The development of mathematics
Bell, Eric Temple
1945-01-01
""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from
Developing mathematical modelling competence
DEFF Research Database (Denmark)
Blomhøj, Morten; Jensen, Tomas Højgaard
2003-01-01
In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....
Developing My Mathematics Identity
Gonzalez, Lidia
2016-01-01
Assuming the role of storyteller, the author uses her experiences as a graduate student and beginning teacher to reflect critically on issues related to mathematics, mathematics education, gender, and diversity.
"My math and me": Nursing students' previous experiences in learning mathematics.
Røykenes, Kari
2016-01-01
In this paper, 11 narratives about former experiences in learning of mathematics written by nursing students are thematically analyzed. Most students had a positive relationship with the subject in primary school, when they found mathematics fun and were able to master the subject. For some, a change occurred in the transition to lower secondary school. The reasons for this change was found in the subject (increased difficulty), the teachers (movement of teachers, numerous substitute teachers), the class environment and size (many pupils, noise), and the student him- or herself (silent and anonymous pupil). This change was also found in the transition from lower to higher secondary school. By contrast, some students had experienced changes that were positive, and their mathematics teacher was a significant factor in this positive change. The paper emphasizes the importance of previous experiences in learning mathematics to nursing students when learning about drug calculation. Copyright © 2015. Published by Elsevier Ltd.
EFFECT OF MATHEMATICS LEARNING ON THE DEVELOPMENT OF MATHEMATICS CREATIVITY
Dr. Jyoti Sharma
2017-01-01
The paper presents an empirical study done in Indian classrooms to understand the effect of mathematics learning experiences on the development of mathematics creativity. The study was designed in two stages, at stage I, it was planned to find out scope, practice and promotion of creative thinking in mathematics classroom; teachers’ own engagements with creative mathematical task and teachers’ attitude towards mathematics creativity. Stage II was designed to find out responses of students and...
Game Design and Development as Mathematical Activities
DEFF Research Database (Denmark)
Jensen, Erik Ottar; Hanghøj, Thorkild; Misfeldt, Morten
2016-01-01
education which have mostly been tied to students making learning games involving specific mathematical content. Game design activities are reported to have a motivational pull for students. A challenge seems to be that the students are mostly motivated by the game design or the programming activities...... between user and goal through the computational artifacts being used. The framework serves as a lens for making sense of computer game design as a context for learning mathematics.......In this paper a framework for describing some of the mathematical activities inherent in computer game design is proposed in order to develop a framework for use in a recently conducted pilot study. The paper presents an introduction of previous work on the subject of game design and mathematics...
Mathematical Development in Spina Bifida
English, Lianne H.; Barnes, Marcia A.; Taylor, Heather B.; Landry, Susan H.
2009-01-01
Spina bifida (SB) is a neural tube defect diagnosed before or at birth that is associated with a high incidence of math disability often without co-occurring difficulties in reading. SB provides an interesting population within which to examine the development of mathematical abilities and disability across the lifespan and in relation to the…
Habsah, Fitria
2017-01-01
This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...
Mathematics education, democracy and development: Exploring connections
Directory of Open Access Journals (Sweden)
Renuka Vithal
2012-08-01
Full Text Available Mathematics education and its links to democracy and development are explored in this article, with specific reference to the case of South Africa. This is done by engaging four key questions. Firstly, the question of whether mathematics education can be a preparation for democracy and include a concern for development, is discussed by drawing on conceptual tools of critical mathematics education and allied areas in a development context. Secondly, the question of how mathematics education is distributed in society and participates in shaping educational possibilities in addressing its development needs and goals is used to examine the issues emerging from mathematics performance in international studies and the national Grade 12 examination; the latter is explored specifically in respect of the South African mathematics curriculum reforms and teacher education challenges. Thirdly, the question of whether a mathematics classroom can be a space for democratic living and learning that equally recognises the importance of issues of development in contexts like South Africa, as a post-conflict society still healing from its apartheid wounds, continuing inequality and poverty, is explored through pedagogies of conflict, dialogue and forgiveness. Finally the question of whether democracy and development can have anything to do with mathematics content matters, is discussed by appropriating, as a metaphor, South Africa’s Truth and Reconciliation Commission’s framework of multiple ‘truths’, to seek links within and across the various forms and movements in mathematics and mathematics education that have emerged in the past few decades.
DEVELOPMENT OF MAPLE IN TRAINING HIGHER MATHEMATICS
Directory of Open Access Journals (Sweden)
Volodymyr M. Mykhalevych
2011-03-01
Full Text Available The relevance of the material presented in this paper due to the need to develop and implement new information technologies in teaching higher mathematics with the use of systems of symbolic mathematics. Brief analysis of the Maple and Mathematica is given. The basic results of authors on working out of a training complex on higher mathematics are given. The complex was created in an environment of symbolic mathematics Maple. Procedure simulators, which give the whole process of model solutions of mathematical problems are a major element of the complex. The results of such procedures for typical problems from different sections of higher mathematics in accordance with the program for technical universities are represented. Questions the benefits and methods of using such programs, in particular those related to deficits of licensed copies of Maple was touched.
GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT
Directory of Open Access Journals (Sweden)
V. A. Testov
2014-01-01
Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.
Directory of Open Access Journals (Sweden)
Fitria Habsah
2017-05-01
Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.
Developing Digital Technologies for Undergraduate University Mathematics
DEFF Research Database (Denmark)
Triantafyllou, Eva; Timcenko, Olga
2013-01-01
adopt a participatory design method, involving collaboration with students and teachers. As a first step in our design, we developed in collaboration with teachers a set of visualization applets using GeoGebra for the “Mathematics for Multimedia Applications” course taught for Media Technology students...... during lectures and exercise time. During these observations we were able to investigate how the applets were used in practice but also to get insight in the challenges that the students face during mathematics learning. These findings together with student feedback inspire the next round of design...... requirements for the development of digital tools that support mathematics teaching and learning at university level....
Developing Mathematics Problems Based on Pisa Level
Directory of Open Access Journals (Sweden)
Shahibul Ahyan
2014-01-01
Full Text Available This research aims to produce mathematics problems based on PISA level with valid and practical content of change and relationships and has potential effect for Junior High School students. A development research method developed by Akker, Gravemeijer, McKenney and Nieveen is used this research. In the first stage, the researcher analyzed students, algebra material in school-based curricula (KTSP and mathematics problems of PISA 2003 of change and relationships content. The second stage, the researcher designed 13 problems with content of change and relationships. The last, the researcher used formative evaluation design developed by Tessmer which includes self evaluation, one-to-one, expert review, small group, and field test. The data collect by walk through, interview, and questionnaire. The result of this research indicated that 12 mathematical problems based on PISA level of change and relationships content that developed have validity, practically, and potential effects for Junior High School students.
Advanced mathematical study and the development of conditional reasoning skills.
Directory of Open Access Journals (Sweden)
Nina Attridge
Full Text Available Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.
Advanced Mathematical Study and the Development of Conditional Reasoning Skills
Attridge, Nina; Inglis, Matthew
2013-01-01
Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general ‘thinking skills’. Today, this argument, known as the ‘Theory of Formal Discipline’ is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought. PMID:23869241
Advanced mathematical study and the development of conditional reasoning skills.
Attridge, Nina; Inglis, Matthew
2013-01-01
Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.
Developing a Mathematics Education Quality Scale
Ciftci, S. Koza; Karadag, Engin
2016-01-01
The aim of this study was to evaluate students' perceptions of the quality of mathematics education and to develop a reliable and valid measurement tool. The research was conducted with 638 (first study) and 407 (second study) secondary school students in Eskisehir, Turkey. Item discrimination, structural validity (exploratory factor analysis and…
Directory of Open Access Journals (Sweden)
Amber J. Godwin
2017-01-01
Full Text Available The purpose of this study is to determine what previous studies have found to be factors that contribute to a child’s initial communication development and previously identified effects of reading mathematics storybooks to toddlers or preschoolers. Therefore, it follows that the earlier a preschooler is exposed to mathematics vocabulary, the easier mathematics vocabulary acquisition and understanding can be for that child, which can result in an increase in future academic achievement. This metasynthesis was conducted to gather information on the effects that interactive relationships with caregivers have on a child’s ability to communicate and then how symbiotic reading and mathematics interventions can affect a child’s ability to think and communicate mathematically. According to the data analyzed for this metasynthesis, caregivers’ language relationships help facilitate a child’s early communication development and reading and mathematics symbiotic instruction can lead to developing a child’s ability to think and communicate mathematically.
Developing Mathematical Resilience of Prospective Math Teachers
Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.
2017-09-01
Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.
Vilkomir, T.; O'Donoghue, J.
2009-01-01
Kruteskii's work on the mathematical abilities of school children is a seminal work on the nature of mathematical ability. However, the task of developing methods for the practical application of his work is still a significant problem in mathematics education. The authors have developed a practical application of Kruteskii's approach to the…
A Brief Historical Development of Classical Mathematics before the Renaissance
Debnath, Lokenath
2011-01-01
This article deals with a short history of mathematics and mathematical scientists during the ancient and medieval periods. Included are some major developments of the ancient, Indian, Arabic, Egyptian, Greek and medieval mathematics and their significant impact on the Renaissance mathematics. Special attention is given to many results, theorems,…
Mathematical modeling of vertebrate limb development.
Zhang, Yong-Tao; Alber, Mark S; Newman, Stuart A
2013-05-01
In this paper, we review the major mathematical and computational models of vertebrate limb development and their roles in accounting for different aspects of this process. The main aspects of limb development that have been modeled include outgrowth and shaping of the limb bud, establishment of molecular gradients within the bud, and formation of the skeleton. These processes occur interdependently during development, although (as described in this review), there are various interpretations of the biological relationships among them. A wide range of mathematical and computational methods have been used to study these processes, including ordinary and partial differential equation systems, cellular automata and discrete, stochastic models, finite difference methods, finite element methods, the immersed boundary method, and various combinations of the above. Multiscale mathematical modeling and associated computational simulation have become integrated into the study of limb morphogenesis and pattern formation to an extent with few parallels in the field of developmental biology. These methods have contributed to the design and analysis of experiments employing microsurgical and genetic manipulations, evaluation of hypotheses for limb bud outgrowth, interpretation of the effects of natural mutations, and the formulation of scenarios for the origination and evolution of the limb skeleton. Copyright © 2012 Elsevier Inc. All rights reserved.
Mathematics Educators' Views on the Role of Mathematics Learning in Developing Deductive Reasoning
Ayalon, Michal; Even, Ruhama
2010-01-01
This study examines the views of people involved in mathematics education regarding the commonly stated goal of using mathematics learning to develop deductive reasoning that is usable outside of mathematical contexts. The data source includes 21 individual semi-structured interviews. The findings of the study show that the interviewees ascribed…
Recent developments of mathematical fluid mechanics
Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao
2016-01-01
The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered: 1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics. For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations. There are 24...
DEVELOPING EVALUATION INSTRUMENT FOR MATHEMATICS EDUCATIONAL SOFTWARE
Directory of Open Access Journals (Sweden)
Wahyu Setyaningrum
2012-02-01
Full Text Available The rapid increase and availability of mathematics software, either for classroom or individual learning activities, presents a challenge for teachers. It has been argued that many products are limited in quality. Some of the more commonly used software products have been criticized for poor content, activities which fail to address some learning issues, poor graphics presentation, inadequate documentation, and other technical problems. The challenge for schools is to ensure that the educational software used in classrooms is appropriate and effective in supporting intended outcomes and goals. This paper aimed to develop instrument for evaluating mathematics educational software in order to help teachers in selecting the appropriate software. The instrument considers the notion of educational including content, teaching and learning skill, interaction, and feedback and error correction; and technical aspects of educational software including design, clarity, assessment and documentation, cost and hardware and software interdependence. The instrument use a checklist approach, the easier and effective methods in assessing the quality of educational software, thus the user needs to put tick in each criteria. The criteria in this instrument are adapted and extended from standard evaluation instrument in several references. Keywords: mathematics educational software, educational aspect, technical aspect.
A Theory of Developing Competence with Written Mathematical Symbols.
Hiebert, James
1988-01-01
Presented is a theory of how competence with written mathematical symbols develops, tracing a succession of cognitive processes that cumulate to yield competence. Arguments supporting the theory are drawn from the history, philosophy, and psychology of mathematics. (MNS)
Development of a Multidisciplinary Middle School Mathematics Infusion Model
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Development and Validation of the Mathematical Resilience Scale
Kooken, Janice; Welsh, Megan E.; McCoach, D. Betsy; Johnston-Wilder, Sue; Lee, Clare
2016-01-01
The Mathematical Resilience Scale measures students' attitudes toward studying mathematics, using three correlated factors: Value, Struggle, and Growth. The Mathematical Resilience Scale was developed and validated using exploratory and confirmatory factor analyses across three samples. Results provide a new approach to gauge the likelihood of…
Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2016-01-01
This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
Developing Mathematical Concepts through Orientation and Mobility
Smith, Derrick W.
2006-01-01
The National Council for Teachers of Mathematics (NCTM; 2000) encourages students to experience mathematics in multiple contexts, including science, history, physical education, business sciences, and agricultural sciences. All educators, including professionals such as orientation and mobility specialists who work with students who are visually…
Purpura, David J.; Ganley, Colleen
2013-01-01
The successful acquisition and development of mathematics skills and concepts is a critical aspect of children's early academic growth. The purpose of this study was to systematically evaluate the unique relations of working memory and language to a range of specific early mathematics skills in a sample of preschool and kindergarten age children.…
Mathematics Coaching: A New Kind of Professional Development
Obara, Samuel
2010-01-01
While millions of dollars are spent on traditional professional development each year in the USA, some school districts are trying other means to increase students' test scores. One strategy is hiring mathematics coaches as on-site professional developers. Whereas mathematics coaching is a newly investigated research area and many issues still…
Development of mathematics curriculum for Medialogy studentsat Aalborg University
DEFF Research Database (Denmark)
Timcenko, Olga
Abstract This paper addresses mathematics curriculum development for Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised tree times. Some of the reasoning...... behind curriculum development, lessons learned and remaining issues are presented and discussed....
Developing Mathematical Fluency: Comparing Exercises and Rich Tasks
Foster, Colin
2018-01-01
Achieving fluency in important mathematical procedures is fundamental to students' mathematical development. The usual way to develop procedural fluency is to practise repetitive exercises, but is this the only effective way? This paper reports three quasi-experimental studies carried out in a total of 11 secondary schools involving altogether 528…
Foster, Colin
2013-07-01
In a high-stakes assessment culture, it is clearly important that learners of mathematics develop the necessary fluency and confidence to perform well on the specific, narrowly defined techniques that will be tested. However, an overemphasis on the training of piecemeal mathematical skills at the expense of more independent engagement with richer, multifaceted tasks risks devaluing the subject and failing to give learners an authentic and enjoyable experience of being a mathematician. Thus, there is a pressing need for mathematical tasks which embed the practice of essential techniques within a richer, exploratory and investigative context. Such tasks can be justified to school management or to more traditional mathematics teachers as vital practice of important skills; at the same time, they give scope to progressive teachers who wish to work in more exploratory ways. This paper draws on the notion of a musical étude to develop a powerful and versatile approach in which these apparently contradictory aspects of teaching mathematics can be harmoniously combined. I illustrate the tactic in three central areas of the high-school mathematics curriculum: plotting Cartesian coordinates, solving linear equations and performing enlargements. In each case, extensive practice of important procedures takes place alongside more thoughtful and mathematically creative activity.
Mathematical capability development during extracurricular activities
Directory of Open Access Journals (Sweden)
Komarova L.V.
2017-05-01
Full Text Available in the article the author has built the program of the course of extracurricular work in mathematics for grades 5–7. The principle of program construction is considered. The article gives the details of the school curriculum.
Developing Creativity of Schoolchildren through the Course "Developmental Mathematics"
Gorev, Pavel M.; Masalimova, Alfiya R.; Mukhametzyanova, Farida Sh.; Makarova, Elena V.
2017-01-01
The relevance of the present study is due to the importance of developing creativity which can be achieved through a variety of school subjects including mathematics. In the article the potential of extended (supplementary) mathematical education (in primary and secondary schools) is highlighted. The main objective of this study is to examine and…
Kwiatkowski-Egizio, Erica
2013-01-01
The two research questions that guided this study were: (1) How do preservice teachers develop mathematical knowledge for teaching during a coordinated math methods course and field experience? and (2) What types of portfolio tasks lend themselves to documenting mathematical knowledge in teaching? Six, female, elementary (K-8) teacher candidates…
Scale development for pre-service mathematics teachers ...
African Journals Online (AJOL)
The purpose of this study is to develop a scale to determine pre-service mathematics teachers' perceptions related to their pedagogical content knowledge. Firstly, a preliminary perception scale of pedagogical content knowledge was constructed and then administered to 112 pre-service mathematics teachers who were ...
The Importance of Dialogic Processes to Conceptual Development in Mathematics
Kazak, Sibel; Wegerif, Rupert; Fujita, Taro
2015-01-01
We argue that dialogic theory, inspired by the Russian scholar Mikhail Bakhtin, has a distinct contribution to the analysis of the genesis of understanding in the mathematics classroom. We begin by contrasting dialogic theory to other leading theoretical approaches to understanding conceptual development in mathematics influenced by Jean Piaget…
Directory of Open Access Journals (Sweden)
José Messildo Viana Nunes
2010-06-01
Full Text Available This article consists of a reflection on the possibility of using the History of the Mathematics as a pedagogical resource for introduction of mathematical concepts, allied to the David Ausubel’s theory of significant learning. This overlap can help us in the elaboration/organization of didactic sequences that can favor the construction of the mathematical knowledge by the pupil himself. In this case, we use some examples from Euclidean Geometry as a reference to present our conception on how and why we conceive the context of the history of the mathematics as a legitimate previous organizer. Keywords: History of Mathematics. Significant Learning. Previous Organizer.Este artigo consiste em uma reflexão sobre a possibilidade de uso da História da Matemática como recurso pedagógico, para introdução de conceitos matemáticos, aliada à teoria da aprendizagem significativa de David Ausubel. Tal imbricação pode nos auxiliar na elaboração/organização de sequências didáticas que possam favorecer a construção do conhecimento matemático pelo próprio aluno. Nesse caso utilizamos alguns exemplos da Geometria Euclidiana como referência para apresentar nossa concepção sobre como e por que concebemos o contexto da história da matemática como um legítimo organizador prévio. Palavras-chave: História da Matemática. Aprendizagem significativa. Organizador Prévio.
Vukovic, Rose K; Lesaux, Nonie K
2013-06-01
This longitudinal study examined how language ability relates to mathematical development in a linguistically and ethnically diverse sample of children from 6 to 9 years of age. Study participants were 75 native English speakers and 92 language minority learners followed from first to fourth grades. Autoregression in a structural equation modeling (SEM) framework was used to evaluate the relation between children's language ability and gains in different domains of mathematical cognition (i.e., arithmetic, data analysis/probability, algebra, and geometry). The results showed that language ability predicts gains in data analysis/probability and geometry, but not in arithmetic or algebra, after controlling for visual-spatial working memory, reading ability, and sex. The effect of language on gains in mathematical cognition did not differ between language minority learners and native English speakers. These findings suggest that language influences how children make meaning of mathematics but is not involved in complex arithmetical procedures whether presented with Arabic symbols as in arithmetic or with abstract symbols as in algebraic reasoning. The findings further indicate that early language experiences are important for later mathematical development regardless of language background, denoting the need for intensive and targeted language opportunities for language minority and native English learners to develop mathematical concepts and representations. Copyright © 2013. Published by Elsevier Inc.
Cueli, Marisol; Rodríguez, Celestino; Areces, Débora; García, Trinidad; González-Castro, Paloma
2017-12-04
Self-regulation on behalf of the student is crucial in learning Mathematics through hypermedia applications and is an even greater challenge in these IT environments. Two aims are formulated. First, to analyze the effectiveness of a hypermedia tool in improving perceived knowledge of self-regulatory strategies and the perceived usage of the planning, executing and assessment strategy on behalf of students with low, medium and high levels of academic performance. Second, to analyze the effectiveness of the hypermedia tool in improving perceived usage of the strategy for planning, monitoring and evaluating on behalf of students with a perceived knowledge (low, medium and high). Participants were 624 students (aged 10-13), classified into a treatment group (TG; 391) and a comparative group (CG; 233). They completed a questionnaire on perceived knowledge (Perceived Knowledge of Self-Regulatory Strategies) and another one on perceived usage of the strategy for planning, performing and evaluating (Inventory of Self-regulatory Learning Processes). Univariate covariance analyses (ANCOVAs) and Student-t tests were used. ANCOVA results were not statistically significant. However, the linear contrast indicated a significant improvement in perceived knowledge of strategies among the TG with low, medium and high academic performance (p ≤ .001). Results are discussed in the light of past and future research.
Nagy, Gabriel; Watt, Helen M. G.; Eccles, Jacquelynne S.; Trautwein, Ulrich; Ludtke, Oliver; Baumert, Jurgen
2010-01-01
Gender differences in the development of children's and adolescents' academic self-perceptions have received increasing attention in recent years. This study extends previous research by examining the development of mathematics self-concept across grades 7-12 in three cultural settings: Australia (Sydney; N = 1,333), the United States (Michigan; N…
Contributions of Islamic Civilization to The Mathematics Development
Directory of Open Access Journals (Sweden)
Liya Khaulah Asy-Syaimaa' Hussain
2017-12-01
Full Text Available The development of Islamic civilization goes hand in hand with physical and spiritual development. This development can be highlighted since the beginning of the golden age of Islam that witnessed the development of knowledge by Muslims scholars in various disciplines, including mathematics. The discourse in mathematical science only involves numbers, letters, and formulas. Muslims scholars took them as instruments to manifest the greatest of God. This paper investigates the contributions of Muslim scholars in Mathematics. The method of this study is qualitative through literature review. The resulting study found that the Quran became a source of inspiration to Muslim scholars in mathematics that form the branch of knowledge such as number theory, arithmetic, algebra, and geometry. This paper also promotes Islamization of Knowledge and its necessity to solve current Muslim world’s educational problems.
Bennison, Anne; Goos, Merrilyn
2010-04-01
The potential for digital technologies to enhance students' mathematics learning is widely recognised, and use of computers and graphics calculators is now encouraged or required by secondary school mathematics curriculum documents throughout Australia. However, previous research indicates that effective integration of technology into classroom practice remains patchy, with factors such as teacher knowledge, confidence, experience and beliefs, access to resources, and participation in professional development influencing uptake and implementation. This paper reports on a large-scale survey of technology-related professional development experiences and needs of Queensland secondary mathematics teachers. Teachers who had participated in professional development were found to be more confident in using technology and more convinced of its benefits in supporting students' learning of mathematics. Experienced, specialist mathematics teachers in large metropolitan schools were more likely than others to have attended technology-related professional development, with lack of time and limited access to resources acting as hindrances to many. Teachers expressed a clear preference for professional development that helps them meaningfully integrate technology into lessons to improve student learning of specific mathematical topics. These findings have implications for the design and delivery of professional development that improves teachers' knowledge, understanding, and skills in a diverse range of contexts.
Synchronous Online Collaborative Professional Development for Elementary Mathematics Teachers
Directory of Open Access Journals (Sweden)
Krista Francis-Poscente and Michele Jacobsen
2013-07-01
Full Text Available Math is often taught poorly emphasizing rote, procedural methods rather than creativity and problem solving. Alberta Education developed a new mathematics curriculum to transform mathematics teaching to inquiry driven methods. This revised curriculum provides a new vision for mathematics and creates opportunities and requirements for professional learning by teachers. Conventional offsite, after school, or weekend professional development is typically “sit and listen, maybe try on Monday”. Professional development that is embedded, responsive, and personalized is known to be more effective at changing teaching practice. Alberta teachers are geographically dispersed making online professional learning a desirable alternative to on-site workshops. As access to and use of the Internet gains momentum in schools across the country, opportunities for collaborative, online professional development become more viable. The online professional development in this hermeneutic study maps on to the new vision promoted in Alberta’s math curriculum, and addresses the challenge of a distributed teacher population. Thirteen geographically dispersed participants, including 10 teachers, a PhD mathematician, and two mathematics education specialists, collaborated in an online professional learning community to build knowledge for teaching mathematics. This paper describes and interprets the shared experiences of learners within an online, synchronous learning community that focused on discipline rich, focused inquiry with mathematics. Findings show that the nature and quality of the mathematics task impacted the quality and nature of the online interaction. Mathematics problems that incorporated easily drawn symbols and minimal text worked best in the online collaborative space. Members of this learning community discovered how to assert their identity in the online environment.
Fredenberg, Michael Duane
The idea that problems and tasks play a pivotal role in a mathematics lesson has a long standing in mathematics education research. Recent calls for teaching reform appeal for training teachers to better understand how students learn mathematics and to employ students' mathematical thinking as the basis for pedagogy (CCSSM, 2010; NCTM, 2000; NRC 1999). The teaching practices of (a) developing a task for a mathematics lesson and, (b) modifying the task for students while enacting the lesson fit within the scope of supporting students' mathematical thinking. Surprisingly, an extensive search of the literature did not yield any research aimed to identify and refine the constituent parts of the aforementioned teaching practices in the manner called for by Grossman and xiii colleagues (2009). Consequently, my research addresses the two questions: (a) what factors do exemplary elementary teachers consider when developing a task for a mathematics lesson? (b) what factors do they consider when they modify a task for a student when enacting a lesson? I conducted a multiple case study involving three elementary teachers, each with extensive training in the area of Cognitively Guided Instruction (CGI), as well as several years experience teaching mathematics following the principles of CGI (Carpenter et al., 1999). I recorded video of three mathematics lessons with each participant and after each lesson I conducted a semi-structured stimulated recall interview. A subsequent follow-up clinical interview was conducted soon thereafter to further explore the teacher's thoughts (Ginsberg, 1997). In addition, my methodology included interjecting myself at select times during a lesson to ask the teacher to explain her reasoning. Qualitative analysis led to a framework that identified four categories of influencing factors and seven categories of supporting objectives for the development of a task. Subsets of these factors and objectives emerged as particularly relevant when the
DEFF Research Database (Denmark)
Damm, P.; Kühl, C.; Bertelsen, Aksel
1992-01-01
OBJECTIVES: The purpose of this study was to determine the incidence of diabetes in women with previous dietary-treated gestational diabetes mellitus and to identify predictive factors for development of diabetes. STUDY DESIGN: Two to 11 years post partum, glucose tolerance was investigated in 241...... women with previous dietary-treated gestational diabetes mellitus and 57 women without previous gestational diabetes mellitus (control group). RESULTS: Diabetes developed in 42 (17.4%) women with previous gestational diabetes mellitus (3.7% insulin-dependent diabetes mellitus and 13.7% non......-insulin-dependent diabetes mellitus). Diabetes did not develop in any of the controls. Predictive factors for diabetes development were fasting glucose level at diagnosis (high glucose, high risk), preterm delivery, and an oral glucose tolerance test result that showed diabetes 2 months post partum. In a subgroup...
Developing Critical Thinking Skills of Students in Mathematics Learning
Firdaus, Firdaus; Kailani, Ismail; Bakar, Md. Nor Bin; Bakry, Bakry
2015-01-01
Critical thinking skills should be owned by students. Therefore, schools should be responsible to develop and evaluate critical thinking skills through teaching and learning process in schools. This study aims to identify the effects of mathematical learning modules based on problem-based learning to critical thinking skills at secondary school students in District of Bone. Assessment of critical thinking skills in mathematical problem solving non-routine includes three parts; the identific...
Designing Curriculum-Based Mathematics Professional Development for Kindergarten Teachers
Polly, Drew; Martin, Christie S.; McGee, Jennifer R.; Wang, Chuang; Lambert, Richard G.; Pugalee, David K.
2017-01-01
This study examines the influence of a year-long mathematics professional development program on Kindergarten teachers' beliefs, content knowledge, instructional practices, and their students' achievement. The professional development program is grounded in the theoretical construct of learner-centered professional development and focuses on…
Rubinstein-Ávila, Eliane; Sox, Amanda A.; Kaplan, Suzanne; McGraw, Rebecca
2015-01-01
Few studies on the role of bilingualism in mathematics classrooms explore the intersection of biliteracy, language use, mathematical discourse, and numeracy--especially at the middle school level. Drawing from biliteracy development theory and reform mathematics education literature, this qualitative case study of a dual-language mathematics…
A marriage of continuance: professional development for mathematics lecturers
Barton, Bill; Oates, Greg; Paterson, Judy; Thomas, Mike
2015-06-01
In a 2-year project, we developed and trialled a mode of lecturing professional development amongst staff in our department of mathematics. Theoretically grounded in Schoenfeld's resources, orientations, and goals (ROG) model of teacher action, a group met regularly to discuss both the video excerpts of themselves lecturing along with written pre- and post-lecture statements of their "ROGs". We found evidence of improved teaching performance but more interestingly, identified key aspects of our practice and of undergraduate mathematics that received repeated attention and developed further theoretical insight into lecturer behaviour in mathematics. The trial has been successful enough to be expanded into further groups that now constitute a professional development culture within our department.
DEVELOPING NUMERICAL ABILITY IN CHILDREN WITH MATHEMATICAL DIFFICULTIES USING ORIGAMI (.).
Krisztián, Ágota; Bernáth, László; Gombos, Hajnalka; Vereczkei, Lajos
2015-08-01
Certain aspects of numerical processing show a connection with spatial abilities. Spatial abilities may be enhanced through the practice of origami. It is possible that the development of spatial abilities will support the development of numerical processing. The goal was to investigate whether spatial and numerical skills can be developed using origami and the folding of three-dimensional shapes. During the course of the 10-wk. training program, consisting of weekly 60-min. sessions, the performance of children with mathematical difficulties showed considerable improvement in spatial and numerical tasks as compared to the control group of children with mathematical difficulties.
Development of Mathematics Competences in Higher Education Institutions
Directory of Open Access Journals (Sweden)
Anda Zeidmane
2013-03-01
Full Text Available The changes in society require revision of the content of higher education. Mathematics as a classical subject has played an important part in higher education until now, especially in engineering education. The introduction of mathematics IT programmes (MathCad, MathLab, Matematica, Maple… in labour market caused the reduction of the practical application of the classical mathematics, therefore it is important to draw attention to the development of mathematical competences. The theoretical part of the paper deals with the notion of competence, its aspects and types, considers the question of the essence of mathematics, examines general competences driven teaching of mathematics, describes organisational model underlying the curriculum in mathematics that is based on the division of the content of mathematics into levels. The paper describes the main issues of the development of teaching of mathematics discussed by European mathematicians (SEFI Math Working Group. The paper presents the results of the ERDF project “Cross-border network for adapting mathematical competences in the socio-economic development (MatNet”, which
I. SPATIAL SKILLS, THEIR DEVELOPMENT, AND THEIR LINKS TO MATHEMATICS.
Verdine, Brian N; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy; Newcombe, Nora S
2017-03-01
Understanding the development of spatial skills is important for promoting school readiness and improving overall success in STEM (science, technology, engineering, and mathematics) fields (e.g., Wai, Lubinski, Benbow, & Steiger, 2010). Children use their spatial skills to understand the world, including visualizing how objects fit together, and can practice them via spatial assembly activities (e.g., puzzles or blocks). These skills are incorporated into measures of overall intelligence and have been linked to success in subjects like mathematics (Mix & Cheng, 2012) and science (Pallrand & Seeber, 1984; Pribyl & Bodner, 1987). This monograph sought to answer four questions about early spatial skill development: 1) Can we reliably measure spatial skills in 3- and 4-year-olds?; 2) Do spatial skills measured at 3 predict spatial skills at age 5?; 3) Do preschool spatial skills predict mathematics skills at age 5?; and 4) What factors contribute to individual differences in preschool spatial skills (e.g., SES, gender, fine-motor skills, vocabulary, and executive function)? Longitudinal data generated from a new spatial skill test for 3-year-old children, called the TOSA (Test of Spatial Assembly), show that it is a reliable and valid measure of early spatial skills that provides strong prediction to spatial skills measured with established tests at age 5. New data using this measure finds links between early spatial skill and mathematics, language, and executive function skills. Analyses suggest that preschool spatial experiences may play a central role in children's mathematical skills around the time of school entry. Executive function skills provide an additional unique contribution to predicting mathematical performance. In addition, individual differences, specifically socioeconomic status, are related to spatial and mathematical skill. We conclude by exploring ways of providing rich early spatial experiences to children. © 2017 The Society for Research in Child
A Marriage of Continuance: Professional Development for Mathematics Lecturers
Barton, Bill; Oates, Greg; Paterson, Judy; Thomas, Mike
2015-01-01
In a 2-year project, we developed and trialled a mode of lecturing professional development amongst staff in our department of mathematics. Theoretically grounded in Schoenfeld's resources, orientations, and goals (ROG) model of teacher action, a group met regularly to discuss both the video excerpts of themselves lecturing along with written pre-…
The Place of Calculators in Mathematics Education in Developing Countries
Kissane, Barry; Kemp, Marian
2012-01-01
Technology has become a major force in developing curricula and educational practice in mathematics education internationally. While many technologies are important in affluent developed countries, the hand-held calculator continues to be the technology most likely to be available to students when and where they need it. Modern calculators have…
Development of abstract mathematical reasoning: The case of algebra
Directory of Open Access Journals (Sweden)
Ana eSusac
2014-09-01
Full Text Available Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 12 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters, and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols than those with numbers. This difference disappeared for older participants (16-17 years, suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.
2013-06-12
... the LNG at the time of export. The Application was filed under section 3 of the Natural Gas Act (NGA... not prohibited by U.S. law or policy. Current Application The current Application is filed in... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously Imported...
