly that near-field mechanoreception is the most likely and common prey perception mechanism...

  11. A common bottlenose dolphin (Tursiops truncatus) prey handling technique for marine catfish (Ariidae) in the northern Gulf of Mexico.

    Science.gov (United States)

    Ronje, Errol I; Barry, Kevin P; Sinclair, Carrie; Grace, Mark A; Barros, Nélio; Allen, Jason; Balmer, Brian; Panike, Anna; Toms, Christina; Mullin, Keith D; Wells, Randall S

    2017-01-01

    Few accounts describe predator-prey interactions between common bottlenose dolphins (Tursiops truncatus Montagu 1821) and marine catfish (Ariopsis felis Linnaeus 1766, Bagre marinus Mitchill 1815). Over the course of 50,167 sightings of bottlenose dolphin groups in Mississippi Sound and along the Florida coast of the Gulf of Mexico, severed catfish heads were found floating and exhibiting movements at the surface in close proximity to 13 dolphin groups that demonstrated feeding behavior. These observations prompted a multi-disciplinary approach to study the predator-prey relationship between bottlenose dolphins and marine catfish. A review was conducted of bottlenose dolphin visual survey data and dorsal fin photographs from sightings where severed catfish heads were observed. Recovered severed catfish heads were preserved and studied, whole marine catfish were collected and examined, and stranding network pathology reports were reviewed for references to injuries related to fish spines. Photographic identification analysis confirms eight dolphins associated with severed catfish heads were present in three such sightings across an approximately 350 km expanse of coast between the Mississippi Sound and Saint Joseph Bay, FL. An examination of the severed catfish heads indicated interaction with dolphins, and fresh-caught whole hardhead catfish (A. felis) were examined to estimate the presumed total length of the catfish before decapitation. Thirty-eight instances of significant trauma or death in dolphins attributed to ingesting whole marine catfish were documented in stranding records collected from the southeastern United States of America. Bottlenose dolphins typically adhere to a ram-feeding strategy for prey capture followed by whole prey ingestion; however, marine catfish skull morphology may pose a consumption hazard due to rigid spines that can puncture and migrate through soft tissue, prompting a prey handling technique for certain dolphins, facilitating

  12. Assessment of the pelagic fish populations using CEN multi-mesh gillnets: consequences for the characterization of the fish communities

    Directory of Open Access Journals (Sweden)

    C. Deceliere-Vergès

    2008-01-01

    Full Text Available The contribution of CEN standard pelagic nets to the assessment of fish communities is tested by comparing three metrics (species composition, species abundance, and size structures measured in accordance with the standard (i.e. using benthic nets only to those calculated from the total effort (i.e. including pelagic nets. Hydroacoustic surveys were used simultaneously to assess fish densities in the pelagic habitat. The results show that in most cases the pelagic nets did not provide any extra information about these three metrics. However, their inclusion in the calculation of CPUE and size structures may affect the picture of the fish communities, especially in lakes containing salmonid populations. This study highlights the need to sample pelagic fish when assessing fish communities in order to determine lake quality.

  13. Feeding transition of cultured largemouth bass (Micropterus salmoides, Lacépede, 1802) from an artificial pelleted feed to live prey

    Czech Academy of Sciences Publication Activity Database

    Frouzová, Jaroslava; Porak, W. F.; Johnson, W. E.

    2013-01-01

    Roč. 29, č. 6 (2013), s. 1364-1366 ISSN 0175-8659 R&D Projects: GA MZe(CZ) QH81046 Institutional support: RVO:60077344 Keywords : largemouth bass * feeding behavior * novel prey Subject RIV: GL - Fishing Impact factor: 0.903, year: 2013

  14. Demographic consequences of predators on prey: trait and density mediated effects on mosquito larvae in containers.

    Directory of Open Access Journals (Sweden)

    Barry W Alto

    Full Text Available Predators may affect prey population growth and community diversity through density mediated lethal and trait mediated non-lethal effects that influence phenotypic traits of prey. We tested experimentally the roles of thinning the density of prey (lethality in the absence of predator cues and density and trait mediated effects (lethality + intimidation of predatory midge Corethrella appendiculata on competing native and invasive mosquito prey. Predator-mediated reductions in prey and density reductions in the absence of C. appendiculata resulted in lower percent survivorship to adulthood and estimates of the finite rate of increase (λ' for invasive mosquito Aedes albopictus relative to that of controls. In most instances, thinning the density of prey in the absence, but not in the presence, of C. appendiculata cues resulted in lower survivorship to adulthood and λ' for native mosquito Aedes triseriatus relative to that of controls. Together, these results suggested trait mediated effects of C. appendiculata specific to each species of mosquito prey. Release from intraspecific competition attributable to density reductions in the absence, but not in the presence, of C. appendiculata enhanced growth and lengthened adult lifespan relative to that of controls for A. albopictus but not A. triseriatus. These results show the importance of predator-mediated density and trait mediated effects on phenotypic traits and populations of invasive and native mosquitoes. Species-specific differences in the phenotypic responses of prey may be due, in part, to longer evolutionary history of C. appendiculata with A. triseriatus than A. albopictus.

  15. Internal wave-mediated shading causes frequent vertical migrations in fishes

    KAUST Repository

    Kaartvedt, Stein

    2012-04-25

    We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of fish created an overlapping zone. Near-bottom fish correspondingly left the benthic boundary zone at the wave trough, ascending into an acoustic scattering layer likely consisting of zooplankton and then descending to the benthic boundary zone at the wave crest. We suggest that this vertical fish migration is a response to fluctuations in light intensity of 3 to 4 orders of magnitude caused by shading from a turbid surface layer that had chlorophyll a values of 3 to 4 mg m−3 and varied in thickness from ~15 to 50 m at a temporal scale corresponding to the internal wave period (30 min). This migration frequency thus is much higher than that of the common and widespread light-associated diel vertical migration. Vertical movements affect prey encounters, growth, and survival. We hypothesize that FVM increase the likelihood of prey encounters and the time for safe visual foraging among planktivorous fish, thereby contributing to efficient trophic transfer in major upwelling areas.

  16. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    Science.gov (United States)

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  17. Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation

    Science.gov (United States)

    Skejić, Jure; Hodgson, Wayne C.

    2013-01-01

    This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD) venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality) and Queensland (Mackay locality) populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver. PMID:23691135

  18. RESEARCH METHODOLOGY ON NATURAL NUTRITION OF FRESH-WATER FISH

    Directory of Open Access Journals (Sweden)

    Marina Piria

    2001-03-01

    Full Text Available This paper offers the entire review on the research methodology in natural nutrition of fresh-water fish. The data on fresh-water fish nutrition, particularly on fish of lower economic value, is inadequate. Reviewing the literature on assesment of nutritional parameters, the authors obviously use differenet approaches and methods. This paper is about most frequently used parameteres in qualitative and quantitative analysis. The qualitative analysis of food structure is the overall list of determinable taxa (mostlyu species and genera. The quantitative analysis comprises the assessment of particular nutritional categories by nutritional indices and coefficients. Bio-identification and numeric data processing can have numerous drawbacsk such as effect of regurgitation or the degree of digestion of the prey. The analyses of those effects proceed through statistical data processing in order to include spatial distribution of certain prey categories as well. The importance of this data is to determine the nutritional needs of potential species for culture as well as to come up with new insights on a particular aquatic ecosystem.

  19. Two-prey one-predator model

    International Nuclear Information System (INIS)

    Elettreby, M.F.

    2009-01-01

    In this paper we propose a new multi-team prey-predator model, in which the prey teams help each other. We study its local stability. In the absence of predator, there is no help between the prey teams. So, we study the global stability and persistence of the model without help.

  20. Behavioral responses of birds of prey to large scale energy development in southcentral Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.

    1985-02-01

    The types of raptorial and semi-raptorial birds that use the Hanford environs are discussed along with the impacts of past operations and the recent WPPSS project on their populations. These findings add to our understanding of the population dynamics of the birds of prey community at the Hanford Site and the expected impacts of the WPPSS energy facilities. The results may have implications toward other large scale energy facilities, and may aid us in management of bird of prey communities throughout the grasslands of the western United States. 110 refs., 5 figs., 4 tabs

  1. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake

    DEFF Research Database (Denmark)

    Skov, Christian; Perrow, M.R.; Berg, Søren

    2002-01-01

    evaluated between predatory fish and potential prey and between zooplanktivorous or benthivorous fish and water quality parameters. In addition, potential consumption of piscivorous fishes was calculated. 3. The density of fish feeding on larger zooplankton or benthos (roach >15 cm, crucian carp >15 cm......1. Piscivores (annual stocking of 1000 individuals ha(-1) of 0+ pike and a single stocking of 30 kg ha(-1) of large 20-30 cm perch) were stocked in seven consecutive years in a shallow eutrophic lake in Denmark. The stocking programme aimed at changing food-web structure by reducing...... zooplanktivorous and benthivorous fish, with resultant effects on lower trophic levels and ultimately water quality. 2. The fish community and water quality parameters (Secchi depth, concentrations of total phosphorus, chlorophyll a and suspended solids) were monitored between 1996 and 2000 and relationships were...

  2. Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes

    Science.gov (United States)

    Schmitz, L.; Wainwright, P. C.

    2011-06-01

    Zooplanktivory is one of the most distinct trophic niches in coral reef fishes, and a number of skull traits are widely recognized as being adaptations for feeding in midwater on small planktonic prey. Previous studies have concluded that zooplanktivores have larger eyes for sharper visual acuity, reduced mouth structures to match small prey sizes, and longer gill rakers to help retain captured prey. We tested these three traditional hypotheses plus two novel adaptive hypotheses in labrids, a clade of very diverse coral reef fishes that show multiple independent evolutionary origins of zooplanktivory. Using phylogenetic comparative methods with a data set from 21 species, we failed to find larger eyes in three independent transitions to zooplanktivory. Instead, an impression of large eyes may be caused by a size reduction of the anterior facial region. However, two zooplanktivores ( Clepticus parrae and Halichoeres pictus) possess several features interpreted as adaptations to zooplankton feeding, namely large lens diameters relative to eye axial length, round pupil shape, and long gill rakers. The third zooplanktivore in our analysis, Cirrhilabrus solorensis, lacks all above features. It remains unclear whether Cirrhilabrus shows optical specializations for capturing planktonic prey. Our results support the prediction that increased visual acuity is adaptive for zooplanktivory, but in labrids increases in eye size are apparently not part of the evolutionary response.

  3. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    2011-02-01

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  4. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    Directory of Open Access Journals (Sweden)

    Cat Horswill

    Full Text Available Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  5. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    Science.gov (United States)

    Horswill, Cat; Trathan, Philip N; Ratcliffe, Norman

    2017-01-01

    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  6. Harvesting policy for a delayed stage-structured Holling II predator-prey model with impulsive stocking prey

    International Nuclear Information System (INIS)

    Jiao Jianjun; Meng Xinzhu; Chen Lansun

    2009-01-01

    A predator-prey model with a stage structure for the predator, which improves the assumption that each individual predator has the same ability to capture prey, is proposed by Wang et al. [Wang W, Mulone G, Salemi F, Salone V. Permanence and stability of a stage-structured predator-prey model. J Math Anal Appl 2001;262:499-528]. It is assumed that immature individuals and mature individuals of the predator are divided by a fixed age and that immature predators do not have the ability to attack prey. We do economic management behavior for Wang model [Wang et al., 2001] by continuous harvesting on predator and impulsive stocking on prey. Then, a delayed stage-structured Holling type II predator-prey model with impulsive stocking prey and continuous harvesting predator is established. It is also assumed that the predating products of the predator is only to increase its bearing ability. We obtain the sufficient conditions of the global attractivity of predator-extinction boundary periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Further, the numerical analysis is also inserted to illuminate the dynamics of the system.

  7. Seasonal variation of assemblage and feeding guild structure of fish species in a boreal tidal basin

    Science.gov (United States)

    Kellnreitner, Florian; Pockberger, Moritz; Asmus, Harald

    2012-08-01

    Species composition, abundance, feeding relationships and guild structure of the fish assemblage in the Sylt-Rømø bight, a tidal basin in the northern Wadden Sea, were investigated to show seasonal differences and the importance of functional groups in this area. The tidal flats and in shallow subtidal areas were sampled using a beach seine and a bottom trawl net was used for deeper subtidal areas and tidal gullies. Species richness of fish was highest in summer where 26 species were caught, while the lowest richness was recorded in winter (17 species). Clear differences in species richness and abundance were found between shallow areas and deeper parts of the bight. Clupea harengus and Ammodytes tobianus were the most abundant species in deeper areas, while Pomatoschistus microps and Pomatoschistus minutus dominated shallower waters. Gut contents of 27 fish species were identified and the guild structure analyzed by UPGMA clustering of niche overlaps. Calanoid copepods (19.9%), Crangon crangon (18.2%) and mysid shrimps (8.4%) were the most abundant prey items of all fish species combined. Seven feeding guilds were present in the fall and winter, and eight and six in spring and summer, respectively. Fish feeding on calanoid copepods and C. crangon were present year round, whereas the occurrence of other guilds varied between seasons. Species composition of prey changed through seasons and, for some fish species, even the feeding mode itself varied with season. Most noticeable, 11 fish species changed guilds between seasons. We found a convergence in summer towards abundant prey items, whereas in winter diet overlap was lower. This is the first investigation of guild structure of almost all fish species present in a Wadden Sea area, and shows that consideration of seasonal differences is essential when determining feeding relationships of fish in temperate areas.

  8. Parasites of forage fishes in the vicinity of Steller sea lion (Eumetopias jubatus) habitat in Alaska.

    Science.gov (United States)

    Moles, A; Heintz, R A

    2007-07-01

    Fish serve as intermediate hosts for a number of larval parasites that have the potential of maturing in marine mammals such as Steller sea lions (Eumetopias jubatus). We examined the prevalence of parasites from 229 fish collected between March and July 2002 near two islands used by Steller sea lions in Southeast Alaska and island habitats in the Aleutian Islands. Sea lion populations have remained steady in Southeast Alaska but have been declining over the last 30 yr in the Aleutian Islands. Even though the fish samples near the Southeast Alaska haul-outs were composed of numerous small species of fish and the Aleutian Islands catch was dominated by juveniles of commercially harvested species, the parasite fauna was similar at all locations. Eleven of the 20 parasite taxa identified were in their larval stage in the fish hosts, several of which have been described from mammalian final hosts. Four species of parasite were more prevalent in Southeast Alaska fish samples, and seven parasite species, including several larval forms capable of infecting marine mammals, were more prevalent in fish from the Aleutian Islands. Nevertheless, parasites available to Steller sea lions from common fish prey are not likely to be a major factor in the decline of this marine mammal species.

  9. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    Science.gov (United States)

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  10. Identification of fish populations with particular reference to the pelagic fish stocks of the Indian Ocean region

    Digital Repository Service at National Institute of Oceanography (India)

    Dwivedi, S.N.

    The most essential step in any fishery management is the identification of discrete fish populations. This is particularly important for the development of Indian Ocean pelagic fisheries. The simple signal character analysis of meristic or metric...

  11. Fish on farms combat dietary deficits in Cambodia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-04-11

    Apr 11, 2014 ... The farmers are learning to build and maintain ponds where they raise fish ... In Prey Veng, 5% of children die before their fifth birthday, with about a ... and developing-country researchers together to address the interlocking ...

  12. Influence of local carrying capacity restrictions on stochastic predator-prey models

    International Nuclear Information System (INIS)

    Washenberger, Mark J; Mobilia, Mauro; Taeuber, Uwe C

    2007-01-01

    We study a stochastic lattice predator-prey system by means of Monte Carlo simulations that do not impose any restrictions on the number of particles per site, and discuss the similarities and differences of our results with those obtained for site-restricted model variants. In accord with the classic Lotka-Volterra mean-field description, both species always coexist in two dimensions. Yet competing activity fronts generate complex, correlated spatio-temporal structures. As a consequence, finite systems display transient erratic population oscillations with characteristic frequencies that are renormalized by fluctuations. For large reaction rates, when the processes are rendered more local, these oscillations are suppressed. In contrast with the site-restricted predator-prey model, we also observe species coexistence in one dimension. In addition, we report results on the steady-state prey age distribution

  13. Trophic dynamics of few selected nearshore coastal finfishes with emphasis on prawns as prey item

    Science.gov (United States)

    Velip, Dinesh T.; Rivonker, Chandrashekher U.

