WorldWideScience

Sample records for previously developed gas

  1. Coalbed gas development

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book includes: Overview of coalbed gas development; Coalbed gas development in the West Coalbed gas development on Indian lands; Multi-mineral development conflicts; Statutory solutions to ownership disputes; State and local regulation; Environmental regulations; Status of the section 29 tax credit extension; Using the section 29 credit; Leasing coalbed gas prospects; Coalbed gas joint operating agreements and Purchase and sale agreements for coalbed gas properties

  2. Gas development plan - Lithuania

    International Nuclear Information System (INIS)

    1993-10-01

    A detailed description of the plan for the development of gas utilization in Lithuania is presented. The plan is subdivided under the headings of gas supply, gas demand, gas transmission and distribution, economy and the organization of the gas sector in the country. The first phase of the project has been undertaken by a Danish firm in cooperation with the Lithuanian firm Lietuvos Dujos. The first aim was to clarify the problems that will arise in connection with this joint venture on developing the use of gas in Lithuania, focusing on existing gas supply and market conditions, the current flow control and metering and economic constraints. The organization of the gas sector in the country as it stands today is described and possible models for its future organization are discussed in addition to a strategy of implementation. Possible development trends are outlined and maximum/minimum demand scenarios are suggested. Subjects and areas related to the gas sector in Lithuania are identified for further investigation in the next phase. It is stated that Lithuania is at present undergoing a fast transformation towards a market economy and that the transfer of foreign currency has been liberalized. Only the pipeline from Minsk to Vilnius is open at present and provides the total supply of natural gas to Lithuania and Kalingrad, controlled by the Russian gas company, Lentransgas, on the basis of a gas purchase agreement regulated on a yearly basis. Other possible supply sources are the Danish part of the North Sea and the Norwegian offshore fields. (AB)

  3. Gas, gas, gas... discoveries and developments booming worldwide

    International Nuclear Information System (INIS)

    Maxwell, F.

    2000-01-01

    Deep water exploration is yielding more than billion barrel oil fields. Unocal's 3 May discovery of 2-3 Tcf of gas in its Kutei block of Indonesia marks the first major discovery of natural gas in the deep water frontier: Wildcats Gula and Gada were drilled in over 1800 m of water as part of an aggressive search for gas instigated by Unocal last year. The author makes a survey of gas exploration and development throughout the world. (author)

  4. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Science.gov (United States)

    2013-06-12

    ... the LNG at the time of export. The Application was filed under section 3 of the Natural Gas Act (NGA... not prohibited by U.S. law or policy. Current Application The current Application is filed in... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously Imported...

  5. Venezuelan gas developments

    International Nuclear Information System (INIS)

    Michael, H.

    1993-01-01

    An overview is presented of the Venezuelan natural gas industry. The structure of PDVSA, the Petroleos de Venezuela Organization, its foreign and domestic affiliates, and its subsidiaries are discussed. Natural gas resources in Venezuela total 290 trillion cubic feet, and Venezuela's share of world, OPEC and latin American production and reserves are 1%, 11% and 26%, respectively for production and 3%, 6% and 49% for reserves. Venezuela's gas pipeline network, plants, production, and marketing are described. Natural gas production and demand forecasts to 2002 are presented. Gas resources are largely located in eastern Venezuela, and large volumes of natural gas non-associated with crude oil will start to become important in the Venezuelan natural gas industry. 19 figs

  6. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    Science.gov (United States)

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Venezuelan gas development

    International Nuclear Information System (INIS)

    Michael, H.A.