Developing Reading Comprehension through Metacognitive Strategies: A Review of Previous Studies
Channa, Mansoor Ahmed; Nordin, Zaimuariffudin Shukri; Siming, Insaf Ali; Chandio, Ali Asgher; Koondher, Mansoor Ali
2015-01-01
This paper has reviewed the previous studies on metacognitive strategies based on planning, monitoring, and evaluating in order to develop reading comprehension. The main purpose of this review in metacognition, and reading domain is to help readers to enhance their capabilities and power reading through these strategies. The researchers reviewed…
Energy Technology Data Exchange (ETDEWEB)
Hyman, J.; Beyer, W.; Louck, J.; Metropolis, N.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Group theoretical methods are a powerful tool both in their applications to mathematics and to physics. The broad goal of this project was to use such methods to develop the implications of group (symmetry) structures underlying models of physical systems, as well as to broaden the understanding of simple models of chaotic systems. The main thrust was to develop further the complex mathematics that enters into many-particle quantum systems with special emphasis on the new directions in applied mathematics that have emerged and continue to surface in these studies. In this area, significant advances in understanding the role of SU(2) 3nj-coefficients in SU(3) theory have been made and in using combinatoric techniques in the study of generalized Schur functions, discovered during this project. In the context of chaos, the study of maps of the interval and the associated theory of words has led to significant discoveries in Galois group theory, to the classification of fixed points, and to the solution of a problem in the classification of DNA sequences.
HOW MATHEMATICS TEACHERS DEVELOP THEIR PUPILS’ SELF-REGULATED LEARNING SKILLS
Directory of Open Access Journals (Sweden)
Iuliana Marchis
2011-11-01
Full Text Available Self-regulated learning skills are important in mathematical problem solving. The aim of the paper is to present a research on how mathematics teachers guide their pupils’ mathematical problem-solving activities in order to increase self-regulation. 62 teachers have filled in a questionnaire developed for this research. The results are show that more than two third of the teachers promote the methods of understanding the problem; develop pupils’ self-efficacy and self-control. But only one third of the teachers ask pupils to use different strategies for solving a problem; ask students to explain the solution to their colleagues. In case of unsuccessful problem solving only one third of the respondents ask pupils to present previous knowledge about the problem or/and recall and try different methods.
Mathematical modeling for novel cancer drug discovery and development.
Zhang, Ping; Brusic, Vladimir
2014-10-01
Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.
Mathematical Development: The Role of Broad Cognitive Processes
Calderón-Tena, Carlos O.
2016-01-01
This study investigated the role of broad cognitive processes in the development of mathematics skills among children and adolescents. Four hundred and forty-seven students (age mean [M] = 10.23 years, 73% boys and 27% girls) from an elementary school district in the US southwest participated. Structural equation modelling tests indicated that…
Development of an Intelligent Instruction System for Mathematical Computation
Kim, Du Gyu; Lee, Jaemu
2013-01-01
In this paper, we propose the development of a web-based, intelligent instruction system to help elementary school students for mathematical computation. We concentrate on the intelligence facilities which support diagnosis and advice. The existing web-based instruction systems merely give information on whether the learners' replies are…
Problem Solving Frameworks for Mathematics and Software Development
McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley
2012-01-01
In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…
Information Technology, Mathematics Achievement and Educational Equity in Developed Economies
Tan, Cheng Yong; Hew, Khe Foon
2017-01-01
The present study examined how access to home and school IT resources impacted student mathematics achievement. Data comprised 144,395 secondary school students from 7,308 schools in 22 developed economies who participated in the Programme for International Student Assessment (PISA) 2012. Results of hierarchical linear modelling showed that after…
Theoretical Framework of Researcher Knowledge Development in Mathematics Education
Kontorovich, Igor'
2016-01-01
The goal of this paper is to present a framework of researcher knowledge development in conducting a study in mathematics education. The key components of the framework are: knowledge germane to conducting a particular study, processes of knowledge accumulation, and catalyzing filters that influence a researcher's decision making. The components…
Development of a mathematical model for managing magnitude and ...
African Journals Online (AJOL)
A mathematical model was developed for managing m~gnitude and risk · factors of injuries in a manufacturing industry employing System Dynamics (SD) approach. Data were collected using an injury and illness investigation register. These were used to estimate and validate the parameters of the model. The principle of ...
Mathematics Phobia in Developing Areas: Implications for Technical ...
African Journals Online (AJOL)
The study investigated the problems of mathematics phobia among students and the impact on technical manpower development in Rivers State of Nigeria. Two sets of structured questionnaires were used to elicit appropriate responses from the respondents and simple proportion /percentage scores were employed for ...
Application of a neurofuzzy mathematical model in the development ...
African Journals Online (AJOL)
This paper presents a contribution on the development of a neurofuzzy mathematical model that aids in capturing and analyzing the various parameters in oven design. The oven was designed specifically for domestic and commercial baking operations. The neurofuzzy methodology was used to regulate the oven baking ...
Recent developments and applications in mathematics and computer science
International Nuclear Information System (INIS)
Churchhouse, R.F.; Tahir Shah, K.; Zanella, P.
1991-01-01
The book contains 8 invited lectures and 4 short seminars presented at the College on Recent Developments and Applications in Mathematics and Computer Science held in Trieste from 7 May to 1 June 1990. A separate abstract was prepared for each paper. Refs, figs and tabs
Mathematical models of human cerebellar development in the fetal period.
Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja
2018-04-01
The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.
Developing and Validating Proof Comprehension Tests in Undergraduate Mathematics
Mejía-Ramos, Juan Pablo; Lew, Kristen; de la Torre, Jimmy; Weber, Keith
2017-01-01
In this article, we describe and illustrate the process by which we developed and validated short, multiple-choice, reliable tests to assess undergraduate students' comprehension of three mathematical proofs. We discuss the purpose for each stage and how it benefited the design of our instruments. We also suggest ways in which this process could…
Andriani, Ade; Dewi, Izwita; Halomoan, Budi
2018-03-01
In general, this research is conducted to improve the quality of lectures on mathematics learning strategy in Mathematics Department. The specific objective of this research is to develop learning instrument of mathematics learning strategy based on Higher Order Thinking Skill (HOTS) that can be used to improve mathematical communication and self efficacy of mathematics education students. The type of research is development research (Research & Development), where this research aims to develop a new product or improve the product that has been made. This development research refers to the four-D Model, which consists of four stages: defining, designing, developing, and disseminating. The instrument of this research is the validation sheet and the student response sheet of the instrument.
Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures
Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy
2011-01-01
This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…
Recent developments of the ROOT mathematical and statistical software
Moneta, L; Brun, R
2008-01-01
Advanced mathematical and statistical computational methods are required by the LHC experiments to analyzed their data. These methods are provided by the Math work package of the ROOT project. An overview of the recent developments of this work package is presented by describing the restructuring of the core mathematical library in a coherent set of C++ classes and interfaces. The achieved improvements, in terms of performances and quality, of numerical methods present in ROOT are shown as well. New developments in the fitting and minimization packages are reviewed. A new graphics interface has been developed to drive the fitting process and new classes are being introduced to extend the fitting functionality. Furthermore, recent and planned developments of integrating in the ROOT environment new advanced statistical tools required for the analysis of the LHC data are presented.
Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki
2014-01-01
This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.
International Nuclear Information System (INIS)
Demazure, M.
1988-01-01
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr
Developing Critical Thinking Skills of Students in Mathematics Learning
Directory of Open Access Journals (Sweden)
Firdaus Firdaus
2015-08-01
Full Text Available Critical thinking skills should be owned by students. Therefore, schools should be responsible to develop and evaluate critical thinking skills through teaching and learning process in schools. This study aims to identify the effects of mathematical learning modules based on problem-based learning to critical thinking skills at secondary school students in District of Bone. Assessment of critical thinking skills in mathematical problem solving non-routine includes three parts; the identification and interpretation of information, information analysis, and evaluate of evidence and arguments. This study involved a total of 68 students grade 12 science state secondary school (SMAN in Bone District of South Sulawesi, Indonesia in academic year 2014-2015. The sample consists of 38 students in the city and 30 rural students. The design of the study was quasi experimental one group pretest-posttest. The data was analysed using the inferential t-test with SPSS 20.0 for windows. The study found that there are effects of the use of mathematical learning module based PBL to enhance the ability of critical thinking skills in mathematics students in all three components, namely, identifying and interpreting information, information analysis, and evaluate of evidence and argument.
Early mathematics development and later achievement: Further evidence
Aubrey, Carol; Godfrey, Ray; Dahl, Sarah
2006-05-01
There is a growing international recognition of the importance of the early years of schooling as well as an interest being shown in the relationship of early education to later achievement. This article focuses on a cohort of English pupils who have been tracked through primary school during the first five years of the new National Numeracy Strategy. It reports a limited longitudinal study of young children's early mathematical development, initially within three testing cycles: at the mid-point and towards the end of their reception year (at five years-of-age) and again at the mid-point of Year 1 (at six years-ofage). These cycles were located within the broader context of progress through to the end of Key Stage 1 (at seven years) and Key Stage 2 (at eleven years) on the basis of national standardised assessment tests (SATs). Results showed that children who bring into school early mathematical knowledge do appear to be advantaged in terms of their mathematical progress through primary school. Numerical attainment increases in importance across the primary years and practical problem solving remains an important element of this. This finding is significant given the current emphasis on numerical calculation in the English curriculum. It is concluded that without active intervention, it is likely that children with little mathematical knowledge at the beginning of formal schooling will remain low achievers throughout their primary years and, probably, beyond.
Robiansyah, S. T. U.; Nanang, F.; Hidayat
2018-01-01
The purpose of this study was to introduce about mathematic assessment is a process of obtaining data or information about the mastery of a student's mathematical skills as an ingredient in preparing a learning program. With this mathematics assessment can be known obstacles, difficulties and needs of students especially in the field of mathematic, so that the learning program will be in accordance with the potential students because it is tailored to what is required of students. This research study was conducted at elementary school of inclusive precisely at SDN Sukagalih I Bandung City based learning in setting of inclusive education. This research study is motivated by the existence of a first-grade student who has disabilities learning in mathematics, the ability of the mathematical prerequisite mastery of the classification of objects by color. The results of the research can provide a profile picture of student data information, the data obtained from the results of the development of systematic and formal mathematical assessment. After doing the development of mathematics assessment then the teacher gets important related information: 1. process the analysis of students’ learning needs, especially in the field of mathematics, 2. preparing the learning program planning according to student learning needs, 3. Designing procedural of method remedial program.
S. Schulze
2010-01-01
The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET) – an aspect of the social cognitive theory (SCT). Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basi...
Minarni, Ani; Napitupulu, E. Elvis
2017-01-01
Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…
Oktiningrum, Wuli; Zulkardi; Hartono, Yusuf
2016-01-01
The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students' mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10…
Van Nes, Fenna
2011-01-01
The Mathematics Education and Neurosciences project is an interdisciplinary research program that bridges mathematics education research with neuroscientific research. The bidirectional collaboration will provide greater insight into young children's (aged four to six years) mathematical abilities. Specifically, by combining qualitative "design…
State and Trait Effects on Individual Differences in Children's Mathematical Development
Bailey, Drew H.; Watts, Tyler W.; Littlefield, Andrew K.; Geary, David C.
2015-01-01
Substantial longitudinal relations between children's early mathematics achievement and their much later mathematics achievement are firmly established. These findings are seemingly at odds with studies showing that early educational interventions have diminishing effects on children's mathematics achievement across time. We hypothesized that individual differences in children's later mathematical knowledge are more an indicator of stable, underlying characteristics related to mathematics learning throughout development than of direct effects of early mathematical competency on later mathematical competency. We tested this hypothesis in two longitudinal data sets, by simultaneously modeling effects of latent traits (stable characteristics that influence learning across time) and states (e.g., prior knowledge) on children's mathematics achievement over time. Latent trait effects on children's mathematical development were substantially larger than state effects. Approximately 60% of the variance in trait mathematics achievement was accounted for by commonly used control variables, such as working memory, but residual trait effects remained larger than state effects. Implications for research and practice are discussed. PMID:25231900
Platas, Linda M.
2015-01-01
The Mathematical Development Beliefs Survey was developed to measure early childhood teachers' beliefs about mathematics teaching and learning in the preschool classroom. This instrument was designed to measure beliefs concerning (a) age-appropriateness of mathematics instruction, (b) classroom locus of generation of mathematical knowledge…
Game Development as Students’ Engagement Project in High School Mathematics
Directory of Open Access Journals (Sweden)
Ryan V. Dio
2015-12-01
Full Text Available The general expectancies of the enhanced basic education curriculum in the Philippines focuses on the performance standards which can be expressed when students are able to produce products as evidence that they can transfer or use their learning in real-life situations. One way to assess students achievement is through an engaging activities that would require them apply the knowledge and skills acquired in the subject as the outcome of their learning. This descriptive method of research employed content analysis procedures and survey in describing and assessing the significant feature of the mathematical games as potential learning devices developed by the high school students through an engaging task assignment. It utilized purposive sampling techniques in the selection of the respondents and the submitted write-ups of mathematical games for analysis as typical sample in this study. The study revealed that the high school students developed mathematical board games with different objectives and mechanics as inspired by their learning, experiences, hobbies, and interest. Mathematical concepts and processes along numbers and number sense, measurements, algebra, geometry, and probability and statistics were integrated in the game through question card and mechanics of the game itself. The groups of students and teachers have high level of agreement as to the workmanship and usability, mechanics and organization, relevance to instruction/learning, and fun and enjoyment of the game as revealed by their assessment from very satisfactory to excellent level. Results implied that teachers in any subject area may use students’ engagement project as teaching strategy to produce products and performance that would provide evidence of students’ learning. The school curriculum makers may consider the students’ output as subjects of research for further improvements, exhibits, and classroom utilization.
Tohma, Kentaro; Saito, Mariko; Demetria, Catalino S; Manalo, Daria L; Quiambao, Beatriz P; Kamigaki, Taro; Oshitani, Hitoshi
2016-03-01
Rabies is endemic in the Philippines and dog bites are a major cause of rabies cases in humans. The rabies control program has not been successful in eliminating rabies because of low vaccination coverage among dogs. Therefore, more effective and feasible strategies for rabies control are urgently required in the country. To control rabies, it is very important to know if inter-island transmission can occur because rabies can become endemic once the virus is introduced in areas that previously had no reported cases. Our molecular epidemiological study suggests that inter-island transmission events can occur; therefore, we further investigated these inter-island transmission using phylogenetic and modeling approaches. We investigate inter-island transmission between Luzon and Tablas Islands in the Philippines. Phylogenetic analysis and mathematical modeling demonstrate that there was a time lag of several months to a year from rabies introduction to initial case detection, indicating the difficulties in recognizing the initial rabies introductory event. There had been no rabies cases reported in Tablas Island; however, transmission chain was sustained on this island after the introduction of rabies virus because of low vaccination coverage among dogs. Across the islands, a rabies control program should include control of inter-island dog transportation and rabies vaccination to avoid viral introduction from the outside and to break transmission chains after viral introduction. However, this program has not yet been completely implemented and transmission chains following inter-island virus transmission are still observed. Local government units try to control dog transport; however, it should be more strictly controlled, and a continuous rabies control program should be implemented to prevent rabies spread even in rabies-free areas. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
S. Schulze
2010-07-01
Full Text Available The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET – an aspect of the social cognitive theory (SCT. Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basic principles. Firstly, institutions need to provide supportive environmental conditions that facilitate research selfefficacy. This implies a supportive and efficient collective system. The possible effects of performance ratings and reward systems at the institution also need to be considered. Secondly, mentoring needs to create opportunities for young researchers to experience successful learning as a result of appropriate action. To this end, mentees need to be involved in actual research projects in small groups. At the same time the mentor needs to facilitate skills development by coaching and encouragement. Thirdly, mentors need to encourage mentees to believe in their ability to successfully complete research projects. This implies encouraging positive emotional states, stimulating self-reflection and self-comparison with others in the group, giving positive evaluative feedback and being an intentional role model.
Gann, Linda; Bonner, Emily P.; Moseley, Christine
2016-01-01
Given the increasing number of English Language Learners (ELLs) in secondary mathematics classrooms, it is imperative that mathematics teacher educators develop measures for determining how and why secondary mathematics teachers (SMTs) understand and respond instructionally to these students. This paper reports on the initial development and…
Opar, David A; Williams, Morgan D; Timmins, Ryan G; Dear, Nuala M; Shield, Anthony J
2013-01-01
The effect of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. To determine if recreational athletes with a history of unilateral hamstring strain injury will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development (RTD), and impulse (IMP) at 30, 50, and 100 milliseconds after the onset of myoelectrical activity or torque development in the previously injured limb compared with the uninjured limb. Case control study; Level of evidence, 3. Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head), and 13 had no history of hamstring strain injury. Following familiarization, all athletes undertook isokinetic dynamometry testing and surface electromyography (integrated EMG; iEMG) assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -180 deg·s(-1). In the injured limb of the injured group, compared with the contralateral uninjured limb, RTD and IMP was lower during -60 deg·s(-1) eccentric contractions at 50 milliseconds (RTD: injured limb, 312.27 ± 191.78 N·m·s(-1) vs uninjured limb, 518.54 ± 172.81 N·m·s(-1), P = .008; IMP: injured limb, 0.73 ± 0.30 N·m·s vs uninjured limb, 0.97 ± 0.23 N·m·s, P = .005) and 100 milliseconds (RTD: injured limb, 280.03 ± 131.42 N·m·s(-1) vs uninjured limb, 460.54 ± 152.94 N·m·s(-1), P = .001; IMP: injured limb, 2.15 ± 0.89 N·m·s vs uninjured limb, 3.07 ± 0.63 N·m·s, P contraction. Biceps femoris long head muscle activation was lower at 100 milliseconds at both contraction speeds (-60 deg·s(-1), normalized iEMG activity [×1000]: injured limb, 26.25 ± 10.11 vs uninjured limb, 33.57 ± 8.29, P = .009; -180 deg·s(-1), normalized iEMG activity [×1000]: injured limb, 31.16 ± 10.01 vs uninjured limb, 39.64
The Role of Tasks in Developing Communities of Mathematical Inquiry.
Peressini, Dominic; Knuth, Eric
2000-01-01
Examines the nature of mathematically rich tasks and varied ways in which students respond to these tasks. Explores approaches for using such tasks to foster inquiry that engages children in mathematical practice. (Contains 16 references.) (ASK)
Purpura, David J.; Logan, Jessica A. R.
2015-01-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability.…
Ponce-Campuzano, Juan Carlos
2013-10-01
Mexican authorities and universities are actively working to improve mathematics teaching and learning across the education system. Thus, efforts are underway to raise the historically low performance in mathematics, which include theoretically grounded pedagogy and curriculum development to raise mathematical knowledge in teacher education programmes. The purpose of this article is twofold. Firstly, I give an overview of the educational system in Mexico by outlining the evolution of the mathematics curriculum and teacher preparation programmes. Secondly, I describe and discuss, from my own practice, a lesson using dynamic tools for helping prospective teachers to understand the relationship between integration and differentiation within the context of the current literature from Mexico and abroad. While Mexico faces distinct issues within its educational system, challenges in how future mathematics teachers understand mathematical content appear universal. Thus, teaching mathematical content while modelling effective mathematical pedagogical practices is of relevance to all of us striving to enhance the quality of future mathematics teachers.
Developing a Caring Ethic for Middle School Mathematics Classrooms
Powell, Angiline; Seed, Allen H.
2010-01-01
The authors, Angiline and Al, are university teacher educators who share similar experiences building community in middle grades mathematics classroom. As eighth grade mathematics teachers, they began the year building relationships with their students and encouraging communication to establish a caring ethic. In their mathematics classes, a…
Muir, Tracey; Wells, Jill; Chick, Helen
2017-01-01
Previous research into the knowledge required for teaching has focused primarily on pre-service and in-service teachers' knowledge. What is less researched, however, is the role of the teacher educator in helping pre-service teachers (PSTs) develop the knowledge needed in order to teach mathematics to students. The focus thus shifts from examining…
Recent development in school mathematics' roles and relations
DEFF Research Database (Denmark)
Lindenskov, Lena; Andresen, Mette
2010-01-01
The article sketches a national profile of Danish educational policy and school practice by three perspectives: regulations and teachers' autonomy, educational aims and goals, and students' attitudes towards mathematics. We present the enrollment of mathematics in a new construct, multi...... disciplinarity, introduced recently into Danish upper secondary schools with academically oriented programs. The potentials of multi-disciplinary mathematics teaxching at all levels are analysed and discussed within Realistic Mathematics Education Theory and philosophical approach to mathematical reflections....... Examples from developmental teaching projects are included....
Purpura, David J; Logan, Jessica A R
2015-12-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability. Participants included 114 children who were assessed in the fall and spring of preschool on a battery of academic and cognitive tasks. Children were 3.12 to 5.26 years old (M = 4.18, SD = .58) and 53.6% were girls. Both mixed-effect and quantile regressions were conducted. The mixed-effect regressions indicated that mathematical language, but not the ANS, nor other cognitive domains, predicted mathematics performance. However, the quantile regression analyses revealed a more nuanced relation among domains. Specifically, it was found that mathematical language and the ANS predicted mathematical performance at different points on the ability continuum. These dual nonlinear relations indicate that different mechanisms may enhance mathematical acquisition dependent on children's developmental abilities. (c) 2015 APA, all rights reserved).
Directory of Open Access Journals (Sweden)
Wuli Oktiningrum
2016-01-01
Full Text Available The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students’ mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10 experts were involved in this research to assess the feasibility of prototyping in terms of content, context and language. Walk through, documentation, questionnaire, test result, and interviews are way to collect the data. This research produced a PISA-like math task is as many 12 category of content, context, and process valid, practical and has potential effect. The validity came empirical evaluation of validation and reliability testing during small group. From the field test, we conclude that the tasks also potentially effect to the students’ mathematical literacy in activating the indicators of each Fundamental Mathematical Capabilities.
Koellner, Karen; Jacobs, Jennifer; Borko, Hilda
2011-01-01
This article focuses on three features of professional development (PD) programs that play an important role in developing leadership skills and building teachers' capacity: (1) fostering a professional learning community, (2) developing teachers' mathematical knowledge for teaching, and (3) adapting PD to support local needs and interests. We…
Semiotic aspects of cognitive development: illustrations from early mathematical cognition.
Becker, J; Varelas, M
1993-07-01
The premise of this article is that cognitive development involves both conceptual and semiotic achievements. From this perspective, the authors emphasize the distinctness of the semiotic issues and develop a differentiated appreciation of semiotic aspects of cognition, particularly in the field of elementary mathematical cognition. The authors provide semiotic analyses of the differences between counting, adding, and multiplying and of the conventional place-value sign system. The authors introduce the concept of the field of reference of a sign, the differentiation of the field into foreground and background, and the dynamics within the field of reference. Finally, the authors relate these ideas to the dynamics between two dimensions of semiotic relations: the sign-referent dimension and the sign-sign dimension.
Directory of Open Access Journals (Sweden)
Wuli Oktiningrum
2016-01-01
Full Text Available The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students’ mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10 experts were involved in this research to assess the feasibility of prototyping in terms of content, context and language. Walk through, documentation, questionnaire, test result, and interviews are way to collect the data. This research produced a PISA-like math task is as many 12 category of content, context, and process valid, practical and has potential effect. The validity came empirical evaluation of validation and reliability testing during small group. From the field test, we conclude that the tasks also potentially effect to the students’ mathematical literacy in activating the indicators of each Fundamental Mathematical Capabilities.Keywords: development research, PISA task, mathematics literacy, fundamental mathematical capabilities DOI: http://dx.doi.org/10.22342/jme.7.1.2812.1-8
Developing a learning environment on realistic mathematics education for Indonesian student teachers
Zulkardi, Z.
2002-01-01
The CASCADE-IMEI study was started to explore the role of a learning environment (LE) in assisting mathematics student teachers learning Realistic Mathematics Education (RME) as a new instructional approach in mathematics education in Indonesia. The LE for this study has been developed and evaluated
Weber, Keith
2009-01-01
This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…
Development and Application of a Chinese Version of the Short Attitudes toward Mathematics Inventory
Lin, Shu-Hui; Huang, Yun-Chen
2016-01-01
Student attitudes toward mathematics play an important role in the teaching and learning processes of mathematics as positive attitudes correlate with higher student achievement. This paper aims to develop and explore the validity of a Chinese version of the short attitudes toward mathematics inventory (short ATMI) for Taiwanese undergraduates,…
Brendefur, Jonathan L; Johnson, Evelyn S; Thiede, Keith W; Strother, Sam; Severson, Herb H
2018-01-01
There is a critical need to identify primary level students experiencing difficulties in mathematics to provide immediate and targeted instruction that remediates their deficits. However, most early math screening instruments focus only on the concept of number, resulting in inadequate and incomplete information for teachers to design intervention efforts. We propose a mathematics assessment that screens and provides diagnostic information in six domains that are important to building a strong foundation in mathematics. This article describes the conceptual framework and psychometric qualities of a web-based assessment tool, the Primary Math Assessment (PMA). The PMA includes a screener to identify students at risk for poor math outcomes and a diagnostic tool to provide a more in-depth profile of children's specific strengths and weaknesses in mathematics. The PMA allows teachers and school personnel to make better instructional decisions by providing more targeted analyses.
DEFF Research Database (Denmark)
Iaia, F. M.; Perez-Gomez, J.; Nordsborg, Nikolai
2010-01-01
The present study examined how metabolic response and work capacity are affected by previous exhaustive exercise. Seven subjects performed an exhaustive cycle exercise ( approximately 130%-max; EX2) after warm-up (CON) and 2 min after an exhaustive bout at a very high (VH; approximately 30 s), high...... during a repeated high-intensity exercise lasting 1/2-2 min....
Development of mathematic model for coffee decaffeination with leaching method
Directory of Open Access Journals (Sweden)
Sukrisno Widyotomo
2011-08-01
Full Text Available A simple mathematic model for caffeine kinetic description during the extraction process (leaching of coffee bean was developed. A nonsteady diffusion equation coupled with a macroscopic mass transfer equation for solvent was developed and them solved analytically. The kinetic of caffeine extraction from coffee bean is depend on initial caffeine content, final caffeine content, caffeine content at certain time, masstransfer coefficient, solvent volume, surface area of coffee beans, process time, radius of coffee bean, leaching rate of caffeine, caffeine diffusivity and a are constan, solvent concentration, activation energy, temperature absolute and gas constant. Caffeine internal mass diffusivity was estimated by fitting the model to an experiment using acetic acid and liquid waste of cocoa beans fermentation. The prediction equation for leaching rate of caffeine in coffee beans has been found. It was found that Dk (m2/sec=1.345x107—4.1638x107, and kL (m/sec=2.445x105—5.551x105 by acetic acid as solvent depended on temperature and solvent concentration. The prediction equation for length of time to reduce initial caffeine content to certain concentration in coffee beans has been developed, Caffeine diffusivity (Dk and masstransfer coefficient (kL was found respectively 1.591x 107—2.122x107 m2/sec and 4.897x105—6.529x105 m/sec using liquid waste of cocoa bean fermentation as solvent which depend on temperature and solvent concentration. Key words: Coffee, caffeine, decaffeination, leaching, mathematic model.
The development of mathematics courseware for learning line and angle
Halim, Noor Dayana Abd; Han, Ong Boon; Abdullah, Zaleha; Yusup, Junaidah
2015-05-01
Learning software is a teaching aid which is often used in schools to increase students' motivation, attract students' attention and also improve the quality of teaching and learning process. However, the development of learning software should be followed the phases in Instructional Design (ID) Model, therefore the process can be carried out systematic and orderly. Thus, this concept paper describes the application of ADDIE model in the development of mathematics learning courseware for learning Line and Angle named CBL-Math. ADDIE model consists of five consecutive phases which are Analysis, Design, Development, Implementation and Evaluation. Each phase must be properly planned in order to achieve the objectives stated. Other than to describe the processes occurring in each phase, this paper also demonstrating how cognitive theory of multimedia learning principles are integrated in the developed courseware. The principles that applied in the courseware reduce the students' cognitive load while learning the topic of line and angle. With well prepared development process and the integration of appropriate principles, it is expected that the developed software can help students learn effectively and also increase students' achievement in the topic of Line and Angle.
Gibson, Laura C; Maurer, Daphne
2016-10-01
The current experiment measured symbolic SNARC (Spatial-Numeric Association of Response Codes) and distance effects in school-aged children and investigated the relation between these measures and visuospatial skills and mathematics ability. In the experiment, 6-, 7-, and 8-year-olds performed a magnitude-relevant SNARC task, in which they indicated whether a target number was less or greater than 5, as well as standardized tests of visuospatial skills (Developmental Test of Visual Perception-Second Edition, DTVP-2) and mathematics ability (Test of Early Mathematics Ability-Third Edition, TEMA-3). Consistent with previous research using numerical SNARC tasks with Western children, all age groups exhibited robust distance effects, and SNARC effects were observed only in 7- and 8-year-olds. Distance effects, but not SNARC effects, were moderately but significantly correlated with a subtest of the DTVP-2 measuring the ability to mentally manipulate objects in space but no other subtest. These data suggest that mental orientation abilities, but perhaps not visuospatial skills involved in visual perception and visuomotor coordination, are related to some aspects of mental number line development. Nevertheless, no relation was observed between SNARC or distance effects and mathematics ability. This result is consistent with previous developmental studies investigating the association between SNARC and math skill. However, these data are inconsistent with most experiments assessing the relationship between distance effect strength and math-a difference that can likely be attributed to the fact that a magnitude-relevant SNARC task was employed as opposed to a traditional SNARC parity task. Copyright © 2016 Elsevier Inc. All rights reserved.
Mathematical model of neuronal morphology: prenatal development of the human dentate nucleus.
Rajković, Katarina; Bačić, Goran; Ristanović, Dušan; Milošević, Nebojša T
2014-01-01
The aim of the study was to quantify the morphological changes of the human dentate nucleus during prenatal development using mathematical models that take into account main morphometric parameters. The camera lucida drawings of Golgi impregnated neurons taken from human fetuses of gestational ages ranging from 14 to 41 weeks were analyzed. Four morphometric parameters, the size of the neuron, the dendritic complexity, maximum dendritic density, and the position of maximum density, were obtained using the modified Scholl method and fractal analysis. Their increase during the entire prenatal development can be adequately fitted with a simple exponential. The three parameters describing the evolution of branching complexity of the dendritic arbor positively correlated with the increase of the size of neurons, but with different rate constants, showing that the complex development of the dendritic arbor is complete during the prenatal period. The findings of the present study are in accordance with previous crude qualitative data on prenatal development of the human dentate nucleus, but provide much greater amount of fine details. The mathematical model developed here provides a sound foundation enabling further studies on natal development or analyzing neurological disorders during prenatal development.
International Nuclear Information System (INIS)
Patlas, Michael; McCready, David; Kulkarni, Supriya; Dill-Macky, Marcus J.
2005-01-01
Survivors of Hodgkin's disease are at increased risk of developing a second malignant neoplasm, including breast carcinoma and sarcoma. We report the first case of synchronous development of chest wall fibrosarcoma and breast carcinoma after mantle radiotherapy for Hodgkin's disease. Mammographic, sonographic and MR features are demonstrated. (orig.)
Exploring Iconic Interpretation and Mathematics Teacher Development through Clinical Simulations
Dotger, Benjamin; Masingila, Joanna; Bearkland, Mary; Dotger, Sharon
2015-01-01
Field placements serve as the traditional "clinical" experience for prospective mathematics teachers to immerse themselves in the mathematical challenges of students. This article reports data from a different type of learning experience, that of a clinical simulation with a standardized individual. We begin with a brief background on…
Developing a Teachers' Gender Stereotype Scale toward Mathematics
Nurlu, Özge
2017-01-01
Gender has become a focus of mathematics education research. While some research show that there are no differences between boys and girls, numerous research studies have indicated that boys have outperformed girls. It is suggested that gender stereotypes, such as expecting girls to show less achievement in mathematics compared to boys, have an…
Applying Piaget's Theory of Cognitive Development to Mathematics Instruction
Ojose, Bobby
2008-01-01
This paper is based on a presentation given at National Council of Teachers of Mathematics (NCTM) in 2005 in Anaheim, California. It explicates the developmental stages of the child as posited by Piaget. The author then ties each of the stages to developmentally appropriate mathematics instruction. The implications in terms of not imposing…
Leader Noticing of Facilitation in Videocases of Mathematics Professional Development
Lesseig, Kristin; Elliott, Rebekah; Kazemi, Elham; Kelley-Petersen, Megan; Campbell, Matthew; Mumme, Judith; Carroll, Cathy
2017-01-01
In this article, we report on "Researching Mathematics Leader Learning" ("RMLL"), a project designed to support leaders in learning how to facilitate robust opportunities for teachers' mathematical learning. Our two-phase research design allowed us to construct a set of videocase seminars, enact the seminar design with leaders,…
Developing Visions of High-Quality Mathematics Instruction
Munter, Charles
2014-01-01
This article introduces an interview-based instrument that was created for the purposes of characterizing the visions of high-quality mathematics instruction of teachers, principals, mathematics coaches, and district leaders and tracking changes in those visions over time. The instrument models trajectories of perceptions of high-quality…
Sustainable development, tourism and territory. Previous elements towards a systemic approach
Directory of Open Access Journals (Sweden)
Pierre TORRENTE
2009-01-01
Full Text Available Today, tourism is one of the major challenges for many countries and territories. The balance of payments, an ever-increasing number of visitors and the significant development of the tourism offer clearly illustrate the booming trend in this sector. This macro-economic approach is often used by the organizations in charge of tourism, WTO for instance. Quantitative assessments which consider the satisfaction of customers’ needs as an end in itself have prevailed both in tourism development schemes and in prospective approaches since the sixties.