    2018-06-01

    A trophic dynamic study of marine finfishes was undertaken based on stomach content analysis of twenty four species (N = 1742) collected from the nearshore coastal waters off Goa, west coast of India (15°29‧07.6″ N to 15°34‧44.3″ N, and 73°38‧10.5″ E to 73°46‧03.1″ E) during November 2010 to May 2013. This study aimed to thoroughly understand the feeding attributes of finfishes, and comprehend the possible effects of bycatch-related loss of biomass on trophic ecology. The study assessed diet preferences of the finfishes, their feeding guilds, significance of prawns as prey items, and the influence of mouth parts in prey selection. Altogether 84 prey taxa were identified from the stomach contents. Percentage Index of Relative Importance (IRI) values revealed that zooplankton (34.74), prawns (21.71), phytoplankton (19.80), and teleosts (18.62) were the major prey categories, and, among prawns, Metapenaeus dobsoni (%IRI = 19.34) was the single-most important prey item. Cluster analysis revealed three major trophic guilds namely 'teleost feeders' (mean Trophic Level (TrL) = 4.06 ± 0.42; mean B = 0.46 ± 0.24), 'zooplankton feeders' (mean TrL = 3.43 ± 0.29; mean B = 0.23 ± 0.13), and 'prawn feeders' (mean TrL = 3.86 ± 0.25; mean B = 0.48 ± 0.32), with low diet overlap among them. Principal Component Analysis of prey categories and mouth parts of finfishes suggested that zooplanktivory is associated with gill raker density as well as number of gill arches bearing rakers, whereas gape height determined the size of large-sized prey (fish and invertebrates). The study identified M. dobsoni, mysis and teleosts as highly influential prey for predatory finfishes. The present results could be useful to resolve broader issues in fisheries management.

  14. Let's go beyond taxonomy in diet description: testing a trait-based approach to prey-predator relationships.

    Science.gov (United States)

    Spitz, Jérôme; Ridoux, Vincent; Brind'Amour, Anik

    2014-09-01

    Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  15. Prey selection of lions Panthera leo in a small, enclosed reserve

    Directory of Open Access Journals (Sweden)

    R.J. Power

    2002-12-01

    Full Text Available Annual trends in numbers of ungulate species on a 15 km² reserve from 1993 to 1998, were evaluated in the context of lion Panthera leo reintroduction during 1996, and subsequent predation by them. The ungulate prey base was enumerated annually by aerial counts and a road count that took place during 1998. The lion prey record was obtained from direct observations of a radio-located pride of eight lions and daily reserve management records. All ungulate species that underwent precipituous declines were also the most important prey to lions, comprising over 80 % of their prey, and they were preyed upon according to their availability. Lion predation was causal for the declines in wildebeest Connochaetes taurinus, Blesbok Damaliscus pygargus phillipsi and Warthog Phacochoerus africana, while the decline in Kudu Tragelaphus strepsiceros was only partly ascribed to lions, as other non-lion related mortality sources were identified. The only ungulate species to increase subsequent to lion reintroduction was the Impala Aepyceros melampus, which was furthermore under-selected by lions. The uncontrolled population growth of Impala could have elicited ecological degradation, and it was advised to either not stock Impala, or otherwise control their numbers if lions are unable to do so. Lion hunting success and kill rate, were 21 % (n = 63 and 1 kill/4.4 days, respectively. Three bushpigs Potamochoerus larvatus were killed but not utilised,and this finding is corroborated by an intensive study in Kwazulu-Natal, and this aversion is discussed. Predators can cause unprecedented declines of their prey where the prey are confined to small reserves that have no refuge from predation. On an annual basis, prey may need to be augmented to sustain predators on small reserves

  16. Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis

    Science.gov (United States)

    Liu, Xia; Zhang, Tonghua; Meng, Xinzhu; Zhang, Tongqian

    2018-04-01

    In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.

  17. Arctic skate Amblyraja hyperborea preys on remarkably large glacial eelpouts Lycodes frigidus.

    Science.gov (United States)

    Byrkjedal, I; Christiansen, J S; Karamushko, O V; Langhelle, G; Lynghammar, A

    2015-01-01

    During scientific surveys on the continental slopes north-west of Spitsbergen and off north-east Greenland (c. 600 and 1000 m depths), two female Arctic skates Amblyraja hyperborea were caught while swallowing extraordinary large individuals of glacial eelpout Lycodes frigidus. The total length (LT) of the prey constituted 50 and 80% of the LT of the skates, which reveal that A. hyperborea are capable predators of fishes of surprisingly large relative size. © 2014 The Fisheries Society of the British Isles.

  18. Prey preferences and prey acceptance in juvenile Brown Treesnakes (Boiga irregularis)

    Science.gov (United States)

    Lardner, Bjorn; Savidge, Julie A.; Rodda, Gordon H.; Reed, Robert N.

    2009-01-01

    On the Pacific island of Guam, control of the invasive Brown Treesnake (Boiga irregularis) relies largely on methods that use mice as bait. Juvenile B. irregularis feed primarily on lizards and their eggs, but little is known about their prey preference. We conducted an experiment to investigate preferences for, and acceptance of, dead geckos, skinks, and neonatal mice, in juvenile B. irregularis ranging from 290 mm to ca. 700 mm snout-vent length (SVL). Snakes of all sizes showed a preference for geckos over skinks and neonatal mice. Geckos were the first prey chosen in 87% of 224 initial trials (56 snakes subjected to four trials each; 33% would be expected from a random choice). The smallest snakes had the most pronounced preference. Although many of the snakes accepted neonatal mice and/or skinks, some snakes of all sizes were reluctant to feed on anything but geckos, especially when well fed. We also addressed the hypothesis that repeated encounters with a particular prey type increase a snake's preference for that prey. Our study does not support this hypothesis. Our results suggest that control methods relying solely on rodent bait may be inefficient for targeting snakes < 700 mm SVL and that individual heterogeneity in prey preference may cause a significant part of this juvenile cohort to be completely refractory to capture with rodent bait, even if the bait is dead and small enough to be readily swallowed.

  19. Are snake populations in widespread decline?

    Science.gov (United States)

    Reading, C J; Luiselli, L M; Akani, G C; Bonnet, X; Amori, G; Ballouard, J M; Filippi, E; Naulleau, G; Pearson, D; Rugiero, L

    2010-12-23

    Long-term studies have revealed population declines in fishes, amphibians, reptiles, birds and mammals. In birds, and particularly amphibians, these declines are a global phenomenon whose causes are often unclear. Among reptiles, snakes are top predators and therefore a decline in their numbers may have serious consequences for the functioning of many ecosystems. Our results show that, of 17 snake populations (eight species) from the UK, France, Italy, Nigeria and Australia, 11 have declined sharply over the same relatively short period of time with five remaining stable and one showing signs of a marginal increase. Although the causes of these declines are currently unknown, we suspect that they are multi-faceted (such as habitat quality deterioration, prey availability), and with a common cause, e.g. global climate change, at their root.

  20. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea

    DEFF Research Database (Denmark)

    Østergaard, P.; Munk, Peter; Janekarn, V.

    2005-01-01

    Feeding habits of tropical fish larvae were analysed in a comparative study of four species (Scorpaenodes sp., Carangoides sp., Acanthocepola sp. and Cynoglossus sp.) from the Andaman Sea. We investigated morphological characteristics and their potential influence on larval feeding, and looked...... for common patterns in larval prey preference. Gut contents of a total of 300 larvae were examined and compared with local zooplankton composition. The feeding habits of the investigated larvae shared a number of characteristics. During ontogeny both the preferred prey size and the number of prey in the gut...... increased, and across all larval size classes the relative prey size spectrum stayed constant, of approximately the same magnitude for all four species. On the other hand, larval feeding also differed in a number of aspects, especially differences in the taxonomic composition of preferred prey were apparent...

  1. GENETIC VARIABILITY OF THREE POPULATIONS OF FLYING FISH, Hirundichthy oxycephalus FROM MAKASSAR STRAIT

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2016-03-01

    Full Text Available Flying fish, Hirundichthy oxycephalus is one of economically important marine species to Indonesia, particularly in Makassar Strait and Flores Sea. However, there is a limited published data on genetic variation in molecular marker level of this species. Random Amplified Polymorphic DNA (RAPD was employed in this study to determine the genetic variability of three populations of flying fish collected from Takalar, Pare-Pare, and Majene in Makassar Strait. Genomic DNA was isolated from preserved muscle tissue using phenol-chloroform technique. Two selected arbitrary primers (CA-01 and P-40 were performed to generate RAPD finger printing of flying fish populations. The two primers generated a total of 81 fragments (loci and 50 polymorphic fragments with size ranging from 125 to 1,250 bp. There were no significant differences in number of fragment and number of polymorphic fragment among populations. The high polymorphism (63.5±7.4% was obtained from Takalar population followed by Pare-Pare (58.3±19.6% and Majene population (57.7±0.8%. Similarity index of individuals was 0.60±0.17 for Takalar, 0.63±0.17 for Majene and 0.75±0.21 for Pare-Pare population. Seven fragments were identified as species-specific markers of H. oxycephalus. The UPGMA cluster analysis showed that the Takalar population was genetically closer to Pare-Pare population (D= 0.0812 than to Majene population (D= 0.1873.

  2. Permanence of a Semi-Ratio-Dependent Predator-Prey System with Nonmonotonic Functional Response and Time Delay

    Directory of Open Access Journals (Sweden)

    Xuepeng Li

    2009-01-01

    Full Text Available Sufficient conditions for permanence of a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay ̇1(=1([1(−11(1(−(−12(2(/(2+21(],  ̇2(=2([2(−21(2(/1(], are obtained, where 1( and 2( stand for the density of the prey and the predator, respectively, and ≠0 is a constant. (≥0 stands for the time delays due to negative feedback of the prey population.

  3. Factors affecting the recovery of fish populations in an industrial river. [Brown trout

    Energy Technology Data Exchange (ETDEWEB)

    Turnpenny, A W.M.; Williams, R

    1981-01-01

    The river Ebbw Fawr, an industrial river of South-East Wales, was investigated over a three-year period to follow the re-establishment of fish populations as a result of pollution control measures at coal washeries and a steelworks on the river. These measures were effective in reducing levels of toxic materials and restoring dissolved oxygen levels and pH values acceptable for fish. Five freshwater fish species became established in parts of the river during the study period (1974-77). The brown trout Salmo trutta l. was the first to enter, followed by eel Anguilla anguilla l., stoneloach Noemacheilus barbatulus l., stickleback Gasterosteus aculeatus l. and bullhead Cottus gobio l., respectively. The flounder Platicthys flesus l., a euryhaline species, penetrated the river beyond the upper tidal limit. The minnow Phoxinus phoxinus l., a resident of other parts of the Ebbw system, did not recolonise during the study. Calculated toxicities and the results of fish caging tests indicated that water quality was satisfactory for fish populations throughout the river with the possible exception of a short reach immediately below the steelworks. The absence of fish from some upstream reaches with good water quality was due to the limited numbers of fish available for recolonisation and their restricted movements. Good growth and condition factors among the recolonising brown trout stock suggest that a sport fishery could be developed on the river, though constraints on spawning due to residual silt pollution indicate that stocking with hatchery reared fish will be necessary to maintain trout numbers.

  4. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    Directory of Open Access Journals (Sweden)

    Kaushik Ghose

    2006-05-01

    Full Text Available Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy

  5. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    Science.gov (United States)

    Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F

    2006-05-01

    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some

  6. Fatal Asphyxiation in Bottlenose Dolphins (Tursiops truncatus from the Indian River Lagoon.

    Directory of Open Access Journals (Sweden)

    Megan Stolen

    Full Text Available Multiple single case reports of asphyxiation in dolphins caused by fish lodged in the esophagus exist. However, the significance of this cause of mortality in a single population has not been documented. We performed a retrospective evaluation of pathology records from stranded bottlenose dolphins (Tursiops truncatus from the Indian River Lagoon to evaluate the impact of this cause of death on this population. From 1997 to 2011, asphyxiation due to choking was identified as the cause of death in 14 of 350 cases (4%. Sampling of an unrelated but adjacent population over this same period yielded 186 necropsy cases of bottlenose dolphins with no cases of asphyxiation. Asphyxiated animals presented with a fish lodged in the cranial esophagus associated with a dislocated and obstructed or compressed larynx. There was no clear sex predilection. Affected animals included 12 adults and two juveniles. The fish species involved included sheepshead, black chin tilapia and striped mojarra. In five cases, recreational fishing gear was also present. Cetacean choking is related to selection of prey fish species with strong dorsal spines and may be secondarily associated with fish attached to fishing gear. Prey abundance and dolphin behavior may influence these selections. Environmental alterations leading to changes in prey availability or increased interactions with fishing gear may change the significance of fatal choking in dolphin populations.

  7. Importance of growth rate on Hg and PCB bioaccumulation in fish

    Science.gov (United States)

    Li, Jiajia; Haffner, G. Douglas; Patterson, Gordon; Walters, David M.; Burtnyk, Michael D.; Drouillard, Ken G.

    2018-01-01

    To evaluate the effect of fish growth on mercury (Hg) and polychlorinated biphenyls (PCBs) bioaccumulation, a non‐steady state toxicokinetic model, combined with a Wisconsin bioenergetics model, was developed to simulate Hg and PCB bioaccumulation in Bluegill (Lepomis macrochirus). The model was validated by comparing observed versus predicted Hg and PCB 180 concentrations across 5 age classes from five different waterbodies across North America. The non‐steady state model generated accurate predictions for Hg and PCB bioaccumulation in three of five waterbodies: Apsey, Sharbot and Stonelick Lake. The poor performance of the model for the Detroit River and Lake Hartwell, which were two well‐known contaminated sites with possibly high heterogeneity in spatial contamination, was attributed to changes in the feeding behavior and/ or change in prey contamination. Model simulations indicate that growth dilution is a major component of contaminant bioaccumulation patterns in fish especially during early life stages and was predicted to be more important for hydrophobic PCBs compared to Hg. Simulations which considered tissue specific growth provided some improvement in model performance particularly for PCBs in fish populations which exhibited changes in their whole body lipid content with age. Higher variation in lipid growth compared with that of lean dry protein was also observed between different bluegill populations which partially explains the greater variation in PCB bioaccumulation slopes compared with Hg across sampling sites.

  8. Population divergence in venom bioactivities of elapid snake Pseudonaja textilis: role of procoagulant proteins in rapid rodent prey incapacitation.

    Directory of Open Access Journals (Sweden)

    Jure Skejić

    Full Text Available This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality and Queensland (Mackay locality populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver.

  9. Non-webbuilding spiders: prey specialists or generalists?

    Science.gov (United States)

    Nentwig, Wolfgang

    1986-07-01

    Feeding experiments were performed with seven species of non-webbuilding spiders and a variety of prey taxa. Some species were generally polyphagous whereas other spiders restricted their prey to a few groups. At one end of the spectrum of prey specialization the thomisid Misumena vatia is limited to a few taxa of possible prey (Table 1). The literature of prey records of non-webbuilding spiders is reviewed (Table 2) with special emphasis on oligophagous or monophagous spiders. Monophagous spiders are generally rare and have specialized on only a few prey taxa: social insects (ants, bees, termites) and spiders.