    1994-01-01

    Petroleos de Venezuela, S.A. (PDVSA) is an international energy corporation wholly owned by the Republic of Venezuela. The steady expansion of PDVSA's natural gas infrastructure in Venezuela and the strong performance of its subsidiaries, has contributed to its operational and marketing flexibility, thus allowing it to evolve froma simple exporter of crude oil and refined products to an important supplier of Natural Gas Liquids (NGL) to the world's major energy markets. Corpoven one of PDVSA's affiliated Companies will in 1994 produce an incremental volume of 45 thousand barrels per day of natural gas liquids from the northern Monagas region. NGL exports are expected to increase from 175 thousand barrels day in 1994 to 232 thousand barrels day in 1988. At the end of 1992, another PDVSA subsidiary reached an agreement which calls for the exploitation of vast reserves of natural gas located in the Gulf of Paria, in northeastern Venezuela. The projected LNG production is in the order of 6 million tons per year. (author)

  8. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-01-22

    ... DEPARTMENT OF ENERGY [FE Docket No. 12-161-LNG] Eni USA Gas Marketing LLC; Application for Blanket..., by Eni USA Gas Marketing LLC (Eni USA Gas Marketing), requesting blanket authorization to export... country with the capacity to import LNG via ocean-going carrier and with which trade is not prohibited by...

  9. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  10. Gas industry development in Egypt

    International Nuclear Information System (INIS)

    Roze, J.; Longueville, P.

    2000-01-01

    Egypt is a country with major gas potential and its gas industry has grown rapidly over the last ten years. Proven natural gas reserves total an estimated 1,050 billion m 3 . According to the re-evaluation of reserves made in January 2000, probable reserves stand at 3,400 billion m 3 , placing Egypt in ninth position as a potential world producer. These reserves are contained in 120 fields located mainly in the Nile Delta and Mediterranean regions and, to a lesser extent, in the Western Desert and the Gulf of Suez. Over the last two years, 54 new gas field have been discovered and registered. Consumption of oil, Egypt's main primary energy source, has declined steadily since the early 1980's in favour of natural gas, which has enjoyed steady growth. The penetration of natural gas is due to the growth of industries consuming large quantities of gas (chemical, fertilizers, etc), the development of new gas fields and the use of gas as a substitute for oil and coal, especially in the power industry which accounts for a major share of energy consumption, i.e., two-thirds of production in 1997. However, as Egypt is currently neither an importer or exporter of natural gas, the growth in consumption has naturally followed that of production, and the lack of infrastructure explains the limited penetration of gas in the residential sector (less than 2 % in 1997). According to the gas development plan drawn up by the Egyptian authorities, internal consumption should increase from 13.5 billion m 3 per year in 1998 to around 45.5 billion m 3 per year in 2017. This consumption increase will be accelerated to respond to domestic needs and, in particular, to favour the implementation of the national redevelopment plan (distribution of the population over 25% of the country by 2020, compared to 4% day). The energy vector of this urban policy is gas. Moreover, this policy should offset the drop in income resulting from declining oil production. The Egyptian authorities, via a range

  11. Eastern Canada natural gas developments

    International Nuclear Information System (INIS)

    Wall, A.

    2001-01-01

    This power point presentation addressed the following topics regarding development of natural gas in eastern Canada: (1) the 18 Tcf of proven natural gas reserves at Sable Island, (2) Canadian markets benefiting from the Maritimes and Northeast Pipeline (M and NP), (3) a 20 year franchise agreement between Enbridge Gas and the government of New Brunswick, (4) the 25 year provincial franchise agreement by Sempra Atlantic Gas, and (5) Sable Island's influence on central Canada. The Sable Offshore Energy Project (SOEP) is now producing about 540,000 MMBtu/day from 6 fields. Plans for Tier 2 expansion are underway. Firm contracts for the M and NP are scheduled to transport gas from the SOEP to markets in Nova Scotia, New Brunswick, Maine and New Hampshire. Sable gas is also a potential supply for the Quebec market. Gaz Metropolitain and Enbridge have proposed to build the Cartier Pipeline from the Quebec/New Brunswick border to Quebec City. It is unlikely that Sable Island supply will directly serve the Ontario market. Canadian customers for Sable gas and M and NP service include pulp and paper companies, oil refineries, power generators and local distribution companies (LDC), with the majority of demand coming form the electric power industry. tabs., figs

  12. Natural gas in developing countries

    International Nuclear Information System (INIS)

    Holwerda, B.