Gomez, Kimberley; Gomez, Louis M.; Rodela, Katherine C.; Horton, Emily S.; Cunningham, Jahneille; Ambrocio, Rocio
2015-01-01
Three community college faculty members used improvement science techniques to design, develop, and refine contextualized developmental mathematics lessons, where language and literacy pedagogy and related supports figured prominently in these instructional materials. This article reports on the role that their design experiences played in…
Pepin, Birgit; Xu, Binyan; Trouche, Luc; Wang, Chongyang
2017-01-01
In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics "expert" teachers. Exploiting the Western and Eastern literature we examine the notion of "mathematics teaching expertise", as…
Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc
2016-01-01
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…
Directory of Open Access Journals (Sweden)
Shandy Hauk
2014-07-01
Full Text Available The accepted framing of mathematics pedagogical content knowledge (PCK as part of mathematical knowledge for teaching has centered on the question: What mathematical reasoning, insight, understanding, and skills are required for a person to teach elementary mathematics? Many have worked to address this question in K-8 teaching. Yet, there remains a call for examples and theory in the context of teachers with greater mathematical preparation and older students with varied and complex experiences in learning mathematics. In this theory development report we offer background and examples for an extended model of PCK – as the interplay among conceptually-rich mathematical understandings, experience in and of teaching, and multiple culturally-mediated classroom interactions.
Developing a Study Orientation Questionnaire in Mathematics for primary school students.
Maree, Jacobus G; Van der Walt, Martha S; Ellis, Suria M
2009-04-01
The Study Orientation Questionnaire in Mathematics (Primary) is being developed as a diagnostic measure for South African teachers and counsellors to help primary school students improve their orientation towards the study of mathematics. In this study, participants were primary school students in the North-West Province of South Africa. During the standardisation in 2007, 1,013 students (538 boys: M age = 12.61; SD = 1.53; 555 girls: M age = 11.98; SD = 1.35; 10 missing values) were assessed. Factor analysis yielded three factors. Analysis also showed satisfactory reliability coefficients and item-factor correlations. Step-wise linear regression indicated that three factors (Mathematics anxiety, Study attitude in mathematics, and Study habits in mathematics) contributed significantly (R2 = .194) to predicting achievement in mathematics as measured by the Basic Mathematics Questionnaire (Primary).
Early numerical foundations of young children's mathematical development.
Chu, Felicia W; vanMarle, Kristy; Geary, David C
2015-04-01
This study focused on the relative contributions of the acuity of the approximate number system (ANS) and knowledge of quantitative symbols to young children's early mathematical learning. At the beginning of preschool, 191 children (Mage=46 months) were administered tasks that assessed ANS acuity and explicit knowledge of the cardinal values represented by number words, and their mathematics achievement was assessed at the end of the school year. Children's executive functions, intelligence, and preliteracy skills and their parents' educational levels were also assessed and served as covariates. Both the ANS and cardinality tasks were significant predictors of end-of-year mathematics achievement with and without control of the covariates. As simultaneous predictors and with control of the covariates, cardinality remained significantly related to mathematics achievement, but ANS acuity did not. Mediation analyses revealed that the relation between ANS acuity and mathematics achievement was fully mediated by cardinality, suggesting that the ANS may facilitate children's explicit understanding of cardinal value and in this way may indirectly influence early mathematical learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Establishing a Professional Development Network around Dynamic Mathematics Software in England
Lavicza, Zsolt; Hohenwarter, Markus; Jones, Keith; Lu, Allison; Dawes, Mark
2010-01-01
In this paper, we will outline some results of an NCETM (National Centre for Excellence in the Teaching of Mathematics) funded project that aimed to establish a professional development network with an open-source mathematical software--GeoGebra--in England. During the past few years a large international user and developer community has formed…
Developing the Roots of Modelling Conceptions: "Mathematical Modelling Is the Life of the World"
Brown, Jill Patricia; Stillman, Gloria Ann
2017-01-01
A study conducted with 25 Year 6 primary school students investigated the potential for a short classroom intervention to begin the development of a "Modelling" conception of mathematics on the way to developing a sense of mathematics as a way of thinking about life. The study documents the developmental roots of the cognitive activity,…
Hussein, Hisham Barakat
2013-01-01
The study aims to determine the effectiveness of using social communications networks in mathematics teachers' professional development. The main research questions was: what is the effectiveness of using social communications networks in mathematics teachers' professional development. The sub questions were: (1) what are the standards of…
Ladipo, Josephine L.
2014-01-01
This study focused on improving teaching through professional development. Identifying and designing teacher-based innovative professional development (integrating music into mathematics) resulted in an improved mathematical concept at Jaclyn Public School (a pseudonym). The target population for this action research study is drawn from an…
Developing Mathematical Literacy through project work: A teacher/teaching perspective
Directory of Open Access Journals (Sweden)
Renuka Vithal
2006-10-01
Full Text Available The implementation of the new Mathematical Literacy curriculum in South Africa is assuming several different conceptions of mathematics and therefore also being realised through a range of different pedagogies. In this paper I begin from a particular privileging of a critical perspective in mathematics education, which I argue is one (among others of the forces shaping the new South African curriculum reforms, particularly the Mathematical Literacy curriculum. If so, then the case for a specific pedagogy, that of project work, can be shown to support the development of a mathematical literacy from a critical perspective. In this paper a particular set of conceptual tools, principles and practices associated with project work, as developed in the Scandanavian context but researched in South Africa, are elaborated from the perspective of teachers/teaching of mathematical literacy.
Makar, Katie; Fielding-Wells, Jill
2018-03-01
The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex problems. Little is known about how teachers and students initiate, develop and maintain norms of mathematical inquiry in primary classrooms. The research question guiding this study is, "How do classroom norms develop that facilitate student learning in primary classrooms which practice mathematical inquiry?" The project will (1) analyse a video archive of inquiry lessons to identify signature practices that enhance productive classroom norms of mathematical inquiry and facilitate learning, (2) engage expert inquiry teachers to collaborate to identify and design strategies for assisting teachers to develop and sustain norms over time that are conducive to mathematical inquiry and (3) support and study teachers new to mathematical inquiry adopting these practices in their classrooms. Anticipated outcomes include identification and illustration of classroom norms of mathematical inquiry, signature practices linked to these norms and case studies of primary teachers' progressive development of classroom norms of mathematical inquiry and how they facilitate learning.
Proceedings of the tenth international conference Models in developing mathematics education
2012-01-01
This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the impro...
The importance of Pappus for the development of mathematics
Wanner, Gerhard
2012-09-01
The author came from Numerical Geometric Integration (see [1], in collaboration with Christian Lubich and Ernst Hairer) to Geometry, on which he had the occasion to write, in collaboration with Alexander Ostermann, a recent text-book [2]. During this work he realized more and more the importance of Pappus. Pappus, who lived about 300 A. D. in Alexandria, was the last of the great Greek mathematicians. His Collection [3] was one of the very rare documents on later Greek mathematical achievements which had survived the long centuries of darkness, before mathematical research had again been taken up by the Arabs and the Renaissance scientist. As a consequence, his influence on today's mathematics is enormous. This talk attempts to give some examples.
Developing entrepreneurship ability of pre-service mathematics teachers through GSSM
Rohaeti, E. E.; Afrilianto, M.; Primandhika, R. B.
2018-01-01
This research aimed to describe mathematical entrepreneurship ability of 136 mathematics education students through Gerakan STKIP Siliwangi Mengajar (GSSM) that was conducted in 7 districts (of 17 villages) in West Java. GSSM was a programme that combines devotion to the society and college student internships activity at several schools within three months. The data was obtained through observation towards the activities performed by the students during GSSM. The questionnaire to measure the mathematical entrepreneurship ability of students. The results showed that 1) there were three activities that encourage the mathematical entrepreneurship ability of students; such as tutoring post, teaching practices in school and entrepreneurial activities in society, 2) through those three activities, students can develop their entrepreneurial spirit well and grow creativity, innovation and calculation take risk ability, 3) there was medium-association between student mathematical concept mastery that supports entrepreneurship with their mathematical entrepreneurship ability.
International Nuclear Information System (INIS)
Jones, R.M.; Poston, J.W.; Hwang, J.L.; Jones, T.D.; Warner, G.G.
1976-06-01
The existence of a phantom based on anatomical data for the average fifteen-year-old provides for a proficient means of obtaining estimates of absorbed dose for children of that age. Dimensions representative of an average fifteen-year-old human, obtained from various biological and medical research, were transformed into a mathematical construct of idealized shapes of the exterior, skeletal system, and internal organs of a human. The idealization for an average adult presently in use by the International Commission on Radiological Protection was used as a basis for design. The mathematical equations describing the phantom were developed to be readily adaptable to present-day methods of dose estimation. Typical exposure situations in nuclear medicine have previously been modeled for existing phantoms. With no further development of the exposure model necessary, adaptation to the fifteen-year-old phantom demonstrated the utility of the design. Estimates of absorbed dose were obtained for the administration of two radiopharmaceuticals, /sup 99m/Tc-sulfur colloid and /sup 99m/Tc-DMSA
Mathematical Footprints Discovering Mathematics Everywhere
Pappas, Theoni
1999-01-01
MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent
The zone of proximal development in the learning of mathematics ...
African Journals Online (AJOL)
South Africa has a huge shortage of skilled workers in various fields such as engineering, applied sciences, accountancy, architecture, medicine and law. Mathematics is a requirement for entry in these careers to enable learners to grasp the content of various subjects in these disciplines. Despite that, in South Africa, ...
The Development of Mathematics E-Learning Tool for Nigerian ...
African Journals Online (AJOL)
... there have been inadequate efforts to deploy such tools at the secondary schools in the country, where spectres of overpopulated classrooms and escalating student-to-teacher ratios have contributed to the poor performances of students in the Senior Secondary School Certificate examinations, especially in mathematics.
The role of visualisation in developing critical thinking in mathematics
African Journals Online (AJOL)
Research has been conducted on the role and importance of visualisation in many fields, including psychology, but very little has been done to extend its role to mathematics education in particular. Furthermore, much research has been done on the importance of critical thinking. However, to date not much has been done ...
The Zone of Proximal Development in the Learning of Mathematics
Siyepu, Sibawu
2013-01-01
South Africa has a huge shortage of skilled workers in various fields such as engineering, applied sciences, accountancy, architecture, medicine and law. Mathematics is a requirement for entry in these careers to enable learners to grasp the content of various subjects in these disciplines. Despite that, in South Africa, learners' performance in…
Technology-driven developments and policy implications for mathematics education
Trouche, L.; Drijvers, P.H.M.; Gueudet, G.; Sacristan, A.I.
2013-01-01
The advent of technology has done more than merely increase the range of resources available for mathematics teaching and learning: it represents the emergence of a new culture—a virtual culture with new paradigms—which differs crucially from preceding cultural forms. In this chapter, the
Developing classroom formative assessment in dutch primary mathematics education
van den Berg, M.; Harskamp, E.G.; Suhre, C.J.M.
2016-01-01
In the last two decades Dutch primary school students scored below expectation in international mathematics tests. An explanation for this may be that teachers fail to adequately assess their students’ understanding of learning goals and provide timely feedback. To improve the teachers’ formative
Developing a pedagogical problem solving view for mathematics teachers with two reflection programs
Directory of Open Access Journals (Sweden)
Bracha KRAMARSKI
2009-10-01
Full Text Available The study investigated the effects of two reflection support programs on elementary school mathematics teachers’ pedagogical problem solving view. Sixty-two teachers participated in a professional development program. Thirty teachers were assigned to the self-questioning (S_Q training and thirty two teachers were assigned to the reflection discourse (R_D training. The S_Q program was based on the IMPROVE self-questioning approach which emphasizes systematic discussion along the phases of mathematical or pedagogical problem solving as student and teacher. The R_D program emphasized discussion of standard based teaching and learning principles. Findings indicated that systematic reflection support (S_Q is effective for developing mathematics PCK, and strengthening metacognitive knowledge of mathematics teachers, more than reflection discourse (R_D. No differences were found between the groups in developing beliefs about teaching mathematics in using problem solving view.
Bair, Sherry L.; Rich, Beverly S.
2011-01-01
This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…
Using Model-Eliciting Activities as a Tool to Identify and Develop Mathematically Creative Students
Coxbill, Emmy; Chamberlin, Scott A.; Weatherford, Jennifer
2013-01-01
Traditional classroom methods for identifying mathematically creative students have been inadequate. Identifying students who could potentially be mathematically creative is instrumental in the development of students and in meeting their affective and educational needs. One prospective identification tool is the use of model-eliciting activities…
Kasmer, Lisa Anne; Billings, Esther
2017-01-01
This study investigated how a study abroad experience teaching mathematics in Tanzania, Africa impacted a group of secondary education pre-service teachers (PSTs) from the United States. In particular we discuss their ability to facilitate the learning of students in multilingual mathematics classrooms while personally developing intercultural…
Construction of Tasks in Order to Develop and Promote Classroom Communication in Mathematics
Olteanu, Lucian
2015-01-01
In this article, the focus is on task construction and the importance of this process to develop and promote classroom communication in mathematics. The students' tests, examination of students' mathematical work, the teachers' lesson plans, and reports of the lessons' instructions are the basic data for this article. The analysis indicated that…
Kapucu, S.; Öçal, M. F.; Simsek, M.
2016-01-01
The purposes of this study were (1) to develop a questionnaire measuring high school students' conceptions of the relationship between mathematics and physics, (2) and to determine the students' conceptions of the relationship between mathematics and physics. A total of 718 high school students (343 male, 375 female) participated in this study.…
Is There a Role for Executive Functions in the Development of Mathematics Ability?
Blair, Clancy; Knipe, Hilary; Gamson, David
2008-01-01
This article examines the role of working memory, attention shifting, and inhibitory control executive cognitive functions in the development of mathematics knowledge and ability in children. It suggests that an examination of the executive cognitive demand of mathematical thinking can complement procedural and conceptual knowledge-based…
Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability
Saragih, Sahat; Napitupulu, Elvis
2015-01-01
The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…
Development of a Mathematical Ability Test: A Validity and Reliability Study
Dündar, Sefa; Temel, Hasan; Gündüz, Nazan
2016-01-01
The identification of talented students accurately at an early age and the adaptation of the education provided to the students depending on their abilities are of great importance for the future of the countries. In this regard, this study aims to develop a mathematical ability test for the identification of the mathematical abilities of students…
Examining How Teachers Use Graphs to Teach Mathematics during a Professional Development Program
Bautista, Alfredo; Cañadas, María C.; Brizuela, Bárbara M.; Schliemann, Analúcia D.
2015-01-01
There are urgent calls for more studies examining the impact of Professional Development (PD) programs on teachers' instructional practices. In this study, we analyzed how grades 5-9 mathematics teachers used graphs to teach mathematics at the start and end of a PD program. This topic is relevant because while many studies have investigated…
Chval, Kathryn; Abell, Sandra; Pareja, Enrique; Musikul, Kusalin; Ritzka, Gerard
2008-01-01
High quality teachers are essential to improving the teaching and learning of mathematics and science, necessitating effective professional development (PD) and learning environments for teachers. However, many PD programs for science and mathematics teachers fall short because they fail to consider teacher background, experience, knowledge,…
A Reflective Journey through Theory and Research in Mathematical Learning and Development
Belbase, Shashidhar
2010-01-01
This paper is an attempt to reflect on class sessions during the fall 2010 in a course "Theory and Research in Mathematical Learning and Development". This reflection as a learning journey portrays discussions based on foundational perspectives (FP), historical highlights (HH), and guiding questions (GQ) related to mathematics learning and…
Development of perceived instrumentality for mathematics, reading and science curricula
Garcia, Steve L.
Perceptions of instrumentality (PI) are the connections one sees between a current activity and a future goal. With high PI, one is motivated to persist with quality effort because the current activity, even when difficult, is perceived as aligned with, and progress toward, the goal. Conversely, with low PI, one is motivated to relinquish effort in pursuit of other, more meaningful goals. In view of the alarming dropout rates in this country, it appears that PI research has much to offer in understanding students' motivations to stay in school and hence to become employed in their field of choice. Because academic achievement motivation can be affected by gender and ethnicity, particularly for specific components of the curriculum, and because curricular content varies across grade levels and school settings, this line of research offers significant potential for understanding and improving student outcomes. This research examined the development of PI among suburban 6th, 8th, 10th and 12th graders from a school district in the southwestern United States. Twelve hundred students completed a one-time paper and pencil survey measuring the perceived instrumentality of mathematics, literacy and science courses in terms of the students' occupational choices. MANOVA was used to determine factors that may affect students' overall PI and individual subject PI. Grade, gender, ethnicity, occupational choice, expectancy and value were the independent variables. A school setting variable was examined for effects on 12th graders. For the 8th through 12th grade sample, significant main effects were observed for grade, gender, minority status, occupational choice and expectancy on PI. Results show that PI is highest in the 6 th grade. Males reported higher Math PI than females. Females reported higher Reading PI and Science PI than males. Minority students reported lower overall PI and Science PI than non-minority students. Students who aspire to professional careers report the
Developing a model for problem-solving in a Grade 4 mathematics classroom
Directory of Open Access Journals (Sweden)
Susan Nieuwoudt
2015-11-01
Full Text Available The teaching of problem-solving through the development of a problem-solving model was investigated in a Grade 4 mathematics classroom. Learners completed a questionnaire regarding their knowledge of mathematical problem-solving, their attitudes towards problem-solving, as well as their experiences in solving problems. Learners’ responses revealed overall negative beliefs towards problem-solving as well as a lack of knowledge about what problem-solving in mathematics entails. The teacher then involved the learners in a structured learning programme where they worked in cooperative groups of six on different kinds of mathematical problems to solve. The groups regularly engaged in discussions about the different strategies they were using to solve a specific problem and eventually succeeded in formulating a generic problem-solving model they could call their own. The model was effectively used by the learners to solve various mathematical problems, reflecting their levels of cognitive development to a certain extent.
The Role of Mediators in the Development of Longitudinal Mathematics Achievement Associations.
Watts, Tyler W; Duncan, Greg J; Chen, Meichu; Claessens, Amy; Davis-Kean, Pamela E; Duckworth, Kathryn; Engel, Mimi; Siegler, Robert; Susperreguy, Maria I
2015-01-01
Despite research demonstrating a strong association between early and later mathematics achievement, few studies have investigated mediators of this association. Using longitudinal data (n = 1,362), this study tested the extent to which mathematics self-concepts, school placement, executive functioning, and proficiency in fractions and division account for the association between mathematics achievement in first grade and at age 15. As hypothesized, a strong longitudinal association between first-grade and adolescent mathematics achievement was present (β = .36) even after controlling for a host of background characteristics, including cognitive skills and reading ability. The mediators accounted for 39% of this association, with mathematics self-concept, gifted and talented placement, and knowledge of fractions and division serving as significant mediators. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Development of a revised mathematical model of the gastrointestinal tract
International Nuclear Information System (INIS)
Barker, A.
1991-01-01
The objectives of this research are as follows. First, to incorporate new biological data into a revised mathematical adult gastrointestinal tract model that includes: ingestion in both liquid and solid forms; consideration of absorption in the stomach, small intestine, ascending colon, transverse colon or not at all; gender and age of the adult; and whether the adult is a smoker or not. Next, to create a computer program in basic language for calculating residence times in each anatomical section of the GI tract for commonly used radionuclides. Also, to compare and contrast the new model with the ICRP 30 GI tract model in terms of physiological concepts, mathematical concepts, and revised residence times for several commonly used radionuclides. Finally, to determine whether the new model is sufficiently better than the current model to warrant its use as a replacement for the Eve model
Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M
2018-04-24
Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.
Struck, James T
2003-01-01
Mathematics, according to Lancelot Hogben, is the language of size, shape, and order. This note adds two words to the language of mathematics. First, a verb, develop or develops, is introduced to describe a development pattern or development string. These are patterns of development with examples from fibrillation, spread of electric changes in muscles and nerves, and matter changing into energy. The relevance of this idea to the idea in physics called String Theory is discussed. A critical comment on the use of the String, rather than other objects like circles, boxes, or spheres is made. Second, an adjective or adverb called conditions language is introduced. Equations like E=mc2, Coulomb's law, Newton's law of Gravitation, the equation for the definition of pie and the path to peace and war are discussed with relevance to the idea of conditions language. Conditions language is nothing more than including the relevant conditions where the equation works or when it applies in parentheses with the equation. V...
The development of mathematics throughout the centuries a brief history in a cultural context
Evans, Brian
2014-01-01
Throughout the book, readers take a journey throughout time and observe how people around the world have understood these patterns of quantity, structure, and dimension around them. The Development of Mathematics Throughout the Centuries: A Brief History in a Cultural Contex provides a brief overview of the history of mathematics in a very straightforward and understandable manner and also addresses major findings that influenced the development of mathematics as a coherent discipline. This book: Highlights the contributions made by various world cultures including African, Egyptian, Babyloni
Mokmin, Nur Azlina Mohamed; Masood, Mona
2015-12-01
Many students, especially the low achievers, find that mathematics is a difficult subject. Various studies found that student achievement in mathematics can be increased by attuning to students' learning styles. This study focused on the development of four differentiated learning materials for learning mathematics. The effectiveness of the developed learning materials was tested on 309 Malaysian polytechnic students. The result shows that the learning achievement of the students significantly increased when they learned using the learning material that was mapped with their preferred learning styles
Mathematics curriculum in Ireland: The ınfluence of PISA on the development of project maths
Liz Kirwan
2015-01-01
This article interrogates the extent to which the Organization for Economic Cooperation and Development (OECD) through its Programme for International Student Assessment (PISA) influenced the development of Project Maths, a new second-level mathematics education policy in Ireland. It argues that the Irish government, in its revision of mathematics education policy, was strongly influenced by PISA and that concern with the country’s ‘average’ placement in the international assessment was instr...
Mathematics Curriculum in Ireland: The Influence of PISA on the Development of Project Maths
Liz KIRWAN
2015-01-01
This article interrogates the extent to which the Organization for Economic Cooperation and Development (OECD) through its Programme for International Student Assessment (PISA) influenced the development of Project Maths, a new second-level mathematics education policy in Ireland. It argues that the Irish government, in its revision of mathematics education policy, was strongly influenced by PISA and that concern with the country’s ‘average’ placement in the international assessment was instr...
Developing Metacognitive and Discursive Activities in The Indonesian Mathematics Education
Directory of Open Access Journals (Sweden)
Christa Kaune
2012-01-01
Full Text Available This article reports on the findings of a German-Indonesian feasibility study, which has been conducted to examine whether a more extensive pilot study could be successful. The objective of the pilot study is to enhance the mathematical skills of Indonesian students in the 7th class by increasing the number of students who can really understand the mathematical concepts and methods introduced in class. In order to achieve this, a learning environment for the introduction of integers was designed and implemented in class. During its implementation a teaching style has been practised which encourages metacognitive and discursive activities in the students. In this paper the theoretical background for the construction of a comparing test is set out, several exercises are presented as examples and on the basis of student solutions, taken from the test, the effects of the innovative teaching is demonstrated. Keywords: Metacognition, Microworlds, Mental models, Metaphors, Integers DOI: http://dx.doi.org/10.22342/jme.3.1.619.1-16
Çelik, Meryem
2017-01-01
This study was carried out to determine whether there is a relationship between the preschool teachers' attitudes towards mathematics and mathematical development in 6-year-old preschool children. The sampling of the study was consisted of 30 teachers working with 6 years old children and their 120 students in public kindergartens and independent…
Rajotte, Thomas; Marcotte, Christine; Bureau-Levasseur, Lisa
2016-01-01
In recent decades, the dropout rate in Abitibi-Témiscamingue is a worrying phenomenon. An analysis of ministerial examination results identifies that students in Abitibi-Témiscamingue have specific difficulties with mathematical problem solving tasks. Among the activities that develop those skills, the daily routines in mathematics seem to be a…
Maaike Hajer; Eva Norén
2017-01-01
Explicit language objectives are included in the Swedish national curriculum for mathematics. The curriculum states that students should be given opportunities to develop the ability to formulate problems, use and analyse mathematical concepts and relationships between concepts, show and follow
Mathematics and the Laws of Nature Developing the Language of Science (Revised Edition)
Tabak, John
2011-01-01
Mathematics and the Laws of Nature, Revised Edition describes the evolution of the idea that nature can be described in the language of mathematics. Colorful chapters explore the earliest attempts to apply deductive methods to the study of the natural world. This revised resource goes on to examine the development of classical conservation laws, including the conservation of momentum, the conservation of mass, and the conservation of energy. Chapters have been updated and revised to reflect recent information, including the mathematical pioneers who introduced new ideas about what it meant to
Gandhi, Mihir; Teivaanmaki, Tiina; Maleta, Kenneth; Duan, Xiaolian; Ashorn, Per; Cheung, Yin Bun
2013-01-01
This study aimed to examine the association between child development at 5 years of age and mathematics ability and schooling outcomes at 12 years of age in Malawian children. A prospective cohort study looking at 609 rural Malawian children. Outcome measures were percentage of correctly answered mathematics questions, highest school grade completed and number of times repeating school grades at 12 years of age. A child development summary score obtained at 5 years of age was the main exposure variable. Regression analyses were used to estimate the association and adjust for confounders. Sensitivity analysis was performed by handling losses to follow-up with multiple imputation (MI) method. The summary score was positively associated with percentage of correctly answered mathematics questions (p = 0.057; p = 0.031 MI) and with highest school grade completed (p = 0.096; p = 0.070 MI), and negatively associated with number of times repeating school grades (p = 0.834; p = 0.339 MI). Fine motor score at 5 years was independently associated with the mathematic score (p = 0.032; p = 0.011 MI). The association between child development and mathematics ability did not depend on school attendance. Child development at 5 years of age showed signs of positive association with mathematics ability and possibly with highest school grade completed at 12 years of age. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.
DEFF Research Database (Denmark)
Turner, Laura
2011-01-01
in these connections, and by carefully considering exactly what he sought to achieve and how, this thesis aims to shed new light on the ways in which an ambitious man could seize opportunities presented by the precise infrastructural, cultural, social, and political configuration of mathematics in Sweden and Europe......This thesis aims to investigate several areas of mathematical activity undertaken by the Swedish mathematician Gösta Mittag-Leffler (1846-1927). These not only markedly impacted the development of mathematics in Stockholm, where they were centred, but transformed, by virtue of their roots in both...... nationalist and internationalist movements, the landscape of mathematics across Scandinavia and Europe more broadly. These activities are Mittag-Leffler's role in cultivating research activity from his students at Stockholms Högskola as the first professor of mathematics there (1881-1911); his establishment...
African Journals Online (AJOL)
... and JHS teachers toward mathematics, both upper primary and JHS teachers were found to have significantly more positive attitudes toward mathematics than the lower primary teachers. The study recommended the need to encourage lower primary school teachers to develop more positive attitudes toward mathematics.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin; Strawn, Laura K
2016-02-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Logic in elementary mathematics
Exner, Robert M
2011-01-01
This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and
Trinajstić, Nenad; Gutman, Ivan
2002-01-01
A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...
Directory of Open Access Journals (Sweden)
Ömer Şahin
2014-12-01
Full Text Available The aim of our research is to determine the change in the pedagogical content knowledge levels of the teachers on numbers in the period from their university education to their active teaching profession. The sample of the study is composed of a total of 210 people, 67 of whom are third grade pre-service mathematics teacher, 98 of whom are 4th grade pre-service mathematics teachers and 45 of whom are mathematics teachers who are working in various provinces of Turkey. As for the data collection tools of this research, “Mathematics Pedagogical Content Knowledge Test (MPCKT” was used. Cross-sectional comparative study, which is among the descriptive research designs, was used in this research. it was observed that the secondary mathematics teachers’ levels of knowledge of understanding students and knowledge of instructional strategies, which constitute two sub-components of pedagogical content knowledge, exhibited development from their third-year in university to the period in which they carry out teaching professionKey Words: Pedagogical content knowledge, pre-service mathematics teacher, student knowledge, instructional strategies knowledge
Directory of Open Access Journals (Sweden)
Виктор Семенович Корнилов
2017-12-01
Full Text Available In article attention to that fact that at students of higher educational institutions of the physical and mathematical and natural-science directions of preparation when training in the reverse tasks for differential equations the mathematical intuition which is an important component of their creative potential develops is paid. The mathematical intuition helps students to comprehend a physical sense of the researched application-oriented task, to select effective methods of mathematical physics for the decision of the reverse task for differential equations.The mathematical intuition of students develops in many respects in case of the decision of different educational jobs. Among such educational jobs: creation of system of integrable equations of the reverse task for differential equations, the proof of the conditional correctness of the decision of the reverse task for differential equations, creation of the difference analog of the reverse task for a differential equation; finding of the numerical decision of the reverse task, the proof of convergence of approximate solution of the reverse task to the exact decision, reasons for the idea of the proof of a correctness (the conditional correctness of the decision of the reverse task for differential equations, a statement of logical outputs of application-oriented or humanitarian character on the basis of the conducted research of the reverse task and other educational jobs.In the course of such training students create system of fundamental knowledge in the field of the reverse and incorrect tasks, acquire new scientific knowledge in the field of applied and calculus mathematics, but, obviously, and develop a mathematical intuition.
Development of mathematical model to predict the mechanical properties of friction stir
Directory of Open Access Journals (Sweden)
R. Palanivel
2011-01-01
Full Text Available This paper presents a systematic approach to develop the mathematical model for predicting the ultimate tensile strength,yield strength, and percentage of elongation of AA6351 aluminum alloy which is widely used in automotive, aircraft anddefense Industries by incorporating (FSW friction stir welding process parameter such as tool rotational speed, weldingspeed, and axial force. FSW has been carried out based on three factors five level central composite rotatable design withfull replications technique. Response surface methodology (RSM is employed to develop the mathematical model. Analysisof variance (ANOVA Technique is used to check the adequacy of the developed mathematical model. The developedmathematical model can be used effectively at 95% confidence level. The effect of FSW process parameter on mechanicalproperties of AA6351 aluminum alloy has been analyzed in detail.
Developing workshop module of realistic mathematics education: Follow-up workshop
Palupi, E. L. W.; Khabibah, S.
2018-01-01
Realistic Mathematics Education (RME) is a learning approach which fits the aim of the curriculum. The success of RME in teaching mathematics concepts, triggering students’ interest in mathematics and teaching high order thinking skills to the students will make teachers start to learn RME. Hence, RME workshop is often offered and done. This study applied development model proposed by Plomp. Based on the study by RME team, there are three kinds of RME workshop: start-up workshop, follow-up workshop, and quality boost. However, there is no standardized or validated module which is used in that workshops. This study aims to develop a module of RME follow-up workshop which is valid and can be used. Plopm’s developmental model includes materials analysis, design, realization, implementation, and evaluation. Based on the validation, the developed module is valid. While field test shows that the module can be used effectively.
Developing formal mathematical assessment for 4- to 8-year-olds
Doig, Brian
2005-10-01
The assessment of children in their years before school and their first years of school has been, traditionally, informal. Further, assessment of children's mathematical skills at this level has been infrequent compared to social, emotional and physical assessments. However, there are contexts where reliable, valid, standardised data from assessment in mathematics are required. This paper outlines the development of two assessment tools for mathematics that were originally developed for such contexts. Item Response Theory (IRT) analyses enabled the construction of assessment forms that address the range of abilities of 4- to 8-year-old children, and provided the scales used for constructing formative and summative reports of achievement. A description of the development of the assessment tools and the IRT analysis that provides the reporting formats are presented together with some research uses of the tools.
Domínguez-Vigo, P; Álvarez-Silvares, E; Alves-Pérez M T; Domínguez-Sánchez, J; González-González, A
2016-04-01
Gestational diabetes is considered a variant of diabetes mellitus as they share a common pathophysiological basis: insulin resistance in target and insufficient secretion of it by pancreatic p-cell bodies. Pregnancy is a unique physiological situation provides an opportunity to identify future risk of diabetes mellitus. To determine the long-term incidence of diabetes mellitus in women who have previously been diagnosed with gestational diabetes and identifying clinical risk factors for developing the same. nested case-control cohort study. 671 patients between 1996 and 2009 were diagnosed with gestational diabetes were selected. The incidence of diabetes mellitus was estimated and 2 subgroups were formed: Group A or cases: women who develop diabetes mellitus after diagnosis of gestational diabetes. Group B or control: random sample of 71 women with a history of gestational diabetes in the follow-up period remained normoglycemic. Both groups were studied up to 18 years postpartum. By studying Kaplan Meier survival of the influence of different gestational variables it was obtained in the later development of diabetes mellitus with time parameter and COX models for categorical variables were applied. Significant variables were studied by multivariate Cox analysis. In all analyzes the Hazard ratio was calculated with confidence intervals at 95%. The incidence of diabetes mellitus was 10.3% in patients with a history of gestational diabetes. They were identified as risk factors in the index pregnancy to later development of diabetes mellitus: greater than 35 and younger than 27 years maternal age, BMI greater than 30 kg/m2, hypertensive disorders of pregnancy, insulin therapy, poor metabolic control and more than a complicated pregnancy with gestational diabetes. Clinical factors have been identified in the pregnancy complicated by gestational diabetes that determine a higher probability of progression to diabetes mellitus in the medium and long term.