  10. Prey selection by Bengal Tiger Panthera tigris tigris (Mammalia: Carnivora: Felidae of Chitwan National Park, Nepal

    Directory of Open Access Journals (Sweden)

    Saneer Lamichhane

    2015-11-01

    Full Text Available Prey selection by tiger in Chitwan National Park, Nepal was studied from 77 tiger scats that contained the remains of principal prey species.  The scats were collected from January to March 2010.  Government reports on herbivore population in Chitwan provided the base data on density of principal prey species.  In order to understand prey selectivity, the observed proportion of prey species in the scats were compared with the expected proportion derived from density estimates.  The observed scat frequency of Sambar, Hog Deer and Wild Boar was found to be greater than the estimated frequency, and the reverse was true for Chital and Muntjac.  The average weight of the principal prey species killed was 84 kg. According to our results, Chital and Sambar constituted the bulk (82.07%, and Hog Deer, Wild Boar, and Muntjac constituted 17.93% of the tiger diet.  Sambar contributed the largest bulk (43.75% of prey composition, but Chital constituted the relatively most killed (50.36% prey species.  The present study makes a contribution to an understanding of the status of prey composition in tiger scat in Chitwan during the year 2010.  The study also highlights that both large and medium sized prey are important for the conservation of tiger in Chitwan National Park. 

  11. Antipredator responses by native mosquitofish to non-native cichlids: An examination of the role of prey naiveté

    Science.gov (United States)

    Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.

    2009-01-01

    The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely

  12. Effects of prey abundance, distribution, visual contrast and morphology on selection by a pelagic piscivore

    Science.gov (United States)

    Hansen, Adam G.; Beauchamp, David A.

    2014-01-01

    depended on the presence of a weak versus a strong year class of age-0 longfin smelt. These fish were easy to catch, but hard to see. When their density was low, poor detection could explain their rarity in the diet. When their density was high, poor detection was compensated by higher encounter rates with cutthroat trout, sufficient to elicit a targeted feeding response. The nature of the feeding selectivity of a predator can be highly dependent on fluctuations in the abundance and suitability of key prey.

  13. Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique.

    Science.gov (United States)

    Fowler, Denver W; Freedman, Elizabeth A; Scannella, John B

    2009-11-25

    Despite the ubiquity of raptors in terrestrial ecosystems, many aspects of their predatory behaviour remain poorly understood. Surprisingly little is known about the morphology of raptor talons and how they are employed during feeding behaviour. Talon size variation among digits can be used to distinguish families of raptors and is related to different techniques of prey restraint and immobilisation. The hypertrophied talons on digits (D) I and II in Accipitridae have evolved primarily to restrain large struggling prey while they are immobilised by dismemberment. Falconidae have only modest talons on each digit and only slightly enlarged D-I and II. For immobilisation, Falconini rely more strongly on strike impact and breaking the necks of their prey, having evolved a 'tooth' on the beak to aid in doing so. Pandionidae have enlarged, highly recurved talons on each digit, an adaptation for piscivory, convergently seen to a lesser extent in fishing eagles. Strigiformes bear enlarged talons with comparatively low curvature on each digit, part of a suite of adaptations to increase constriction efficiency by maximising grip strength, indicative of specialisation on small prey. Restraint and immobilisation strategy change as prey increase in size. Small prey are restrained by containment within the foot and immobilised by constriction and beak attacks. Large prey are restrained by pinning under the bodyweight of the raptor, maintaining grip with the talons, and immobilised by dismemberment (Accipitridae), or severing the spinal cord (Falconini). Within all raptors, physical attributes of the feet trade off against each other to attain great strength, but it is the variable means by which this is achieved that distinguishes them ecologically. Our findings show that interdigital talon morphology varies consistently among raptor families, and that this is directly correlative with variation in their typical prey capture and restraint strategy.

  14. Evolution of predator dispersal in relation to spatio-temporal prey dynamics: how not to get stuck in the wrong place!

    Directory of Open Access Journals (Sweden)

    Justin M J Travis

    Full Text Available The eco-evolutionary dynamics of dispersal are recognised as key in determining the responses of populations to environmental changes. Here, by developing a novel modelling approach, we show that predators are likely to have evolved to emigrate more often and become more selective over their destination patch when their prey species exhibit spatio-temporally complex dynamics. We additionally demonstrate that the cost of dispersal can vary substantially across space and time. Perhaps as a consequence of current environmental change, many key prey species are currently exhibiting major shifts in their spatio-temporal dynamics. By exploring similar shifts in silico, we predict that predator populations will be most vulnerable when prey dynamics shift from stable to complex. The more sophisticated dispersal rules, and greater variance therein, that evolve under complex dynamics will enable persistence across a broader range of prey dynamics than the rules which evolve under relatively stable prey conditions.

  15. Prey detection in a cruising copepod

    DEFF Research Database (Denmark)

    Kjellerup, Sanne; Kiørboe, Thomas

    2012-01-01

    . Yet, direct interception has been proposed to explain how rapidly cruising, blind copepods feed on non-motile phytoplankton prey. Here, we demonstrate a novel mechanism for prey detection in a cruising copepod, and describe how motile and non-motile prey are discovered by hydromechanical and tactile...

  16. Surf zone fish diet as an indicator of environmental and anthropogenic influences

    Science.gov (United States)

    Costa, Leonardo Lopes; Zalmon, Ilana Rosental

    2017-10-01

    Changes in species' abundance have been used as indicators of environmental and anthropogenic disturbances. However, sublethal, e.g., diet, changes should be detected before some alterations in the composition and structure of fish assemblages occur as a result of ecological negative impacts. The objective of the present study was to assess possible changes in surf zone fish diet in response to environmental and anthropogenic disturbances. Surf zone fish were sampled and their stomach contents were analyzed on two sandy beaches under different levels of human pressure in Southeastern Brazil. Habitat variables related to seasonality, food availability, anthropogenic disturbance, upwelling and river influence were measured as follows: (1) wave height; (2) water temperature; (3) intertidal macroinvertebrates abundance; (4) solid waste amount; (5) salinity; (6) particulate organic carbon (POC) and (7) chlorophyll a (Chl a). Our results showed the influence of seasonality, prey abundance and hydrodynamics in prey selection, and diet overlap between typical surf zone residents. A literature search was also performed and it shows that insects and Emerita brasiliensis eggs, which were the main food item consumed by some surf zone fish at urbanized Brazilian beaches, are unusual worldwide. Furthermore, solid waste was related to high consumption of insects by pompanos fish in urbanized areas, suggesting that this fish diet could be a sublethal indicator of human impact on sandy beaches.

  17. Existence and Uniqueness of Positive Periodic Solutions for a Delayed Predator-Prey Model with Dispersion and Impulses

    Directory of Open Access Journals (Sweden)

    Zhenguo Luo

    2014-01-01

    Full Text Available An impulsive Lotka-Volterra type predator-prey model with prey dispersal in two-patch environments and time delays is investigated, where we assume the model of patches with a barrier only as far as the prey population is concerned, whereas the predator population has no barriers between patches. By applying the continuation theorem of coincidence degree theory and by means of a suitable Lyapunov functional, a set of easily verifiable sufficient conditions are obtained to guarantee the existence, uniqueness, and global stability of positive periodic solutions of the system. Some known results subject to the underlying systems without impulses are improved and generalized. As an application, we also give two examples to illustrate the feasibility of our main results.

  18. A foraging cost of migration for a partially migratory cyprinid fish

    DEFF Research Database (Denmark)

    Chapman, Ben B; Eriksen, Anders; Baktoft, Henrik

    2013-01-01

    Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had...... fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems....

  19. Optimal foraging of little egrets and their prey in a foraging game in a patchy environment.

    Science.gov (United States)

    Katz, M W; Abramsky, Z; Kotler, B P; Rosenzweig, M L; Alteshtein, O; Vasserman, G

    2013-03-01

    We explored the behavioral game between a predator, the little egret (Egretta garzetta), and a prey, the common goldfish (Carassius auratus), in a laboratory theater containing three fish pools. We tested the hypotheses that the egrets maximize their total capture success by responding to the fish's antipredatory behavior and that the behaviors of both players respond adaptively to the density distribution of fish among the pools. One experiment presented egrets with 15 fish per pool. The second experiment used a heterogeneous environment: pools 1, 2, and 3 had 10, 15, and 20 fish, respectively. Within each pool, fish could move between a safe, covered microhabitat and a risky, open microhabitat. Only the risky habitat had food, so fish were trading off food and safety by allocating the time spent in the two habitats. Egrets spent more total time in pools with more fish and returned to them sooner. Egrets maximized the number of fish they captured by following the matching rule of the ideal free distribution. The fish used the risky but productive habitat 65% of the time during experiments without egrets, but only 9% during experiments with 15 fish and egrets present somewhere in the theater. In addition, with egrets present, fish fine-tuned their behavior by reducing their use of the risky habitat as the egrets increased the frequency of their visits.

  20. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    Science.gov (United States)

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting

  1. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.

    Science.gov (United States)

    Day, Steven W; Higham, Timothy E; Holzman, Roi; Van Wassenbergh, Sam

    2015-07-01

    Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    Directory of Open Access Journals (Sweden)

    Matt W Hayward

    Full Text Available Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows, and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  3. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    Science.gov (United States)

    Hayward, Matt W; Hayward, Gina J; Tambling, Craig J; Kerley, Graham I H

    2011-01-01

    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  4. Cellular automaton for migration in ecosystem: Application of traffic model to a predator-prey system

    Science.gov (United States)

    Nagatani, Takashi; Tainaka, Kei-ichi

    2018-01-01

    In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems.

  5. When attempts at robbing prey turn fatal

    Science.gov (United States)

    Dejean, Alain; Corbara, Bruno; Azémar, Frédéric; Carpenter, James M.

    2012-07-01

    Because group-hunting arboreal ants spread-eagle insect prey for a long time before retrieving them, these prey can be coveted by predatory flying insects. Yet, attempting to rob these prey is risky if the ant species is also an effective predator. Here, we show that trying to rob prey from Azteca andreae workers is a fatal error as 268 out of 276 potential cleptobionts (97.1 %) were captured in turn. The ant workers hunt in a group and use the "Velcro®" principle to cling firmly to the leaves of their host tree, permitting them to capture very large prey. Exceptions were one social wasp, plus some Trigona spp. workers and flies that landed directly on the prey and were able to take off immediately when attacked. We conclude that in this situation, previously captured prey attract potential cleptobionts that are captured in turn in most of the cases.

  6. Stable oscillations of a predator-prey probabilistic cellular automaton: a mean-field approach

    International Nuclear Information System (INIS)

    Tome, Tania; Carvalho, Kelly C de

    2007-01-01

    We analyze a probabilistic cellular automaton describing the dynamics of coexistence of a predator-prey system. The individuals of each species are localized over the sites of a lattice and the local stochastic updating rules are inspired by the processes of the Lotka-Volterra model. Two levels of mean-field approximations are set up. The simple approximation is equivalent to an extended patch model, a simple metapopulation model with patches colonized by prey, patches colonized by predators and empty patches. This approximation is capable of describing the limited available space for species occupancy. The pair approximation is moreover able to describe two types of coexistence of prey and predators: one where population densities are constant in time and another displaying self-sustained time oscillations of the population densities. The oscillations are associated with limit cycles and arise through a Hopf bifurcation. They are stable against changes in the initial conditions and, in this sense, they differ from the Lotka-Volterra cycles which depend on initial conditions. In this respect, the present model is biologically more realistic than the Lotka-Volterra model

  7. A synthesis of ecological and fish-community changes in Lake Ontario, 1970-2000

    Science.gov (United States)

    Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.

    2005-01-01

    We assessed stressors associated with ecological and fishcommunity changes in Lake Ontario since 1970, when the first symposium on Salmonid Communities in Oligotrophic Lakes (SCOL I) was held (J. Fish. Res. Board Can. 29: 613-616). Phosphorus controls implemented in the early 1970s were undeniably successful; lower food-web studies showed declines in algal abundance and epilimnetic zooplankton production and a shift in pelagic primary productivity toward smaller organisms. Stressors on the fish community prior to 1970 such as exploitation, sea lamprey (Petromyzon marinus) predation, and effects of nuisance populations of alewife (Alosa pseudoharengus) were largely ameliorated by the 1990s. The alewife became a pivotal species supporting a multi-million-dollar salmonid sport fishery, but alewife-induced thiamine deficiency continued to hamper restoration and sustainability of native lake trout (Salvelinus namaycush). Expanding salmonine populations dependent on alewife raised concerns about predator demand and prey supply, leading to reductions in salmonine stocking in the early 1990s. Relaxation of the predation impact by alewives and their shift to deeper water allowed recovery of native fishes such as threespine stickleback (Gasterosteus aculeatus) and emerald shiner (Notropis atherinoides). The return of the Lake Ontario ecosystem to historical conditions has been impeded by unplanned introductions. Establishment of Dreissena spp. led to increased water clarity and increased vectoring of lower trophic-level production to benthic habitats and contributed to the collapse of Diporeia spp. populations, behavioral modifications of key fish species, and the decline of native lake whitefish (Coregonus clupeaformis). Despite reduced productivity, exotic-species introductions, and changes in the fish community, offshore Mysis relicta populations remained relatively stable. The effects of climate and climate change on the population abundance and dynamics of Lake Ontario

  8. Making inference from wildlife collision data: inferring predator absence from prey strikes

    Directory of Open Access Journals (Sweden)

    Peter Caley

    2017-02-01

    Full Text Available Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  9. Making inference from wildlife collision data: inferring predator absence from prey strikes.

    Science.gov (United States)

    Caley, Peter; Hosack, Geoffrey R; Barry, Simon C

    2017-01-01

    Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  10. Predators as prey at a Golden Eagle Aquila chrysaetos eyrie in Mongolia

    Science.gov (United States)

    Ellis, D.H.; Tsengeg, Pu; Whitlock, P.; Ellis, Merlin H.

    2000-01-01

    Although golden eagles (Aquila chrysaetos) have for decades been known to occasionally take large or dangerous quarry, the capturing of such was generally believed to be rare and/or the act of starved birds. This report provides details of an exceptional diet at a golden eagle eyrie in eastern Mongolia with unquantified notes on the occurrence of foxes at other eyries in Mongolia. Most of the prey we recorded were unusual, including 1 raven (Corvus corax), 3 demoiselle cranes (Anthropoides virgo), 1 upland buzzard (Buteo hemilasius), 3 owls, 27 foxes, and 11 Mongolian gazelles. Some numerical comparisons are of interest. Our value for gazelle calves (10 minimum count, 1997) represents 13% of 78 prey items and at least one adult was also present. Our total of only 15 hares (Lepus tolai) and 4 marmots (Marmota sibirica) compared to 27 foxes suggests not so much a preference for foxes, but rather that populations of more normal prey were probably depressed at this site. Unusual prey represented 65% of the diet at this eyrie.

  11. Trophic interactions between native and introduced fish species in a littoral fish community.

    Science.gov (United States)

    Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A

    2014-11-01

    The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.

  12. The influence of particle size of dietary prey on food consumption and ecological conversion efficiency of young-of-the-year sand lance, Ammodytes personatus

    Science.gov (United States)

    Sun, Yao; Liu, Yong; Liu, Xinfu; Tang, Oisheng

    2010-06-01

    The Eggers model was used to study the influence of two particle sizes of dietary prey on food consumption and ecological conversion efficiency of young-of-the-year sand lance, Ammodytes personatus, in continuous flow-through seawater in 2.5-m 3 tanks in the laboratory. The sand lances (average body weight 0.85 ± 0.21 g) were fed larval (average body length 0.56 ± 0.08 mm) or adult (average body length 10.12 ± 1.61 mm) Artemia salina. The gastric evacuation rate of the fish feeding on larval Artemia was 0.214, higher than that of those feeding on adult Artemia (0.189). The daily food consumption of the fish feeding on larval Artemia was 60.14 kJ/100 g in terms of energy content, higher than that of the fish feeding on adult Artemia (51.69 kJ/100 g), but the daily growth rate of fish feeding on larval Artemia was 14.86 kJ/100 g, significantly lower than that of the fish feeding on adult Artemia (19.50 kJ/100 g), indicating that less energy was used for growth when the food particles were smaller. Slow growth of sand lances preying on larval Artemia was probably due to the high energy consumption during predation, consistent with the basic suppositions of optimal foraging theory.

  13. Born small, die young: Intrinsic, size-selective mortality in marine larval fish

    KAUST Repository

    Garrido, S.