    1998-01-01

    Everywhere in the world plans are being made to stimulate the natural gas industry in developing countries. High investment costs are the biggest problem almost everywhere. Even countries with a closed economy realize that they do not get far without foreign capital. Cases are presented for Africa, Pakistan, and Indonesia

  13. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.

  14. Impacts of Current and Previous Land Use on Greenhouse Gas Fluxes for Biofuel Cropping Systems

    Science.gov (United States)

    Del Grosso, S.; Parton, W.; Adler, P.; Ogle, S.; West, T.

    2008-12-01

    Biofuel cropping systems are both a source and sink of greenhouse gases (GHG). Fertilizer and pesticide manufacture and transport, farm machinery operation, and processing of biomass into fuel all lead to carbon dioxide (CO2) emissions, but the largest GHG sources for biofuel systems are often soil nitrous oxide (N2O) emissions and loss of organic carbon as a result of land use change. However, improved land management can increase soil carbon levels and decrease N2O emissions, thus complementing the CO2 sink from displaced fossil fuel combustion. Previously cropped land, grazed land, and Conservation Reserve Program (CRP) land is being converted to biofuel cropping. We report results for the central US because most of the land used for biofuel cropping is in the central region of the country (corn/soy belt). The primary tool for this analysis is the DAYCENT ecosystem model. The ability of the model to simulate soil GHG fluxes and crop yields is demonstrated and results from simulations of different land management scenarios are presented. Our analyses suggest that conversion of CRP or grazed land to corn ethanol cropping under conventional management leads to a net source of GHG, but that converting these lands to perennial cellulosic biofuel cropping results in a GHG sink. Previously cropped land converted to corn ethanol under conventional management is a small GHG sink, but improved management and conversion to cellulosic based crops can greatly increase this sink strength.

  15. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  16. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  17. Developing the east coast gas industry

    International Nuclear Information System (INIS)

    Stedman, C.

    1998-01-01

    Development of a natural gas industry on Canada's east coast was discussed. The various stages of near-term and long-term development were outlined. Opportunities were identified in the areas of Grand Banks gas utilization, third party gas and natural gas liquids transportation and processing, cogeneration, petrochemicals and in energy marketing and services. As an example of this industry development, a corporate review of Novagas Canada Ltd., was presented. The company was formed in January 1994 and is wholly owned by Nova Gas International. Novagas Canada has ultimate resources of 62.9 Tcf of natural gas of which 48.9 Tcf remains to be discovered. The company focuses on non-regulated mid-stream operations of the natural gas/natural gas liquid value chain. Some 800 million dollars have been invested so far in gas processing, liquids and olefins businesses in Nova Scotia and the Grand Banks/Labrador area. The pending Nova/TCPL merger will combine Novagas Canada's and TransCanada Gas Services' midstream assets. The general conclusion was that the resource base is large enough to support development throughout the gas and natural gas liquids value chain, and that a critical mass is required to support development of the necessary gas infrastructure. A sizeable challenge remains in encouraging gas utilization, and in encouraging competition, open access and unbundling of energy services. 2 tabs., 2 figs

  18. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.

    2011-05-14

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even though the cost is substantially higher than traditional gas deposits. Recent advances in horizontal drilling and multistage hydraulic fracturing, which dramatically lower costs of developing shale gas fields, are key to renewed interest in shale gas deposits. Hydraulically induced fractures are quite complex in shale gas reservoirs. Massive, multistage, multiple cluster treatments lead to fractures that interact with existing fractures (whether natural or induced earlier). A dynamic approach to the fracturing process so that the resulting network of reservoirs is known during the drilling and fracturing process is economically enticing. The process needs to be automatic and done in faster than real-time in order to be useful to the drilling crews.