Karadimitriou, Nikos
2013-05-01
This paper explores the transformations of the housebuilding industry under the policy requirement to build on previously developed land (PDL). This requirement was a key lever in promoting the sustainable urban development agenda of UK governments from the early 1990s to 2010 and has survived albeit somewhat relaxed and permutated in the latest National Planning Policy Framework (NPPF). The paper therefore looks at the way in which the policy push towards densification and mixed use affected housebuilders' business strategy and practices and their ability to cope with the 2007 downturn of the housing market and its aftermath. It also points out the eventual feedback of some of these practices into planning policy. Following the gradual shift of British urban policy focus towards sustainability which started in the early 1990s, new configurations of actors, new skills, strategies and approaches to managing risk emerged in property development and housebuilding. There were at least two ways in which housebuilders could have responded to the requirements of developing long term mixed use high density projects on PDL. One way was to develop new products and to employ practices and combinations of practices involving phasing, a flexible approach to planning applications and innovative production methods. Alternatively, they could approach PDL development as a temporary turn of policy or view mixed use high density schemes as a niche market to be explored without drastically overhauling the business model of the entire firm. These transformations of the UK housebuilding sector were unfolding during a long period of buoyancy in the housing market which came to an end in 2007. Very little is known both about how housebuilder strategies and production practices evolved during the boom years as well as about how these firms coped with the effects of the 2007 market downturn. The paper draws on published data (company annual reports, government statistics) and primary
Karadimitriou, Nikos
2013-01-01
This paper explores the transformations of the housebuilding industry under the policy requirement to build on previously developed land (PDL). This requirement was a key lever in promoting the sustainable urban development agenda of UK governments from the early 1990s to 2010 and has survived albeit somewhat relaxed and permutated in the latest National Planning Policy Framework (NPPF). The paper therefore looks at the way in which the policy push towards densification and mixed use affected housebuilders’ business strategy and practices and their ability to cope with the 2007 downturn of the housing market and its aftermath. It also points out the eventual feedback of some of these practices into planning policy. Following the gradual shift of British urban policy focus towards sustainability which started in the early 1990s, new configurations of actors, new skills, strategies and approaches to managing risk emerged in property development and housebuilding. There were at least two ways in which housebuilders could have responded to the requirements of developing long term mixed use high density projects on PDL. One way was to develop new products and to employ practices and combinations of practices involving phasing, a flexible approach to planning applications and innovative production methods. Alternatively, they could approach PDL development as a temporary turn of policy or view mixed use high density schemes as a niche market to be explored without drastically overhauling the business model of the entire firm. These transformations of the UK housebuilding sector were unfolding during a long period of buoyancy in the housing market which came to an end in 2007. Very little is known both about how housebuilder strategies and production practices evolved during the boom years as well as about how these firms coped with the effects of the 2007 market downturn. The paper draws on published data (company annual reports, government statistics) and primary
Mathematics of Life Insurance Study Aid Development and Evaluation in a Nontraditional Setting.
Rahmlow, Harold F.
A mode of operation that is currently being utilized for research and development activities in a nontraditional college environment is presented. The program described is in the content area of mathematics of life insurance. The students for whom the materials were developed are adults in insurance and related professions who are engaged in…
Patahuddin, Sitti Maesuri
2013-01-01
This paper is a reflection on a model for mathematics teacher professional development with respect to technology. The model was informed by three interrelated concepts: (1) a theory of teacher professional development from analysis of the field, (2) the zone theory of teacher professional learning, and (3) ethnography as a method. The model was…
Generating Cultures for Mathematical Microworld Development in a Multi-Organizational Context.
Kynigos, Chronis
2002-01-01
Discusses methodological issues of mathematical microworld development integrated with generating innovation in school settings. Includes experiences in developing a component architecture for educational software based on Logo as a scripting language and discusses problems of collaboration between organizations and people of differing expertise…
Clinicians and policy makers need the ability to predict quantitatively how childhood bodyweight will respond to obesity interventions. We developed and validated a mathematical model of childhood energy balance that accounts for healthy growth and development of obesity, and that makes quantitative...
Directory of Open Access Journals (Sweden)
Novaliyosi
2018-01-01
Full Text Available The ability of logical thinking mathematically is one of the goals of the learning of mathematics, namely forming ability of reasoning students that reflected his skills in critical thinking, logical, systematic, and objective nature, honest, discipline in solving a problem well in various fields. In addition math can form a mindset into a mindset of mathematical, logical, systematic and critical that can be used to solve problems in daily life. This research aims to develop a test instrument for measuring the ability of logical thinking mathematically students on kapita selekta. The development method used in this research is to include: (1 define the variable; (2 outlines the variables into a more detailed indicators/dimensions; (3 draw up the details; (4 perform validation; (5 conducting trials; (6 analyze of validity and reliability. Based on the results of the test in theoretic instruments that developed included into the category is valid and worthy to be used on next stages as an instrument to measure the ability of logical thinking mathematically.
Directory of Open Access Journals (Sweden)
Gina Bojorque
2018-03-01
Full Text Available Abstract This study aimed at analyzing the development of Ecuadorian children’s early numerical abilities during the Kindergarten year in relation to their SES, the quality of their early mathematics education, and the attended school type. 179 Ecuadorian Kindergartners (18 classrooms, 6 classrooms per school type were offered a standards-based early numeracy test at both the start and the end of the Kindergarten year. In all classrooms, the quality of early mathematics education was assessed twice via the COEMET instrument. Results first showed rather low scores on the early numeracy test, with only 50% (at the start up to 70% (at the end of the items solved correctly, along with large inter-individual differences in these scores. Second, the quality of early mathematics education in the participating classrooms was also rather low. Third, children’s early numerical abilities at Kindergarten entry, SES, and school type predicted children’s early numerical abilities at the end of the school year. The quality of early mathematics education did not contribute to children’s numerical development. We critically discuss our findings in view of optimizing the quality of Ecuadorian early mathematics education as a stepping stone towards enhanced numerical development.
Mathematics Teachers' Professional Development Program--Needs and Expectations
Levi-Keren, Michal; Patkin, Dorit
2016-01-01
This paper presents the major findings and recommendations from a formative evaluation of the first of a 2-year in-service training program. This program was designed for the professional development of math teachers. It was developed following an educational reform, which was meant to enhance the teachers' ability to generate changes in their…
Development of syntax of intuition-based learning model in solving mathematics problems
Yeni Heryaningsih, Nok; Khusna, Hikmatul
2018-01-01
The aim of the research was to produce syntax of Intuition Based Learning (IBL) model in solving mathematics problem for improving mathematics students’ achievement that valid, practical and effective. The subject of the research were 2 classes in grade XI students of SMAN 2 Sragen, Central Java. The type of the research was a Research and Development (R&D). Development process adopted Plomp and Borg & Gall development model, they were preliminary investigation step, design step, realization step, evaluation and revision step. Development steps were as follow: (1) Collected the information and studied of theories in Preliminary Investigation step, studied about intuition, learning model development, students condition, and topic analysis, (2) Designed syntax that could bring up intuition in solving mathematics problem and then designed research instruments. They were several phases that could bring up intuition, Preparation phase, Incubation phase, Illumination phase and Verification phase, (3) Realized syntax of Intuition Based Learning model that has been designed to be the first draft, (4) Did validation of the first draft to the validator, (5) Tested the syntax of Intuition Based Learning model in the classrooms to know the effectiveness of the syntax, (6) Conducted Focus Group Discussion (FGD) to evaluate the result of syntax model testing in the classrooms, and then did the revision on syntax IBL model. The results of the research were produced syntax of IBL model in solving mathematics problems that valid, practical and effective. The syntax of IBL model in the classroom were, (1) Opening with apperception, motivations and build students’ positive perceptions, (2) Teacher explains the material generally, (3) Group discussion about the material, (4) Teacher gives students mathematics problems, (5) Doing exercises individually to solve mathematics problems with steps that could bring up students’ intuition: Preparations, Incubation, Illumination, and
Contributions of Neuroscience to Develop Teaching Strategies and Learning of Mathematics
Directory of Open Access Journals (Sweden)
Eddy Mogollón
2010-12-01
Full Text Available The goal of the present work is to develop some strategies based on research in neurosciences that contribute to the teaching and learning of mathematics. The interrelationship of education with the brain, as well as the relationship of cerebral structures with mathematical thinking was discussed. Strategies were developed taking into consideration levels that include cognitive, semiotic, language, affect and the overcoming of phobias to the subject. The fundamental conclusion was the imperative educational requirement in the near future of a new teacher, whose pedagogic formation must include the knowledge on the cerebral function, its structures and its implications to education, as well as a change in pedagogy and curricular structure in the teaching of mathematics.
Moeller, Korbinian; Martignon, Laura; Wessolowski, Silvia; Engel, Joachim; Nuerk, Hans-Christoph
2011-01-01
Children typically learn basic numerical and arithmetic principles using finger-based representations. However, whether or not reliance on finger-based representations is beneficial or detrimental is the subject of an ongoing debate between researchers in neurocognition and mathematics education. From the neurocognitive perspective, finger counting provides multisensory input, which conveys both cardinal and ordinal aspects of numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills and that training finger gnosis, or “finger sense,” enhances mathematical skills. Therefore neurocognitive researchers conclude that elaborate finger-based numerical representations are beneficial for later numerical development. However, research in mathematics education recommends fostering mentally based numerical representations so as to induce children to abandon finger counting. More precisely, mathematics education recommends first using finger counting, then concrete structured representations and, finally, mental representations of numbers to perform numerical operations. Taken together, these results reveal an important debate between neurocognitive and mathematics education research concerning the benefits and detriments of finger-based strategies for numerical development. In the present review, the rationale of both lines of evidence will be discussed. PMID:22144969
Directory of Open Access Journals (Sweden)
Korbinian eMoeller
2011-11-01
Full Text Available Usually children learn the basic principles of number and arithmetic by the help of finger-based representations. However, whether the reliance on finger-based representations is only beneficial or whether it may even become detrimental is the subject of an ongoing debate between neuro-cognitive and mathematics education researchers. From the neuro-cognitive perspective finger counting provides multi-sensory input conveying both cardinal and ordinal aspects of numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills and that training finger gnosis enhances mathematical skills. From this neuro-cognitive researchers conclude that elaborate finger-based numerical representations are beneficial for later numerical development.However, mathematics education research recommends fostering mental numerical representations so as to induce children to abandon finger-counting. More precisely mathematics education recommends moving from finger counting to concrete structured representations and then, finally, to mental representations of numbers.Taken together, there is obviously an important debate between the neuro-cognitve and mathematics education research concerning the benefits or detriments of finger-based strategies for numerical development. In the present review, the rationale of both lines of evidence will be presented and discussed.
Directory of Open Access Journals (Sweden)
Wannaree Pansiri
2016-12-01
Full Text Available The objectives of this research were 1 to develop the assessment for learning model of Mathematics for Rajamangala University 2 to study the effectivness of assessment for learning model of Mathematics for Rajamagala University of Technology Rattanakosin. The research target group consisted of 72 students from 3 classes and 3 General Mathematics teachers. The data was gathered from observation, worksheets, achievement test and skill of assessment for learning, questionnaire of the assessment for learning model of Mathematics. The statistics that used in this research were Frequency, Percentage, Mean, Standard Deviation, and Growth Score. The results of this research were 1. The assessment of learning model of Mathematics for Rajamangala University of Technology Rattanakosin consisted of 3 components ; 1. Pre-assessment which consisted of 4 activities ; a Preparation b Teacher development c Design and creation the assessment plan and instrument for assessment and d Creation of the learning experience plan 2. The component for assessment process consisted of 4 steps which were a Identifying the learning objectives and criteria b Identifying the learning experience plan and assessment follow the plan c Learning reflection and giving feedback and d Learner development based on information and improve instruction and 3. Giving feedback component. 2. The effective of assessment for learning model found that most students had good score in concentration, honest, responsibilities, group work, task presentation, worksheets, and doing exercises. The development knowledge of learning and knowledge and skill of assessment for learning of lecturers were fairly good. The opinion to the assessment for learning of learners and assessment for learning model of Mathematics of teachers found that was in a good level.
Some Instructional Implications from a Mathematical Model of Cognitive Development.
Mierkiewicz, Diane B.
Cognitive development and various educational implications are discussed in terms of Donald Saari's model of the interaction of a learner and the enviroment and the constraints imposed by the inefficiency of the learner's cognitive system. Saari proposed a hierarchical system of cognitive structures such that the relationships between structures…
Developing Learning Materials Using an Ontology of Mathematical Logic
Boyatt, Russell; Joy, Mike
2012-01-01
Ontologies describe a body of knowledge and give formal structure to a domain by describing concepts and their relationships. The construction of an ontology provides an opportunity to develop a shared understanding and a consistent vocabulary to be used for a given activity. This paper describes the construction of an ontology for an area of…
Development of mathematical models for predicting the iron ...
African Journals Online (AJOL)
Facing the increase of surface water samples contaminated by ETMs, usually from the geochemical background, the emergence of new human diseases is worrying. To solve this problem, we have developed several models based on different learning algorithms qualified by high performance, using different transfer ...
Curriculum Planning and Development in Mathematics from the Formative Stages
Festus, Azuka Benard; Kurumeh, Mary Seraphina
2015-01-01
Curriculum of a school consists of all the experiences that a learner encounters under the direction of the school. The curriculum of any educational system is planned and developed according to the needs of the society. Just as the society is dynamic, the curriculum is also dynamic. Hence, curriculum is usually changed from time to time. This…
Student mathematical activity as a springboard to developing teacher didactisation practices
Directory of Open Access Journals (Sweden)
Piera Biccard
2015-12-01
Full Text Available This article is part of a larger study on teacher development. The main study investigated teacher development within primary school Mathematics teachers’ classrooms to determine if teaching practices could be enhanced through a didactisation-based programme. It sought to develop teachers within their own environments and classrooms. Design research (both designing the conditions for change and studying the results of those conditions enabled the researchers to design a programme that was congruent with teachers’ own needs and experiences. The programme ran for a period of a year with regular contact between the teachers and the researcher conducting the programme (the first author. The programme set out nine didactisation practices: active students, differentiation, mathematisation, vertically aligned lessons, accessing student thinking and ideas, probing student thinking and ideas, connecting student ideas, assessing students and reflecting on practice. One practice, student activity, is the focus of this article. It was found that by initiating discussion and cognitive conflict in teachers by using modelling problems, and further allowing teachers to observe pupils working in groups with modelling problems, teachers were starting to incorporate the didactisation practices within their own classrooms. This article documents specifically the fundamental role of student mathematical activity and the importance of improving student mathematical experiences, both for teacher development and for student mathematical learning. The study may be valuable in structuring and planning further effective teacher development programmes.
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Directory of Open Access Journals (Sweden)
Nenad Stojanović
2011-10-01
Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.
Mathematical and Simulation Model Development of Switched Reluctance Motor
Directory of Open Access Journals (Sweden)
S. V. Aleksandrovsky
2011-01-01
Full Text Available The switched reluctance motor (SRM represents a great interest while being applied in various fields as an alternative to asynchronous motors with a short-circuit rotor. A SRM disadvantage is a nonlinearity of its characteristics. Due to this reason it is desirable to execute investigations using a developed simulation model. The simulation results (electromagnetic torque and current are in good agreement with those values studied in the literature.
Face-to-Face and Online Professional Development for Mathematics Teachers: A Comparative Study
Russell, Michael; Carey, Rebecca; Kleiman, Glenn; Venable, Joanne Douglas
2009-01-01
The study compared the effects of a professional development course delivered in an online and a face-to-face format. The effects examined included changes in teachers' pedagogical beliefs, instructional practices, and understanding of teaching number-sense and related mathematical concepts. The study randomly assigned participants to either the…
A Perception Scale on the Use of Webquests in Mathematics Teaching: A Study of Scale Development
Demir, Mevhibe Kobak; Gür, Hülya
2016-01-01
This study was aimed to develop a valid and reliable perception scale in order to determine the perceptions of pre-service teachers towards the use of WebQuest in mathematics teaching. The study was conducted with 115 junior and senior pre-service teachers at Balikesir University's Faculty of Education, Computer Education and Instructional…
Energy Technology Data Exchange (ETDEWEB)
Gomes, Leonardo Vinicius; Mendes, Pedro Paulo C. [Escola Federal de Engenharia de Itajuba, MG (Brazil). Dept. de Eletrotecnica; Ferreira, Claudio [Agencia Nacional de Energia Eletrica (ANEEL), Brasilia, DF (Brazil)
1999-07-01
This paper presents the development and analysis of various mathematical models for gas turbine which can be incorporated to dynamic stability or to electric power systems. The work provides answers for questions such as: the dynamic behaviour of gas turbine driven generator unities, the influence of those equipment in the other elements and the best operational conditions for the equipment.
Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin
2017-01-01
This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…
Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev
Park, Hyoung Seo
2006-01-01
The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…
Crawford, Amy K.
2017-01-01
The purpose of this phenomenological research study was to use Self-Determination Theory as a framework to analyze middle school mathematics teachers' motivation to attain effective professional development concerning Ohio's Learning Standards as well as other instructional aspects that affect the classroom. Teachers are exceptionally busy meeting…
Friso-van den Bos, I.; Kroesbergen, E.H.; van Luit, J.E.H.; Xenidou-Dervou, I.; Jonkman, L.M.; van der Schoot, M.; van Lieshout, E.C.D.M.
2015-01-01
Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the
Friso - van den Bos, Ilona; Kroesbergen, Evelyn; van Luit, Hans; Xenidou-Dervou, Iro; Jonkman, Lisa M.; Van der Schoot, Menno; Van Lieshout, Ernest C. D. M.
2015-01-01
Children’s ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children’s placements are distributed on this number line across development. In the
Lindenskov, Lena
This paper reports on a pilot study in the Danish "Profile in Mathematics" project implemented by the Directorate General for Employment, Placement and Vocational Training and the Ministry of Education. The pilot study develops and tests specific guidance materials to guide participants and teachers through a course for crane workers…
Developing Basic Mathematical Skills of Pre-School Children by Using Plasticized Clay
Chumark, Charung; Puncreobutr, Vichian
2016-01-01
The main objective of this research was to study the development of basic mathematical skills in preschool children by using plasticized clay. A pre-test and post-test design was adopted for the study to compare the difference before and after the art activity. The experimental group of 15 preschool children of 3-4 years old, attending…
Simon, Martin A.; Placa, Nicora; Avitzur, Arnon
2016-01-01
Tzur and Simon (2004) postulated 2 stages of development in learning a mathematical concept: participatory and anticipatory. The authors discuss the affordances for research of this stage distinction related to data analysis, task design, and assessment as demonstrated in a 2-year teaching experiment.
Polly, Drew; Wang, Chuang; Lambert, Richard; Martin, Christie; McGee, Jennifer Richardson; Pugalee, David; Lehew, Amy
2017-01-01
This study investigates the impacts of a year-long professional development program on Kindergarten teachers' beliefs and practices and the association of these changes with student achievement in mathematics measured by curriculum-based instruments. Although teacher content knowledge was not statistically significantly different before and after…
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-01-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study.…
Developing digital technologies for university mathematics by applying participatory design methods
DEFF Research Database (Denmark)
Triantafyllou, Eva; Timcenko, Olga
2013-01-01
This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...
Ugurel, Isikhan; Morali, H. Sevgi; Karahan, Ozge; Boz, Burcak
2016-01-01
The purpose of this study is to describe the procedure and examples of visual proofs (VP-or proof without words) developed by gifted mathematics secondary school students after their experiences. The participants of this study are three male 9th grade students enrolled in a private science high school. In the first stage of the research a briefing…
Wightman, Bruce; Hark, Amy T.
2012-01-01
The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this…
Developing the Mathematics Learning Management Model for Improving Creative Thinking in Thailand
Sriwongchai, Arunee; Jantharajit, Nirat; Chookhampaeng, Sumalee
2015-01-01
The study purposes were: 1) To study current states and problems of relevant secondary students in developing mathematics learning management model for improving creative thinking, 2) To evaluate the effectiveness of model about: a) efficiency of learning process, b) comparisons of pretest and posttest on creative thinking and achievement of…
A Revolving Model of Pre-Service Teacher Development in Mathematics
Wilson, Susanna
2012-01-01
This paper presents a theoretical model for the development of knowledge for teaching, based on a study of primary pre-service teachers (PSTs) in their final year of an Initial Teacher Education Programme. This model arose from findings about PSTs' perceptions of knowledge for mathematics teaching that were related to knowledge of the curriculum,…
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-07-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study. Independent sample t tests and Spearman's rho correlations were used for data analysis. This study found: (a) Children with TD had higher word problem solving ability than did children with ASD; (b) Sentence comprehension, math vocabulary, computation, and everyday mathematical knowledge were associated with word problem solving ability of children with ASD and children with TD; and (c) Children with TD had higher everyday mathematical knowledge than did children with ASD.
Development of PIMAL: Mathematical Phantom with Moving Arms and Legs
Energy Technology Data Exchange (ETDEWEB)
Akkurt, Hatice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eckerman, Keith F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2007-05-01
The computational model of the human anatomy (phantom) has gone through many revisions since its initial development in the 1970s. The computational phantom model currently used by the Nuclear Regulatory Commission (NRC) is based on a model published in 1974. Hence, the phantom model used by the NRC staff was missing some organs (e.g., neck, esophagus) and tissues. Further, locations of some organs were inappropriate (e.g., thyroid).Moreover, all the computational phantoms were assumed to be in the vertical-upright position. However, many occupational radiation exposures occur with the worker in other positions. In the first phase of this work, updates on the computational phantom models were reviewed and a revised phantom model, which includes the updates for the relevant organs and compositions, was identified. This revised model was adopted as the starting point for this development work, and hence a series of radiation transport computations, using the Monte Carlo code MCNP5, was performed. The computational results were compared against values reported by the International Commission on Radiation Protection (ICRP) in Publication 74. For some of the organs (e.g., thyroid), there were discrepancies between the computed values and the results reported in ICRP-74. The reasons behind these discrepancies have been investigated and are discussed in this report.Additionally, sensitivity computations were performed to determine the sensitivity of the organ doses for certain parameters, including composition and cross sections used in the simulations. To assess the dose for more realistic exposure configurations, the phantom model was revised to enable flexible positioning of the arms and legs. Furthermore, to reduce the user time for analyses, a graphical user interface (GUI) was developed. The GUI can be used to visualize the positioning of the arms and legs as desired posture is achieved to generate the input file, invoke the computations, and extract the organ dose
Kuneni, Erna; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is the most important branch in mathematics. The purpose of teaching this material is to develop students' level of thinking for a better understanding. Otherwise, geometry in particular, has contributed students' failure in mathematics examinations. This problem occurs due to special feature in geometry which has complexity of correlation among its concept. This relates to mathematical connection. It is still difficult for students to improve this ability. This is because teachers' lack in facilitating students towards it. Eventhough, facilitating students can be in the form of teaching material. A learning module can be a solution because it consists of series activities that should be taken by students to achieve a certain goal. A series activities in this case is adopted by the phases of discovery-based learning model. Through this module, students are facilitated to discover concept by deep instruction and guidance. It can build the mathematical habits of mind and also strengthen the mathematical connection. Method used in this research was ten stages of research and development proposed by Bord and Gall. The research purpose is to create a valid learning module to improve students' mathematical connection in teaching quadrilateral. The retrieved valid module based on media expert judgment is 2,43 for eligibility chart aspect, 2,60 for eligibility presentation aspect, and 3,00 for eligibility contents aspect. Then the retrieved valid module based on material expert judgment is 3,10 for eligibility content aspect, 2,87 for eligibility presentation aspect, and 2,80 for eligibility language and legibility aspect.
Mathematics Curriculum in Ireland: The Influence of PISA on the Development of Project Maths
Directory of Open Access Journals (Sweden)
Liz KIRWAN
2015-12-01
Full Text Available This article interrogates the extent to which the Organization for Economic Cooperation and Development (OECD through its Programme for International Student Assessment (PISA influenced the development of Project Maths, a new second-level mathematics education policy in Ireland. It argues that the Irish government, in its revision of mathematics education policy, was strongly influenced by PISA and that concern with the country’s ‘average’ placement in the international assessment was instrumental in defining the direction of the revision. It traces the genetic imprint of PISA on the development of curriculum policy, the new mathematics syllabus, its content and assessment. It argues that Project Maths sets out to follow closely the PISA conceptual framework. However, the analysis finds that Project Maths is not a mini-PISA but that the programme is comprised of two distinct approaches, on the one hand retaining the abstract, symbolic mathematics of sections of the pre-existing curriculum, while on the other emphasizing a PISA-like approach to pedagogy and to real-life problem solving.
Jannah, R. R.; Apriliya, S.; Karlimah
2017-03-01
This study aims to develop alternative instructional design based of barriers learning which identified by developing mathematical connection capabilities to the material unit of distance and speed. The research was conducted in the fifth grade elementary school Instructional design is complemented with a hypothetical learning trajectory in the form of a pedagogical didactic anticipation. The method used is descriptive method with qualitative approach. Techniques data collection used were observation, interviews, and documentation. The instrument used the researchers themselves are equipped with an instrument written test. The data were analyzed qualitatively to determine the student learning obstacles, then arrange hypothetical learning trajectory and pedagogical didactic anticipation. Learning obstacle are identified, it is learning obstacle related the connections between mathematical topics, learning obstacle related with other disciplines, and learning obstacle related with everyday life. The results of this research are improvement and development of didactic design in mathematics which has activities mathematical connection to the material unit of distance and speed in elementary school. The learning activities are carried out is using varied methods include method lectures, demonstrations, practice and exercise, as well as using the modified instructional media.
Mathematics curriculum in Ireland: The ınfluence of PISA on the development of project maths
Directory of Open Access Journals (Sweden)
Liz Kirwan
2015-12-01
Full Text Available This article interrogates the extent to which the Organization for Economic Cooperation and Development (OECD through its Programme for International Student Assessment (PISA influenced the development of Project Maths, a new second-level mathematics education policy in Ireland. It argues that the Irish government, in its revision of mathematics education policy, was strongly influenced by PISA and that concern with the country’s ‘average’ placement in the international assessment was instrumental in defining the direction of the revision. It traces the genetic imprint of PISA on the development of curriculum policy, the new mathematics syllabus, its content and assessment. It argues that Project Maths sets out to follow closely the PISA conceptual framework. However, the analysis finds that Project Maths is not a mini-PISA but that the programme is comprised of two distinct approaches, on the one hand retaining the abstract, symbolic mathematics of sections of the pre-existing curriculum, while on the other emphasizing a PISA-like approach to pedagogy and to real-life problem solving.
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive......Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...
Contribution to complex gas-liquid flows: Development and validation of a mathematical model
Selma, Brahim
This study describes the development and validation of Computational Fluid Dynamics (CFD) model for the simulation of dispersed two-phase flows taking in the account the population balance of particles size distribution. A two-fluid (Euler-Euler) methodology previously developed for complex flows is adapted to the present project. The continuous phase turbulence is represented using a two-equation k --- epsilon turbulence model which contains additional terms to account for the effects of the dispersed on the continuous phase turbulence and the effects of the gas-liquid interface. The inter-phase momentum transfer is determined from the instantaneous forces acting on the dispersed phase, comprising drag, lift, virtual mass and drift velocity. These forces are phase fraction dependent and in this work revised modelling is put forward in order to capture a good accuracy for gas hold-up, liquid velocity profiles and turbulence parameters. Furthermore, a correlation for the effect of the drift velocity on the turbulence behaviour is proposed. The revised modelling is based on an extensive survey of the existing literature. The conservation equations are discretised using the finite-volume method and solved in a solution procedure, which is loosely based on the PISO algorithm. Special techniques are employed to ensure the stability of the procedure when the phase fraction is high or changing rapidely [61]. Finally, assessment of the model is made with reference to experimental data for gas-liquid bubbly flow in a rectangular bubble column [133; 134; 135; 18], in a double-turbine stirred tank reactor [126; 127] and in an air-lift bioreacator [101]. Key words: mathematical modelling, complex flow gas-liquid, turbulence, population balance, computational fluids dynamics CFD, OpenFOAM, moments method, method of classes, QMOM, DQMOM.
Directory of Open Access Journals (Sweden)
Mara Landers
2013-06-01
Full Text Available This paper presents findings from an ethnographic study of the role and meaning of mathematics homework in the lives of middle school students. The study conceptualizes and examines homework as a social practice, with a focus on how students make meaning out of their experiences and the role of identity development in meaning making. Specifically, the study examines how middle school students come to value or reject mathematics homework. Case study analyses revealed two ways of characterizing students’ experiences with homework. Students who buy into homework develop aspects of their identities related to school, math and homework that support them in valuing homework. Students who check out develop aspects of their identities that support them in rejecting homework. The concepts of buying in and checking out have implications for theory development around motivation and identity and for school practices around homework.
Carnoy, Martin; Brodziak, Iliana; Luschei, Thomas; Beteille, Tara; Loyalka, Prashant
2009-01-01
In this publication, the authors compare the salaries of primary (Grades 1 to 6 in most countries) and secondary school (usually Grades 7 to 12) teachers with the salaries of people in mathematics-oriented professions, such as engineering, scientific fields, and accounting. Their analysis centers on a number of developed and developing countries.…
Aly, Hassan Shawky; Abdulhakeem, Hassan Daker
2016-01-01
This study aimed at assessing the training programs for Mathematics teachers at elementary stage on developed Curricula and attitudes toward teaching at Najran educational administration in Saudi Arabia. To achieve this objective, two instruments were developed, one of them measures the opinions of Mathematics teachers about the training programs…
Anderson, Daniel; Irvin, P. Shawn; Patarapichayatham, Chalie; Alonzo, Julie; Tindal, Gerald
2012-01-01
In the following technical report, we describe the development and scaling of the easyCBM CCSS middle school mathematics measures, designed for use within a response to intervention framework. All items were developed in collaboration with experienced middle school mathematics teachers and were written to align with the Common Core State…
On the role of visual experience in mathematical development: Evidence from blind mathematicians.
Amalric, Marie; Denghien, Isabelle; Dehaene, Stanislas
2017-10-04
Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n=1) or became blind during childhood (n=2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Developing self-concept instrument for pre-service mathematics teachers
Afgani, M. W.; Suryadi, D.; Dahlan, J. A.
2018-01-01
This study aimed to develop self-concept instrument for undergraduate students of mathematics education in Palembang, Indonesia. Type of this study was development research of non-test instrument in questionnaire form. A Validity test of the instrument was performed with construct validity test by using Pearson product moment and factor analysis, while reliability test used Cronbach’s alpha. The instrument was tested by 65 undergraduate students of mathematics education in one of the universities at Palembang, Indonesia. The instrument consisted of 43 items with 7 aspects of self-concept, that were the individual concern, social identity, individual personality, view of the future, the influence of others who become role models, the influence of the environment inside or outside the classroom, and view of the mathematics. The result of validity test showed there was one invalid item because the value of Pearson’s r was 0.107 less than the critical value (0.244; α = 0.05). The item was included in social identity aspect. After the invalid item was removed, Construct validity test with factor analysis generated only one factor. The Kaiser-Meyer-Olkin (KMO) coefficient was 0.846 and reliability coefficient was 0.91. From that result, we concluded that the self-concept instrument for undergraduate students of mathematics education in Palembang, Indonesia was valid and reliable with 42 items.
Pablo Ernesto Estrada Aguilera; Oscar L. Parrado Alvarez; José A Chío Rojas
2016-01-01
This paper presents a procedure to acquire and develop professional skills by the Agronomy technician, through Mathematics, according to the requirements of the Professional Pedagogical Process. A methodological approach for planning, preparation, and realization of the teaching process is used to help develop the skill measuring area, which is needed to master other professional skills. It is based on interaction between math contents and the contents of other subjects. Additionally, the res...
Mathematical model development of heat and mass exchange processes in the outdoor swimming pool
Directory of Open Access Journals (Sweden)
M. V. Shaptala
2014-12-01
Full Text Available Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The method for determination of heat and mass loses based on the theory of similarity criteria equations is used. Findings. The main types of heat and mass losses of outdoor pool were analyzed. The most significant types were allocated and mathematically described. Namely: by evaporation of water from the surface of the pool, by natural and forced convection, by radiation to the environment, heat consumption for water heating. Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating- up from the boiler room of the university, is operated year-round.
Directory of Open Access Journals (Sweden)
Nisiyatussani Nisiyatussani
2017-06-01
Full Text Available This design and development research was motivated by the rapid expansion and use of GeoGebra by mathematics educators (teachers and lecturers in Indonesia. One of GeoGebra features is GeoGebra Applet that can be used, modified, and/or developed by educators for dynamic and interactive mathematics teaching and learning. At the time of research project, there is no GeoGebra Applets closely linked and aligned to the Indonesia national curriculum. The availability would be benefit for mathematics teaching and learning aligned to this curriculum. This research proceeds through seven steps of the Need, Capability, and Analysis (NCA Model of Design and Development: 1 User Need Analysis; 2 Researcher as Developer Capability; 3 GeoGebra Applets Design; 4 GeoGebra Applets Development; 5 Experts Judgements; 6 Field testing in its Natural Setting Environment; and 7 the Prototype. The field testing was conducted with 8th grade students in a junior high school. The field testing shows that the developed Quadrilateral GeoGebra Applets can work as expected in its purposed natural setting environment.
Mathematical modeling of efficacy and safety for anticancer drugs clinical development.
Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo
2018-01-01
Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.
Directory of Open Access Journals (Sweden)
Petra Langhorst
2013-06-01
Full Text Available Mathematical development processes begin long before school starts and the importance of previous mathematical knowledge for later school achievements is beyond dispute. For a suitable pre-school education, the focus of interest must be to find out which early learning processes prepare children best. In this article, the acquisition of the key concepts of numeracy is presented in a developmental model, which served as framework for a supportive programme for 4-8 year-old children. The research into this intervention shows how development-oriented support of key arithmetic concepts can be constructed and taught systematically. The immediate and sustainable effect of the programme Mina and the Mole on the mathematical competencies of children has already been demonstrated in an evaluation study of 248 children aged 5-7. Considering the strong language-orientation of the programme, the present study focused on aspects of phonological awareness and of phonological working memory. It was evident that these phonological language processing aspects correlated with mathematic skills. Furthermore, it was found that the dominant linguistic focus of the training did not constitute a disadvantage – even linguistically weak children significantly improved their mathematical skills. Moreover, children with poor or average phonological performance could profit from the supportive programme also regarding their phonological language processing.