    2015-11-24

    Mortality during the early stages is a major cause of the natural variations in the size and recruitment strength of marine fish populations. In this study, the relation between the size-at-hatch and early survival was assessed using laboratory experiments and on field-caught larvae of the European sardine (Sardina pilchardus). Larval size-at-hatch was not related to the egg size but was significantly, positively related to the diameter of the otolith-at-hatch. Otolith diameter-at-hatch was also significantly correlated with survival-at-age in fed and unfed larvae in the laboratory. For sardine larvae collected in the Bay of Biscay during the spring of 2008, otolith radius-at-hatch was also significantly related to viability. Larval mortality has frequently been related to adverse environmental conditions and intrinsic factors affecting feeding ability and vulnerability to predators. Our study offers evidence indicating that a significant portion of fish mortality occurs during the endogenous (yolk) and mixed (yolk /prey) feeding period in the absence of predators, revealing that marine fish with high fecundity, such as small pelagics, can spawn a relatively large amount of eggs resulting in small larvae with no chances to survive. Our findings help to better understand the mass mortalities occurring at early stages of marine fish.

  14. Born small, die young: Intrinsic, size-selective mortality in marine larval fish

    KAUST Repository

    Garrido, S.; Ben-Hamadou, R.; Santos, A.M.P.; Ferreira, S.; Teodó sio, M.A.; Cotano, U.; Irigoien, Xabier; Peck, M.A.; Saiz, E.; Ré , P.

    2015-01-01

    Mortality during the early stages is a major cause of the natural variations in the size and recruitment strength of marine fish populations. In this study, the relation between the size-at-hatch and early survival was assessed using laboratory experiments and on field-caught larvae of the European sardine (Sardina pilchardus). Larval size-at-hatch was not related to the egg size but was significantly, positively related to the diameter of the otolith-at-hatch. Otolith diameter-at-hatch was also significantly correlated with survival-at-age in fed and unfed larvae in the laboratory. For sardine larvae collected in the Bay of Biscay during the spring of 2008, otolith radius-at-hatch was also significantly related to viability. Larval mortality has frequently been related to adverse environmental conditions and intrinsic factors affecting feeding ability and vulnerability to predators. Our study offers evidence indicating that a significant portion of fish mortality occurs during the endogenous (yolk) and mixed (yolk /prey) feeding period in the absence of predators, revealing that marine fish with high fecundity, such as small pelagics, can spawn a relatively large amount of eggs resulting in small larvae with no chances to survive. Our findings help to better understand the mass mortalities occurring at early stages of marine fish.

  15. Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey.

    Science.gov (United States)

    Laundré, John W

    2010-10-01

    The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions.

  16. Subcellular controls of mercury trophic transfer to a marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  17. Subcellular controls of mercury trophic transfer to a marine fish

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2010-01-01

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  18. Higher freshwater fish and sea fish intake is inversely associated with colorectal cancer risk among Chinese population: a case-control study.

    Science.gov (United States)

    Xu, Ming; Fang, Yu-Jing; Chen, Yu-Ming; Lu, Min-Shan; Pan, Zhi-Zhong; Yan, Bo; Zhong, Xiao; Zhang, Cai-Xia

    2015-08-12

    The association between specific fish intake and colorectal cancer risk remains controversial. This study aimed to examine the association between specific fish intake and colorectal cancer risk in Chinese population in a large case control study. During July 2010 to November 2014, 1189 eligible colorectal cancer cases and 1189 frequency-matched controls (age and sex) completed in-person interviews. A validated food frequency questionnaire was used to estimate dietary intake. Multivariate logistical regression models were used to estimate the odds ratio (OR) and 95% confidence interval (95% CI) after adjusting for various confounders. A strong inverse association was found between freshwater fish intake and colorectal cancer risk. Compared with the lowest quartile, the highest quartile intake showed a risk reduction of 53% (OR 0.47, 95% CI = 0.36-0.60, Ptrend colorectal cancer risk. These results indicate that higher consumption of freshwater fish, sea fish and fresh fish is associated with a lower risk of colorectal caner.

  19. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal.

    Science.gov (United States)

    Afonso, E; Thulliez, P; Pontier, D; Gilot-Fromont, E

    2007-12-01

    Toxoplasma gondii is largely transmitted to definitive felid hosts through predation. Not all prey species represent identical risks of infection for cats because of differences in prey susceptibility, exposure and/or lifespan. Previously published studies have shown that prevalence in rodent and lagomorph species is positively correlated with body mass. We tested the hypothesis that different prey species have different infection risks by comparing infection dynamics of feral cats at 4 sites in the sub-Antarctic Kerguelen archipelago which differed in prey availability. Cats were trapped from 1994 to 2004 and anti-T. gondii IgG antibodies were detected using the modified agglutination test (> or =1:40). Overall seroprevalence was 51.09%. Antibody prevalence differed between sites, depending on diet and also on sex, after taking into account the effect of age. Males were more often infected than females and the difference between the sexes tended to be more pronounced in the site where more prey species were available. A difference in predation efficiency between male and female cats may explain this result. Overall, our results suggest that the composition of prey items in cat diet influences the risk of T. gondii infection. Prey compositon should therefore be considered important in any understanding of infection dynamics of T. gondii.

  20. THE EFFECT OF CUTANEOUS SECRETIONS OF CYPRINIDAE FISH ON PATHOGENIC BACTERIA ERYSIPELOTHRIX RHUSIOPATHIAE POPULATIONS

    Directory of Open Access Journals (Sweden)

    O. Gulay

    2014-09-01

    Full Text Available Purpose. To investigate the effect of cutaneous secretions of Cyprinidae fish on the populations of pathogenic bacteria Erysipelothrix rhusiopathiae. Methodology. Pieces of filter paper were placed on the skin of live fish. After a 1 min. exposure, they were removed and placed in glass tubes for the extraction of water-soluble components. Tap water was used as a solvent (previously settled for 48 hours; 0,1 cm3 of water were needed for 1 cm2 area of the filter paper. After extraction, the aqueous solution of fish cutaneous secretions was sterilized by filtering it through filters with pore diameter <0,2 µm. The test was carried out with cultures of E. rhusiopathiae bacteria, which were incubated on heart-brain broth at a temperature of +36,7 ± 0,3 °С for 48-hours. After adding the sterilized tap water and cultures of E. rhusiopathiae bacteria, test samples contained fish cutaneous secretions at following ratios: 1:10, 1:100, 1:1000, 1:10000. As a control, sterilized tap water and E. rhusiopathiae bacteria at ratios similar to test samples were used. In 48 hours, samples were taken from the specimens cultured at a temperature of +18...+20 °С for determination of cell density in E. rhusiopathiae populations. Findings. Aquatic environment, which contains the secretions of skin glands of certain Cyprinidae species, creates favorable conditions for the reproduction and increase in the density of pathogenic E. rhusiopathiae populations. In the conditions of freshwater ecosystems, direct topical biocenotical and trophic relations may be created between pathogenic E. rhusiopathiae bacteria and the studied fish species (рrussian carp Carassius auratus gibelio and wild carp Cyprinus. Originality. For the first time we obtained the quantitative data that demonstrate a stimulating effect of cutaneous secretions of certain fish species on pathogenic E. rhusiopathiae populations. Practical value. The stimulating effect of cutaneous secretions of some

  1. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    Directory of Open Access Journals (Sweden)

    Tyler E Schartel

    Full Text Available Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable and maple seeds (Acer saccharum; less profitable. We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1 mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2 consumption of both incidental prey would be high near feeders providing less-preferred food and, 3 consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty feeder. Feeders with highly preferred food (sunflower seeds created localized refuges for incidental prey at intermediate distances (15 to 25m from the feeder. Feeders with less-preferred food (corn generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  2. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    Science.gov (United States)

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The importance of predator–prey overlap: predicting North Sea cod recovery with a multispecies assessment model

    DEFF Research Database (Denmark)

    Kempf, Alexander; Dingsør, Gjert Endre; Huse, Geir

    2010-01-01

    The overlap between predator and prey is known as a sensitive parameter in multispecies assessment models for fish, and its parameterization is notoriously difficult. Overlap indices were derived from trawl surveys and used to parametrize the North Sea stochastic multispecies model. The effect...... of time-invariant and year- and quarter-specific overlap estimates on the historical (1991–2007) and predicted trophic interactions, as well as the development of predator and prey stocks, was investigated. The focus was set on a general comparison between single-species and multispecies forecasts...... and the sensitivity of the predicted development of North Sea cod for the two types of overlap implementation. The spatial–temporal overlap between cod and its predators increased with increasing temperature, indicating that foodweb processes might reduce the recovery potential of cod during warm periods...

  4. Weak average persistence and extinction of a predator-prey system in a polluted environment with impulsive toxicant input

    International Nuclear Information System (INIS)

    Yang Xiaofeng; Jin Zhen; Xue Yakui

    2007-01-01

    In this paper, we have investigated a predator-prey system in a polluted environment with impulsive toxicant input at fixed moments. We have obtained two thresholds on the impulsive period by assuming the toxicant amount input is fixed to the environment at each pulse moment. If the impulsive period is greater than the big threshold, then both populations are weak average persistent. If the period lies between of the two thresholds, then the prey population will be weak average persistent while the predator population extinct. If the period is less than the small threshold, both populations tend to extinction. Finally, our theoretical results are confirmed by own numerical simulations

  5. The co-distribution of seabirds and their juvenile fish prey in Baffin Bay

    DEFF Research Database (Denmark)

    LeBlanc, Mathieu; Mosbech, Anders; Fortier, Louis

    documented. We test the hypothesis that the abundance and biomass of juvenile fish, especially at the sea-ice edge, influence the distribution and composition of the seabird assemblage. Hydroacoustic data were recorded continuously during the CCGS Amundsen GreenEdge 2016 cruise in southern Baffin Bay, using...... cod (Boreogadus saida), the main pelagic forage fish, plays a key role by transferring energy from the zooplankton to the upper trophic levels, including seabirds. The interactions between fish and seabirds at the sea-ice edge, an environment increasingly common in the warming Arctic, are poorly...... a hull-mounted EK60 multi-frequency echosounder. Pelagic nets were deployed to document the fish assemblage and to validate the acoustic echoes. Seabird observations during transit periods and seabird sampling in Greenland waters were completed. This study will provide insights in the predator...

  6. Proxy measures of fitness suggest coastal fish farms can act as population sources and not ecological traps for wild gadoid fish.

    Directory of Open Access Journals (Sweden)

    Tim Dempster

    Full Text Available BACKGROUND: Ecological traps form when artificial structures are added to natural habitats and induce mismatches between habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. METHODOLOGY/PRINCIPAL FINDINGS: To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua and saithe (Pollachius virens, we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06-1.12 times; cod: 1.06-1.11 times and liver condition indices (saithe: 1.4-1.8 times; cod: 2.0-2.8 times than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. CONCLUSIONS AND SIGNIFICANCE: Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output.

  7. The effect of structural complexity, prey density, and "predator-free space" on prey survivorship at created oyster reef mesocosms

    Science.gov (United States)

    Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.

    2011-01-01

    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.

  8. Population Dynamic Of Rabbit Fish Siganus Canaliculatus In Gulf Of Bone Luwu Regency South Sulawesi

    Directory of Open Access Journals (Sweden)

    Irman Halid

    2015-08-01

    Full Text Available Rabbitfish Siganus canaliculatus is ones of coral reef inhabitants are exploited intensively and suspected population decline so the necessary management measures was needed. The study aims to analyze aspects of the dynamics of rabbit fish populations in the Bone Gulf Luwu waters. Data was collected by Staratied Random Sampling estimation of the size structure the number of age groups and average length of fish per age group use a column diagram and Bhattacharya method. Population growth is analyzed using the Von Bertalanffy equation exponential growth the value of L K by Ford and Walford method and t0 by Pauly method. The total mortality fishing mortality the rate of exploitation and Y R were estimated by methods of Beverton and Holt and natural mortality by method of Pauly. The results showed that the population of rabbit fish in the waters of the Gulf of Bone Luwu consists of five age groups has the average length and the lenth range of 8.0904 cm and 5.7 to 9.0 cm on the relative age of one year 10.9222 cm and 9.0 to 12.3 cm on the relative age of two years from 12.3 to 15.6 cm 14.1543 cm on the relative age of three years 16.8949 cm and 15.6 to 18.9 cm on the relative age four years and 19.4906 cm and 18.9 to 20.7 cm on the relative age of five years. Maximum length Lamp8734 of 30.5814 cm and the growth rate coefficient K of 0.1572 per year while the t0 value of -1.4815 ofyear. The total mortality Z of 1.6913 per year the mortality M of 0.6109 fishing mortality t 1.0804 per year the rate of exploitation E of 0.6388 and optimal exploitation rate Eopt of 0.50 the value of Y R is now 0.0127 and the value of Y R optimal 0.0150. The conclusion that the population is dominated medium sized fish slow population growth as a result of the high mortality rate of the capture and exploitation as well as the recruitment process is not optimal.

  9. Resource partitioning within major bottom fish species in a highly productive upwelling ecosystem

    Science.gov (United States)

    Abdellaoui, Souad; El Halouani, Hassan; Tai, Imane; Masski, Hicham

    2017-09-01

    The Saharan Bank (21-26°N) is a wide subtropical continental shelf and a highly productive upwelling ecosystem. The bottom communities are dominated by octopus and sparid fish, which are the main targets of bottom-trawl fishing fleets. To investigate resource partitioning within the bottom fish community, adult fish from 14 of the most abundant species were investigated for stomach content analysis. Samples were collected during two periods: October 2003 and May 2007. The diet of the analysed species showed more variation between periods than between size classes, suggesting that temporal or spatial variability in prey availability appears to play a significant role in their diet. Multivariate analysis and subsequent clustering led to a grouping of the species within five trophic guilds. Two species were fish feeders, and the others mainly fed on benthic invertebrates, where epibenthic crustaceans, lamellibranchs and fish were the most important groups in defining trophic guilds. We found that the studied species had a high rate of overlapping spatial distributions and overlapping trophic niches. In this highly productive upwelling ecosystem, where food resources may not be a limiting factor, inter-specific competition did not appear to be an important factor in structuring bottom fish communities. For the species that showed differences in the proportions of prey categories in comparison with other ecosystems, the rise of the proportion of epibenthic crustaceans in their diet was a common feature; a possible consequence of the benthic productivity of this highly productive upwelling ecosystem.

  10. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    International Nuclear Information System (INIS)

    Dang Fei; Zhong Huan; Wang Wenxiong

    2009-01-01

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg -1 day -1 . The efflux rate constant was 0.091 day -1 following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 μg Cu L -1 for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  11. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    Science.gov (United States)

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition.

  12. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  13. Apportioning bacterial carbon source utilization in soil using 14 C isotope analysis of FISH-targeted bacterial populations sorted by fluorescence activated cell sorting (FACS): 14 C-FISH-FACS.

    Science.gov (United States)

    Gougoulias, Christos; Meade, Andrew; Shaw, Liz J

    2018-02-19

    An unresolved need in microbial ecology is methodology to enable quantitative analysis of in situ microbial substrate carbon use at the population level. Here, we evaluated if a novel combination of radiocarbon-labelled substrate tracing, fluorescence in situ hybridisation (FISH) and fluorescence-activated cell sorting (FACS) to sort the FISH-targeted population for quantification of incorporated radioactivity ( 14 C-FISH-FACS) can address this need. Our test scenario used FISH probe PSE1284 targeting Pseudomonas spp. (and some Burkholderia spp.) and salicylic acid added to rhizosphere soil. We examined salicylic acid- 14 C fate (mineralized, cell-incorporated, extractable and non-extractable) and mass balance (0-24 h) and show that the PSE1284 population captured ∼ 50% of the Nycodenz extracted biomass 14 C. Analysis of the taxonomic distribution of the salicylic acid biodegradation trait suggested that PSE1284 population success was not due to conservation of this trait but due to competitiveness for the added carbon. Adding 50KBq of 14 C sample -1 enabled detection of 14 C in the sorted population at ∼ 60-600 times background; a sensitivity which demonstrates potential extension to analysis of rarer/less active populations. Given its sensitivity and compatibility with obtaining a C mass balance, 14 C-FISH-FACS allows quantitative dissection of C flow within the microbial biomass that has hitherto not been achieved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  15. Prey selection of corallivorous muricids at Koh Tao (Gulf of Thailand) four years after a major coral bleaching event

    NARCIS (Netherlands)

    Moerland, M.S.; Scott, C.M.; Hoeksema, B.W.