Developing Instructional Design to Improve Mathematical Higher Order Thinking Skills of Students
Apino, E.; Retnawati, H.
2017-02-01
This study aimed to describe the instructional design to improve the Higher Order Thinking Skills (HOTS) of students in learning mathematics. This research is design research involving teachers and students of class X MIPA 1 MAN Yigyakarta III, Special Region of Yogyakarta, Indonesia. Data collected through focus group discussions and tests. Data analyzed by quantitative descriptive. The results showed that the instructional design developed is effective to improving students’ HOTS in learning mathematics. Instructional design developed generally include three main components: (1) involve students in the activities non-routine problem solving; (2) facilitating students to develop the ability to analyze and evaluate (critical thinking) and the ability to create (creative thinking); and (3) encourage students to construct their own knowledge.
ACADEMIC TEXTBOOKS AS A MEDIUM FOR STUDENTS’ INTELLECT DEVELOPMENT IN TEACHING MATHEMATICS
Directory of Open Access Journals (Sweden)
Emanuila G. Gelfman
2014-01-01
Full Text Available Abstract. The aim of the publication is to demonstrate the implementation results of the “Mathematics, Psychology, Intellect” (MPI educational project used for selecting and devising the new textbook content for multipurpose learning activities and students’ intellect development in comprehensive schools.The methodology, based on the psycho-didactic approach, involves the analysis of the existing experience of textbooks development, including the traditional reference and narrative books, and the ones, organized as a dialogue with a student-reader and oriented toward the facts comprehension and reasoning. In the context of the reader-oriented theory, the author proves the advantages of special developmental materials complying with the enrichment model.Research results describe mathematical textbooks and learning materials development for secondary schools including students’ books, practicum and workbooks for independent study, and computer software for the 5 to 9th –year students. Secondly, the authors denote the psycho-didactic typology of and requirements for developmental texts.Scientific novelty is related to the specificity of the given academic texts, conveying the structure of the formal mathematical knowledge on the one hand, and on the other hand - developing the basic components of students’ mental experience (including cognitive, conceptual, metacognitive and intentional ones, and creating the conditions for exercising the individual cognitive styles.Practical significance results from activating the individual intellectual resources of school leavers, developing their learning ability and readiness for the future innovative professional and personal life.
ACADEMIC TEXTBOOKS AS A MEDIUM FOR STUDENTS’ INTELLECT DEVELOPMENT IN TEACHING MATHEMATICS
Directory of Open Access Journals (Sweden)
Emanuila G. Gelfman
2015-03-01
Full Text Available Abstract. The aim of the publication is to demonstrate the implementation results of the “Mathematics, Psychology, Intellect” (MPI educational project used for selecting and devising the new textbook content for multipurpose learning activities and students’ intellect development in comprehensive schools.The methodology, based on the psycho-didactic approach, involves the analysis of the existing experience of textbooks development, including the traditional reference and narrative books, and the ones, organized as a dialogue with a student-reader and oriented toward the facts comprehension and reasoning. In the context of the reader-oriented theory, the author proves the advantages of special developmental materials complying with the enrichment model.Research results describe mathematical textbooks and learning materials development for secondary schools including students’ books, practicum and workbooks for independent study, and computer software for the 5 to 9th –year students. Secondly, the authors denote the psycho-didactic typology of and requirements for developmental texts.Scientific novelty is related to the specificity of the given academic texts, conveying the structure of the formal mathematical knowledge on the one hand, and on the other hand - developing the basic components of students’ mental experience (including cognitive, conceptual, metacognitive and intentional ones, and creating the conditions for exercising the individual cognitive styles.Practical significance results from activating the individual intellectual resources of school leavers, developing their learning ability and readiness for the future innovative professional and personal life.
Phelps, Geoffrey; Kelcey, Benjamin; Jones, Nathan; Liu, Shuangshuang
2016-10-03
Mathematics professional development is widely offered, typically with the goal of improving teachers' content knowledge, the quality of teaching, and ultimately students' achievement. Recently, new assessments focused on mathematical knowledge for teaching (MKT) have been developed to assist in the evaluation and improvement of mathematics professional development. This study presents empirical estimates of average program change in MKT and its variation with the goal of supporting the design of experimental trials that are adequately powered to detect a specified program effect. The study drew on a large database representing five different assessments of MKT and collectively 326 professional development programs and 9,365 teachers. Results from cross-classified hierarchical growth models found that standardized average change estimates across the five assessments ranged from a low of 0.16 standard deviations (SDs) to a high of 0.26 SDs. Power analyses using the estimated pre- and posttest change estimates indicated that hundreds of teachers are needed to detect changes in knowledge at the lower end of the distribution. Even studies powered to detect effects at the higher end of the distribution will require substantial resources to conduct rigorous experimental trials. Empirical benchmarks that describe average program change and its variation provide a useful preliminary resource for interpreting the relative magnitude of effect sizes associated with professional development programs and for designing adequately powered trials. © The Author(s) 2016.
Advanced Mathematical-Thinking at Any Age: Its Nature and Its Development
Harel, Guershon; Sowder, Larry
2005-01-01
This article argues that advanced mathematical thinking, usually conceived as thinking in advanced mathematics, might profitably be viewed as advanced thinking in mathematics (advanced mathematical-thinking). Hence, advanced mathematical-thinking can properly be viewed as potentially starting in elementary school. The definition of mathematical…
Mathematical modeling and GEOGEBRA in the development of competences in young researchers
Directory of Open Access Journals (Sweden)
Pabón Gómez, Jorge Angelmiro
2015-12-01
Full Text Available The present article aims to analyze the competences of young researchers using Geogebra software; Allows to know the shared experience from a quasi-experimental research, in a sample of 27 students of the tenth grade of the educational institution José María Córdoba, 7 of whom were researchers of the proposal "Mathematics Divertida" of the research group "The Pythagoreans" Enrolled in the Swarm project led by the CUN, the purpose was to show the importance of introducing the student in the management of GEOGEBRA as a facilitating tool for the development of mathematical competences as it allows him to visualize and simulate real situations in a dynamic and interactive way; And in turn of the necessity of its incorporation to the curricular plans for the teaching of the mathematics. Results: The referent of the research proposal was the modeling of functions by means of which the student learned to represent mathematically the processes to follow in order to find solutions to a real life problem, besides acquiring the skill to represent the results obtained for A later interpretation and analysis of the results. Conclusion: The student acquired strengths and also detected weaknesses, improved the ability to face new educational realities.
International Nuclear Information System (INIS)
Palomares Delgado, F.; Vera Palomino, J.; Petrement Eguiluz, J. C.
1964-01-01
The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs
Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.
1992-01-01
A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.
An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Lesser, Lawrence M.; Siemssen, Annette; Tinajero, Josefina V.
2016-01-01
The study presented in this paper sought to offer a group of 21 preservice teachers with opportunities to learn about interdisciplinary mathematics pedagogy, plus the experience of implementing it with elementary students. It provided the participating preservice teachers' with an opportunity to reflect upon the potential advantages, as well as…
Bahr, Damon L.; Monroe, Eula Ewing; Mantilla, Jodi
2018-01-01
This article synthesizes the literature on what it means to teach mathematics and science to ELLs and abstract from it a set of knowledge and skills teachers might need to teach ELLs effectively. To this end, the article brings together the sociocultural and linguistic perspectives identifying three areas of effective teaching practice. One…
Toh, Tin Lam; Cheng, Lu Pien; Ho, Siew Yin; Jiang, Heng; Lim, Kam Ming
2017-01-01
This paper discusses the use of comics in teaching mathematics in the secondary mathematics classroom. We explicate how the use of comics in teaching mathematics can prepare students for the twenty-first century competencies. We developed an alternative teaching package using comics for two lower secondary mathematics topics. This alternative…
Energy Technology Data Exchange (ETDEWEB)
Patlas, Michael [Hamilton General Hospital, Department of Radiology, Hamilton, ON (Canada); McCready, David [University Health Network and Mount Sinai Hospital, Department of Surgery, Toronto, ON (Canada); Kulkarni, Supriya; Dill-Macky, Marcus J. [University Health Network and Mount Sinai Hospital, Department of Medical Imaging, Toronto, ON (Canada)
2005-09-01
Survivors of Hodgkin's disease are at increased risk of developing a second malignant neoplasm, including breast carcinoma and sarcoma. We report the first case of synchronous development of chest wall fibrosarcoma and breast carcinoma after mantle radiotherapy for Hodgkin's disease. Mammographic, sonographic and MR features are demonstrated. (orig.)
International Nuclear Information System (INIS)
Seinfeld, J.H.
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed
Harwell, Michael; Post, Thomas R.; Cutler, Arnie; Maeda, Yukiko; Anderson, Edwin; Norman, Ke Wu; Medhanie, Amanuel
2009-01-01
The selection of K-12 mathematics curricula has become a polarizing issue for schools, teachers, parents, and other educators and has raised important questions about the long-term influence of these curricula. This study examined the impact of participation in either a National Science Foundation-funded or commercially developed mathematics…
Jothi, A Lenin
2009-01-01
Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m
Buhrman, Danielle
2017-01-01
This study uses components of action and self-study research to examine the design and enactment of modeling tasks with the goal of developing student modeling abilities. The author, a secondary mathematics teacher, first closely examined the curriculum design and instructional decisions she made as she prepared for a unit on mathematical modeling…
Longitudinal Mediators of Achievement in Mathematics and Reading in Typical and Atypical Development
Barnes, Marcia A.; Raghubar, Kimberly P.; English, Lianne; Williams, Jeffrey M.; Taylor, Heather; Landry, Susan
2014-01-01
Longitudinal studies of neurodevelopmental disorders that are diagnosed at or before birth and which are associated with specific learning difficulties at school-age provide one method for investigating developmental precursors of later-emerging academic disabilities. Spina bifida myelomeningocele (SBM) is a neurodevelopmental disorder associated with particular problems in mathematics, in contrast to well-developed word reading. Children with SBM (n = 30) and typically developing children (n = 35) were used to determine whether cognitive abilities measured at 36 and 60 months of age mediated the effect of group on mathematical and reading achievement outcomes at 8.5 and 9.5 years of age. A series of multiple mediator models showed that: visual-spatial working memory at 36 months and phonological awareness at 60 months partially mediated the effect of group on math calculations; phonological awareness partially mediated the effect of group on small addition and subtraction problems on a test of math fluency; and visual-spatial working memory mediated the effect of group on a test of math problem solving. Groups did not differ on word reading, and phonological awareness was the only mediator for reading fluency and reading comprehension. The findings are discussed with reference to theories of mathematical development and disability and with respect to both common and differing cognitive correlates of math and reading. PMID:24269579
Barnes, Marcia A; Raghubar, Kimberly P; English, Lianne; Williams, Jeffrey M; Taylor, Heather; Landry, Susan
2014-03-01
Longitudinal studies of neurodevelopmental disorders that are diagnosed at or before birth and are associated with specific learning difficulties at school-age provide one method for investigating developmental precursors of later-emerging academic disabilities. Spina bifida myelomeningocele (SBM) is a neurodevelopmental disorder associated with particular problems in mathematics, in contrast to well-developed word reading. Children with SBM (n=30) and typically developing children (n=35) were used to determine whether cognitive abilities measured at 36 and 60 months of age mediated the effect of group on mathematical and reading achievement outcomes at 8.5 and 9.5 years of age. A series of multiple mediator models showed that: visual-spatial working memory at 36 months and phonological awareness at 60 months partially mediated the effect of group on math calculations, phonological awareness partially mediated the effect of group on small addition and subtraction problems on a test of math fluency, and visual-spatial working memory mediated the effect of group on a test of math problem solving. Groups did not differ on word reading, and phonological awareness was the only mediator for reading fluency and reading comprehension. The findings are discussed with reference to theories of mathematical development and disability and with respect to both common and differing cognitive correlates of math and reading. Copyright © 2013 Elsevier Inc. All rights reserved.
Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band
Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman
2015-01-01
The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.
Boroujeni, Mahdi K.; Goodarzi, F.
2011-09-01
In present study, a special mathematical model for membrane separation processes was studied. Mathematical model was developed for propylene/propane system and was solved using finite difference solution approach. In this study, membrane length is shared into a number of nodes and required equations are written for each node, separately. Also, golden section method was used for suitable step size selection. It is prescience that the results accuracy and calculation time, depend on number of meshes. Therefore 20 meshes were obtained as an optimum number. The effect of pressure drop equation on solution procedure of the model was also investigated and it was found that the pressure drop equation has a negligible effect on it.
Doing Mathematics with Purpose: Mathematical Text Types
Dostal, Hannah M.; Robinson, Richard
2018-01-01
Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…
Teachers' Mathematics as Mathematics-at-Work
Bednarz, Nadine; Proulx, Jérôme
2017-01-01
Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…
Papuga, M Owen; Burke, Jeanmarie R
2011-02-01
An ink pad and paper, pressure-sensitive platforms, and photography have previously been used to collect footprint data used in clinical assessment. Digital scanners have been widely used more recently to collect such data. The purpose of this study was to evaluate the intra- and interrater reliability of a flatbed digital image scanning technology to capture footprint data. This study used a repeated-measures design on 32 (16 male 16 female) healthy subjects. The following measured indices of footprint were recorded from 2-dimensional images of the plantar surface of the foot recorded with an Associate Platinum (Foot Levelers Inc, Roanoke, VA) digital foot scanner: Staheli index, Chippaux-Smirak index, arch angle, and arch index. Intraclass correlation coefficient (ICC) values were calculated to evaluate intrarater, interday, and interclinician reliability. The ICC values for intrarater reliability were greater than or equal to .817, indicating an excellent level of reproducibility in assessing the collected images. Analyses of variance revealed that there were no significant differences between raters for each index (P > .05). The ICC values also indicated excellent reliability (.881-.971) between days and clinicians in all but one of the indices of footprint, arch angle (.689), with good reliability between clinicians. The full-factorial analysis of variance model did not reveal any interaction effects (P > .05), which indicated that indices of footprint were not changing across days and clinicians. Scanning technology used in this study demonstrated good intra- and interrater reliability measurements of footprint indices, as demonstrated by high ICC values. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Wilson, Kimi Leemar
National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these
Friso-van den Bos, Ilona; Kroesbergen, Evelyn H; Van Luit, Johannes E H; Xenidou-Dervou, Iro; Jonkman, Lisa M; Van der Schoot, Menno; Van Lieshout, Ernest C D M
2015-06-01
Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the current study, different models were applied to children's longitudinal number placement data to get more insight into the development of number line representations in kindergarten and early primary school years. In addition, longitudinal developmental relations between number line placements and mathematical achievement, measured with a national test of mathematics, were investigated using cross-lagged panel modeling. A group of 442 children participated in a 3-year longitudinal study (ages 5-8 years) in which they completed a number-to-position task every 6 months. Individual number line placements were fitted to various models, of which a one-anchor power model provided the best fit for many of the placements at a younger age (5 or 6 years) and a two-anchor power model provided better fit for many of the children at an older age (7 or 8 years). The number of children who made linear placements also grew with age. Cross-lagged panel analyses indicated that the best fit was provided with a model in which number line acuity and mathematics performance were mutually predictive of each other rather than models in which one ability predicted the other in a non-reciprocal way. This indicates that number line acuity should not be seen as a predictor of math but that both skills influence each other during the developmental process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Windy A Boyd
2009-09-01
Full Text Available The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF and extinction (EXT of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT and log(TOF growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF and log(EXT, growth rates, and time to reach change points showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent
Keipert, Peter E
2017-01-01
Historically, hemoglobin-based oxygen carriers (HBOCs) were being developed as "blood substitutes," despite their transient circulatory half-life (~ 24 h) vs. transfused red blood cells (RBCs). More recently, HBOC commercial development focused on "oxygen therapeutic" indications to provide a temporary oxygenation bridge until medical or surgical interventions (including RBC transfusion, if required) can be initiated. This included the early trauma trials with HemAssist ® (BAXTER), Hemopure ® (BIOPURE) and PolyHeme ® (NORTHFIELD) for resuscitating hypotensive shock. These trials all failed due to safety concerns (e.g., cardiac events, mortality) and certain protocol design limitations. In 2008 the Food and Drug Administration (FDA) put all HBOC trials in the US on clinical hold due to the unfavorable benefit:risk profile demonstrated by various HBOCs in different clinical studies in a meta-analysis published by Natanson et al. (2008). During standard resuscitation in trauma, organ dysfunction and failure can occur due to ischemia in critical tissues, which can be detected by the degree of lactic acidosis. SANGART'S Phase 2 trauma program with MP4OX therefore added lactate >5 mmol/L as an inclusion criterion to enroll patients who had lost sufficient blood to cause a tissue oxygen debt. This was key to the successful conduct of their Phase 2 program (ex-US, from 2009 to 2012) to evaluate MP4OX as an adjunct to standard fluid resuscitation and transfusion of RBCs. In 2013, SANGART shared their Phase 2b results with the FDA, and succeeded in getting the FDA to agree that a planned Phase 2c higher dose comparison study of MP4OX in trauma could include clinical sites in the US. Unfortunately, SANGART failed to secure new funding and was forced to terminate development and operations in Dec 2013, even though a regulatory path forward with FDA approval to proceed in trauma had been achieved.
Directory of Open Access Journals (Sweden)
Pablo Ernesto Estrada Aguilera
2016-04-01
Full Text Available This paper presents a procedure to acquire and develop professional skills by the Agronomy technician, through Mathematics, according to the requirements of the Professional Pedagogical Process. A methodological approach for planning, preparation, and realization of the teaching process is used to help develop the skill measuring area, which is needed to master other professional skills. It is based on interaction between math contents and the contents of other subjects. Additionally, the results from implementation at Alvaro Barba Machado Polytechnic School of Agronomy, in the city of Camaguey, and its contribution to professional skills, are explained.
Setyaningrum, W.; Waryanto, N. H.
2018-03-01
This paper aimed to describe the development of interactive edutainment mathematics media using Construct 2 software for grade 7 Junior High School, and to determine the quality of the interactive edutainment media developed in regards to improve students’ understanding and interest. This research employs Research and Development design, which media was developed using ADDIE model consisting of analysing, designing, developing, implementing and evaluating. This paper focuses on the steps of development and validity of the interactive media from teachers’ point of view. The teachers review focuses on three aspects – instructional, audio-visual and operational design. The review suggested that the media was very good in regard to the three aspects, with the average score was 144.55 from the maximum score of 175. Several contexts used in the game, however, need to be adjusted to students age.
Difference, inclusion, and mathematics education
DEFF Research Database (Denmark)
Figueiras, Lourdes; Healy, Lulu; Skovsmose, Ole
2016-01-01
The round-table discussion on Difference, Inclusion and Mathematics Education was in included in the scientific programme of VI SIPEM in recognition and celebration of the emerging body of research into the challenges of building a culture of mathematics education which values and respects...... the diversity of learners in different educational contexts – in Brazil and beyond. This paper presents the contributions to the discussion, which focus on the problematisation of the term “inclusion”, explorations of how the practices of previously marginalized students can bring new resources to the teaching...... and learning of mathematics and reflections upon the potentially discriminatory nature of the structures which currently mould school mathematics. The paper aims to serve as material for the developing research agenda of the thirteenth working group of the Brazilian Society of Mathematics Education, which met...
A Mathematical Program to Develop the Skills of Thinking of Children
Directory of Open Access Journals (Sweden)
Magda M. Saleh
2009-10-01
Full Text Available The importance of this study emerges from the importance of the points it discusses as it attempts to study the effectiveness of the suggested program of mathematics that develop the thinking skill of the children in preschool age. Accordingly, it comes from the attempt to teach the children the skill of thinking as one of the important and required skills for the children to accommodate with the surrounded environment and to help them develop and grow completely and to accommodate with themselves and their society. The purpose of this study is, thus, summarized in the answering of the following questions: 1- How can we create a program that uses mathematical activities and that contribute in the development of thinking skill of the preschool child? 2- To what extent is that program effective to develop the skills of thinking of the preschool child? The research sample is composed of 35 children for the experimental group and the same number for the controller group from the KJ2 children. The results of the research showed the effectiveness of the suggested program and its obvious contribution in the development of the thinking skills for the preschool children in a more effective way than the traditional methods used.
Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package
Usov, S. V.; Kudinov, A. A.
2016-04-01
Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam-gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas-turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam-gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam-gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.
DEFF Research Database (Denmark)
Carugati, Andrea
2002-01-01
has been initiated with the scope of investigating the questions that mathematical modelling technology poses to traditional information systems development projects. Based on the past body of research, this study proposes a framework to guide decision making for managing projects of information...... systems development. In a presented case the indications of the model are compared with the decisions taken during the development. The results highlight discrepancies between the structure and predictions of the model and the case observations, especially with regard to the importance given to the users......’ skills in the development process. Further observations also indicate that flexibility and adaptability, based on grounded theory, are valuable tools when information systems development involves a new technology....
Parshall, Karen Hunger
2002-01-01
Although today's mathematical research community takes its international character very much for granted, this "global nature" is relatively recent, having evolved over a period of roughly 150 years-from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom the goal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians and mathematicians alike. This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only develo...
The Development of e-tutorial on Implementation National Curriculum 2013 for Mathematics Teacher
Roza, Yenita; Satria, Gita; Nur Siregar, Syarifah
2017-06-01
Curriculum 2013 is the new national Curriculum in Indonesia that is targeted to be used in all Indonesian schools in 2019. At this time the teacher training continues but the number and locations of teachers very diffuse and time constraints to be an obstacle for the government to be able to conduct training for teachers. This research resulted in the e-tutorial which is designed for mathematics teachers in studying the process of Curriculum implementation. This product will assist the government in accelerating the preparation of teachers in implementation of Curriculum 2013. This e-tutorial contains the dynamics of Curriculum development, learning model, learning assessment, lesson plan, curriculum stages of implementation and government regulation that is relevant to the implementation of Curriculum 2013. The product development started with a needs analysis through discussions with mathematics teachers about their difficulties in the implementation of the Curriculum 2013. This e-tutorial was developed using Application of Adobe Director 11. This paper discusses the results of need analysis, process development and results of product revisions made based on input from teachers during the FGD. From the discussion, it can be concluded that this e-tutorial easily understood by teachers and help them to understand the implementation of Curriculum 2013
Directory of Open Access Journals (Sweden)
Nicola ePitchford
2015-04-01
Full Text Available Evaluation of educational interventions is necessary prior to wide-scale rollout. Yet very few rigorous studies have been conducted on the effectiveness of tablet-based interventions, especially in the early years and in developing countries. This study reports a randomized control trial to evaluate the effectiveness of a tablet intervention for supporting the development of early mathematical skills in primary school children in Malawi. A total sample of 318 children, spanning Standards 1-3, attending a medium-sized urban primary school, were randomized to one of three groups: maths tablet intervention, non-maths tablet control, and standard face-to-face practice. Children were pre-tested using tablets at the start of the school year on two tests of mathematical knowledge and a range of basic skills related to scholastic progression. Class teachers then delivered the intervention over an 8-week period, for the equivalent of 30-minutes per day. Technical support was provided from the local Voluntary Service Overseas. Children were then post-tested on the same assessments as given at pre-test.A final sample of 283 children from Standards 1-3, present at both pre- and post-test, was analyzed to investigate the effectiveness of the maths tablet intervention. Significant effects of the maths tablet intervention over and above standard face-to-face practice or using tablets without the maths software were found in Standard 2 and 3. In Standard 3 the greater learning gains shown by the maths tablet intervention group compared to both of the control groups on the tablet-based assessments transferred to paper and pencil format, illustrating generalization of knowledge gained. Thus, tablet technology can effectively support early years mathematical skills in developing countries if the software is carefully designed to engage the child in the learning process and the content is grounded in a solid well-constructed curriculum appropriate for the child
Developing the Sixth Level of PISA-Like Mathematics Problems for Secondary School Students
Directory of Open Access Journals (Sweden)
Kamaliyah
2013-01-01
Full Text Available Indonesia's involvement in the Programme for International StudentAssessment (PISA is one attempt to see how far the development ofeducational programs in our country compared to other countries in theworld. PISA results show that Indonesia is still at the lower level. This means that the ability of Indonesian students in solving problems that require the ability to review, giving reasons and communicatingeffectively, and solve and interpret problems in various situations isstill lacking. This may be due to government policy in the presence ofthe National Examination (UN in which the spread of the UN’s questions are still at the lower levels of cognitive aspects that are not in line with government regulations on curriculum which suggests that the fulfillment of cognitive aspects as one of the important aspects of education. To that end, researcher conducted a study that aims to produce valid and practical the sixth level of PISA-like mathematics problems for middle school students. This study is the development research formative evaluation type. The research subjects are ninth grade students SMP Negeri 1 Palembang. Data collection techniques used are walk through, documentation, interviews, and tests. From the analysis it can be concluded that this research has resulted a product the sixth level of PISA-like mathematics problems. At the stage of expert review, an expert and two colleagues evaluated the problems from different aspects. Trying out at one-to-one and small group was performed on students with different mathematical abilities. Then at the field test stage, 26 students in one class answered the questions that were developed.
Pitchford, Nicola J
2015-01-01
Evaluation of educational interventions is necessary prior to wide-scale rollout. Yet very few rigorous studies have been conducted on the effectiveness of tablet-based interventions, especially in the early years and in developing countries. This study reports a randomized control trial to evaluate the effectiveness of a tablet intervention for supporting the development of early mathematical skills in primary school children in Malawi. A total sample of 318 children, spanning Standards 1-3, attending a medium-sized urban primary school, were randomized to one of three groups: maths tablet intervention, non-maths tablet control, and standard face-to-face practice. Children were pre-tested using tablets at the start of the school year on two tests of mathematical knowledge and a range of basic skills related to scholastic progression. Class teachers then delivered the intervention over an 8-weeks period, for the equivalent of 30-min per day. Technical support was provided from the local Voluntary Service Overseas (VSO). Children were then post-tested on the same assessments as given at pre-test. A final sample of 283 children, from Standards 1-3, present at both pre- and post-test, was analyzed to investigate the effectiveness of the maths tablet intervention. Significant effects of the maths tablet intervention over and above standard face-to-face practice or using tablets without the maths software were found in Standards 2 and 3. In Standard 3 the greater learning gains shown by the maths tablet intervention group compared to both of the control groups on the tablet-based assessments transferred to paper and pencil format, illustrating generalization of knowledge gained. Thus, tablet technology can effectively support early years mathematical skills in developing countries if the software is carefully designed to engage the child in the learning process and the content is grounded in a solid well-constructed curriculum appropriate for the child's developmental
Directory of Open Access Journals (Sweden)
G. Iordanou
2011-10-01
Full Text Available This work describes the developed of a lumped parameter model and demonstrates its practical application. The lumped parameter mathematical model is a useful instrument to be used for rapid determination of design dimensions and operational performance of solar collectors at the designing stage. Such model which incorporates data from relevant Computational Fluid Dynamics design and experimental investigations can provide an acceptable accuracy in predictions and can be used as an effective design tool. A computer algorithm validates the lumped parameter model via a window environment program.
Doabler, Christian T.; Clarke, Ben; Fien, Hank; Baker, Scott K.; Kosty, Derek B.; Cary, Mari Strand
2015-01-01
The production of an effective mathematics curriculum begins with a scientific development, evaluation, and revision framework. The purpose of this study was to conduct an initial investigation of a recently developed Tier 2 mathematics curriculum designed to improve the outcomes of first grade students at risk for mathematics difficulties (MD).…
Directory of Open Access Journals (Sweden)
Paulo Cesar Chagas Rodrigues
2012-07-01
Full Text Available Acquire and produce what is strictly necessary are the goals of the organizations, since they aim companies more competitive and thereby reducing production costs. The research method is applied in nature, with a qualitative and quantitative approach, in which the objective of the research will be: exploratory and descriptive, with technical procedures, divided into: bibliographic, documentary, survey and concluding with a case study. On this assumption the main objective of this research is to develop and analyze a mathematical model that minimizes costs and maximizes the postponement of stocks in a company in the pulp, paper and paper products. Having been found only four papers, two articles and two theses that deal with the issue of demand management, supply chain and inventory postponement. These studies address the issue by modeling the productive time of the supply chain. For production segments this research may enable development of management practices demand and production strategy, allowing cost reductions and productivity gains possible. With the development of the mathematical model could ever analyze the behavior of demand and its influence on the productive strategy, strategy formulation regarding the purchase of raw materials and finished product storage in the last four years the company's results for the proposed model.
Directory of Open Access Journals (Sweden)
Anna-Maria Wium
2012-12-01
Full Text Available Learners in South African schools have been found to perform poorly in mathematics because they do not understand the language used in solving mathematical problems. In order to improve academic performance teachers need to be made aware of the importance of language in the development of numeracy. A continued professional development (CPD programme addressed this need. The purpose of the research was to understand how the participants implemented the strategies developed during the programme and how they perceived the support provided by the programme. The research was conducted over 2 years in semi-rural and urban contexts. As part of a more comprehensive mixed method study, the qualitative data referred to in this article were obtained through open-ended questions in questionnaires, focus groups, reflections in portfolios, and a research diary. Results showed that numeracy terminology was often used by learners that differed from standard terminology prescribed by the curriculum. The participants themselves did not necessarily understand the numeracy terminology and thus found it a challenge to implement curriculum outcomes. Issues related to language use of the participants in teaching numeracy were associated with the lack of resources available in the language of learning and teaching (LoLT. Some of the participants taught numeracy in English, rather than LoLT. The results indicated low teacher expectations of the learners. The CPD programme was considered valuable and effective. SLPs in schools need to be expand their role to provide CPD opportunities for teachers.
Wium, Anna-Marie; Louw, Brenda
2012-12-01
Learners in South African schools have been found to perform poorly in mathematics because they do not understand the language used in solving mathematical problems. In order to improve academic performance teachers need to be made aware of the importance of language in the development of numeracy. A continued professional development (CPD) programme addressed this need. The purpose of the research was to understand how the participants implemented the strategies developed during the programme and how they perceived the support provided by the programme. The research was conducted over 2 years in semi-rural and urban contexts. As part of a more comprehensive mixed method study, the qualitative data referred to in this article were obtained through open-ended questions in questionnaires, focus groups,I reflections in portfolios, and a research diary. Results showed that numeracy terminology was often used by learners that differed from standard terminology prescribed by the curriculum. The participants themselves did not necessarily understand the numeracy terminology and thus found it a challenge to implement curriculum outcomes. Issues related to language use of the participants in teaching numeracy were associated with the lack of resources available in the language of learning and teaching (LoLT). Some of the participants taught numeracy in English, rather than LoLT. The results indicated low teacher expectations of the learners. The CPD programme was considered valuable and effective. SLPs in schools need to be expand their role to provide CPD opportunities for teachers.
Directory of Open Access Journals (Sweden)
Samritin Samritin
2016-06-01
Full Text Available This study is a research and development study. It aims to produce an instrument for assessing junior high school (JHS students’ higher order thinking skills (HOTS in mathematics. Its procedure consists of nine steps: (1 Constructing the test specification; (2 writing test items; (3 analyzing test items; (4 conducting the first tryout; (5 analyzing the results of the first try out; (6 revising the test; (7 assembling the test; (8 conducting the second tryout; and (9 analyzing the results of the second tryout. The instrument content validity was obtained through the focus group discussion (FGD forum, and Delphi technique. The construct validity was found out through the tryout data analysis. The instrument tryout was conducted twice involving 264 participants in the first tryout and 821 participants in the second tryout. The results of the study indicate that the instrument for assessing JHS students’ HOTS in mathematics has met the validity and reliability criteria. From the results of the content validity analysis, it can be concluded that the instrument is valid, and it was supported by the items validity indices above 0.79. From the results of the construct validity analysis, it can be concluded that the instrument is valid, as indicated by the value of χ2 = 67.69, with p-value = 0.10, Root Mean Square Error of Approximation (RMSEA = 0.03, supported by Goodness of Fit Index (GFI of 0.97, Normed Fit Index (NFI of 0.95, and Adjusted Goodness of Fit Index (AGFI of 0.95. The instrument reliability is 0.88. The developed instrument for assessing HOTS in mathematics consists of 12 items, each of which is of essay test type. The test items have difficulty indices in a range of 0.30 ≤ Pi ≤ 0.7.
Tumanov, Aleksandr; Gumenyuk, Vasily; Tumanov, Vladimir
2017-10-01
The article is devoted to the development of mathematical model for assessing the harm accidents on potentially-dangerous sea-based energy object. Made choice of regression mathematical model that best represents the relationship of the integral indicator with a set of risk factors of emergency situations their probabilities. Shows the main parameters of the model and result indicators. A mathematical model in which risk assessment in addition to the probability of the adverse events, risk factors and possible consequences taken into account the vulnerability of the object.
Directory of Open Access Journals (Sweden)
Sead Rešić
2015-09-01
Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.
Simanowski, Stefanie; Krajewski, Kristin
2017-08-10
This study assessed the extent to which executive functions (EF), according to their factor structure in 5-year-olds (N = 244), influenced early quantity-number competencies, arithmetic fluency, and mathematics school achievement throughout first and second grades. A confirmatory factor analysis resulted in updating as a first, and inhibition and shifting as a combined second factor. In the structural equation model, updating significantly affected knowledge of the number word sequence, suggesting a facilitatory effect on basic encoding processes in numerical materials that can be learnt purely by rote. Shifting and inhibition significantly influenced quantity to number word linkages, indicating that these processes promote developing a profound understanding of numbers. These results show the supportive role of specific EF for specific aspects of a numerical foundation. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.
2015-11-01
The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.
Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.
Directory of Open Access Journals (Sweden)
Courtney L Davis
Full Text Available We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.
Directory of Open Access Journals (Sweden)
Hongki Julie
2013-07-01
Full Text Available There are three questions that will be answered in this study, namely (1 what are the contexts that can be used to introduce the meaning of multiplication of two fractions and to find the result of multiplying two fractions, (2 how to use these contexts to help students construct the understanding of the meaning of multiplication of two fractions and find the result of multiplying two fractions, and (3 what is the impact of the teaching-learning process that has been designed by researchers on the process of students' knowledge construction. Learning approach which was used in developing teaching materials about fractions is realistic mathematics approach. Lesson plan was created for fifth grade elementary school students. The type of research used is developmental research. According to Gravemeijer and Cobb (in Akker, Gravemeijer, McKeney, and Nieveen, 2006 there are three phases in development research, namely (1 preparation of the trial design, (2 the trial design, and (3 retrospective analysis. This paper presents the results of the first cycle of three cycles that have been planned.Key words: fractions, realistic mathematics education, design research. DOI: http://dx.doi.org/10.22342/jme.4.2.415.172-187
Content Validity and Acceptability of a Developed Worktext in Basic Mathematics 2
Directory of Open Access Journals (Sweden)
Mae Joy F. Tan-Espinar
2017-02-01
Full Text Available Teaching tertiary mathematics entails the use of instructional materials which lead to independent learning. The study evaluated the content validity and level of acceptability of a developed worktext in Basic Mathematics 2. It also found the significant difference between the respondents’ evaluation. Likewise, the study found the significant difference in the pretest and posttest performance between experimental and the control group and the difference between the posttest of the experimental and control groups. The study utilized the descriptive comparative method in determining the validity and acceptability of the developed worktext and the difference between the evaluation of experts/teachers and the student respondents. Quasi-experimental design was also used to find out if the worktext is effective in teaching the course employing t-test for correlated samples and t-test for independent samples. The result showed that the content validity and acceptability is very much valid and very much acceptable. The difference in the post-test between the experimental and the control groups was significant. It is concluded that the worktext is effective to be used in teaching the course.
Estimation in the Primary School: Developing a Key Mathematical Skill for Life
Mildenhall, Paula
2016-01-01
Very recently, in the "Australian Association of Mathematics Teachers (AAMT)/Australian Industry Group quantitative report" (2014), concerns were raised that school mathematics is lacking real world application. This report highlighted the gaps between school mathematics and the requirements of the workplace. After interviewing industry…
Long-term development of how students interpret a model; Complementarity of contexts and mathematics
Vos, Pauline; Roorda, Gerrit; Stillman, Gloria Ann; Blum, Werner; Kaiser, Gabriele
2017-01-01
When students engage in rich mathematical modelling tasks, they have to handle real-world contexts and mathematics in chorus. This is not easy. In this chapter, contexts and mathematics are perceived as complementary, which means they can be integrated. Based on four types of approaches to modelling
Bennett, Elaine; Weidner, Jenny
2011-01-01
Children are born naturally mathematical, so why is it sometimes so difficult to observe children being mathematical? Why do so many of us think we are "bad" at maths and how does this subconsciously affect the provision, experiences and opportunities we provide for young children who are starting their mathematical learning journey? This easily…
Observing and Analyzing Children's Mathematical Development, Based on Action Theory
Bunck, M. J. A.; Terlien, E.; van Groenestijn, M.; Toll, S. W. M.; Van Luit, J. E. H.
2017-01-01
Children who experience difficulties with learning mathematics should be taught by teachers who focus on the child's best way of learning. Analyses of the mathematical difficulties are necessary for fine-tuning mathematics education to the needs of these children. For this reason, an instrument for Observing and Analyzing children's Mathematical…
Ardıç, Mehmet Alper; Işleyen, Tevfik
2018-01-01
In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.
М. В. Грязев; Н. М. Качурин; С. А. Воробьев
2017-01-01
New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for th...
Wightman, Bruce; Hark, Amy T
2012-01-01
The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this study, we deliberately integrated bioinformatics instruction at multiple course levels into an existing biology curriculum. Students in an introductory biology course, intermediate lab courses, and advanced project-oriented courses all participated in new course components designed to sequentially introduce bioinformatics skills and knowledge, as well as computational approaches that are common to many bioinformatics applications. In each course, bioinformatics learning was embedded in an existing disciplinary instructional sequence, as opposed to having a single course where all bioinformatics learning occurs. We designed direct and indirect assessment tools to follow student progress through the course sequence. Our data show significant gains in both student confidence and ability in bioinformatics during individual courses and as course level increases. Despite evidence of substantial student learning in both bioinformatics and mathematics, students were skeptical about the link between learning bioinformatics and learning mathematics. While our approach resulted in substantial learning gains, student "buy-in" and engagement might be better in longer project-based activities that demand application of skills to research problems. Nevertheless, in situations where a concentrated focus on project-oriented bioinformatics is not possible or desirable, our approach of integrating multiple smaller components into an existing curriculum provides an alternative. Copyright © 2012 Wiley Periodicals, Inc.
Mathematics Connection: Editorial Policies
African Journals Online (AJOL)
MATHEMATICS CONNECTION aims at providing a forum to promote the development of Mathematics Education in Ghana. Articles that seek to enhance the teaching and/or learning of mathematics ... Faculty of Social Sciences, Methodist University, Accra Prof. B. K. Gordor, Department of Mathematics (UCC), Cape Coast ...
Energy Technology Data Exchange (ETDEWEB)
Cimpan, Emil
2004-09-15
This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the
Fokina, Mariya
2017-11-01
The economy of Russia is based around the mineral-raw material complex to the highest degree. The mining industry is a prioritized and important area. Given the high competitiveness of businesses in this sector, increasing the efficiency of completed work and manufactured products will become a central issue. Improvement of planning and management in this sector should be based on multivariant study and the optimization of planning decisions, the appraisal of their immediate and long-term results, taking the dynamic of economic development into account. All of this requires the use of economic mathematic models and methodsApplying an economic-mathematic model to determine optimal ore mine production capacity, we receive a figure of 4,712,000 tons. The production capacity of the Uchalinsky ore mine is 1560 thousand tons, and the Uzelginsky ore mine - 3650 thousand. Conducting a corresponding analysis of the production of OAO "Uchalinsky Gok", an optimal production plan was received: the optimal production of copper - 77961,4 rubles; the optimal production of zinc - 17975.66 rubles. The residual production volume of the two main ore mines of OAO "UGOK" is 160 million tons of ore.
de Castro, Marcus Vasconcelos; Bissaco, Márcia Aparecida Silva; Panccioni, Bruno Marques; Rodrigues, Silvia Cristina Martini; Domingues, Andreia Miranda
2014-01-01
In this study, we show the effectiveness of a virtual environment comprising 18 computer games that cover mathematics topics in a playful setting and that can be executed on the Internet with the possibility of player interaction through chat. An arithmetic pre-test contained in the Scholastic Performance Test was administered to 300 children between 7 and 10 years old, including 162 males and 138 females, in the second grade of primary school. Twenty-six children whose scores showed a low level of mathematical knowledge were chosen and randomly divided into the control (CG) and experimental (EG) groups. The EG participated to the virtual environment and the CG participated in reinforcement using traditional teaching methods. Both groups took a post-test in which the Scholastic Performance Test (SPT) was given again. A statistical analysis of the results using the Student's t-test showed a significant learning improvement for the EG and no improvement for the CG (p≤0.05). The virtual environment allows the students to integrate thought, feeling and action, thus motivating the children to learn and contributing to their intellectual development.
PID - 3D: a software to develop mathematical human phantoms for use in computational dosimetry
International Nuclear Information System (INIS)
Lima Filho, Jose de Melo; Vieira, Jose Wilson; Lima, Vanildo Junior de Melo; Lima, Fernando Roberto de Andrade
2009-01-01
The PID-3D software, written in Visual C++, contains tools developed for building and editing of three-dimensional geometric figures formed of voxels (volume pixels). These tools were projected to be used, together with those already developed by the Grupo de Dosimetria Numerica (GDN/CNPq), such as the FANTOMAS and DIP software, in computational dosimetry of ionizing radiation. The main objective of this paper is to develop various voxel-based geometric solids to build voxel phantoms (meaning models), anthropomorphic or not. The domain of this technique of development of geometric solids is important for the GDN/CNPq, because it allows the use of just one Monte Carlo code to simulate the transportation, interaction and deposition of radiation in tomographic and mathematical phantoms. Building a particular geometric solid the user needs to inform to the PID-3D software, the location and the size of the parallelepiped that involves it. Each built solid can be saved in a binary file of the type SGI (file containing the size and the numeric values that constitutes the 3D matrix that represents the solid, commonly used by GDN/CNPq). The final mathematical phantom is built starting from these SGI files and the SGI file resulting constitutes a voxel phantom. With this approach the software's user does not have to manipulate the equations and inequalities of the solids that represent the organs and tissues of the phantom. The 3D-PID software, associated with the FANTOMAS and DIP software are tools produced by GDN/CNPq, providing a new technique for building of 3D scenes in dosimetric evaluations using voxel phantoms. To validate the PID-3D software one built, step by step, a phantom similar to the MIRD-5 stylized phantom. (author)
International Nuclear Information System (INIS)
Akahane, K.; Kai, M.; Kusama, T.
1996-01-01
We made a new mathematical phantom using the patients' digital pictures of bone scintillation in nuclear medicine. The data of 99m Tc bone scintillation pictures include the information on the body sizes and shapes. In the bone scintillation pictures, no three dimensional data are available, so that the shapes and sizes of whole body and bones were modelled based on standard anatomical geometry. The organs except bone were also modelled after construction of the bone mathematical model. The mathematical phantoms were developed for each patient. The specific effective energy for each phantom can be calculated by the Monte Carlo code to compare it among the patients. Our mathematical phantoms would provide new calculation of internal doses from radiopharmaceuticals in place of the MIRD phantom. (author)
Peressini, Dominic D.; Knuth, Eric J.
1998-01-01
This study used observation and interviews to compare the discourse in workshop sessions that were part of a discrete-mathematics professional-development project for secondary mathematics teachers with the discourse in one participating teacher's high school mathematics classroom. By emphasizing the distinction between univocal and dialogic forms…
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Depelteau, Audrey M; Joplin, Karl H; Govett, Aimee; Miller, Hugh A; Seier, Edith
2010-01-01
"It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power." Alan Cohen (Used by permission. All rights reserved. For more information on Alan Cohen's books and programs, see (www.alancohen.com.) With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18 curriculum modules, designed this three-semester curriculum, known as SYMBIOSIS. This curriculum was piloted to two student cohorts during the developmental stage. The positive feedback and assessment results of this project have given us the foundation to implement the SYMBIOSIS curriculum as a replacement for the standard biology majors curriculum at the introductory level. This article addresses the history and development of the curriculum, previous assessment results and current assessment protocol, and the future of ETSU's approach to implementing the SYMBIOSIS curriculum.
Joplin, Karl H.; Govett, Aimee; Miller, Hugh A.; Seier, Edith
2010-01-01
“It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power.”Alan Cohen (Used by permission. All rights reserved. For more information on Alan Cohen's books and programs, see (www.alancohen.com.) With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology–math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18 curriculum modules, designed this three-semester curriculum, known as SYMBIOSIS. This curriculum was piloted to two student cohorts during the developmental stage. The positive feedback and assessment results of this project have given us the foundation to implement the SYMBIOSIS curriculum as a replacement for the standard biology majors curriculum at the introductory level. This article addresses the history and development of the curriculum, previous assessment results and current assessment protocol, and the future of ETSU's approach to implementing the SYMBIOSIS curriculum. PMID:20810967
A Multifaceted Mathematical Approach for Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.
Mathematical knowledge in teaching
Rowland, Tim
2011-01-01
This book examines issues of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing approaches to characterizing, assessing and developing mathematical knowledge for teaching.
Development of Mathematical Models for Investigating Maximal Power Point Tracking Algorithms
Directory of Open Access Journals (Sweden)
Dominykas Vasarevičius
2012-04-01
Full Text Available Solar cells generate maximum power only when the load is optimized according insolation and module temperature. This function is performed by MPPT systems. While developing MPPT, it is useful to create a mathematical model that allows the simulation of different weather conditions affecting solar modules. Solar insolation, cloud cover imitation and solar cell models have been created in Matlab/Simulink environment. Comparing the simulation of solar insolation on a cloudy day with the measurements made using a pyrometer show that the model generates signal changes according to the laws similar to those of a real life signal. The model can generate solar insolation values in real time, which is useful for predicting the amount of electrical energy produced from solar power. The model can operate with the help of using the stored signal, thus a comparison of different MPPT algorithms can be provided.Article in Lithuanian
Directory of Open Access Journals (Sweden)
N. V. R. Naidu
2011-09-01
Full Text Available This paper deals with a critical evaluation of the Preventive Maintenance system in steel industry. This study helps in implementing Six Sigma solutions to reduce the down time of two critical machines i.e., Electric Arc Furnace (EAF and Billet Casting Machine (BCM. It is clear from the analysis of EAF and BCM respectively that, variations in output are quite possible because the machines output not only depend on maintenance time but also on several other variables. Further, the objective is to design a preventive maintenance programme on the same equipment situated in the plant using Six Sigma. The breakdown of these equipments could very well affect the production rate. For this, the mathematical models have been developed and these models are used to obtain the optimum preventive maintenance frequency for minimizing the down time and maximizing the profits.
A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks
Directory of Open Access Journals (Sweden)
Ratima Suntornnond
2016-09-01
Full Text Available Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.
Student engagement in mathematics: Development of instrument and validation of construct
Kong, Qi-Ping; Wong, Ngai-Ying; Lam, Chi-Chung
2003-05-01
Universal education has aggravated the problems of students' disengagement in learning, highlighting in particular, a greater range of motivations to learn and wider diversification in students' interests. Students' engagement with curriculum has become a crucial element in classroom learning. How we cultivate their involvement in the curriculum may be seen as being far more important than the epistemological consideration in the design of the school curriculum. Though aspects of behavioural, affective and cognitive engagements have been revealed in literature, we are still in need of a validated instrument that measures student engagement for further research. In the present study, an instrument of student engagement in the subject area of mathematics was developed through grounded research. Its validity was established by statistical methods
Clark, Caron A.C.; Sheffield, Tiffany D.; Wiebe, Sandra A.; Espy, Kimberly Andrews
2012-01-01
Executive control (EC) is related to mathematics performance in middle childhood. However, little is known regarding how EC and informal numeracy differentially support mathematics skill acquisition in preschoolers. A sample of preschoolers (115 girls, 113 boys), stratified by social risk, completed an EC task battery at 3 years, informal numeracy assessments at 3.75 and 4.5 years, and a broad mathematics assessment during kindergarten. Strong associations were observed between latent EC at 3 and mathematics achievement in kindergarten, which remained robust after accounting for earlier informal numeracy, socio-economic status, language and processing speed. Relations between EC and mathematics achievement were stronger in girls than boys. Findings highlight the unique role of EC in predicting which children may have difficulty transitioning to formal mathematics instruction. PMID:23006040
Yow, Jan A.; Lotter, Christine
2016-01-01
This study investigates the role of an inquiry professional development institute in empowering middle school mathematics and science teachers to develop as teacher leaders. Teachers and coaches jointly attended content sessions and participated in practice teaching sessions with students. The coaches led reflection sessions following the practice…
Exhibition - Mathematics, A Beautiful Elsewhere
2011-01-01
From 21 October 2011 to 18 March 2012, the Fondation Cartier pour l’art contemporain will present the exhibition Mathematics: A Beautiful Elsewhere, an exhibition developed in association with the Institut des Hautes Études Scientifiques (IHÉS) and under the patronage of UNESCO. For this unprecedented event, the foundation invited mathematicians to work with artists with whom it has previously worked to create an exhibition that allows visitors to see, hear, do, interpret and think about mathematics. By bringing mathematics into its premises, the Fondation Cartier is itself undergoing the “sudden change of scenery” described by mathematician Alexandre Grothendieck. More information is available here. Fondation Cartier pour l’art contemporain 261, boulevard Raspail 75014 Paris http://fondation.cartier.com Private Visit For professors, researchers and all the staff of Mathematics departments...
Development of the mathematical phantom of the brazilian man for internal dosimetry calculations
International Nuclear Information System (INIS)
Guimaraes, Maria Ines Calil Cury.
1995-01-01
This work covers the theory and construction of a Mathematical Phantom of the Brazilian, to be used in internal dosimetry. To obtain this it was necessary to develop antropometric data of mass and height for Brazilian man between 20 and 40 years old. Through Monte Carlo Method, and applying the Specific Absorbed Fraction (SAF) formalism, it was possible determine the fraction internal organs such as bones, skin and total body. The results obtained from SAF are primordial in nuclear medicine and great value in the calculation of the dose received by workers exposed and in accidental cases, to a rapid evaluation of the received by a simple person. Through SAF, the references obtained for the Brazilian man, can be noted when compared to the phantom calculated by Snyder, which proposed to represent the international reference man, showed by ICRP-23 publication, that the determined SAF of the whole body does not exceed 15% between the two phantoms, agreeing with the allowed international norms error margin permitted. The differences between the two models appear, when the numbers are presented for individual organs, where the emission origin are the lungs and taken as target, the red and yellow marrows, for an energy of 10 KeV. The result obtained is that these two marrows receive 64% more absorbed fractions in the Brazilian model than in the international model. These numbers are considered trustfully because the coefficient of variation does not exceed 7%, value that in under 50%, which makes the coefficient of variation not trustfully, this is considered out of the normal distribution. Facts like these and may others, showed in this work, determine the necessity to calculate a specific mathematical model for the Brazilian man. (author). 51 refs., 40 figs., 9 tabs
Mirabella Ormsby, Lauren
2013-01-01
In the United States the lack of mathematic knowledge of citizens has remained a significant problem. Both national and international assessments of mathematical knowledge of students have consistently reported poor results. Given the importance of mathematics education in college attendance and career options, finding ways to improve the…
Misco, Thomas; Lee, Lena; Malone, Kevin; Goley, G. Steven; Seabolt, Phaedra
2012-01-01
Insurance is an interesting interdisciplinary topic that can offer generative meaning and relevance for students. By adapting real life examples and authentic simulations, mathematical concepts can be applied to insurance-related social studies issues and content. This article explores ways to teach insurance and related mathematical concepts to…
Developing Mathematical Content Knowledge for Teaching: One Preservice Teacher and Her Planning
Wilson, Susanna
2016-01-01
This paper describes how a new pre-service teacher engaged with mathematical content in order to learn it for teaching, during practicum. The results show that the PST learned mathematical content by initiating and carrying out a preparation phase prior to planning. This phase involved searching through internet sites and making notes that were…
To what extent do student teachers develop their mathematical problem solving ability by self-study?
Marjolein Kool; Ronald Keijzer
2017-01-01
A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what
A Longitudinal Study on Mathematics Teaching Efficacy: Which Factors (Un)Support the Development?
Isiksal-Bostan, Mine
2016-01-01
The aim of this longitudinal study was to examine prospective teachers' mathematics teaching efficacy belief during their enrollment in teacher education program and at the end of their first year of teaching. In addition, the factors that enhance or inhibit participants' efficacy belief and how these factors affect their mathematics teaching…
Developing the Practice of Teacher Questioning through a K-2 Elementary Mathematics Field Experience
Schwartz, Catherine
2015-01-01
This article presents findings from research on a field experience designed to help elementary preservice teachers learn the practice of teacher questioning during formal and informal interviews to analyze student mathematical thinking in K-2 classrooms. The practice of teacher questioning is framed as choosing a mathematical goal, analyzing…
DEFF Research Database (Denmark)
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical...... position held by the modeler(s) and the practitioners in the extra-mathematical domain. For students to experience the significance of different scientific practices and cultures for the function and status of mathematical modeling in other sciences, students need to be placed in didactical situations...... where such differences are exposed and made into explicit objects of their reflections. It can be difficult to create such situations in the teaching of contemporary science in which modeling is part of the culture. In this paper we show how history can serve as a means for students to be engaged...
Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma
2017-05-01
This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.
Energy Technology Data Exchange (ETDEWEB)
Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)
2009-09-15
Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)
Directory of Open Access Journals (Sweden)
Hongki Julie
2013-07-01
Full Text Available There are 3 questions that will be answered in this study, namely (1what are the contexts that can be used to introduce the meaning ofmultiplication of two fractions and to find the result of multiplying two fractions, (2 how to use these contexts to help students construct the understanding of the meaning of multiplication of two fractions and find the result of multiplying two fractions, and (3 what is the impact of the teaching-learning process that has been designed by researchers on the process of students’ knowledge construction.Learning approach which was used in developing teaching materialsabout fractions is realistic mathematics approach. Lesson plan wascreated for fifth grade elementary school students. The type of research used is development research. According to Gravemeijer and Cobb (in Akker, Gravemeijer, McKeney, and Nieveen, 2006 there are three phases in development research, namely (1 preparation of the trial design, (2 the trial design, and (3 a retrospective analysis. This paper presents the results of the first cycle of three cycles that have been planned.
Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics
Wang, Youjun
2009-01-01
In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…
Theological Metaphors in Mathematics
Directory of Open Access Journals (Sweden)
Krajewski Stanisław
2016-03-01
Full Text Available Examples of possible theological influences upon the development of mathematics are indicated. The best known connection can be found in the realm of infinite sets treated by us as known or graspable, which constitutes a divine-like approach. Also the move to treat infinite processes as if they were one finished object that can be identified with its limits is routine in mathematicians, but refers to seemingly super-human power. For centuries this was seen as wrong and even today some philosophers, for example Brian Rotman, talk critically about “theological mathematics”. Theological metaphors, like “God’s view”, are used even by contemporary mathematicians. While rarely appearing in official texts they are rather easily invoked in “the kitchen of mathematics”. There exist theories developing without the assumption of actual infinity the tools of classical mathematics needed for applications (For instance, Mycielski’s approach. Conclusion: mathematics could have developed in another way. Finally, several specific examples of historical situations are mentioned where, according to some authors, direct theological input into mathematics appeared: the possibility of the ritual genesis of arithmetic and geometry, the importance of the Indian religious background for the emergence of zero, the genesis of the theories of Cantor and Brouwer, the role of Name-worshipping for the research of the Moscow school of topology. Neither these examples nor the previous illustrations of theological metaphors provide a certain proof that religion or theology was directly influencing the development of mathematical ideas. They do suggest, however, common points and connections that merit further exploration.
A mathematical model of urban distribution electro-network considering its future development
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2014-01-01
Full Text Available A distribution urban power supply network (further, the power supply network is the network of urban scale. Designed to transfer and distribute electric power it represents a set of transforming and distributional substations and power lines to connect them. We consider a problem of the prospective development of power supply network (PDPSN as a task to define the ways for its optimum development in terms of configuration, equipment loads, parameters, etc., as well as from the point of view of need and terms to put into service the new objects of the power supply network.The program systems represented in the market allow us to calculate parameters of power supply systems, network operating modes, to display power supply schemes, and to make technical documentation, but they do not support the CAD of optimum network topology taking into account factors of the prospective urban development.A main objective of the work is development of mathematical model of the power supply network taking into account its prospective development. Based on this model the task is set to optimize the prospective power supply network development through the solving a problem of multi-criteria structural and parametrical optimization. Expediency is proved to use a method of reduction to the one-criteria task by means of this or that scalar convolution to solve this task.The specified problem of one-criteria optimization of PDPSN represents a problem of continuous-discrete-integer programming. The paper proves its representation as a problem of discrete programming based on the discrete approximation of possible regions to construct new transforming and distributional substations.
Development of mathematical model for estimation of entrance surface dose in mammography
International Nuclear Information System (INIS)
Abdelgani, Yassir Mohammed Tahir
2013-05-01
Computer simulation is a convenient and frequently used tool in the study of x-ray mammography, for the design of novel detector systems, the evaluation of dose deposition, x-ray technique optimization, and other applications. An important component in the simulation process is the accurate computer generation of x-ray spectra. A computer model for the generation of x-ray spectra in the mammographic energy rang from 18 keV to 40 ke V has been developed by Boone et al. Due to the lack of QC and dose measurement tools, in addition to unavailability of medical physics, a mathematical tool was developed for estimation of patient exposure and entrance dose. The proposed model require no assumptions concerning the physics of x-ray production in an x-ray tube, but rather makes use of x-ray spectra recently measured experimentally by John M Boone (Department of Radiology, University of California). Using experimental dose measurements for specific tube voltage and tube current the generated x-ray spectra were calibrated. The spectrum calibration factors show a tube voltage dependency. From the calibrated x-ray spectrum, the exposure and entrance dose were estimated for different k Vp and m A. Results show good agreement between the measured and estimated values for tube voltage between 18 to 45 k Vp with a good correlation of nearly 1 and equal slope. The maximum estimated different between the measured and the simulated dose is approximately equal to 0.07%.(Author)
The development of a model of culturally responsive science and mathematics teaching
Hernandez, Cecilia M.; Morales, Amanda R.; Shroyer, M. Gail
2013-12-01
This qualitative theoretical study was conducted in response to the current need for an inclusive and comprehensive model to guide the preparation and assessment of teacher candidates for culturally responsive teaching. The process of developing a model of culturally responsive teaching involved three steps: a comprehensive review of the literature; a synthesis of the literature into thematic categories to capture the dispositions and behaviors of culturally responsive teaching; and the piloting of these thematic categories with teacher candidates to validate the usefulness of the categories and to generate specific exemplars of behavior to represent each category. The model of culturally responsive teaching contains five thematic categories: (1) content integration, (2) facilitating knowledge construction, (3) prejudice reduction, (4) social justice, and (5) academic development. The current model is a promising tool for comprehensively defining culturally responsive teaching in the context of teacher education as well as to guide curriculum and assessment changes aimed to increase candidates' culturally responsive knowledge and skills in science and mathematics teaching.
Development of a mathematical model describing hydrolysis and co-fermentation of C6 and C5 sugars
DEFF Research Database (Denmark)
Morales Rodriguez, Ricardo; Gernaey, Krist; Meyer, Anne S.
2010-01-01
Reliable production of biofuels and specifically bioethanol has attracted a significant amount of research recently. Within this context, this study deals with dynamic simulation of bioethanol production processes and in particular aims at developing a mathematical model for describing simultaneous...... the degree of reliability. The mathematical model for the SSCF has been tested for a modified version of the process flowsheet proposed by the National Renewable Energy Laboratory (NREL). The model can now be used to evaluate different process configurations for 2G bioethanol production using corn stover...
DEFF Research Database (Denmark)
Triantafyllou, Eva; Timcenko, Olga
2013-01-01
As a result of changes in society and education, assumptions about the knowledge of entrants to university have become obsolete. One area in which this seems to be true is mathematics. This paper presents our research aiming at tackling with this problem by developing digital educational material...... for mathematics education, which will be student-driven, dynamic, and multimodal. Our approach will be supported by the theories of Constructionism and PBL. The impact of its use will be evaluated in university settings. It is expected that the evaluation will demonstrate an improvement in student engagement...
Mathematics for the nonmathematician
Kline, Morris
1967-01-01
Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.
Toll, S.W.M.; Viersen, S. van; Kroesbergen, E.H.; Luit, J.E.H. van
2015-01-01
Although numerical skills have proven to be important precursors for mathematical proficiency, longitudinal studies on numerical development are rather scarce. The overall goal of the present study is to gain insight in numerical skills, that is non-symbolic and symbolic comparison skills, as
Zakariya, Yusuf F.
2017-01-01
This study was aimed at the development of an instrument for measuring students' attitudes towards mathematics. A survey research design was adopted involving 510 students randomly selected. Exploratory factor analysis (EFA) was carried out to determine the number of factors to be retained in the ATMS. The adequacy of the sample was confirmed by…
Nejem, Khamis Mousa; Muhanna, Wafa
2013-01-01
The purpose of this study was to investigate the effect of using computer games in teaching mathematics on developing the number sense of fourth grade students. To achieve this purpose a study sample of (81) students was selected from the fourth grade. This sample was divided into two groups. One group was randomly chosen to be the experimental…
Tarlow, Lynn D.
2014-01-01
This study documents the change in teaching practices of a group of mathematics teachers in urban middle schools as they participated in a program of professional development to promote standards-based learning environments. The teachers made a shift in their classroom practice from a traditional, didactic lecture approach towards a role of…
Pan, Yue-Juan; Liu, Yan
2011-01-01
This study developed a standardised mediated assessment to measure young children's mathematical ability in reasoning, abstraction and representation in number, computation, quantity, shape and relationship through six tasks with four levels. The percentage distribution of children at four levels on the tasks showed that the tiered mediations…
Lin, Kuen-Yi; Williams, P. John
2017-01-01
This paper discusses the implementation of a two-stage hands-on technology learning activity, based on Dewey's learning experience theory that is designed to enhance preservice teachers' primary and secondary experiences in developing their competency to solve hands-on problems that apply science and mathematics concepts. The major conclusions…
DEFF Research Database (Denmark)
Westphael, Henning; Mogensen, Arne
2013-01-01
In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....
PREVIOUS SECOND TRIMESTER ABORTION
African Journals Online (AJOL)
PNLC
PREVIOUS SECOND TRIMESTER ABORTION: A risk factor for third trimester uterine rupture in three ... for accurate diagnosis of uterine rupture. KEY WORDS: Induced second trimester abortion - Previous uterine surgery - Uterine rupture. ..... scarred uterus during second trimester misoprostol- induced labour for a missed ...
McDougall, S R; Watson, M G; Devlin, A H; Mitchell, C A; Chaplain, M A J
2012-10-01
Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced
Mathematical modelling in science and mathematics education
Teodoro, Vítor Duarte; Neves, Rui Gomes
2011-01-01
Scientific research involves mathematical modelling in the context of an interactive balance between theory, experiment and computation. However, computational methods and tools are still far from being appropriately integrated in the high school and university curricula in science and mathematics. In this paper, it is discussed the relevance of mathematical modelling and illustrated how a computer modelling tool (Modellus, a free tool available on the Internet and developed at FCTUNL) can be used to embed modelling in high school and undergraduate courses. Modellus allows students to create and explore mathematical models using functions, differential and iterative equations, and visualize the behaviour of mathematical objects.
Hebert, Michael A.; Powell, Sarah R.
2016-01-01
Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…
Buchner, Amos; Vered, Marilena
2013-11-01
To analyze neoplastic and hamartomatous variants of ameloblastic fibromas (AFs). Analysis of 172 cases (162 previously reported, 10 new). AF emerged as a lesion primarily of children and adolescents (mean age, 14.9 years), with about 80% diagnosed when odontogenesis is completed (age, 22 years are considered true neoplasms, while those in younger patients may be either true neoplasms or odontomas in early stages of development. Although the histopathology of hamartomatous and neoplastic variants of AF are indistinguishable, clinical and radiologic features can be of some help to distinguish between them. Asymptomatic small unilocular lesions with no or minimal bone expansion in young individuals are likely to be developing odontomas, and large, expansile lesions with extensive bone destruction are neoplasms. Copyright © 2013 Elsevier Inc. All rights reserved.
Jost, Jürgen
2015-01-01
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...
Bartocci, Claudio; Guerraggio, Angelo; Lucchetti, Roberto; Williams, Kim
2011-01-01
Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the soci
Uher, Jana
2015-12-01
As science seeks to make generalisations, a science of individual peculiarities encounters intricate challenges. This article explores these challenges by applying the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) and by exploring taxonomic "personality" research as an example. Analyses of researchers' interpretations of the taxonomic "personality" models, constructs and data that have been generated in the field reveal widespread erroneous assumptions about the abilities of previous methodologies to appropriately represent individual-specificity in the targeted phenomena. These assumptions, rooted in everyday thinking, fail to consider that individual-specificity and others' minds cannot be directly perceived, that abstract descriptions cannot serve as causal explanations, that between-individual structures cannot be isomorphic to within-individual structures, and that knowledge of compositional structures cannot explain the process structures of their functioning and development. These erroneous assumptions and serious methodological deficiencies in widely used standardised questionnaires have effectively prevented psychologists from establishing taxonomies that can comprehensively model individual-specificity in most of the kinds of phenomena explored as "personality", especially in experiencing and behaviour and in individuals' functioning and development. Contrary to previous assumptions, it is not universal models but rather different kinds of taxonomic models that are required for each of the different kinds of phenomena, variations and structures that are commonly conceived of as "personality". Consequently, to comprehensively explore individual-specificity, researchers have to apply a portfolio of complementary methodologies and develop different kinds of taxonomies, most of which have yet to be developed. Closing, the article derives some meta-desiderata for future research on individuals' "personality".
Fujita, Shinsaku
2015-01-01
Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes.
Kennard, Jackie
2007-01-01
One of the most interesting developments in teaching has been the growing importance of the outdoor environment. Whether it be playground, garden or field, the outdoors offers a range of challenging experiences, especially in the delivery of early mathematics. Oral feedback to parents, together with photographic displays, can show them that…
Prawvichien, Sutthaporn; Siripun, Kulpatsorn; Yuenyong, Chokchai
2018-01-01
The STEM education could provide the context for students' learning in the 21st century. The Mathematical problem solving requires a context which simulates real life in order to give students experience of the power of mathematics in the world around them. This study aimed to develop the teaching process for enhancing students' mathematical problem solving in the 21st century through STEM education. The paper will clarify the STEM learning activities about graph theories regarding on the 6 steps of engineering design process. These include identify a challenge, exploring ideas, designing and planning, doing and developing, test and evaluate, and present the solution. The learning activities will start from the Identify a challenge stage which provides the northern part of Thailand flooding situation in order to set the students' tasks of develop the solutions of providing the routes of fastest moving people away from the flooding areas. The explore ideas stage will provide activities for enhance students to learn some knowledge based for designing the possible solutions. This knowledge based could focus on measuring, geometry, graph theory, and mathematical process. The design and plan stage will ask students to model the city based on the map and then provide the possible routes. The doing and development stage will ask students to develop the routes based on their possible model. The test and evaluating will ask students to clarify how to test and evaluate the possible routes, and then test it. The present solution stage will ask students to present the whole process of designing routes. Then, the paper will discuss how these learning activities could enhance students' mathematical problem solving. The paper may have implication for STEM education in school setting.