    2016-01-01

    Corallivorous Drupella (Muricidae) snails at Koh Tao are reported to have extended their range of prey species following a major coral bleaching event in 2010. Populations of their preferred Acropora prey had locally diminished in both size and abundance, and the snails had introduced free-living

  16. Invasive Ponto-Caspian gobies in the diet of piscivorous fish in a European lowland river

    Czech Academy of Sciences Publication Activity Database

    Mikl, Libor; Adámek, Zdeněk; Roche, Kevin Francis; Všetičková, Lucie; Šlapanský, Luděk; Jurajda, Pavel

    2017-01-01

    Roč. 190, č. 2 (2017), s. 157-171 ISSN 1863-9135 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:68081766 Keywords : invasive gobiids * fish prey * predatory fish diet * food web structure * invasive species impacts Subject RIV: EG - Zoology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.170, year: 2016

  17. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  18. Bifurcation approach to the predator-prey population models (Version of the computer book)

    International Nuclear Information System (INIS)

    Bazykin, A.D.; Zudin, S.L.

    1993-09-01

    Hierarchically organized family of predator-prey systems is studied. The classification is founded on two interacting principles: the biological and mathematical ones. The different combinations of biological factors included correspond to different bifurcations (up to codimension 3). As theoretical so computing methods are used for analysis, especially concerning non-local bifurcations. (author). 6 refs, figs

  19. Evaluating prey switching in wolf-ungulate systems.

    Science.gov (United States)

    Garrott, Robert A; Bruggeman, Jason E; Becker, Matthew S; Kalinowski, Steven T; White, P J

    2007-09-01

    Wolf restoration has become a widely accepted conservation and management practice throughout North America and Europe, though the ecosystem effects of returning top carnivores remain both scientific and societal controversies. Mathematical models predicting and describing wolf-ungulate interactions are typically limited to the wolves' primary prey, with the potential for prey switching in wolf-multiple-ungulate systems only suggested or assumed by a number of investigators. We used insights gained from experiments on small taxa and field data from ongoing wolf-ungulate studies to construct a model of predator diet composition for a wolf-elk-bison system in Yellowstone National Park, Wyoming, USA. The model explicitly incorporates differential vulnerability of the ungulate prey types to predation, predator preference, differences in prey biomass, and the possibility of prey switching. Our model demonstrates wolf diet shifts with changes in relative abundance of the two prey, with the dynamics of this shift dependent on the combined influences of preference, differential vulnerability, relative abundances of prey, and whether or not switching occurs. Differences in vulnerability between elk and bison, and strong wolf preference for elk, result in an abrupt dietary shift occurring only when elk are very rare relative to bison, whereas incorporating switching initiates the dietary shift more gradually and at higher bison-elk ratios. We demonstrate how researchers can apply these equations in newly restored wolf-two-prey systems to empirically evaluate whether prey switching is occurring. Each coefficient in the model has a biological interpretation, and most can be directly estimated from empirical data collected from field studies. Given the potential for switching to dramatically influence predator-prey dynamics and the wide range of expected prey types and abundances in some systems where wolves are present and/or being restored, we suggest that this is an

  20. POPs and stable isotopes in bird and forage fish tissues - Persistent organic pollutant levels in juvenile salmonids, forage fish and their avian predators from Puget Sound and the outer WA coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project is examining contaminant loads of fish prey species of a resident marine bird (Rhinoceros Auklet) breeding in inland waters (Puget Sound) and in the...

  1. Weather and Prey Predict Mammals' Visitation to Water.

    Directory of Open Access Journals (Sweden)

    Grant Harris

    Full Text Available Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation and predator-prey relationships (i.e., prey presence predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014 using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis, mule deer (Odocoileus hemionus, and pronghorn (Antilocapra americana, less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella and desert cottontail rabbits (Sylvilagus audubonii visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus. Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature and prey (cottontails and jackrabbits predicted bobcat (Lynx rufus visitation. Mule deer visitation had the largest influence on coyote (Canis latrans visitation. Puma (Puma concolor visitation was solely predicted by prey visitation (elk, mule deer, oryx. Most ungulate visitation peaked during

  2. Weather and Prey Predict Mammals’ Visitation to Water

    Science.gov (United States)

    Harris, Grant; Sanderson, James G.; Erz, Jon; Lehnen, Sarah E.; Butler, Matthew J.

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and

  3. Grey seal predation on forage fish in the Baltic Sea

    DEFF Research Database (Denmark)

    Eero, Aro; Neuenfeldt, Stefan; Aho, Teija

    The mean annual growth rate of grey seal stock in the Baltic has been on average 7.5% annually during the last decade. In 2010, a total of approximately 23 100 grey seals were counted. The increase in stock size was highest in the northern areas and the predation pressure of grey seals on clupeoids...... has increased accordingly. The diet of grey seal in the Baltic consists of ca. 20 fish species. The most abundant prey items in the Baltic proper are Baltic herring, sprat, and cod, and in the Bothnian Sea and Bothnian Bay Baltic herring, Coregonus sp., Baltic salmon, and sea trout. An adult seal...... consumes on average round 4.5 kg fish per day, of which 55% are clupeoids in the Baltic Main basin and 70% in the Bothnian Sea and Bothnian Bay. According to acoustic estimates, predator– prey distribution patterns, migration patterns, and multispecies analysis (SMS), the predation effect of grey seals...

  4. Feeding Relationships among Six Seagrass-associated Fishes in the Northeastern Gwangyang Bay, Southern Korea

    Science.gov (United States)

    Park, Joo Myun; Kwak, Seok Nam; Han, In-Seong

    2018-03-01

    We conducted dietary analyses of six seagrass-associated fish species inhabiting northeastern Gwangyang Bay, Korea. These six species consumed a variety of benthic invertebrates and teleosts, but their preferences for different food resources varied. Although all species consumed crustaceans, the contributions of different crustacean taxa differed among the species' diets. Caridean shrimps and crabs were a significant part of the Hexagrammos agrammus and H. otakii diets, respectively, while amphipods were consumed mainly by Sebastes inermis. Caridean shrimps and prawns were abundant within the Lateolabrax japonicas diet, but were not common prey resources for Pseudopleuronectes yokohamae or S. schlegelii. Polychaetes and ophiurids were ingested by P. yokohamae, and the former prey taxon also made moderate contributions to the diets of H. agrammus and L. japonicus. With the exception of P. yokohamae, the diets of all species included teleosts. Teleosts contributed the largest proportion of the S. schlegelii diet, followed by the S. inermis and L. japonicas diets; however, H. agrammus and H. otakii rarely consumed teleosts. Non-metric multidimensional scaling (nMDS) ordination plots and permutational analysis of variance (PERMANOVA) revealed the variation in dietary composition among species and the contributions of each prey taxon. These interspecific differences in diet increase the range of food resources available to these fishes, thereby reducing competition for resources within the fish community in this region.

  5. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  6. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  7. A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish

    OpenAIRE

    Rodriguez-Lozano, Pablo; Verkaik, Iraima; Maceda Veiga, Alberto; Monroy, Mario; de Sostoa, Adolf; Rieradevall, Maria; Prat, Narcis

    2016-01-01

    Abstract Functional traits are growing in popularity in modern ecology, but feeding studies remain primarily rooted in a taxonomic?based perspective. However, consumers do not have any reason to select their prey using a taxonomic criterion, and prey assemblages are variable in space and time, which makes taxon?based studies assemblage?specific. To illustrate the benefits of the trait?based approach to assessing food choice, we studied the feeding ecology of the endangered freshwater fish Bar...

  8. Does mobility explain variation in colonisation and population recovery among stream fishes?

    Science.gov (United States)

    Angermeier, Paul L.; Albanese, Brett; Peterson, James T.

    2009-01-01

    1. Colonisation and population recovery are crucial to species persistence in environmentally variable ecosystems, but are poorly understood processes. After documenting movement rates for several species of stream fish, we predicted that this variable would influence colonisation rates more strongly than local abundance, per cent occupancy, body size and taxonomic family. We also predicted that populations of species with higher movement rates would recover more rapidly than species with lower movement rates and that assemblage structure would change accordingly. 2. To test these predictions, we removed fishes from a headwater and a mainstem creek in southwest Virginia and monitored colonisation over a 2-year period. Using an information–theoretic approach, we evaluated the relative plausibility of 15 alternative models containing different combinations of our predictor variables. Our best-supported model contained movement rate and abundance and was 41 times more likely to account for observed patterns in colonisation rates than the next-best model. Movement rate and abundance were both positively related to colonisation rates and explained 88% of the variation in colonisation rates among species. 3. Population recovery, measured as the per cent of initial abundance restored, was also positively associated with movement rate. One species recovered within 3 months, most recovered within 2 years, but two species still had not recovered after 2 years. Despite high variation in recovery, the removal had only a slight impact on assemblage structure because species that were abundant in pre-removal samples were also abundant in post-removal samples. 4. The significance of interspecific variation in colonisation and recovery rates has been underappreciated because of the widely documented recovery of stream fish assemblages following fish kills and small-scale experimental defaunations. Our results indicate that recovery of the overall assemblage does not imply

  9. How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies.

    Directory of Open Access Journals (Sweden)

    Juan E Sala

    Full Text Available Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles ('wiggles' for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus by Simeone and Wilson (2003. Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN, Bahía Bustamente (BB, Puerto Deseado (PD and Puerto San Julián (PSJ, all located in Argentina between 42-49° S, to estimate the prey captured and calculate the catch per unit time (CPUT for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies. We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific 'prey type'. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives.

  10. Diet variability of forage fishes in the Northern California Current System

    Science.gov (United States)

    Hill, Andrew D.; Daly, Elizabeth A.; Brodeur, Richard D.

    2015-06-01

    As fisheries management shifts to an ecosystem-based approach, understanding energy pathways and trophic relationships in the Northern California Current (NCC) will become increasingly important for predictive modeling and understanding ecosystem response to changing ocean conditions. In the NCC, pelagic forage fishes are a critical link between seasonal and interannual variation in primary production and upper trophic groups. We compared diets among dominant forage fish (sardines, anchovies, herring, and smelts) in the NCC collected in May and June of 2011 and June 2012, and found high diet variability between and within species on seasonal and annual time scales, and also on decadal scales when compared to results of past studies conducted in the early 2000s. Copepoda were a large proportion by weight of several forage fish diets in 2011 and 2012, which differed from a preponderance of Euphausiidae found in previous studies, even though all years exhibited cool ocean conditions. We also examined diet overlap among these species and with co-occurring subyearling Chinook salmon and found that surf smelt diets overlapped more with subyearling Chinook diets than any other forage fish. Herring and sardine diets overlapped the most with each other in our interdecadal comparisons and some prey items were common to all forage fish diets. Forage fish that show plasticity in diet may be more adapted to ocean conditions of low productivity or anomalous prey fields. These findings highlight the variable and not well-understood connections between ocean conditions and energy pathways within the NCC.

  11. Distance, dams and drift: What structures populations of an endangered, benthic stream fish?

    Science.gov (United States)

    Roberts, James H.; Angermeier, Paul; Hallerman, Eric M.

    2013-01-01

    Spatial population structure plays an important role in species persistence, evolution and conservation. Benthic stream fishes are diverse and frequently imperilled, yet the determinants and spatial scaling of their population structure are understudied. We investigated the range-wide population genetic structure of Roanoke logperch (Percina rex), an endangered, benthic stream fish of the eastern United States. Fish were sampled from 35 sites and analysed at 11 microsatellite DNA loci. Clustering models were used to sort individuals into genetically cohesive groups and thereby estimate the spatial scaling of population structure. We then used Bayesian generalized linear mixed models (BGLMMs) to test alternative hypotheses about the environmental factors most responsible for generating structure, as measured by the differentiation statistic FST. Clustering models delineated seven discrete populations, whose boundaries coincided with agents of fragmentation, including hydroelectric dams and tailwaters. In the absence of hydrological barriers, gene flow was extensive throughout catchments, whereas there was no evidence for contemporary dispersal between catchments across barriers. In the best-supported BGLMM, FST was positively related to the spatial distance and degree of hydrological alteration between sites and negatively related to genetic diversity within sites. Whereas the effect of tailwaters was equivocal, dams strongly influenced differentiation: the effect of a dam on FST was comparable to that of a between-site distance of over 1200 km of unimpounded river. Overall, the effect of distance-mediated dispersal was negligible compared to the combined effects of fragmentation and genetic drift. The contemporary population structure of P. rex comprises a few geographically extensive ‘islands’ that are fragmented by hydroelectric projects. This information clarifies the importance of a catchment-scale perspective on conserving the species and

  12. Accidental close-down of the Trollheim hydropower plant in July 2008. Effects on the fish populations in the river Surna; Utfall av Trollheim kraftverk i juli 2008. Effekter av fiskebestandene i Surna

    Energy Technology Data Exchange (ETDEWEB)

    Forseth, T.; Stickler, M.; Ugedal, O.; Sundt, H.; Bremset, G.; Linnansaari, T.; Hvidsten, N.A.; Harby, A.; Bongard, T.; Alfredsen, K.

    2009-01-15

    An accidental stop in the turbine in the Trollheim Hydropower Plant on 27th July 2008 caused a drop in downstream discharge in the River Surna from 21 to 3 m3/s during 100 min. River discharge was reestablished after three hours. The drop caused large dewatered areas (26 % of total wet area before the drop), but HEC-RAS simulations indicated that the ramping rates were relatively low (less than 20 cm per hour for the whole drop period in the modeled transects). Thus, a high proportion of the fish may have avoided stranding. Stranding mortality was estimated at approximately 14.000 0+ salmon and 3.600 older juveniles (70 % 1+), or the equivalent of approximately 3000 smolts. The loss constitutes less than 3% of the future smolt production downstream the power station (estimated by up-scaling from densities at electrofishing station, via mesohabitats to the whole river stretch) during 2009-2012. About one third of the smolts in the River Surna has been estimated to be produced in areas below the power plant. Between 3000 and 15 000 0+, and an unknown number of older brown trout likely also died from stranding, and the effect was probably larger for the juvenile population of brown trout than Atlantic salmon. All the above estimates are uncertain. Additional releases of water from the reservoir during, and one week after the drop, likely had no effects on the fish populations. The diversity of the zoobenthos communities in the river below the outlet of the power plant is low, likely due to large and frequent variation in discharge. The accidental stop in 2008 was probably particularly damaging, due to the large dewatered areas and low minimum discharge (far below the minimum allowed residual flow at 15 m3/s). This may temporarily reduce biomass and diversity of zoobenthos and thus prey availability for fish. Analysis of discharge data during the period from 2000 to 2008, show that despite measures implemented in the power plant (from 2006), there are several events

  13. Multi-locus phylogeography of the dusky dolphin (Lagenorhynchus obscurus: passive dispersal via the west-wind drift or response to prey species and climate change?