Vivaldi, Franco
2014-01-01
This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student. The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition. Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150...
Rubin, Andrew
2014-01-01
This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...
The development of executive functions and early mathematics: A dynamic relationship
van der Ven, S.H.G.; Kroesbergen, E.H.; Boom, J.; Leseman, P.P.M.
2012-01-01
Background. The relationship between executive functions and mathematical skills has been studied extensively, but results are inconclusive, and how this relationship evolves longitudinally is largely unknown. Aim. The aim was to investigate the factor structure of executive functions in inhibition,
The impact of computer use in the development of Mathematics teaching in primary education
Alawadhi, Nabil
2011-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The educational system in Kuwait is intended to provide primary and secondary students with required skills in order to operate in the technical careers commonly undertaken. However, mathematics education lags significantly behind other countries in Kuwait. In the 1997 and 2008 TIMMS international studies of primary and secondary mathematics achievement, Kuwait ranked near the bottom on almos...
Directory of Open Access Journals (Sweden)
I. I. Kravchenko
2016-01-01
Full Text Available Experience in application of multi-operational machines CNC (MOM CNC shows that they are efficient only in case of significantly increasing productivity and dramatically reducing time-to-market cycle of new products. Most full technological MOM capabilities are revealed when processing the complex body parts. The more complex is a part design and the more is its number of machined surfaces, the more tools are necessary for its processing and positioning, the more is an efficiency of their application. At the same time, the case history of using these machines in industry shows that MOM CNC are, virtually, used mostly for technological processes of universal equipment, which is absolutely unacceptable. One way to improve the processing performance on MOM CNC is to reduce nonproductive machine time through reducing the mutual idle movements of the working machine. This problem is solved using dynamic programming methods, one of which is the solution of the traveling salesman problem (Bellman's method. With a known plan for treatment of all elementary surfaces of the body part, i.e. the known number of performed transitions, each transition is represented as a vertex of some graph, while technological links between the vertices are its edges. A mathematical model is developed on the Bellman principle, which is adapted to technological tasks to minimize the idle time of mutual idle movements of the working machine to perform all transitions in the optimal sequence. The initial data to fill matrix of time expenditures are time consumed by the hardware after executing the i-th transition, and necessary to complete the j-transition. The programmer fills in matrix cells according to known routing body part taking into account the time for part and table positioning, tool exchange, spindle and table approach to the working zone, and the time of table rotation, etc. The mathematical model was tested when machining the body part with 36 transitions on the
Heylighen, Francis
2017-01-01
The world is confronted with a variety of interdependent problems, including scarcity, unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires coordinated action. The present paper proposes the development of a self-organizing system for coordination, called an "offer network", that would use the distributed intelligence of the Internet to match the offers and needs of all human, technological and natural agents on the planet. This would maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks in which each consumed resource (need) is also produced (offer). After sketching the elements of a mathematical foundation for offer networks, the paper proposes a roadmap for their practical implementation. This includes step-by-step integration with technologies such as the Semantic Web, ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed manner, thus functioning like a Global Brain for humanity.
The Development Of Mathematical Model For Automated Fingerprint Identification Systems Analysis
International Nuclear Information System (INIS)
Ardisasmita, M. Syamsa
2001-01-01
Fingerprint has a strong oriented and periodic structure composed of dark lines of raised skin (ridges) and clear lines of lowered skin (furrows)that twist to form a distinct pattern. Although the manner in which the ridges flow is distinctive, other characteristics of the fingerprint called m inutiae a re what are most unique to the individual. These features are particular patterns consisting of terminations or bifurcations of the ridges. To assert if two fingerprints are from the same finger or not, experts detect those minutiae. AFIS (Automated Fingerprint Identification Systems) extract and compare these features for determining a match. The classic methods of fingerprints recognition are not suitable for direct implementation in form of computer algorithms. The creation of a finger's model was however the necessity of development of new, better algorithms of analysis. This paper presents a new numerical methods of fingerprints' simulation based on mathematical model of arrangement of dermatoglyphics and creation of minutiae. This paper describes also the design and implementation of an automated fingerprint identification systems which operates in two stages: minutiae extraction and minutiae matching
Development of a mathematical model to study the radiation-induced bystander effect
Energy Technology Data Exchange (ETDEWEB)
Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)
2011-07-01
Living organisms are composed of millions of cells that together perform tasks of great complexity. Although every cell has an internal structure that obeys the laws of chemistry and biochemistry, it is the interactions between cells that generate a range of different phenomena. Until the 1990s it was believed that the DNA was the single molecule affected by radiation, the so-called theory of the single target. But some observations began to challenge this theory; in 1992 the bystander effect was described by Nagasawa and Little. This effect is responsible for a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. Understanding the bystander effect may have important consequences for therapy and studies of low-dose risk. In this work, we have developed a computational model to study the bystander effect. This computational model is a two-dimensional cellular automata, consisting of two overlapping networks, where the first represents the cell culture, and the second one, the medium in which cells are embedded. The computational model allows the establishment of curves to describe the behavior of the effect for different levels of signals released in the irradiated medium by the irradiated cells or by the bystander cells when a second order effect is considered. The percentage of cell survival obtained from the mathematical model showed to be in good agreement with experimental data available in the literature. (author)
Development of a mathematical model to study the radiation-induced bystander effect
International Nuclear Information System (INIS)
Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein; Nunes, Maria Eugenia S.
2011-01-01
Living organisms are composed of millions of cells that together perform tasks of great complexity. Although every cell has an internal structure that obeys the laws of chemistry and biochemistry, it is the interactions between cells that generate a range of different phenomena. Until the 1990s it was believed that the DNA was the single molecule affected by radiation, the so-called theory of the single target. But some observations began to challenge this theory; in 1992 the bystander effect was described by Nagasawa and Little. This effect is responsible for a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. Understanding the bystander effect may have important consequences for therapy and studies of low-dose risk. In this work, we have developed a computational model to study the bystander effect. This computational model is a two-dimensional cellular automata, consisting of two overlapping networks, where the first represents the cell culture, and the second one, the medium in which cells are embedded. The computational model allows the establishment of curves to describe the behavior of the effect for different levels of signals released in the irradiated medium by the irradiated cells or by the bystander cells when a second order effect is considered. The percentage of cell survival obtained from the mathematical model showed to be in good agreement with experimental data available in the literature. (author)
A mathematical model for fluid shear-sensitive 3D tissue construct development.
Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai
2013-01-01
This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.
Socio-functional dynamics of the mathematical contents
Isabel Alonso-Berenguer; María Elena Pardo-Gómez; Alexander Gorina-Sánchez; Rosa Cova-Vallejo
2018-01-01
The article presents a model of the socio-functional dynamics of the mathematical contents that offers a novel theoretical-methodological basement for the development of the process of teaching-learning of the mathematical one. The investigation, of theoretical character, used the methods of analysis-synthesis, inductive-deductive and historical-logical to elaborate the one mentioned model that leaves of considering that the future professors have appropriated previously of the mathematical c...
The development of form two mathematics i-Think module (Mi-T2)
Yao, Foo Jing; Abdullah, Mohd Faizal Nizam Lee; Tien, Lee Tien
2017-05-01
This study aims to develop a training module i-THINK Mathematics Form Two (Mi-T2) to increase the higher-order thinking skills of students. The Mi-T2 training module was built based on the Sidek Module Development Model (2001). Constructivist learning theory, cognitive learning theory, i-THINK map and higher order thinking skills were the building blocks of the module development. In this study, researcher determined the validity and reliability of Mi-T2 module. The design being used in this study was descriptive study. To determine the needs of Mi-T2 module, questionnaires and literature review were used to collect data. When the need of the module was determined, the module was built and a pilot study was conducted to test the reliability of the Mi-T2 module. The pilot study was conducted at a secondary school in North Kinta, Perak. A Form Two class was selected to be the sample study through clustered random sampling. The pilot study was conducted for two months and one topic had been studied. The Mi-T2 module was evaluated by five expert panels to determine the content validity of the module. The instruments being used in the study were questionnaires about the necessity of the Mi-T2 module for guidance, questionnaires about the validity of the module and questionnaires concerning the reliability of the module. Statistical analysis was conducted to determine the validity and reliability coefficients of the Mi-T2 module. The content validity of Mi-T2 module was determined by Cohen's Kappa's (1968) agreement coefficient and the reliability of Mi-T2 module was determined by Cronbach Alpha's value scale. The content validity of Mi-T2 module was 0.89 and the Cronbach Alpha's value of Mi-T2 module was 0.911.
Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita
2012-01-01
The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…
Hillman, Thomas
2014-01-01
This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…
Risnawati; Khairinnisa, S.; Darwis, A. H.
2018-01-01
The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering
2016-12-20
The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates
Li, Jing; Ma, Sujuan; Ma, Linqing
Firstly, in this article, we expound the theory of the educational games and multiple intelligence and analyze the relationship between them. Then, further, we elaborate educational games' effect on the development of students' multiple intelligence, taking logic-mathematics intelligence for example. Also, we discuss the strategies of using educational games to improve students' intelligence. In a word, we can use the computer games to develop the students' multi-intelligence.
Mathematical development of a 10 years old child phantom for use in internal dosimetry
International Nuclear Information System (INIS)
Deus, S.F.; Poston, J.W.; Watanabe, S.
1989-08-01
The main objectives of this work are: 1) to develop a project of a mathematical phantom representing as far as possible a child of 10 years old and 2)to use this phantom as a base for the specific absorbed fractions (SAF) calculations in the internal organs and skeleton due to the radioisotopes most used in nuclear medicine. This phantom was similar in shape to the Fisher and Snyder one, but several changes were introduced to make the phantom more realistic. Those changes included the addition of a neck region, puting the arms outside the trunk region, changes in the trunk, head and genitalia regions shapes. Several modifications were also done in the skeleton. For instance, the head bones, rib cage, pelvis, vertebral column, scapula, clavicles and the arms and legs bones were made very close to the real anatomic shapes. Some internal organs as the brain, lungs, liver, small and large intestines were also changed as a consenquence of the above modifications. In all those cases, the changes were made not only in the shapes but also in the organs and bones position in such a way to be more representative of the 10 years old anatomic age. Estimates of the SAF obtained by the use of this phantom, resulted, as expected, significantly different from those obtained by the use of a simpler model. In other words, the ratio between the SAF in the organs of the phantom developed in this project and the SAF in the organs of the phantom similar to the adult (obtained by reducing each region of the adult phantom by the use of appropriate factor) vary from 0.37 to 5. Those differences and their meaning are also discussed. (author) [pt
Semiotic Scaffolding in Mathematics
DEFF Research Database (Denmark)
Johansen, Mikkel Willum; Misfeldt, Morten
2015-01-01
This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....
Amidon, Joel C.
2011-01-01
What happens when the problem of inequitable access to mathematics is addressed by agape (pronounced agapa) or attending to the relationships students develop with mathematics? To respond to this question, this paper offers a description of the journey towards teaching mathematics as agape. First, I organized examples of equity pedagogy around the…
Directory of Open Access Journals (Sweden)
I. V. Bykov
2013-01-01
Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology.
Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication
Kaya, Defne; Aydin, Hasan
2016-01-01
Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…
Is there Life after Modelling? Student conceptions of mathematics
Houston, Ken; Mather, Glyn; Wood, Leigh N.; Petocz, Peter; Reid, Anna; Harding, Ansie; Engelbrecht, Johann; Smith, Geoff H.
2010-09-01
We have been investigating university student conceptions of mathematics over a number of years, with the goal of enhancing student learning and professional development. We developed an open-ended survey of three questions, on "What is mathematics" and two questions about the role of mathematics in the students' future. This questionnaire was completed by 1,200 undergraduate students of mathematics in Australia, the UK, Canada, South Africa, and Brunei. The sample included students ranging from those majoring in mathematics to those taking only one or two modules in mathematics. Responses were analysed starting from a previously-developed phenomenographic framework that required only minor modification, leading to an outcome space of four levels of conceptions about mathematics. We found that for many students modelling is fundamental to their conception of "What is mathematics?". In a small number of students, we identified a broader conception of mathematics, that we have labelled Life. This describes a view of mathematics as a way of thinking about reality and as an integral part of life, and represents an ideal aim for university mathematics education.
Jumpatong, Sutthaya; Yuenyong, Chokchai
2018-01-01
STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.
Philosophical dimensions in mathematics education
Francois, Karen
2007-01-01
This book brings together diverse recent developments exploring the philosophy of mathematics in education. The unique combination of ethnomathematics, philosophy, history, education, statistics and mathematics offers a variety of different perspectives from which existing boundaries in mathematics education can be extended. The ten chapters in this book offer a balance between philosophy of and philosophy in mathematics education. Attention is paid to the implementation of a philosophy of mathematics within the mathematics curriculum.
Interactive Mathematics Textbooks
DEFF Research Database (Denmark)
Sinclair, Robert
1999-01-01
We claim that important considerations have been overlooked in designinginteractive mathematics educational software in the past.In particular,most previous work has concentrated on how to make use ofpre-existing software in mathematics education, rather than firstasking the more...... fundamentalquestion of which requirements mathematics education puts on software, and thendesigning software to fulfil these requirements.We present a working prototype system which takes a script defining an interactivemathematicaldocument and then provides a reader with an interactive realization of thatdocument....
Directory of Open Access Journals (Sweden)
Jarnawi Afgani Dahlan
2018-03-01
Abstract. The study aims to determine the ability of students in solving the mathematics problem-based and to know the students’ response to the problem-based math problems provided. This research uses descriptive quantitative research. The research’s subjects are 6 students of class VIII SMP Negeri 11 Yogyakarta consisting of 2 students with high, medium, and low math skills. The results showed that all research subjects have the ability to solve problem-based math problems with various levels. Furthermore, students have a positive response to all given questions. Keywords. Mathematical skills, Problem-based math problems, Two-variable linear equation system
Jourdain, Philip E B
2007-01-01
Anyone with an interest in mathematics will welcome the republication of this little volume by a remarkable mathematician who was also a logician, a philosopher, and an occasional writer of fiction and poetry. Originally published in 1913, and later included in the acclaimed anthology The World of Mathematics, Jourdain's survey shows how and why the methods of mathematics were developed, traces the development of mathematical science from the earliest to modern times, and chronicles the application of mathematics to natural science.Starting with the ancient Egyptians and Greeks, the author p
Directory of Open Access Journals (Sweden)
Morten Andersen
Full Text Available The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Energy Technology Data Exchange (ETDEWEB)
Jones, R.M.; Poston, J.W.; Hwang, J.L.; Jones, T.D.; Warner, G.G.
1976-06-01
The existence of a phantom based on anatomical data for the average fifteen-year-old provides for a proficient means of obtaining estimates of absorbed dose for children of that age. Dimensions representative of an average fifteen-year-old human, obtained from various biological and medical research, were transformed into a mathematical construct of idealized shapes of the exterior, skeletal system, and internal organs of a human. The idealization for an average adult presently in use by the International Commission on Radiological Protection was used as a basis for design. The mathematical equations describing the phantom were developed to be readily adaptable to present-day methods of dose estimation. Typical exposure situations in nuclear medicine have previously been modeled for existing phantoms. With no further development of the exposure model necessary, adaptation to the fifteen-year-old phantom demonstrated the utility of the design. Estimates of absorbed dose were obtained for the administration of two radiopharmaceuticals, /sup 99m/Tc-sulfur colloid and /sup 99m/Tc-DMSA. (auth)
Laparoscopy After Previous Laparotomy
Directory of Open Access Journals (Sweden)
Zulfo Godinjak
2006-11-01
Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.
Kommers, Petrus A.M.; Smyrnova-Trybulska, Eugenia; Morze, Natalia; Issa, Tomayess; Issa, Theodora
2015-01-01
This paper, prepared by an international team of authors focuses on the conceptual aspects: analyses law, ethical, human, technical, social factors of ICT development, e-learning and intercultural development in different countries, setting out the previous and new theoretical model and preliminary
Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu
2010-01-01
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research proj...
International Nuclear Information System (INIS)
Deus, S.F.; Poston, J.W.
1976-01-01
A phantom was developed representing a ten-year old child for use as the basis for dosimetric studies. An initial literature survey was made to determine organ mass, shape, and location in a normal ten-year-old child. These data were used to construct a mathematical representation of the child for use in computer calculations of absorbed radiation dose for typical exposure situations following the administration of radiopharmaceuticals
Ní Shúilleabháin, Aoibhinn
2014-01-01
Since 2010 there has been a phased introduction of a new post-primary mathematics curriculum in Ireland entitled 'Project Maths'. This new curriculum places a greater emphasis on problem solving and on an investigative approach for students. This implies not only changes in the curriculum content, but also changes to teaching and learning approaches within the classroom. This research aims to provide teachers with a school-based professional development structure through which they can engage...
Hussain, Mohammed Abdul; Monaghan, John; Threlfall, John
2013-01-01
This paper applies and extends Valsiner's "zone theory" (zones of free movement and promoted actions) through an examination of an intervention to establish inquiry communities in primary mathematics classrooms. Valsiner's zone theory, in a classroom setting, views students' freedom of choice of action and thought as mediated by the teacher. The…
Individually Prescribed Instruction--Mathematics (IPI--Math). Product Development Report No. 17.
Jung, Steven M.
This report summarizes the mathematics component of Individually Prescribed Instruction (IPI). The first section outlines the overall goals, specific objectives, and philosophy of IPI; the organization of the materials; and the procedures for their use, with emphasis on the altered role of both students and teachers. The next section describes the…
Vogel, Freydis; Kollar, Ingo; Ufer, Stefan; Reichersdorfer, Elisabeth; Reiss, Kristina; Fischer, Frank
2016-01-01
Collaboration scripts and heuristic worked examples are effective means to scaffold university freshmen's mathematical argumentation skills. Yet, which collaborative learning processes are responsible for these effects has remained unclear. Learners presumably will gain the most out of collaboration if the collaborators refer to each other's…
Hannah, John; Stewart, Sepideh; Thomas, Michael
2016-01-01
Linear algebra is one of the first abstract mathematics courses that students encounter at university. Research shows that many students find the dense presentation of definitions, theorems and proofs difficult to comprehend. Using a case study approach, we report on a teaching intervention based on Tall's three worlds (embodied, symbolic and…
Smolentsev, N. I.; Kondrin, S. A.; Bondarev, Yu L.; Gilmetdinov, M. F.; Kazantsev, A. M.; Sirekanyan, V. V.
2017-10-01
In this research paper, some results of experimental sample elaboration of the superconducting electrokinetic energy storage unit (SCEESU-1), mathematical modeling and the practical application are given. The inflexibility of the superconducting contactless suspension of rotor-flywheel of the energy storage unit is calculated. The results of computer simulation of suspension stability under the external disturbing effects are presented.
Boer, H.M.T.; Stötzel, C.; Röblitz, S.; Deuflhard, P.; Veerkamp, R.F.; Woelders, H.
2011-01-01
Bovine fertility is the subject of extensive research in animal sciences, especially because fertility of dairy cows has declined during the last decades. The regulation of estrus is controlled by the complex interplay of various organs and hormones. Mathematical modeling of the bovine estrous cycle
The Development of Executive Functions and Early Mathematics: A Dynamic Relationship
Van der Ven, Sanne H. G.; Kroesbergen, Evelyn H.; Boom, Jan; Leseman, Paul P. M.
2012-01-01
Background: The relationship between executive functions and mathematical skills has been studied extensively, but results are inconclusive, and how this relationship evolves longitudinally is largely unknown. Aim: The aim was to investigate the factor structure of executive functions in inhibition, shifting, and updating; the longitudinal…
Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Isler, Isil; Knuth, Eric; Gardiner, Angela Murphy
2018-01-01
Learning progressions have been demarcated by some for science education, or only concerned with levels of sophistication in student thinking as determined by logical analyses of the discipline. We take the stance that learning progressions can be leveraged in mathematics education as a form of curriculum research that advances a linked…
Lesson play in mathematics education a tool for research and professional development
Zazkis, Rina; Liljedahl, Peter
2015-01-01
This book applies years of experience in the use of lesson play to a variety of situations involving mathematics thinking and learning. Covers lesson play in pre-service teacher education, and discusses its potential for both researchers and teacher educators.
Mathematics teaching and learning in K-12 equity and professional development
Foote, M
2010-01-01
The continuing gap in achievement between traditionally underserved students (students of color, English learners, and poor children) and their middle-class white peers, however, has provoked questions of the effectiveness of current mathematics teaching practices for meeting the needs of these students.
Development of Mathematical Models to Estimate Animal Performance and Feed Biological Values
Mathematical modeling in nutrition is important because the human mind is able to formulate concepts and hypothesis but lack the ability to track quantitative relationships of complex, nonlinear, and dynamic systems. It provides us with a tool to analyze huge amounts of data and information about nu...
Modeling Mathematical Ideas: Developing Strategic Competence in Elementary and Middle School
Suh, Jennifer M.; Seshaiyer, Padmanabhan
2016-01-01
"Modeling Mathematical Ideas" combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students' common misconceptions in investigating and…
Martin, Taylor; Petrick Smith, Carmen; Forsgren, Nicole; Aghababyan, Ani; Janisiewicz, Philip; Baker, Stephanie
2015-01-01
The struggle with fraction learning in kindergarten through Grade 12 in the United States is a persistent problem and one of the major stumbling blocks to succeeding in higher mathematics. Research into this problem has identified several areas where students commonly struggle with fractions. While there are many theories of fraction learning,…
Developing A-level physics students' mathematical skills - a way forward?
Raw, A. J.
1999-09-01
This article outlines research that details the mathematical difficulties of physics students and it also discusses various projects to overcome these difficulties. The successes of these projects are very encouraging and show a way forward for A-level physics teaching.
Holdway, Jennifer
2016-01-01
In response to the increasing linguistic and cultural diversity in US schools, in-service teachers are faced with the significant challenge of addressing both the linguistic and instructional needs of their multilingual learners (MLLs). This study provides evidence of the linguistic obstacles faced in the academic mathematics classroom and how…
Development and validation of a mathematical model for growth of pathogens in cut melons.
Li, Di; Friedrich, Loretta M; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W
2013-06-01
Many outbreaks of foodborne illness associated with the consumption of fresh-cut melons have been reported. The objective of our research was to develop a mathematical model that predicts the growth rate of Salmonella on fresh-cut cantaloupe over a range of storage temperatures and to validate that model by using Salmonella and Escherichia coli O157:H7 on cantaloupe, honeydew, and watermelon, using both new data and data from the published studies. The growth of Salmonella on honeydew and watermelon and E. coli O157:H7 on cantaloupe, honeydew, and watermelon was monitored at temperatures of 4 to 25°C. The Ratkowsky (or square-root model) was used to describe Salmonella growth on cantaloupe as a function of storage temperature. Our results show that the levels of Salmonella on fresh-cut cantaloupe with an initial load of 3 log CFU/g can reach over 7 log CFU/g at 25°C within 24 h. No growth was observed at 4°C. A linear correlation was observed between the square root of Salmonella growth rate and temperature, such that √growth rate = 0.026 × (T - 5.613), R(2) = 0.9779. The model was generally suitable for predicting the growth of both Salmonella and E. coli O157:H7 on cantaloupe, honeydew, and watermelon, for both new data and data from the published literature. When compared with existing models for growth of Salmonella, the new model predicts a theoretic minimum growth temperature similar to the ComBase Predictive Models and Pathogen Modeling Program models but lower than other food-specific models. The ComBase Prediction Models results are very similar to the model developed in this study. Our research confirms that Salmonella can grow quickly and reach high concentrations when cut cantaloupe is stored at ambient temperatures, without visual signs of spoilage. Our model provides a fast and cost-effective method to estimate the effects of storage temperature on fresh-cut melon safety and could also be used in subsequent quantitative microbial risk
Mathematical modeling of biological processes
Friedman, Avner
2014-01-01
This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.
Directory of Open Access Journals (Sweden)
Ai Sadidah
2016-11-01
Full Text Available This study aims to produce a mathematics learning set for special-needs students (mathematical learning disability and mathematically gifted of Junior High School Grade VIII Second Semester oriented to learning interests and achievement which is valid, practical, and effective. This study was a research and development study using the Four-D development model consisting of four stages: (1 define, (2 design, (3 develop, and (4 disseminate. The quality of learning set consisting of the following three criterions: (1 validity, (2 practicality, and (3 effectiveness. The data analysis technique used in this study is a descriptive quantitative analysis. The research produced learning set consisting of lesson plans and student worksheets. The result of the research shows that: (1 the learning set fulfill the valid criteria base on experts’ appraisal; (2 the learning set fulfill the practical criterion base on teacher’s and students’ questionnaire, and observation of learning implementation; (3 the learning set fulfill the effectiveness criterion base on learning interest and achievement.
Directory of Open Access Journals (Sweden)
М. В. Грязев
2017-03-01
Full Text Available New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for the development of geotechnical solutions to ensure gas-dynamic safety at every stage of coal mine operation. It is demonstrated that the use of high-performance equipment in the production and development areas requires more precise filtration equations used when assessing coal mine methane hazard. A mathematical model of pressure field of non-associated methane in the edge area of the coal seam has been justified. The model is based on one-dimensional hyperbolic equation and takes into consideration final rate of pressure distribution in the seam. Trends in gas exchange between mined-out spaces of high methane- and CO2-concentration mines with the earth surface have been refined in order to ensure environmental safety of underworked territories.
International Nuclear Information System (INIS)
Nedelec, J.C.
1988-01-01
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr
Innovation in mathematics education: beyond the technology
Directory of Open Access Journals (Sweden)
Salvador Llinares
2013-06-01
Full Text Available Relationships between mathematical competence and mathematics teaching innovation do emerge the need for new practices of mathematics teaching. One of the aspects of this new practice is the interaction patterns in the classroom characterizing the mathematical discourse. From these perspectives, the relation between innovation and new mathematics practices defines different contexts for professional development of mathematics teacher.
Directory of Open Access Journals (Sweden)
RUSNILAWATI Eva Gustiana RUSNILAWATI
2018-01-01
Full Text Available The purpose of this research is to produce Flipbook-based Electronic Teaching Materials (BAE based on problem solving skills with CTL Approach on Vocational School Class V learning valid, practical, and effective. This type of research is development research (Development Research. This research developed Flipbook-assisted Electronic Teaching Materials (BAE on the mathematics learning of Class V Primary School by using the 4-D development model developed by Thiagarajan, Semmel, and Semmel. The validation results show that the developed Teaching Materials are worthy of use with a good minimum category. The results of the experiments show that Electronic Materials developed are practical and effective. Completed learning in the classical has reached the minimum criteria of 75% that is for problem-solving test reached 86%. Based on a questionnaire of attitudes toward mathematics, 88% of students showed an increase in attitude scores on mathematics, and 85% of students showed attitudes toward mathematics with a good minimum category.
Mathematical modeling in realistic mathematics education
Riyanto, B.; Zulkardi; Putri, R. I. I.; Darmawijoyo
2017-12-01
The purpose of this paper is to produce Mathematical modelling in Realistics Mathematics Education of Junior High School. This study used development research consisting of 3 stages, namely analysis, design and evaluation. The success criteria of this study were obtained in the form of local instruction theory for school mathematical modelling learning which was valid and practical for students. The data were analyzed using descriptive analysis method as follows: (1) walk through, analysis based on the expert comments in the expert review to get Hypothetical Learning Trajectory for valid mathematical modelling learning; (2) analyzing the results of the review in one to one and small group to gain practicality. Based on the expert validation and students’ opinion and answers, the obtained mathematical modeling problem in Realistics Mathematics Education was valid and practical.
Mathematics without boundaries surveys in pure mathematics
Pardalos, Panos
2014-01-01
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.
Fiondella, F.; Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Greidanus, I.; Oelkers, R.
2015-12-01
Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction
The Affective Dimensions of Mathematical Difficulties in Schoolchildren
Directory of Open Access Journals (Sweden)
Morena Lebens
2011-01-01
Full Text Available Mathematical difficulties (MDs are frequently characterised by cognitive deficits such as ineffective problem solving strategies and a lack of computational fluency. The established literature indicates that mathematical achievement is not only a function of cognitive factors but it also points to the importance of affective factors for the development of mathematical achievement. In the light of this evidence, the exploration of children's affective responses towards mathematics becomes a central issue. Whereas previous studies tended to research affective motivational constructs such as self-efficacy in isolation from other related constructs, the literature suffers from a shortage of research on the relationship between different affective motivational variables and their impact on mathematical achievement in different age and achievement bands. The present paper aims to address this aim by employing a newly developed instrument to measure affective motivational variables. Overall, the present findings support the assumption that children of average ability are less influenced by affective factors than children with mathematical difficulties.
Meaning in mathematics education
Valero, Paola; Hoyles, Celia; Skovsmose, Ole
2005-01-01
What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed - theoretical and practical - and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge.
Goel, H; Arora, A; Tiwary, A K; Rana, V
2011-02-01
The objective of the study was to develop a mathematical model for predicting the disintegration time of fast disintegrating tablets (FDTs) by estimating the powder characteristics of powder blend prior to compression. A combination of chitosan-alginate complex and glycine in the ratio of 50:50 was used for preparing FDTs. The developed mathematical model allowed water sorption time (WST), effective pore radius (R(eff.p)) and swelling Index (SI) of powder mixture as well as tablet crushing strength to be successfully correlated with disintegration time (DT) of FDTs. The predicted model showed that disintegration time of FDTs to be directly correlated with powder characteristics and inversely correlated with tablet crushing strength. Furthermore, a correlation of 0.97 was obtained when DT of FDTs was compared with SI/(WST * R(eff.p)). This correlation was not affected by inclusion of water soluble (ondansetron hydrochloride or metaclopramide hydrochloride) or water insoluble (domperidone) drugs in the powder blend or FDTs. These observations indicated the versatility of the mathematical model in predicting the disintegration time of FDTs by evaluating the selected characteristics of the powder blends without actually preparing the FDTs.
Chen, Yen Ting; Hsin Wang, Juei
2017-02-01
This research aimed at integrating Seediq culture and mathematical course design for fourth-grade elementary school, and then transforming this mathematical course into an electronic picture book. During the process of electronic book development, the researchers collected videos of six participants engaged in discussion, reflection minutes after the meeting written by the attendants, the researchers' observation and review journals, and conversations with the participants. Then, researchers utilized Content Analysis to explore, try, review and retry steps of electronic book making process. The main findings: There are four periods of electronic book making process, research occurrence period, curriculum design period, electronic book transformation period, and result evaluation period. The picture book included the White Stone Legend born from Seediq seniors, historical battle for hunting field between tribes, and concepts of approximation, angle, triangle, and quadrangle features. At last, with the research result, this article presents the corroboration of related works, and then proposes suggestions of electronic book teaching and follow-up studies.
Huppert, Amit; Katriel, Haggai; Yaari, Rami; Barnea, Oren; Roll, Uri; Stern, Eli; Balicer, Ran; Stone, Lewi
2010-01-01
The current spread of swine flu H1N1 raises serious concerns for public health worldwide. Mathematical modelling has proved to be an essential tool for both developing strategies in preparation for an outbreak and for predicting and evaluating the effectiveness of control policies during an outbreak. Given its growing importance, this article outlines some of the fundamental contributions of mathematical modelling in the study of infectious diseases. The authors review the classical SIR model which has become central to epidemiology, demonstrating basic concepts such as outbreak threshold, the reproductive number Ro and herd immunity. The authors show how the model can be expanded to include different intervention and mitigation strategies, and discuss other biological and social complexities that may be introduced. Finally, the paper illustrates different scenarios for the spread of swine flu in Israel and provides estimates for Reproductive rate (Ro).
Crossley, J N; Brickhill, CJ; Stillwell, JC
2010-01-01
Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg
Directory of Open Access Journals (Sweden)
Scott Frame
2014-04-01
Full Text Available Functional programming has traditionally been considered elegant and powerful, but also somewhat impractical for ordinary computing. Proponents of functional programming claim that the evolution of functional languages makes their use feasible in many domains. In this work, a popular imperative language (C++ and the leading functional language (Haskell are compared in a math-intensive, real-world application using a variety of criteria: ease of implementation, efficiency, and readability. The programming tasks that were used as benchmarks involved mathematical transformations between local and global coordinate systems. Details regarding the application area and how language features of both languages were used to solve critical problems are described. The paper closes with some conclusions regarding applicability of functional programming for mathematical applications.
Development of a Framework to Characterise the Openness of Mathematical Tasks
Yeo, Joseph B. W.
2017-01-01
Educators usually mean different constructs when they speak of open tasks: some may refer to pure-mathematics investigative tasks while others may have authentic real-life tasks in mind; some may think of the answer being open while others may refer to an open method. On the other hand, some educators use different terms, e.g. open and open-ended,…
A QFD-Based Mathematical Model for New Product Development Considering the Target Market Segment
Chen, Liang-Hsuan; Chen, Cheng-Nien
2014-01-01
Responding to customer needs is important for business success. Quality function deployment provides systematic procedures for converting customer needs into technical requirements to ensure maximum customer satisfaction. The existing literature mainly focuses on the achievement of maximum customer satisfaction under a budgetary limit via mathematical models. The market goal of the new product for the target market segment is usually ignored. In this study, the proposed approach thus consider...