    Directory of Open Access Journals (Sweden)

    Würsig Bernd

    2007-08-01

    Full Text Available Abstract Background The dusky dolphin (Lagenorhynchus obscurus is distributed along temperate, coastal regions of New Zealand, South Africa, Argentina, and Peru where it feeds on schooling anchovy, sardines, and other small fishes and squid tightly associated with temperate ocean sea surface temperatures. Previous studies have suggested that the dusky dolphin dispersed in the Southern Hemisphere eastward from Peru via a linear, temperate dispersal corridor provided by the circumpolar west-wind drift. With new mitochondrial and nuclear DNA sequence data, we propose an alternative phylogeographic history for the dusky dolphin that was structured by paleoceanographic conditions that repeatedly altered the distribution of its temperate prey species during the Plio-Pleistocene. Results In contrast to the west-wind drift hypothesis, phylogenetic analyses support a Pacific/Indian Ocean origin, with a relatively early and continued isolation of Peru from other regions. Dispersal of the dusky dolphin into the Atlantic is correlated with the history of anchovy populations, including multiple migrations from New Zealand to South Africa. Additionally, the cooling of the Eastern Equatorial Pacific led to the divergence of anchovy populations, which in turn explains the north-south equatorial transgression of L. obliquidens and the subsequent divergence of L. obscurus in the Southern Hemisphere. Conclusion Overall, our study fails to support the west-wind drift hypothesis. Instead, our data indicate that changes in primary productivity and related abundance of prey played a key role in shaping the phylogeography of the dusky dolphin, with periods of ocean change coincident with important events in the history of this temperate dolphin species. Moderate, short-term changes in sea surface temperatures and current systems have a powerful effect on anchovy populations; thus, it is not infeasible that repeated fluctuations in anchovy populations continue to play

  14. From complex spatial dynamics to simple Markov chain models: do predators and prey leave footprints?

    DEFF Research Database (Denmark)

    Nachman, Gøsta Støger; Borregaard, Michael Krabbe

    2010-01-01

    to another, are then depicted in a state transition diagram, constituting the "footprints" of the underlying population dynamics. We investigate to what extent changes in the population processes modeled in the complex simulation (i.e. the predator's functional response and the dispersal rates of both......In this paper we present a concept for using presence-absence data to recover information on the population dynamics of predator-prey systems. We use a highly complex and spatially explicit simulation model of a predator-prey mite system to generate simple presence-absence data: the number...... of transition probabilities on state variables, and combine this information in a Markov chain transition matrix model. Finally, we use this extended model to predict the long-term dynamics of the system and to reveal its asymptotic steady state properties....

  15. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations

    International Nuclear Information System (INIS)

    Tong, Yindong; Wang, Mengzhu; Bu, Xiaoge; Guo, Xin; Lin, Yan; Lin, Huiming; Li, Jing; Zhang, Wei; Wang, Xuejun

    2017-01-01

    We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288–654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China. - Graphical abstract: MeHg transfer route from the marine food chain to vulnerable population. - Highlights: • Predicted MeHg concentrations in pregnant woman and infant’s blood in China’s coastal regions are below threshold level. • The carnivorous fish consumption advisory for pregnant women is estimated to be 288–654 g per week. g • If with a 50% increase in Hg in Bohai Sea, the bioaccumulated MeHg concentration in

  16. Higher freshwater fish and sea fish intake is inversely associated with colorectal cancer risk among Chinese population: a case-control study

    OpenAIRE

    Xu, Ming; Fang, Yu-Jing; Chen, Yu-Ming; Lu, Min-Shan; Pan, Zhi-Zhong; Yan, Bo; Zhong, Xiao; Zhang, Cai-Xia

    2015-01-01

    The association between specific fish intake and colorectal cancer risk remains controversial. This study aimed to examine the association between specific fish intake and colorectal cancer risk in Chinese population in a large case control study. During July 2010 to November 2014, 1189 eligible colorectal cancer cases and 1189 frequency-matched controls (age and sex) completed in-person interviews. A validated food frequency questionnaire was used to estimate dietary intake. Multivariate log...

  17. Artisanal fishing of spiny lobsters with gillnets — A significant anthropic impact on tropical reef ecosystem

    Directory of Open Access Journals (Sweden)

    Bruno Welter Giraldes

    2015-07-01

    Full Text Available Artisanal fishing activity with gillnets to capture the spiny lobster is a common practice along the coastal reefs of Brazil. This research aims to understand the impact that this artisanal fishing practice is having on the coastal reef systems analysing its associated fauna (bycatch and the stock of the target species Panulirus echinatus. The study compared an area which was subjected to intense gillnet fishing against one were the practice was absent. The analysis of target species using nocturnal visual census demonstrated a significantly higher number of P. echinatus at the site where gillnet use was virtually absent within three sampled habitats, fringe, cave and soft bottom. The analysis of bycatch species from artisanal fishermen’s gillnet landings recorded 4 lobster species and 10 crab species. These decapod species play an important ecological role as detritivores, herbivorous and first consumers within the reef ecosystem as well as being natural prey items for several reef fishes. The study concludes that this non-discriminatory fishing technique impacts directly on populations of P. echinatus, P. argus and P. laevicauda as well as other lobster and crab species which in-turn indirectly affects the ecological role of the tropical coastal reefs of Brazil.

  18. An extension of Freedman's results on a model of predator-prey dynamics as modified by the action of a parasite

    International Nuclear Information System (INIS)

    Tran Van Nhung

    1993-11-01

    In this paper we consider a model of predator-prey populations with parasitic infection in which each individual of prey or predator can be invaded by a parasite. This is a generalization of the model studied by H.I. Freedman. Our situation is described by system of four autonomous ordinary differential equations. Conditions for persistence of all populations are given. A discussion of the stability of the interior equilibrium is also given. (author). 6 refs

  19. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    Science.gov (United States)

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  20. Feeding rates in the chaetognath Sagitta elegans : effects of prey size, prey swimming behaviour and small-scale turbulence

    DEFF Research Database (Denmark)

    Saito, H.; Kiørboe, Thomas

    2001-01-01

    distances. We develop a simple prey encounter rate model by describing the swimming prey as a 'force dipole' and assuming that a critical signal strength is required to elicit an attack. By fitting the model to the observations, a critical signal strength of 10(-2) cm s(-1) is estimated; this is very...... at rates up to an order of magnitude higher than similarly sized females, probably owing to differences in swimming behaviour. Sagitta elegans is an ambush predator that perceives its prey by hydromechanical signals. Faster swimming prey generates stronger signals and is, hence, perceived at longer...

  1. Why fishing magnifies fluctuations in fish abundance.

    Science.gov (United States)

    Anderson, Christian N K; Hsieh, Chih-hao; Sandin, Stuart A; Hewitt, Roger; Hollowed, Anne; Beddington, John; May, Robert M; Sugihara, George

    2008-04-17

    It is now clear that fished populations can fluctuate more than unharvested stocks. However, it is not clear why. Here we distinguish among three major competing mechanisms for this phenomenon, by using the 50-year California Cooperative Oceanic Fisheries Investigations (CalCOFI) larval fish record. First, variable fishing pressure directly increases variability in exploited populations. Second, commercial fishing can decrease the average body size and age of a stock, causing the truncated population to track environmental fluctuations directly. Third, age-truncated or juvenescent populations have increasingly unstable population dynamics because of changing demographic parameters such as intrinsic growth rates. We find no evidence for the first hypothesis, limited evidence for the second and strong evidence for the third. Therefore, in California Current fisheries, increased temporal variability in the population does not arise from variable exploitation, nor does it reflect direct environmental tracking. More fundamentally, it arises from increased instability in dynamics. This finding has implications for resource management as an empirical example of how selective harvesting can alter the basic dynamics of exploited populations, and lead to unstable booms and busts that can precede systematic declines in stock levels.

  2. Prey switching behaviour in the planktonic copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Saiz, E.; Viitasalo, M.

    1996-01-01

    The copepod Acartia tonsa has 2 different prey encounter strategies. It can generate a feeding current to encounter and capture immobile prey (suspension feeding) or it can sink slowly and perceive motile prey by means of mechanoreceptors on the antennae (ambush feeding). We hypothesized that A....... tonsa adopts the feeding mode that generates the highest energy intake rate; i.e. that prey selection changes according to the relative concentrations of alternative prey (prey switching) and that the copepods spend disproportionately more time in the feeding mode that provides the greatest reward...... be captured by suspension feeding copepods. Finally, we demonstrate that turbulence favours the selection of ciliates as prey. We suggest that prey switching by copepods may provide survival windows for microzooplankters during blooms of net phytoplankton because predation pressure from the copepods...

  3. Importance of growth rate on mercury and polychlorinated biphenyl bioaccumulation in fish

    Science.gov (United States)

    Li, Jiajia; Haffner, G. Douglas; Patterson, Gordon; Walters, David M.; Burtnyk, Michael D.; Drouillard, Ken G.

    2018-01-01

    To evaluate the effect of fish growth on mercury (Hg) and polychlorinated biphenyl (PCB) bioaccumulation, a non–steady‐state toxicokinetic model, combined with a Wisconsin bioenergetics model, was developed to simulate Hg and PCB bioaccumulation in bluegill (Lepomis macrochirus). The model was validated by comparing observed with predicted Hg and PCB 180 concentrations across 5 age classes from 5 different waterbodies across North America. The non–steady‐state model generated accurate predictions for Hg and PCB bioaccumulation in 3 of 5 waterbodies: Apsey Lake (ON, Canada), Sharbot Lake (ON, Canada), and Stonelick Lake (OH, USA). The poor performance of the model for the Detroit River (MI, USA/ON, Canada) and Lake Hartwell (GA/SC, USA), which are 2 well‐known contaminated sites with possibly high heterogeneity in spatial contamination, was attributed to changes in feeding behavior and/or prey contamination. Model simulations indicate that growth dilution is a major component of contaminant bioaccumulation patterns in fish, especially during early life stages, and was predicted to be more important for hydrophobic PCBs than for Hg. Simulations that considered tissue‐specific growth provided some improvement in model performance particularly for PCBs in fish populations that exhibited changes in their whole‐body lipid content with age. Higher variation in lipid growth compared with that of lean dry protein was also observed between different bluegill populations, which partially explains the greater variation in PCB bioaccumulation slopes compared with Hg across sampling sites.

  4. Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage

    Science.gov (United States)

    Breeggemann, Jason J.; Kaemingk, Mark A.; DeBates, T.J.; Paukert, Craig P.; Krause, J.; Letvin, Alexander P.; Stevens, Tanner M.; Willis, David W.; Chipps, Steven R.

    2015-01-01

    Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (−3 to −45% change) compared to largemouth bass that experienced subtle changes (4 to −6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.

  5. Development of fish populations in seismostrsss conditions of the south of Russia

    Directory of Open Access Journals (Sweden)

    P. V. Lyushvin

    2009-01-01

    Full Text Available The last decades communications between reproduction of many food fishes and traditionally considered factors are lost, is unpredictable time recessions food are observed. The purpose of thepresent work to show, that in the seismo-seas of the south of Russia where there is a unloading litosheric fluids, seismo factors often are defining in reproduction fishes. Earthquakes lead to shortterm unloadings on breaks of an earth's crust through the made active volcanos and griffins of hundreds tons litosheric waters and km³ gases (metane, hydrogen, hydrogen sulphide, radon, etc.. Presence of some of these fluids even in midget concentration (less than 0.1-1 ml/½ causes destruction young fishes, infringement of reproductive functions due to what the food base crabs grows, and after their reproduction and extraction. Landslide reductions of fish populations in current decade it is caused by passage of a maximum of century cyclicity of earthquakes.

  6. When prey provide more than food: mammalian predators appropriating the refugia of their prey

    Science.gov (United States)

    Bill Zielinski

    2015-01-01

    Some mammalian predators acquire both food and shelter from their prey, by eating them and using the refugia the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxonomic affiliations, relative sizes, and distributions. I hypothesized that size ratios of species involved in this dynamic would be near 1....

  7. The diets of littoral fish from the Cape Peninsula

    African Journals Online (AJOL)

    mainly by poisoning with rotenone dissolved in acetone, but hand nets and baited hooks were also used on occasion. All fish were killed by placing in formalin or alcohol, after which they were ...... A wide variety of prey species were taken (Table 3), with ..... first weeks after the beginning of exogenous feeding in Lake Opi-.

  8. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei; Zhong Huan [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-09-14

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg{sup -1} day{sup -1}. The efflux rate constant was 0.091 day{sup -1} following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 {mu}g Cu L{sup -1} for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  9. Optimal intermittent search strategies: smelling the prey

    International Nuclear Information System (INIS)

    Revelli, J A; Wio, H S; Rojo, F; Budde, C E

    2010-01-01

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of α (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  10. Optimal intermittent search strategies: smelling the prey

    Energy Technology Data Exchange (ETDEWEB)

    Revelli, J A; Wio, H S [Instituto de Fisica de Cantabria, Universidad de Cantabria and CSIC, E-39005 Santander (Spain); Rojo, F; Budde, C E [Fa.M.A.F., Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2010-05-14

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of {alpha} (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  11. Effects of prey size and foraging mode on the ontogenetic change in feeding niche ofColostethus stepheni (Anura: Dendrobatidae).

    Science.gov (United States)

    Lima, Albertina P; Moreira, Gloria

    1993-03-01

    The feeding niche ofColostethus stepheni changes during ontogeny. Small individuals eat small arthropods, principally mites and collembolans, and larger frogs eat bigger prey of other types. The shift in prey types is not a passive effect of selection for bigger prey. There is a strong relationship between electivity for prey types and frog size, independent of electivity for prey size. Four indices of general activity during foraging (number of movements, velocity, total area utilized and time spent moving), which are associated with electivity for prey types in adult frogs and lizards, did not predict the ontogenetic change in the diet ofC. stepheni. Apparently, the behavioral changes that cause the ontogenetic change inC. stepheni are more subtle than shifts in general activity during foraging. Studies of niche partitioning in communities of anurans that do not take into consideration ontogenetic changes in diet and seasonal changes in the size structures of populations present a partial and possibly erroneous picture of the potential interactions among species.

  12. Seasonal abundance, distribution and catch per unit effort of fishes ...

    African Journals Online (AJOL)

    Environmental factors and availability of food that might determine ... different regions of the estuary to determine preference of species ... mesh sizes of 55, 70, 85, 110 and 145 mm. Each net ..... preferences, predator-prey relationships and CPUE of dominant .... fish and birds (Blaber 1973), but also to exploitation by man.

  13. Distribution and abundance of fish populations in the Middle Wabash River

    International Nuclear Information System (INIS)

    Teppen, T.C.; Gammon, J.R.

    1976-01-01

    A field investigation was made of the distribution and abundance of fish within a 161-km portion of the Wabash River to determine effects of heated effluents as well as changes in water quality on ichthyofaunal communities within the river. Twenty-six sampling stations were electrofished, sequentially, four times in 1974 with extended sampling efforts made in the vicinity of two power-generating stations studied since 1967 and 1968. During August an overall rise in river temperature of 4 0 C was observed from upstream to downstream, with several chemical factors also showing slight increases. Although the majority of species populations were influenced either negatively or positively by the gradient of river conditions available to them, the only statistically significant parameters found in the analysis of community structure involved a lower diversity by weight below Terre Haute and a greater abundance of fish above the Cayuga generating station. Decreases occurred downstream in populations of redhorse (Moxostoma sp.), sauger (Stizostedion canadense), longear sunfish (Lepomis megalotis), and gizzard shad (Dorosoma cepedianum), with increases downstream observed in flathead catfish (Pylodictis olivaris), shortnose gar (Lepisosteus platostomus), longnose gar (E. osseus), and bowfin (Amia calva) populations. Carp (Cyprinus carpio) were present in large numbers throughout the study area with a tremendous population increase evident in recent years. Although species associations were variable among the segments, overall community parameters remained relatively unaffected

  14. Frugivory by the fish Brycon hilarii (Characidae) in western Brazil

    Science.gov (United States)

    Reys, Paula; Sabino, José; Galetti, Mauro

    2009-01-01

    Frugivory and seed dispersal have been poorly studied in Neotropical freshwater fishes. We studied frugivory and seed dispersal by the piraputanga fish ( Brycon hilarii, Characidae) in the Formoso River, Bonito, western Brazil. We examined the stomach contents of 87 fish and found the diet of piraputanga consisted of 24% animal prey (arthropods, snails, and vertebrates), 31% seeds/fruits and 45% other plant material (algae/macrophytes/leaves/flowers). The piraputangas fed on 12 fruit species, and were considered as seed dispersers of eight species. Fruits with soft seeds larger than 10 mm were triturated, but all species with small seeds (e.g. Ficus, Psidium) and one species with large hard seed ( Chrysophyllum gonocarpum) were dispersed. Piraputangas eat more fruits in the dry season just before the migration, but not during the spawning season. Fish length had a positive relation with the presence of fruits in their guts. The gallery forest of the Formoso River apparently does not have any plant species that depend exclusively on B. hilarii for seed dispersal because all fruit species are also dispersed by birds and mammals. Based on seed size and husk hardness of the riparian plant community of Formoso River, however, the piraputangas may potentially disperse at least 50% of the riparian fleshy fruit species and may be particularly important for long-distance dispersal. Therefore, overfishing or other anthropogenic disturbances to the populations of piraputanga may have negative consequences for the riparian forests in this region.

  15. Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids

    Science.gov (United States)

    Kotta, Jonne; Orav-Kotta, Helen; Herkül, Kristjan

    2010-10-01

    The North-American amphipod Gammarus tigrinus was observed for the first time in the northern Baltic Sea in 2003. The invasive amphipod has been particularly successful in some habitats (e.g. on pebbles) where it has become one of the most abundant gammarid species. We studied experimentally if the dominant fish Gasterosteus aculeatus preyed differentially on the exotic G. tigrinus and the native Gammarus salinus, if predation differed among habitats, and if one gammarid species facilitated predation on the other. The experiment demonstrated that (1) fish preyed more on the exotic G. tigrinus than the native G. salinus. (2) Predation did not differ among habitats. (3) Gammarus tigrinus facilitated the predation on G. salinus and this facilitation varied among habitats with significant effects on pebbles. Thus, the combined effect of habitat-specific fish predation and competition between gammarid amphipods is a possible explanation of the current range of G. tigrinus in the northern Baltic Sea. G. tigrinus seems to establish in habitats where it can significantly increase fish predation on the native gammarids.

  16. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  17. Estimation of age structure of fish populations from length-frequency data

    International Nuclear Information System (INIS)

    Kumar, K.D.; Adams, S.M.

    1977-01-01

    A probability model is presented to determine the age structure of a fish population from length-frequency data. It is shown that when the age-length key is available, maximum-likelihood estimates of the age structure can be obtained. When the key is not available, approximate estimates of the age structure can be obtained. The model is used for determination of the age structure of populations of channel catfish and white crappie. Practical applications of the model to impact assessment are discussed

  18. Prey species and size choice of the molluscivorous fish, black carp (Mylopharyngodon piceus)

    DEFF Research Database (Denmark)

    Hung, N. M.; Stauffer, J. R.; Madsen, Henry

    2013-01-01

    ponds in northern Vietnam. Furthermore, shell strength of common snails was assessed. Average daily consumption as percentage of fish weight ranged from 8.12% for smaller fish (100-250 g) to 4.68% in the larger fish (610-1250 g). Bithynia fuchsiana, the intermediate host of Clonorchis sinensis, and some...

  19. Global multi-decadal ocean climate and small-pelagic fish population

    International Nuclear Information System (INIS)

    Tourre, Yves M; Lluch-Cota, Salvador E; White, Warren B

    2007-01-01

    Ocean climate, environmental and biological conditions vary on several spatio-temporal scales. Besides climate change associated with anthropogenic activity, there is growing evidence of a natural global multi-decadal climate signal in the ocean-atmosphere-biosphere climate system. The spatio-temporal evolution of this signal is thus analyzed during the 20th century and compared to the variability of small-pelagic fish landings. It is argued that the low-frequency global ocean environment and plankton ecosystems must be modified such that small-pelagic populations vary accordingly. A small-pelagic global index or fishing 'regime indicator series' (RIS) (i.e. a small-pelagic abundance indicator) is used. RIS is derived from fish landings data in the four main fishing areas in the Pacific and Atlantic oceans. Global RIS changes phase (from positive to negative values) when SST multi-decadal anomalies are out-of-phase between the eastern Pacific and southern Atlantic. RIS also displays maxima during the mid-30s to early-40s and the late-70s to early-80s when the multi-decadal signal was approximately changing phases (Tourre and White 2006 Geophys. Res. Lett. 33 L06716). It is recognized that other factors may modulate fish stocks, including anthropogenic predation. Nevertheless it is proposed that variable climate and environment, and the low-frequency 'global synchrony' of small-pelagic landings (Schwartzlose et al 1999 S. Afr. J. Mar. Sci. 21 289-347), could be associated with the multi-decadal changes in global ocean climate conditions

  20. Structure and sensitivity analysis of individual-based predator–prey models

    International Nuclear Information System (INIS)

    Imron, Muhammad Ali; Gergs, Andre; Berger, Uta

    2012-01-01

    The expensive computational cost of sensitivity analyses has hampered the use of these techniques for analysing individual-based models in ecology. A relatively cheap computational cost, referred to as the Morris method, was chosen to assess the relative effects of all parameters on the model’s outputs and to gain insights into predator–prey systems. Structure and results of the sensitivity analysis of the Sumatran tiger model – the Panthera Population Persistence (PPP) and the Notonecta foraging model (NFM) – were compared. Both models are based on a general predation cycle and designed to understand the mechanisms behind the predator–prey interaction being considered. However, the models differ significantly in their complexity and the details of the processes involved. In the sensitivity analysis, parameters that directly contribute to the number of prey items killed were found to be most influential. These were the growth rate of prey and the hunting radius of tigers in the PPP model as well as attack rate parameters and encounter distance of backswimmers in the NFM model. Analysis of distances in both of the models revealed further similarities in the sensitivity of the two individual-based models. The findings highlight the applicability and importance of sensitivity analyses in general, and screening design methods in particular, during early development of ecological individual-based models. Comparison of model structures and sensitivity analyses provides a first step for the derivation of general rules in the design of predator–prey models for both practical conservation and conceptual understanding. - Highlights: ► Structure of predation processes is similar in tiger and backswimmer model. ► The two individual-based models (IBM) differ in space formulations. ► In both models foraging distance is among the sensitive parameters. ► Morris method is applicable for the sensitivity analysis even of complex IBMs.

  1. Analysis of impingement impacts on Hudson River fish populations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; van Winkle, W.

    1988-01-01

    Impacts of impingement, expressed as reductions in year-class abundance, were calculated for six Hudson River fish populations. Estimates were made for the 1974 and 1975 year classes of white perch, striped bass, Atlantic tomcod, and American shad, and the 1974 year classes of alewife and blueback herring. The maximum estimated reductions in year-class abundance were less than 5% for all year classes except the 1974 and 1975 white perch year classes and the 1974 striped bass year class. Only for white perch were the estimates greater than 10% per year. For striped bass, the 146,000 fish from the 1974 year class that were killed by impingement could have produced 12,000-16,000 5-year-old fish or 270-300 10-year-olds. Also estimated were the reductions in mortality that could have been achieved had closed-cycle cooling systems been installed at one or more of three power plants (Bowline point, Indian Point, and Roseton) and had the screen-wash systems at Bowline Point and Indian Point been modified to improve the survival of impinged fish. Closed-cycle cooling at all three plants would have reduced impingement impacts on white perch, striped bass, and Atlantic tomcod by 75% or more; installation of closed-cycle cooling at Indian Point alone would have reduced impingement impacts on white perch and Atlantic tomcod by 50%-80%. Modified traveling screens would have been less effective than closed-cycle cooling, but still would have reduced impingement impacts on white perch by roughly 20%. 23 refs., 1 fig., 3 tabs

  2. An adaptable but threatened big cat: density, diet and prey selection of the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia.

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W

    2018-02-01

    We studied the Indochinese leopard ( Panthera pardus delacouri ) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture-recapture models, was 1.0 leopard/100 km 2 , 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng ( Bos javanicus ), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig ( Sus scrofa ) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac ( Muntiacus vaginalis ; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5-3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided.

  3. Bias in estimating food consumption of fish from stomach-content analysis

    DEFF Research Database (Denmark)

    Rindorf, Anna; Lewy, Peter

    2004-01-01

    This study presents an analysis of the bias introduced by using simplified methods to calculate food intake of fish from stomach contents. Three sources of bias were considered: (1) the effect of estimating consumption based on a limited number of stomach samples, (2) the effect of using average......, a serious positive bias was introduced by estimating food intake from the contents of pooled stomach samples. An expression is given that can be used to correct analytically for this bias. A new method, which takes into account the distribution and evacuation of individual prey types as well as the effect...... of other food in the stomach on evacuation, is suggested for estimating the intake of separate prey types. Simplifying the estimation by ignoring these factors biased estimates of consumption of individual prey types by up to 150% in a data example....

  4. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces.

    Science.gov (United States)

    Clare, Elizabeth L; Holderied, Marc W

    2015-09-01

    Perceptual abilities of animals, like echolocating bats, are difficult to study because they challenge our understanding of non-visual senses. We used novel acoustic tomography to convert echoes into visual representations and compare these cues to traditional echo measurements. We provide a new hypothesis for the echo-acoustic basis of prey detection on surfaces. We propose that bats perceive a change in depth profile and an 'acoustic shadow' cast by prey. The shadow is more salient than prey echoes and particularly strong on smooth surfaces. This may explain why bats look for prey on flat surfaces like leaves using scanning behaviour. We propose that rather than forming search images for prey, whose characteristics are unpredictable, predators may look for disruptions to the resting surface (acoustic shadows). The fact that the acoustic shadow is much fainter on rougher resting surfaces provides the first empirical evidence for 'acoustic camouflage' as an anti-predator defence mechanism.

  5. Aggregations of bluefish Pomatomus saltatrix (L.) at Mediterranean coastal fish farms: seasonal presence, daily patterns and influence of farming activity

    OpenAIRE

    Arechavala-Lopez, Pablo; Izquierdo-Gomez, David; Uglem, Ingebrigt; Sanchez-Jerez, Pablo

    2014-01-01

    Bluefish, Pomatomus saltatrix (Linnaeus, 1766), is commonly observed close to Mediterranean open-sea fish farms. It usually preys on wild fish that are attracted to farms, but also on farmed fish by biting holes in sea cages net walls. In the current telemetry study, we found that the tagged bluefish stayed close to fish farms during spring and early summer. However, most of the tagged fish disappeared from the farms during autumn, when the sea water temperature dropped. When aggregating at f...

  6. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park.

    Science.gov (United States)

    Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O

    2012-05-01

    1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in

  7. Historical Population Estimates For Several Fish Species At Offshore Oil and Gas Structures in the US Gulf of Mexico

    Science.gov (United States)

    Gitschlag, G.

    2016-02-01

    Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.

  8. High-throughput telomere length quantification by FISH and its application to human population studies.

    Science.gov (United States)

    Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A

    2007-03-27

    A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.

  9. Wild North Island Robins (Petroica longipes respond to Prey Animacy

    Directory of Open Access Journals (Sweden)

    Alexis Garland

    2014-08-01

    Full Text Available North Island robins of New Zealand are a food hoarding species, which is unique in that they almost exclusively cache highly perishable hunted insects for later retrieval. In order to do so, they either kill and dismember or paralyze their prey for caching, depending on the prey size and kind. The present study comprises two experiments, using a Violation of Expectancy (VoE paradigm to examine variation in search behavior response to different prey conditions. The first experiment presents three different types of prey (mealworms, earthworms and locusts in expected (present and unexpected (absent conditions. The second experiment presents prey in varying states of animacy (alive and whole, dead and whole, dead and halved, and an inanimate stick and reveals prey in expected (same state or unexpected (differing state conditions. While robins did not respond with differential search times to different types of unexpectedly missing prey in Experiment 1, in Experiment 2 robins searched longer in conditions where prey was found in a differing state of animacy than initially shown. Robins also searched longer for prey when immediately consuming retrieved prey than when caching retrieved prey. Results indicate that North Island robins may be sensitive to prey animacy upon storage and retrieval of insect prey; such information could play a role in storage, pilfering and retrieval strategies of such a perishable food source.

  10. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    Science.gov (United States)

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  11. Assassin bug uses aggressive mimicry to lure spider prey.

    Science.gov (United States)

    Wignall, Anne E; Taylor, Phillip W

    2011-05-07

    Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.

  12. Spatial management of marine resources can enhance the recovery of predators and avoid local depletion of forage fish

    DEFF Research Database (Denmark)

    Eero, Margit; Vinther, Morten; Haslob, Holger

    2012-01-01

    fish, i.e., sprat and herring, is historic low in this area, which in combination with increasing cod stock results in locally high predation mortality of forage fish and cannibalism of cod. In line with low prey availability, body weight and nutritional condition of cod drastically declined...... management to enhance the recovery of predator stocks...

  13. Predator-Prey Dynamics in the Mesopelagic: Odontocete Foraging Ecology and Anti-predator Behavior of Prey

    Science.gov (United States)

    Benoit-Bird, K. J.

    2016-02-01

    We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.

  14. Inter-decadal patterns of population and dietary change in sea otters at Amchitka Island, Alaska

    Science.gov (United States)

    Watt, J.; Siniff, D.B.; Estes, J.A.

    2000-01-01

    After having been hunted to near-extinction in the Pacific maritime fur trade, the sea otter population at Amchitka Island, Alaska increased from very low numbers in the early 1900s to near equilibrium density by the 1940s. The population persisted at or near equilibrium through the 1980s, but declined sharply in the 1990s in apparent response to increased killer whale predation. Sea otter diet and foraging behavior were studied at Amchitka from August 1992 to March 1994 and the data compared with similar information obtained during several earlier periods. In contrast with dietary patterns in the 1960s and 1970s, when the sea otter population was at or near equilibrium density and kelp-forest fishes were the dietary mainstay, these fishes were rarely eaten in the 1990s. Benthic invertebrates, particularly sea urchins, dominated the otter's diet from early summer to midwinter, then decreased in importance during late winter and spring when numerous Pacific smooth lumpsuckers (a large and easily captured oceanic fish) were eaten. The occurrence of spawning lumpsuckers in coastal waters apparently is episodic on a scale of years to decades. The otters' recent dietary shift away from kelp-forest fishes is probably a response to the increased availability of lumpsuckers and sea urchins (both high-preference prey). Additionally, increased urchin densities have reduced kelp beds, thus further reducing the availability of kelp-forest fishes. Our findings suggest that dietary patterns reflect changes in population status and show how an ecosystem normally under top-down control and limited by coastal zone processes can be significantly perturbed by exogenous events.

  15. PATTERNS OF PREY BIOMASS CONSUMPTION BY SMALL ODONTOCETES IN THE NORTHEASTERN COAST OF VENEZUELA

    Directory of Open Access Journals (Sweden)

    Lenin E. Oviedo Correa

    2011-07-01

    Full Text Available Trophic relationships are conditioned by population dynamics of interacting species in the community (species present, food web connections among them, and the strength of interactions, and on the consequences of these species interactions depend various ecosystem processes such as productivity and nutrient flux. Odontocetes target a wide range of prey items and are adapted to feeding at different depths. The aim of this report is to describe the patterns of prey consumption by small odontocetes, incorporating natural predatory patterns into a potential management scheme of strategic food sources, for both human and marine predators. Using the geo-statistical analysis tool of ArcGIS 9.2, maps illustrating the intensity and location of prey consumption were made for species with a sighting index (SPUE > 0.15. The biomass consumption emphasized the differences in habitat use by species. The trends in distribution of prey biomass removal by odontocetes particularly suggest a stratification of prey consumption primarily in shelf waters, with a prey biomass that is comprised basically by demersal fish and small pelagics (including Sardinella aurita, and into transition-oceanic depths where most of the predatory pattern would potentially rely on pelagic - mesopelagic squid and myctophids. Overall the spatial tendencies in regionalization presented in this contribution will serve as a base-line to assess ecosystem health and evaluate management scenarios.   Las relaciones tróficas son reguladas por la dinámica poblacional de las especies que interactúan dentro de la comunidad (especies presentes, conexiones interespecíficas, y nivel de interacción y de las consecuencias de esas interacciones para procesos del ecosistema como la productividad y el flujo de nutrientes. El objetivo de este reporte es evaluar el patrón de consumo de biomasa por odontocetos de menor tamaño en la costa Nororiental de Venezuela, incorporando patrones de depredaci

  16. Predatory mites avoid ovipositing near counter-attacking prey

    NARCIS (Netherlands)

    Faraji, F.; Janssen, A.; Sabelis, M.W.