Cavanagh, Michael; McMaster, Heather
2015-12-01
This paper reports on the reflective practice of a group of nine secondary mathematics pre-service teachers. The pre-service teachers participated in a year-long, school-based professional experience program which focussed on observing, co-teaching and reflecting on a series of problem-solving lessons in two junior secondary school mathematics classrooms. The study used a mixed methods approach to consider the impact of shared pedagogical conversations on pre-service teachers' written reflections. It also examined whether there were differences in the focus of reflections depending on whether the lesson was taught by an experienced mathematics teacher, or taught by a pair of their peers, or co-taught by themselves with a peer. Results suggest that after participants have observed lessons taught by an experienced teacher and reflected collaboratively on those lessons, they continue to reflect on lessons taught by their peers and on their own lessons when co-teaching, rather than just describe or evaluate them. However, their written reflections across all contexts continued to focus primarily on teacher actions and classroom management rather than on student learning.
Heaverlo, Carol Ann
Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.
Mathematics for the liberal arts
Bindner, Donald; Hemmeter, Joe
2014-01-01
Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...
Directory of Open Access Journals (Sweden)
Ranbir Singh
2016-04-01
Full Text Available Flexible manufacturing system (FMS promises a wide range of manufacturing benefits in terms of flexibility and productivity. These benefits are targeted by efficient production planning. Part type selection, machine grouping, deciding production ratio, resource allocation and machine loading are five identified production planning problems. Machine loading is the most identified complex problem solved with aid of computers. System up gradation and newer technology adoption are the primary needs of efficient FMS generating new scopes of research in the field. The literature review is carried and the critical analysis is being executed in the present work. This paper presents the outcomes of the mathematical modelling techniques for loading of machines in FMS’s. It was also analysed that the mathematical modelling is necessary for accurate and reliable analysis for practical applications. However, excessive computations need to be avoided and heuristics have to be used for real-world problems. This paper presents the heuristics-mathematical modelling of loading problem with machine processing time as primary input. The aim of the present work is to solve a real-world machine loading problem with an objective of balancing the workload of the FMS with decreased computational time. A Matlab code is developed for the solution and the results are found most accurate and reliable as presented in the paper.
Directory of Open Access Journals (Sweden)
Olu Oyinloye
2013-10-01
Full Text Available This paper investigates the activation of students’ prior knowledge for the development of vocabulary, concepts and mathematics. It has been observed that many secondary school students are not performing well in the examination conducted by the West African Examinations Council and National Examinations Council of Nigeria. The situation became worrisome because of the dwindling performance of students in English Language and Mathematics which are compulsory subjects for securing admission into tertiary institutions in Nigeria. Four research questions were formulated and translated to test whether a significant difference exist between students’ achievement in comprehension in English Language and Mathematics before and after the treatment. The study is a quasi experimental which involves two hundred and sixty students selected through random sampling technique. The experimental sessions lasted six weeks. The experimental groups were engaged in collaborative work in smaller groups where they discussed issues related to the new topics using their prior knowledge. Experimental and control groups were given pre-test before the commencement of the study and achievement test after the experiment. The data collected was subjected to t-test statistics and the findings of the study show that the students in the experimental group performed better than those in the control group.
Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher
2010-11-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.
Mathematical modeling and GEOGEBRA in the development of competences in young researchers
Pabón Gómez, Jorge Angelmiro; Nieto Sánchez, Zulmary Carolina; Gómez Colmenares, Carlos Alberto
2015-01-01
The present article aims to analyze the competences of young researchers using Geogebra software; Allows to know the shared experience from a quasi-experimental research, in a sample of 27 students of the tenth grade of the educational institution José María Córdoba, 7 of whom were researchers of the proposal "Mathematics Divertida" of the research group "The Pythagoreans" Enrolled in the Swarm project led by the CUN, the purpose was to show the importance of introducing the student in the ma...
Making Sense with Manipulatives: Developing Mathematical Experiences for Early Childhood Teachers
Furman, Cara E.
2017-01-01
This paper is premised on the fact that math can be an important tool in helping people make sense of the world. Math offers a unique and particular lens, helping people to focus on a range of characteristics from shape and amount to the relationship between the general and the particular. To promote math as a tool for making sense, early childhood math instruction ought to teach it in a manner that helps children make sense of mathematical concepts. Specifically, I argue here that manipul...
Kage, Hiroyuki
New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.
On the mathematical modeling of aeolian saltation
DEFF Research Database (Denmark)
Jensen, Jens Ledet; Sørensen, Michael
1983-01-01
The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
Mathematical structures for computer graphics
Janke, Steven J
2014-01-01
A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap
Directory of Open Access Journals (Sweden)
V. K. Bityukov
2015-01-01
Full Text Available The article is devoted to the mathematical modeling of the kinetics of ethyl benzene dehydrogenation in a two-stage adiabatic reactor with a catalytic bed functioning on continuous technology. The analysis of chemical reactions taking place parallel to the main reaction of styrene formation has been carried out on the basis of which a number of assumptions were made proceeding from which a kinetic scheme describing the mechanism of the chemical reactions during the dehydrogenation process was developed. A mathematical model of the dehydrogenation process, describing the dynamics of chemical reactions taking place in each of the two stages of the reactor block at a constant temperature is developed. The estimation of the rate constants of direct and reverse reactions of each component, formation and exhaustion of the reacted mixture was made. The dynamics of the starting material concentration variations (ethyl benzene batch was obtained as well as styrene formation dynamics and all byproducts of dehydrogenation (benzene, toluene, ethylene, carbon, hydrogen, ect.. The calculated the variations of the component composition of the reaction mixture during its passage through the first and second stages of the reactor showed that the proposed mathematical description adequately reproduces the kinetics of the process under investigation. This demonstrates the advantage of the developed model, as well as loyalty to the values found for the rate constants of reactions, which enable the use of models for calculating the kinetics of ethyl benzene dehydrogenation under nonisothermal mode in order to determine the optimal temperature trajectory of the reactor operation. In the future, it will reduce energy and resource consumption, increase the volume of produced styrene and improve the economic indexes of the process.
Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K.; Gudmand-Hoeyer, Johanne; Ellervik, Christina; Skov, Vibe; Kjær, Lasse; Pallisgaard, Niels; Kruse, Torben A.; Thomassen, Mads; Troelsen, Jesper; Ottesen, Johnny T.
2017-01-01
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as “A Human Inflammation Model for Cancer Development“. This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation. PMID:28859112
Processes in the development of mathematics in kindergarten children from Title 1 schools.
Foster, Matthew E; Anthony, Jason L; Clements, Doug H; Sarama, Julie H
2015-12-01
This study examined how well nonverbal IQ (or fluid intelligence), vocabulary, phonological awareness (PA), rapid autonomized naming (RAN), and phonological short-term memory (STM) predicted mathematics outcomes. The 208 participating kindergartners were administered tests of fluid intelligence, vocabulary, PA, RAN, STM, and numeracy in the fall of kindergarten, whereas tests of numeracy and applied problems were administered in the spring of kindergarten. Fall numeracy scores accounted for substantial variation in spring outcomes (R(2) values = .49 and .32 for numeracy and applied problems, respectively), which underscores the importance of preschool math instruction and screening for mathematics learning difficulties on entry into kindergarten. Fluid intelligence and PA significantly predicted unique variation in spring numeracy scores (ΔR(2) = .05) after controlling for autoregressive effects and classroom nesting. Fluid intelligence, PA, and STM significantly predicted unique variation in spring applied problems scores (ΔR(2) = .14) after controlling for autoregressive effects and classroom nesting. Although the contributions of fluid intelligence, PA, and STM toward math outcomes were reliable and arguably important, they were small. Copyright © 2015 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Frantsina Evgeniya
2016-01-01
Full Text Available The paper describes the results of mathematical modelling of diesel fuel catalytic dewaxing process, performed taking into account the factors of process nonstationarity driven by changes in process technological parameters, feedstock composition and catalyst deactivation. The error of hydrocarbon contents calculation via the use of the developed model does not exceed 1.6 wt.%. This makes it possible to apply the model for solution to optimization and forecasting problems occurred in catalytic systems under industrial conditions. It was shown through the model calculation that temperature in the dewaxing reactor without catalyst deactivation is lower by 19 °C than actual and catalyst deactivation degree accounts for 32 %.
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
Resnikoff, Howard L
2015-01-01
Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co
Ekwueme, Cecilia Olunwa; Meremikwu, Anne; Kalu, Nnenna
2013-01-01
The study used a survey design. The instrument was teachers' questionnaire and interview on awareness and readiness. The interview was administered to the different categories of the respondents using a 4-point Likert scale. Two hundred mathematics teachers were randomly selected from 100 schools (public and private) using stratified random…
Akkaya, Recai
2016-01-01
This study aimed to investigate the changes in teacher perceptions regarding the use of technology subsequent to the training about technology integration in mathematics teaching. A training program that included combined technology, pedagogy and content knowledge was prepared and implemented on pre-service teachers with this aim. Exploratory…
Yáñez-Marquina, Lara; Villardón-Gallego, Lourdes
2016-01-01
Introduction: In secondary education, students' low achievement and engagement in mathematics are closely related to their attitudes towards the subject. Despite the international body of research, an exhaustive literature review of the existing instruments for measuring it draws attention to the inconsistency in the definition and corresponding…
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard; Gray, Jeremy
Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO.......Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO....
Malasari, P. N.; Nindiasari, H.; Jaenudin
2017-02-01
The aim of this research is to develop the lower ability of mathematical connection. The population of this research was the entire students of grade VII at one of state junior high school in Tangerang. The instrument used on the research is math connecting ability test. The results of the research showed that: 1) the average of post-test of mathematical connection in experimenting group is 74.78 and 66.61 for controlling group; 2) the average of gain of mathematical connection in experimenting group is 0.39 and 0.22 for controlling group. The conclusions of the research are: 1) the final result of mathematical connection in experimenting group with adequate criterion is getting way better than controlling group with poor criterion; 2) a developing mathematical connection in experimenting group with sufficient criterion is getting way better than controlling group with sufficient criterion. According to this study results, the author presented some suggestions that: 1) problem-based learning with course review horay method can be used as an alternative to improve mathematical connecting ability; 2) mathematics learning alternatives for implementing curriculum 2013; 3) continue with other aspect of research on a broader study.
Andreescu, Titu; Tetiva, Marian
2017-01-01
Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...
Louisiana Department of Education, 2013
2013-01-01
This module provides background information and presents the new terminology used in the Common Core State Standards for Mathematics (CCSSM). Educators should complete this module to understand the need for common standards, determine information about who developed the Standards, and learn the terminology and the coding used in the CCSSM. An…
The Development of Interactive Mathematics Learning Material Based on Local Wisdom
Abadi, M. K.; Cahya, E.; Jupri, A.
2017-09-01
The purpose of this study is to create interactive learning materials that can be used on smart phones and computer with swf format base on local wisdom. In this study using three stages of research that is observation, literature and mix We found that interactive learning materials are suitable for learning in the digital age. Because from observation to students of senior high school in Serang district there are student do not have mathematics books to study. Local wisdom of the region should be enriched in the subject matter. This is to answer the challenge that many students do not have a package book and have a smart phone. This has impact on students better thinking processes.
A QFD-Based Mathematical Model for New Product Development Considering the Target Market Segment
Directory of Open Access Journals (Sweden)
Liang-Hsuan Chen
2014-01-01
Full Text Available Responding to customer needs is important for business success. Quality function deployment provides systematic procedures for converting customer needs into technical requirements to ensure maximum customer satisfaction. The existing literature mainly focuses on the achievement of maximum customer satisfaction under a budgetary limit via mathematical models. The market goal of the new product for the target market segment is usually ignored. In this study, the proposed approach thus considers the target customer satisfaction degree for the target market segment in the model by formulating the overall customer satisfaction as a function of the quality level. In addition, the proposed approach emphasizes the cost-effectiveness concept in the design stage via the achievement of the target customer satisfaction degree using the minimal total cost. A numerical example is used to demonstrate the applicability of the proposed approach and its characteristics are discussed.
Directory of Open Access Journals (Sweden)
Thomas Heckelei
2012-05-01
Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.
Directory of Open Access Journals (Sweden)
Mawency Vergel Ortega
2016-01-01
Full Text Available Visualization plays an important role to understand the phenomena that underlie the learning and teaching of mathematics, however, it is not a matter for immediate and easy verification, on the other hand, it is a matter of information processing that describes complexity. This article explores the role that plays the visualization associated with the geometric shapes on the way in which some textbooks that are most widely used in the South-West of Colombia, are in charge of introducing the teaching of fractions during the first levels of basic education. It was observed in the analyzed textbooks an imbalance between the number of activities that promote visually powerful roles and those which power is controlled or non-existent.
International Nuclear Information System (INIS)
Kohda, Mamoru; Takei, Yoji; Ueki, Hiroaki
1983-01-01
Squamous cell carcinoma which occurred in the penis of a 61-year-old male patient was treated surgically and by Linac (a total of 10,400 rad). However, it was not cured. Abnormal shadows in the lung and multiple liver tumor was noted one month before death. Autopsy revealed generalized metastases of pulmonary small-cell carcinoma, and persistent squamous cell carcinoma of the penis with no metastases. Skin metastasis of lung carcinoma occurred only in the area previously irradiated. (Ueda, J.)
Chao, Theodore; Murray, Eileen; Star, Jon R.
2016-01-01
Teaching mathematics for understanding requires listening to each student's mathematical thinking, best elicited in a one-on-one interview. Interviews are difficult to enact in a teacher's busy schedule, however. In this study, the authors utilize smartphone technology to help mathematics teachers interview a student in a virtual one-on-one…
Cosby, Missy; Horton, Akesha; Berzina-Pitcher, Inese
2017-01-01
The MSUrbanSTEM fellowship program aims to support science, technology, engineering, and mathematics (STEM) educators teaching in an urban context. In this chapter, we used a multiple case studies methodology to examine the qualitatively different ways three urban mathematics educators implemented a yearlong project in their mathematics classrooms…
International Nuclear Information System (INIS)
Chang, P.Y.
1978-03-01
A mathematical model for the analysis and design of protection barrier structures is developed. The analysis procedure is based on the collapse theorems, i.e., the Upper Bound Theorem and the Lower Bound Theorem. The collision protection barrier is analyzed by a finite element program with capabilities of nonlinear and elastoplastic analysis. The results obtained from the mathematical model are compared with those obtained from the collision model tests
International Nuclear Information System (INIS)
Kerr, G.D.; Hwang, J.M.; Jones, R.M.
1976-05-01
A mathematical model of a phantom simulating the body and major internal organs of a Japanese adult has been developed for use in computer calculations of radiation dose. The total body height of the mathematical phantom is 162 cm, and the total body mass is 55 kg based on densities of 0.3, 1.4, and 1.0 g/cm 3 for the lung, skeleton, and bulk tissues of the body, respectively
... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...
Plofker, Kim
2009-01-01
Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic sc
Philosophy and mathematics: interactions.
Rashed, Roshdi
From Plato to the beginnings of the last century, mathematics provided philosophers with methods of exposition, procedures of demonstration, and instruments of analysis. The unprecedented development of mathematics on the one hand, and the mathematicians' appropriation of Logic from the philosophers on the other hand, have given rise to two problems with which the philosophers have to contend: (1) Is there still a place for the philosophy of mathematics? and (2) To what extent is a philosophy of mathematics still possible? This article offers some reflections on these questions, which have preoccupied a good many philosophers and continue to do so.
Directory of Open Access Journals (Sweden)
Benjamin Werner
Full Text Available In the last decade, cancer research has been a highly active and rapidly evolving scientific area. The ultimate goal of all efforts is a better understanding of the mechanisms that discriminate malignant from normal cell biology in order to allow the design of molecular targeted treatment strategies. In individual cases of malignant model diseases addicted to a specific, ideally single oncogene, e.g. Chronic myeloid leukemia (CML, specific tyrosine kinase inhibitors (TKI have indeed been able to convert the disease from a ultimately life-threatening into a chronic disease with individual patients staying in remission even without treatment suggestive of operational cure. These developments have been raising hopes to transfer this concept to other cancer types. Unfortunately, cancer cells tend to develop both primary and secondary resistance to targeted drugs in a substantially higher frequency often leading to a failure of treatment clinically. Therefore, a detailed understanding of how cells can bypass targeted inhibition of signaling cascades crucial for malignant growths is necessary. Here, we have performed an in vitro experiment that investigates kinetics and mechanisms underlying resistance development in former drug sensitive cancer cells over time in vitro. We show that the dynamics observed in these experiments can be described by a simple mathematical model. By comparing these experimental data with the mathematical model, important parameters such as mutation rates, cellular fitness and the impact of individual drugs on these processes can be assessed. Excitingly, the experiment and the model suggest two fundamentally different ways of resistance evolution, i.e. acquisition of mutations and phenotype switching, each subject to different parameters. Most importantly, this complementary approach allows to assess the risk of resistance development in the different phases of treatment and thus helps to identify the critical periods where
Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X
2015-08-01
This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Ji-Eun Lee
2015-03-01
approaches to developing preservice elementary teachers’ mathematics assessment literacy. We explored the similarities and differences in preservice teachers’ conceptions of good assessment practices and their critique of assessment items. We found that we, as course instructors, had different assumptions pertaining to the role of preservice teachers in the development of assessment and offered different assessment-related course activities. Despite these differences, there were more similarities than differences between the two groups of the preservice teachers with regard to their overall perceptions about good assessment practices and their critique of assessment items. However, we also observed differences in the criteria they used in critiquing assessment items. Discussions and implications are presented in accordance with these findings as a means to improve our own teaching and student learning.
Umansky, A. A.; Golovatenko, A. V.; Kadykov, V. N.; Dumova, L. V.
2016-09-01
Using the device of the complex “Gleeble System 3800” the physical experimental studies of deformation resistance of chrome rail steel at different thermo-mechanical deformation parameters were carried out. On the basis of mathematical processing of experimental data the statistical model of dependence of the rail steel deformation resistance on the simultaneous influence of deformation degree, rate and temperature, as well as the steel chemical composition, was developed. The nature of influence of deformation parameters and the content of chemical elements in steel on its resistance to plastic deformation is scientifically substantiated. Verification of the adequacy of the proposed model by the comparative analysis of the calculated and actual rolling forces during passes in the universal rail-and-structural steel mill JSC “EVRAZ Consolidated West Siberian Metallurgical Plant” (“EVRAZ ZSMK”) showed the possibility of its use for development and improvement of new modes of rails rolling.
Development of a Mathematical Model for Multivariate Process by Balanced Six Sigma
Directory of Open Access Journals (Sweden)
Díaz-Castellanos Elizabeth Eugenia
2015-07-01
Full Text Available The Six Sigma methodology is widely used in business to improve quality, increase productivity and lower costs, impacting on business improvement. However, today the challenge is to use those tools for improvements that will have a direct impact on the differentiation of value, which requires the alignment of Six Sigma with the competitive strategies of the organization.Hence the importance of a strategic management system to measure, analyze, improve and control corporate performance, while setting out responsibilities of leadership and commitment. The specific purpose of this research is to provide a mathematical model through the alignment of strategic objectives (Balanced Scorecard and tools for productivity improvement (Six Sigma for processes with multiple answers, which is sufficiently robust so that it can serve as basis for application in manufacturing and thus effectively link strategy performance and customer satisfaction. Specifically we worked with a case study: Córdoba, Ver. The model proposes that is the strategy, performance and customer satisfaction are aligned, the organization will benefit from the intense relationship between process performance and strategic initiatives. These changes can be measured by productivity and process metrics such as cycle time, production rates, production efficiency and percentage of reprocessing, among others.
Directory of Open Access Journals (Sweden)
Lara Ragpot
2014-12-01
Full Text Available The article reports on the process of producing a film for students in a university course. The purpose of the production was to make local film material that could assist students in their learning of developmental cognitive psychology theory in general, but specifically also the mathematical cognition of children. Although the students in the production team set out as actors and technical helpers, they gradually appropriated their acting roles and the plot of the story to the extent that they learned the theory that the film was portraying. Not only did they show interest in the psychology texts and the story, but they also developed agency – they became the owners of the film. The argument of this paper is that a multimodal foundation in teacher education can give students multiple semiotic entry points, but also, if given the opportunity to make a dramatic film, they can learn the content of mathematical cognition while learning film production. The article argues that contemporary teacher education programmes are by their very nature briefed to be multimodal, because teachers’ work in schools in the 21st century requires more than language text and oral, in-person communication.
Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian
2009-06-01
A mathematical model for integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor wastewater treatment processes was developed. The model is based on theoretical considerations that include simultaneous diffusion and Monod-type reaction kinetics inside the biofilm, competition between aerobic autotrophic nitrifiers, non-methanol-degrading facultative heterotrophs, methanol-degrading heterotrophs, slowly biodegradable chemical oxygen demand, and inert biomass for substrate (when appropriate) and space inside the biofilm; and biofilm and suspended biomass compartments, which compete for both the electron donor and electron acceptor. The model assumes identical reaction kinetics for bacteria within suspended biomass and biofilm. Analytical solutions to a 1-dimensional biofilm (assuming both zero- and first-order kinetics) applied to describe substrate flux across the biofilm surface are integrated with a revised and expanded matrix similar to that presented as the International Water Association (London, United Kingdom) Activated Sludge Model Number 2d (ASM2d) stoichiometric and kinetic matrix. The steady-state mathematical model describes a continuous-flow stirred-tank reactor.
Energy Technology Data Exchange (ETDEWEB)
Jalmuzna, W.
2006-02-15
The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short Xray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF system in VUV FEL experiment based on modern FPGA chips It is being developed by ELHEP group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryomodule in the experiment. The device can be also used as the simulator of the cavity and testbench for other devices. Flexibility and computation power of this device allow implementation of fast mathematical algorithms. This paper describes the concept, implementation and tests of universal mathematical library for FPGA algorithm implementation. It consists of many useful components such as IQ demodulator, division block, library for complex and floating point operations, etc. It is able to speed up implementation time of many complicated algorithms. Library have already been tested using real accelerator signals and the performance achieved is satisfactory. (Orig.)
International Nuclear Information System (INIS)
Jalmuzna, W.
2006-02-01
The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short Xray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF system in VUV FEL experiment based on modern FPGA chips It is being developed by ELHEP group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryomodule in the experiment. The device can be also used as the simulator of the cavity and testbench for other devices. Flexibility and computation power of this device allow implementation of fast mathematical algorithms. This paper describes the concept, implementation and tests of universal mathematical library for FPGA algorithm implementation. It consists of many useful components such as IQ demodulator, division block, library for complex and floating point operations, etc. It is able to speed up implementation time of many complicated algorithms. Library have already been tested using real accelerator signals and the performance achieved is satisfactory. (Orig.)
Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving
Directory of Open Access Journals (Sweden)
María F. Ayllón
2016-04-01
Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.
Günther, T; Büttner, C; Käsbohrer, A; Filter, M
2015-01-01
Mathematical models on properties and behavior of harmful organisms in the food chain are an increas- ingly relevant approach of the agriculture and food industry. As a consequence, there are many efforts to develop biological models in science, economics and risk assessment nowadays. However, there is a lack of international harmonized standards on model annotation and model formats, which would be neces- sary to set up efficient tools supporting broad model application and information exchange. There are some established standards in the field of systems biology, but there is currently no corresponding provi- sion in the area of plant protection. This work therefore aimed at the development of an annotation scheme using domain-specific metadata. The proposed scheme has been validated in a prototype implementation of a web-database model repository. This prototypic community resource currently contains models on aflatoxin secreting fungal Aspergillus flavus in maize, as these models have a high relevance to food safety and economic impact. Specifically, models describing biological processes of the fungus (growth, Aflatoxin secreting), as well as dose-response- and carry over models were included. Furthermore, phenological models for maize were integrated as well. The developed annotation scheme is based on the well-established data exchange format SBML, which is broadly applied in the field of systems biology. The identified example models were annotated according to the developed scheme and entered into a Web-table (Google Sheets), which was transferred to a web based demonstrator available at https://sites.google.com/site/test782726372685/. By implementation of a software demonstrator it became clear that the proposed annotation scheme can be applied to models on plant pathogens and that broad adoption within the domain could promote communication and application of mathematical models.
Mathematical Graphic Organizers
Zollman, Alan
2009-01-01
As part of a math-science partnership, a university mathematics educator and ten elementary school teachers developed a novel approach to mathematical problem solving derived from research on reading and writing pedagogy. Specifically, research indicates that students who use graphic organizers to arrange their ideas improve their comprehension…
Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz
2015-04-01
Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Mathematical Modeling and Pure Mathematics
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
Directory of Open Access Journals (Sweden)
B. V. Phung
2017-01-01
Full Text Available The subject of research is a new type of the multirip saw machine with circular reciprocating saw blades. This machine has a number of advantages in comparison with other machines of similar purpose. The paper presents an overview of different types of saw equipment and describes basic characteristics of the machine under investigation.Using the concept of lifecycle management of the considered machine in a unified information space is necessary to improve quality and competitiveness in the current production environment. In this lifecycle all the members, namely designers, technologists, customers, etc., have a philosophy to tend to optimize the overall machine design as much as possible. However, it is not always possible to achieve. Conversely, at the boundary between the phases there are several mismatching situations, if not even conflicting inconsistencies. For example, improvement of mass characteristics can lead to poor stability and rigidity of the saw blade. Machine output improvement through increasing frequency of the machine motor rotation, on the other side, results in reducing stable ability of the saw blades and so on.In order to provide a coherent framework for the collaborative environment between the members of the life cycle, the article presents a technique to construct a mathematical model that allows combining all different members’ requirements in the unified information model. The article also gives analysis of kinematic and dynamic behavior and technological characteristics of the machine. Describes in detail all the controlled parameters, functional constraints, and quality criteria of the machine under consideration. Depending on the controlled parameters, the analytical relationships formulate functional constraints and quality criteria of the machine. The proposed algorithm allows fast and exact calculation of all the functional constraints and quality criteria of the machine for a given vector of the control
Directory of Open Access Journals (Sweden)
Tatyana Emelyanova
2017-03-01
Full Text Available The article is dedicated to the mechanisms of cognitive process from the viewpoint of neurodynamic concepts. The concept of neurodynamic processes is studying the modes of localization, synchronization, stabilization metastable chaotic structures in the reticular formation neural network. The dynamic process of the neural circuitry leads to brain imaging work. It is proven that the functional metastable structures in dissipative dynamic systems are the model representations of mental images. It is shown that each metastable state corresponds to a certain mental image. The relaxation process of the system triggers off the reflection process of the metastable structures of mental images in the static variety of cognitive space.The mechanism of brain imaging work considering the chaotic nature of the parameters of the neural network has been investigated. The concept of homogeneous process as the concatenation of the unpredictable metastable structures of the same mode has been introduced. Heterogeneous process is seen as the concatenation of the metastable structures of different modes. The research shows that the formation of unpredictable mental images and spatial temporal situations in the cognitive space can be interpreted as the formation of the elements of the metacognition in the processes of students’ thinking. The detailed research of the mechanisms of formation and development of cognitive space will enable the understanding of the development of students’ thinking in the process of their mathematical and professional preparing. The elements of the metacognition in thinking processes stimulate cognitive system of the individual to the further development, increase of abilities, improvement of mathematical and professional culture.
Oliveira-Rodríguez, Myriam; López-Cobo, Sheila; Reyburn, Hugh T; Costa-García, Agustín; López-Martín, Soraya; Yáñez-Mó, María; Cernuda-Morollón, Eva; Paschen, Annette; Valés-Gómez, Mar; Blanco-López, Maria Carmen
2016-01-01
Exosomes are cell-secreted nanovesicles (40-200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×10(5) exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.
Directory of Open Access Journals (Sweden)
Myriam Oliveira-Rodríguez
2016-08-01
Full Text Available Exosomes are cell-secreted nanovesicles (40–200 nm that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.
DIMENSIONS OF CHANGE - A SEMANTIC AND MATHEMATICAL-ANALYSIS OF LEARNING AND DEVELOPMENT
VANGEERT, P
1995-01-01
To examine the distinction between learning and development, two different approaches are employed. The first, a semantic approach, distinguishes five dimensions along which development and learning can be compared. Learning and development are seen as two vaguely specified locations in this
Directory of Open Access Journals (Sweden)
A. V. Zhuravlev
2015-01-01
Full Text Available Summary. Intensification of drying is a major improvement of the drying equipment and technology. Development and implementation in the industry of high-intensity devices with active hydrodynamic regimes, provides in many cases, higher technical and economic indicators. The use of devices with twisted coolant flow to intensify the process of drying of dispersed materials is both theoretical interest and practical value. The processes of heat and mass transfer in drying machines are largely determined by the hydrodynamic conditions in its internal volume. Given the complexity of the geometry and structure of the velocity field in the balanced twisted-layer, which in general is essentially three-dimensional, it is necessary to decompose the hydrodynamic problem into two parts superposition. From the analysis of the physical picture implies that the path of the current lines of his close family helical curves. Based on the theoretical analysis of heat and mass transfer process of drying seeds of amaranth in the office with a balanced twisted-layer authors developed a mathematical model of it. The structure of the flow of the drying process in the cross-sections of the device. The model is based on the fundamental equations A.V. Lykov, describes a heat moisture transfer in capillary-porous environments in a linear thermodynamic approach, given the method of convective heat supply and the small size of dried seeds of amaranth. These equations describe the dynamic change in the fields of temperature and moisture content in a conjugated heat and mass transfer at the interface solid phase - coolant. Found macrokinetic natural process. The results will be useful for a wide range of professionals involved in drying seeds of amaranth, as well as for calculation and design of modern dryers. On the basis of experimental data and their statistical treatment has been received a mathematical model that adequately describes the process of drying seeds of
Mathematical modeling creation for curriculum based on ontology. Part 1
PIYAVSKY S.A.; LARUKHIN V.B.
2012-01-01
This article delivers a mathematical optimal formation model of curriculum based on the solution of multi-criteria optimization problem. A mathematical model of optimal curriculum shaping based on the solution of multi-criteria optimization. In combination with the previously developed ontology of the educational process, it allows us to offer information technology of forming curriculum at various levels of training in universities personalized for each students
An Evaluation of the Instructional System in Mathematics: 1977-1978.
Frechtling, Joy A.; And Others
The results of an evaluation of various aspects of the Instructional System in Mathematics (ISM) are presented. ISM is an objectives-based, computer-supported, management system which builds upon a previously developed mathematics curriculum. Questionnaires to school-based personnel and students, in-school observations, and interviews, were used…
van’t Noordende, Jaccoline E.; van Hoogmoed, Anne H.; Schot, Willemijn D.; Kroesbergen, Evelyn H.
2016-01-01
Introduction: Number line estimation is one of the skills related to mathematical performance. Previous research has shown that eye tracking can be used to identify differences in the estimation strategies children with dyscalculia and children with typical mathematical development use on number
DEFF Research Database (Denmark)
Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K.
2017-01-01
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs.......The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks...... or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal...
Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving
Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio
2016-01-01
This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…
Jordan, Julie A; Wylie, Judith; Mulhern, Gerry
2015-01-01
Linguistic influences in mathematics have previously been explored through subtyping methodology and by taking advantage of the componential nature of mathematics and variations in language requirements that exist across tasks. The present longitudinal investigation aimed to examine the language requirements of mathematical tasks in young children aged 5-7 years. Initially, 256 children were screened for mathematics and reading difficulties (RDs) using standardized measures. Those scoring at or below the 35th percentile on either dimension were classified as having difficulty. From this screening, 115 children were allocated to each of the mathematical difficulty (MD; n = 26), MDRD (n = 32), RD (n = 22) and typically achieving (n = 35) subtypes. These children were tested at four time points, separated by 6 monthly intervals, on a battery of seven mathematical tasks. Growth curve analysis indicated that, in contrast to previous research on older children, young children with MD and MDRD had very similar patterns of development on all mathematical tasks. Overall, the subtype comparisons suggested that language played only a minor mediating role in most tasks, and this was secondary in importance to non-verbal skills. Correlational evidence suggested that children from the different subtypes could have been using different mixes of verbal and non-verbal strategies to solve the mathematical problems.
Maths Games Workshop--Part Thirteen: Types of Mathematical Games.
Kirkby, Dave
1989-01-01
Presented are mathematical games in six categories of mathematical objectives: learn the language of mathematics; use mathematical notation; know facts; develop skills; understand concepts; and devise strategies. Numbers of players, rules, and diagrams are provided for each problem. (YP)
Directory of Open Access Journals (Sweden)
Simon Brown
2010-06-01
Full Text Available The behavior of enzyme-catalyzed reactions is not made clear to many students by the standard mathematical description of enzyme kinetics. An enzyme-machine analogy is described that has made the details of the Michaelis-Menten mechanism and the associated kinetics more accessible with minimal use of mathematics. Students taught using the analogy appear to have fewer of the misconceptions than those taught using a more mathematical approach.
Roselló, Joan
2012-01-01
From Foundations to Philosophy of Mathematics provides an historical introduction to the most exciting period in the foundations of mathematics, starting with the discovery of the paradoxes of logic and set theory at the beginning of the twentieth century and continuing with the great foundational debate that took place in the 1920s. As a result of the efforts of several mathematicians and philosophers during this period to ground mathematics and to clarify its nature from a certain philosoph...
Implementing a new mathematics curriculum: Mathematics teachers’ beliefs and practices
Ernest Ampadu
2013-01-01
Mathematics has become a ‘critical filter’ in the social, economic and professional development of individuals and forms a core component of the school curriculum in most countries. It is upon this utilitarian nature of mathematics to the individual and the society as a whole that the school mathematics curriculum has been undergoing a number of restructuring over the last three decades. In Ghana, a new mathematics curriculum was introduced in September 2007 which aims at shifting the teachin...
Feza, Nosisi
2014-01-01
White Paper 5's aim is to provide South Africa's children with a solid foundation for lifelong learning and development. Children need to be nurtured and developed holistically for them to participate efficiently in their democratic society. However, South African students continue to perform poorly in Trends in International Mathematics and…
Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in kindergarten. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from…
Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…