    2001-01-01

    Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the

  17. Serum apolipoproteins in relation to intakes of fish in population of Arkhangelsk County

    Directory of Open Access Journals (Sweden)

    Petrenya Natalia

    2012-06-01

    Full Text Available Abstract Background Diets rich in omega-3 fatty acids and low in saturated fat were found beneficially associated with blood lipids and cardio-vascular health. Lean reindeer meet and local cold water white-fish species high in omega-3 are among the main sources of nutrients in the rural area of the Nenets Autonomous Okrug (NAO in Russia and are not normally consumed by the urban population from the same region. The aims of the study were firstly, to compare serum lipid profiles of residents of urban (Arkhangelsk city and rural (NAO regions of Arkhangelsk County, and secondly, to investigate the effects of fish consumption on the predictor of cardiovascular events apolipoprotein (Apo B/ApoA-I ratio in these populations. Methods A cross-sectional study conducted in Arkhangelsk County, Russia. Sample size of 249 adults: 132 subjects from Arkhangelsk city, aged 21–70 and 117 subject (87% Ethnic Nenets from NAO, aged 18–69. Results We observed more favorable lipid levels in NAO compared to Arkhangelsk participants. Age-adjusted geometric means of ApoB/ApoA-I ratio were 1.02 and 0.98 in men and women from Arkhangelsk; 0.84 and 0.91 in men and women from NAO respectively. Age and consumption of animal fat were positively associated with ApoB/ApoA-I ratio in women (pooled samples from Arkhangelsk and NAO. Body mass index and low levels of physical activity were positively associated with ApoB/ApoA-I ratio in men (pooled samples from Arkhangelsk and NAO. Reported oily fish consumption was not significantly correlated with ApoB/ApoA-I ratio. Conclusion The population sample from rural NAO, consisting largely of the indigenous Arctic population Nenets with healthier dietary sources, had a relatively less atherogenic lipid profile compared to the urban Arkhangelsk group. Fish consumption had no effect on apolipoproteins profile.

  18. Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models

    Science.gov (United States)

    Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.

    2017-12-01

    Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision

  19. The diffusive Lotka-Volterra predator-prey system with delay.

    Science.gov (United States)

    Al Noufaey, K S; Marchant, T R; Edwards, M P

    2015-12-01

    Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system with delay are considered in one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differential delay equation model for the system of governing delay partial differential equations. Steady-state and transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In some cases simple linear expressions are found as approximations, to describe steady-state solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between semi-analytical and numerical solutions of the governing equations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The diet and consumption of dominant fish species in the upper Scheldt estuary, Belgium

    DEFF Research Database (Denmark)

    Maes, J.; De Brabandere, Loreto; Ollevier, F.

    2003-01-01

    Seasonal changes in the diet composition and trophic niche overlap were examined for the dominant members of the fish assemblage of the turbid low-salinity zone of the Scheldt estuary (Belgium). Samples of fish were taken in the cooling water of a power plant. Juveniles of eight species dominated...... of trophic niche overlap showed that, in general, niche overlap between individuals of the same species was significantly higher than overlap between individuals from different species, suggesting that the available food resources were partitioned. The total annual prey consumption by the dominant fish...

  1. Circulating fat-soluble vitamin concentrations and nutrient composition of aquatic prey eaten by American oystercatchers (Haematopus palliatus) in the southeastern United States

    Science.gov (United States)

    Carlson-Bremer, Daphne; Norton, Terry M.; Sanders, Felicia J.; Winn, Brad; Spinks, Mark D.; Glatt, Batsheva A.; Mazzaro, Lisa; Jodice, Patrick G.R.; Chen, Tai C.; Dierenfeld, Ellen S.

    2014-01-01

    The American oystercatcher (Haematopus palliatus palliatus) is currently listed as a species of high concern by the United States Shorebird Conservation Plan. Because nutritional status directly impacts overall health and reproduction of individuals and populations, adequate management of a wildlife population requires intimate knowledge of a species' diet and nutrient requirements. Fat-soluble vitamin concentrations in blood plasma obtained from American oystercatchers and proximate, vitamin, and mineral composition of various oystercatcher prey species were determined as baseline data to assess nutritional status and nutrient supply. Bird and prey species samples were collected from the Cape Romain region, South Carolina, USA, and the Altamaha River delta islands, Georgia, USA, where breeding populations appear relatively stable in recent years. Vitamin A levels in blood samples were higher than ranges reported as normal for domestic avian species, and vitamin D concentrations were lower than anticipated based on values observed in poultry. Vitamin E levels were within ranges previously reported for avian groups with broadly similar feeding niches such as herons, gulls, and terns (eg, aquatic/estuarine/marine). Prey species (oysters, mussels, clams, blood arks [Anadara ovalis], whelks [Busycon carica], false angel wings [Petricola pholadiformis]) were similar in water content to vertebrate prey, moderate to high in protein, and moderate to low in crude fat. Ash and macronutrient concentrations in prey species were high compared with requirements of carnivores or avian species. Prey items analyzed appear to meet nutritional requirements for oystercatchers, as estimated by extrapolation from domestic carnivores and poultry species; excesses, imbalances, and toxicities—particularly of minerals and fat-soluble vitamins—may warrant further investigation.

  2. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  3. Marine foraging and annual fish consumption of a south polar Skua population in the maritime Antarctic

    NARCIS (Netherlands)

    Hahn, S.M.; Ritz, M.S.; Reinhardt, K.

    2008-01-01

    Pelagic fish are an important component of Antarctic food webs but few quantitative data exist on energy transfer from fish to seabirds for the Seasonal Pack-ice Zone. We studied a local population of south polar, skuas Catharacta maccormicki during a whole breeding cycle and estimated its entire

  4. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  5. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    Science.gov (United States)

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  6. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.

    Science.gov (United States)

    Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J

    2014-01-01

    Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong

  7. On the hydrodynamics of archer fish jumping out of the water: Integrating experiments with numerical simulations

    Science.gov (United States)

    Sotiropoulos, Fotis; Angelidis, Dionysios; Mendelson, Leah; Techet, Alexandra

    2017-11-01

    Evolution has enabled fish to develop a range of thrust producing mechanisms to allow skillful movement and give them the ability to catch prey or avoid danger. Several experimental and numerical studies have been performed to investigate how complex maneuvers are executed and develop bioinspired strategies for aquatic robot design. We will discuss recent numerical advances toward the development of a computational framework for performing turbulent, two-phase flow, fluid-structure-interaction (FSI) simulations to investigate the dynamics of aquatic jumpers. We will also discuss the integration of such numerics with high-speed imaging and particle image velocimetry data to reconstruct anatomic fish models and prescribe realistic kinematics of fish motion. The capabilities of our method will be illustrated by applying it to simulate the motion of a small scale archer fish jumping out of the water to capture prey. We will discuss the rich vortex dynamics emerging during the hovering, rapid upward and gliding phases. The simulations will elucidate the thrust production mechanisms by the movement of the pectoral and anal fins and we will show that the fins significantly contribute to the rapid acceleration.

  8. Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae

    OpenAIRE

    Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L

    2005-01-01

    The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to t...

  9. Does diet in lacertid lizards reflect prey availability? Evidence for selective predation in the Aeolian wall lizard, Podarcis raffonei (Mertens, 1952 (Reptilia, Lacertidae

    Directory of Open Access Journals (Sweden)

    Pietro Lo Cascio

    2011-06-01

    Full Text Available In this paper the invertebrate fauna occurring on Scoglio Faraglione, a tiny Aeolian island (AeolianArchipelago, NE Sicily inhabited by a population of the critically endangered lacertid lizard Podarcis raffonei(Mertens, 1952, was censused at different seasons and the resulting data were then compared with dataobtained analysing prey composition and prey abundance in the diet of the lizards occurring on the same islet.The diet of Podarcis raffonei was mainly based on insects and other arthropods. The results indicate that dietcomposition is not directly influenced by prey availability and temporal prey abundance, and that there isstrong evidence indicating selective predation. Lizards prey upon a number of arthropod categories fewer thanthat recorded in field. Some invertebrate taxa (e.g. Diptera and Gastropoda are really less attractive for lizardsand are rarely preyed or not preyed at all despite their spatial and/or temporal abundance. This suggests thatPodarcis raffonei is able to operate a hierarchical choice within the range of prey items constituting its preyspectrum, probably through the ability to discriminate between prey chemicals or visually oriented predation.

  10. Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment.

    Science.gov (United States)

    Gouskov, Alexandre; Reyes, Marta; Wirthner-Bitterlin, Lisa; Vorburger, Christoph

    2016-02-01

    The Rhine catchment in Switzerland has been transformed by a chain of hydroelectric power stations. We addressed the impact of fragmentation on the genetic structure of fish populations by focusing on the European chub (Squalius cephalus). This fish species is not stocked and copes well with altered habitats, enabling an assessment of the effects of fragmentation per se. Using microsatellites, we genotyped 2133 chub from 47 sites within the catchment fragmented by 37 hydroelectric power stations, two weirs and the Rhine Falls. The shallow genetic population structure reflected drainage topology and was affected significantly by barriers to migration. The effect of power stations equipped with fishpasses on genetic differentiation was detectable, albeit weaker than that of man-made barriers without fishpasses. The Rhine Falls as the only long-standing natural obstacle (formed 14 000 to 17 000 years ago) also had a strong effect. Man-made barriers also exacerbated the upstream decrease in allelic diversity in the catchment, particularly when lacking fishpasses. Thus, existing fishpasses do have the desired effect of mitigating fragmentation, but barriers still reduce population connectivity in a fish that traverses fishpasses better than many other species. Less mobile species are likely to be affected more severely.

  11. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    Science.gov (United States)

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  12. From the epipelagic zone to the abyss: Trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic - Part II Benthopelagic fishes

    Science.gov (United States)

    Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd

    2017-12-01

    Specific mechanisms, driving trophic interactions between seamount associated fishes and the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure and the main prey of benthopelagic fishes from the summit and slope regions of Ampère and Senghor, two shallow seamounts in the subtropical and tropical NE Atlantic, and the adjacent deep-sea plains. For the identification of food sources and nutritional links to the pelagic realm a combination of stomach content and stable isotope ratio (δ13C and δ15N) analyses was used. δ13C ranged from -22.2‰ to -15.4‰ and δ15N covered a total range of 8.0-15.9‰. Feeding types of fish species comprised mainly zooplanktivores and mixed feeders, but also benthivores, piscivores, and predator-scavengers. Based on epipelagic particulate organic matter, they occupied trophic positions between the 2nd and 4th trophic level. Differences in stomach contents and stable isotope signatures indicate a resource partitioning among the benthopelagic fish fauna through distinct habitat choice, vertical feeding positions and prey selection. Topographic trapping of vertically migrating zooplankton on the summit seemed to be of minor importance for food supply of the resident near-bottom fishes, rather horizontal current-driven advection of the planktonic prey was assumed as major factor. Vertically migrating micronekton and mesopelagic fishes show up as key players within the food webs at Ampère and Senghor Seamounts and the adjacent deep-sea plains.

  13. Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes

    KAUST Repository

    South, Josie

    2017-07-01

    The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies.

  14. Temperature-associated population diversity in salmon confers benefits to mobile consumers

    Science.gov (United States)

    Ruff, Casey P.; Schindle, Daniel E.; Armstrong, Jonathan B.; Bentle, Kale T.; Brooks, Gabriel T.; Holtgrieve, Gordon W.; McGlauflin, Molly T.; Torgersen, Christian E.; Seeb, James E.

    2011-01-01

    Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout–salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5°C to 17.5°C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.

  15. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  16. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Science.gov (United States)

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  17. Extinction and permanence in delayed stage-structure predator-prey system with impulsive effects

    International Nuclear Information System (INIS)

    Pang Guoping; Wang Fengyan; Chen Lansun

    2009-01-01

    Based on the classical stage-structured model and Lotka-Volterra predator-prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the 'pest-extinction' ('prey-eradication') periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator-prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.

  18. The Impacts of Recently Established Fish Populations on Zooplankton Communities in a Desert Spring, and Potential Conflicts in Setting Conservation Goals

    Directory of Open Access Journals (Sweden)

    Sujan M. Henkanaththegedara

    2015-01-01

    Full Text Available Desert springs, which harbor diverse and endemic invertebrate assemblages, are often used as refuge habitats for protected fish species. Additionally, many of these springs have been colonized by invasive fish species. However, the potential impacts of recently established fish populations on invertebrate communities in desert springs have been relatively unexplored. We conducted a mesocosm experiment to assess the impact of both protected and invasive fish on community structure of spring-dwelling invertebrates focusing on zooplankton. Experimental populations of spring zooplankton communities were established and randomly assigned to one of three treatments, (1 invasive western mosquitofish (Gambusia affinis; (2 endangered Mohave tui chub (Siphateles bicolor mohavensis; and (3 fishless control. Final populations of zooplankton and fish were sampled, sorted, identified and counted. The treatment differences of zooplankton communities were analyzed by comparing the densities of six major zooplankton taxa. Further, we performed nonmetric multidimensional scaling (NMDS to visualize the patterns of zooplankton community assemblages. Four zooplankton taxa, crustacean nauplii, cladocera, calanoid and cyclopoid copepods had significantly lower densities in fish treatments compared to fishless control. Overall, invasive mosquitofish caused a 78.8% reduction in zooplankton density, while Mohave tui chub caused a 65.1% reduction. Both protected and invasive fish had similar effects on zooplankton except for cladocerans where tui chub caused a 60% reduction in density, whereas mosquitofish virtually eliminated cladocerans. The presence of fish also had a significant effect on zooplankton community structure due to population declines and local extirpations presumably due to fish predation. This work shows that conservation-translocations undertaken to conserve protected fish species may impact spring-dwelling invertebrate communities, and such impacts are

  19. Red Lionfish (Pterois volitans Invade San Salvador, Bahamas: No Early Effects on Coral and Fish Communities

    Directory of Open Access Journals (Sweden)

    Alexander, Amanda K.

    2011-10-01

    Full Text Available Biological invaders are a leading contributor to global losses of biodiversity. A recent invader to the waters surrounding San Salvador, Bahamas, the red lionfish, Pterois volitans, was first reported in 2006; by 2009 they were common in waters 2-40 m deep around the island. Our study collected data on coral communities and fish assemblages at three patch reef complexes (Rice Bay, Rocky Point, Lindsay Reef in 2007, during the initial phase of the invasion, and compared the results to a nearly identical study done in 2001 before P. volitans colonized San Salvador. Prey selection and quantity of consumption by P. volitans were also examined. Coral and fish species richness, diversity, percent cover (corals and abundance (fish were similar in 2001 and 2007. Of the 5,078 fish recorded during our study on shallow patch reefs, only two were P. volitans, but they were more prevalent in deeper water along San Salvador’s “wall.” Captured P. volitans ranged in size from 19-32 cm, all longer than maturity length. Pallid goby (Coryphopterus eidolon, black cap basslet (Gramma melacara and red night shrimp (Rynchocienetes rigens were the most commonly identified stomach contents. The effects of the successful invasion and increasing population of P. volitans on San Salvador’s reef ecosystem are uncertain at this time; future monitoring of potential changes in coral and fish communities on the patch reefs of San Salvador is recommended to determine if population control measures need to be considered. Initial post-invasion data (2007, along with pre-invasion data (2001, are valuable benchmarks for future studies.

  20. Connectivity between migrating and landlocked populations of a diadromous fish species investigated using otolith microchemistry.

    Directory of Open Access Journals (Sweden)

    Ingrid Tulp

    Full Text Available Smelt Osmerus eperlanus has two different life history strategies in The Netherlands. The migrating population inhabits the Wadden Sea and spawns in freshwater areas. After the closure of the Afsluitdijk in 1932, part of the smelt population became landlocked. The fresh water smelt population has been in severe decline since 1990, and has strongly negatively impacted the numbers of piscivorous water birds relying on smelt as their main prey. The lakes that were formed after the dike closure, IJsselmeer and Markermeer have been assigned as Natura 2000 sites, based on their importance for (among others piscivorous water birds. Because of the declining fresh water smelt population, the question arose whether this population is still supported by the diadromous population. Opportunities for exchange between fresh water and the sea are however limited to discharge sluices. The relationship between the diadromous and landlocked smelt population was analysed by means of otolith microchemistry. Our interpretation of otolith strontium ((88Sr patterns from smelt specimens collected in the fresh water area of Lake IJsselmeer and Markermeer, compared to those collected in the nearby marine environment, is that there is currently no evidence for a substantial contribution from the diadromous population to the spawning stock of the landlocked population.