  19. Predictive factors for the development of diabetes in women with previous gestational diabetes mellitus

    DEFF Research Database (Denmark)

    Damm, P.; Kühl, C.; Bertelsen, Aksel

    1992-01-01

    OBJECTIVES: The purpose of this study was to determine the incidence of diabetes in women with previous dietary-treated gestational diabetes mellitus and to identify predictive factors for development of diabetes. STUDY DESIGN: Two to 11 years post partum, glucose tolerance was investigated in 241...... women with previous dietary-treated gestational diabetes mellitus and 57 women without previous gestational diabetes mellitus (control group). RESULTS: Diabetes developed in 42 (17.4%) women with previous gestational diabetes mellitus (3.7% insulin-dependent diabetes mellitus and 13.7% non......-insulin-dependent diabetes mellitus). Diabetes did not develop in any of the controls. Predictive factors for diabetes development were fasting glucose level at diagnosis (high glucose, high risk), preterm delivery, and an oral glucose tolerance test result that showed diabetes 2 months post partum. In a subgroup...

  20. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  1. Technical Development Path for Gas Foil Bearings

    Science.gov (United States)

    Dellacorte, Christopher

    2016-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  2. Developing Reading Comprehension through Metacognitive Strategies: A Review of Previous Studies

    Science.gov (United States)

    Channa, Mansoor Ahmed; Nordin, Zaimuariffudin Shukri; Siming, Insaf Ali; Chandio, Ali Asgher; Koondher, Mansoor Ali

    2015-01-01

    This paper has reviewed the previous studies on metacognitive strategies based on planning, monitoring, and evaluating in order to develop reading comprehension. The main purpose of this review in metacognition, and reading domain is to help readers to enhance their capabilities and power reading through these strategies. The researchers reviewed…

  3. Total pressing Indonesian gas development, exports

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity

  4. Some recent developments in headspace gas chromatography

    Science.gov (United States)

    J.Y. Zhu; X.-S. Chai

    2005-01-01

    In this study, recent developments in headspace gas chromatography (HSGC) are briefly reviewed. Several novel HSGC techniques developed recently are presented in detail. These techniques were developed using the unique characteristics of the headspace sampling process implemented in commercial HSGC systems and therefore can be easily applied in laboratory and...

  5. Oil and gas development : a northern perspective

    International Nuclear Information System (INIS)

    Doyle, M.

    1998-01-01

    The development of the oil and gas industry in the North, and in particular its impact over the years on the town of Fort Nelson, British Columbia, is discussed. Other important issues such as cultural differences, government/industry/community partnerships in community development, employment, training and workforce development, land claims, Aboriginal consultation and the consequent appearance of reverse discrimination were discussed. The environment, safety programs, drug and alcohol programs are also reviewed. All of these issues have a bearing on the further development of the oil and gas industry in the Yukon

  6. Mentoring to develop research selfefficacy, with particular reference to previously disadvantaged individuals

    OpenAIRE

    S. Schulze

    2010-01-01

    The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET) – an aspect of the social cognitive theory (SCT). Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basi...

  7. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  8. Oil and gas industry, exploration and development

    International Nuclear Information System (INIS)

    Appert, O.

    1998-01-01

    A consistent investment boost on exploration and development, the favourable prospects connected with technological improvement, the opening of virgin areas of exploration are all factors granting extraordinary opportunities for the oil and gas industry. However, environmental constraints relevant to emission standards and products quality are also growing and will be increasingly binding upon both oil and car industries [it

  9. Unconventional gas development facilitates plant invasions.

    Science.gov (United States)

    Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M

    2017-11-01

    Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mentoring to develop research selfefficacy, with particular reference to previously disadvantaged individuals

    Directory of Open Access Journals (Sweden)

    S. Schulze

    2010-07-01

    Full Text Available The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET – an aspect of the social cognitive theory (SCT. Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basic principles. Firstly, institutions need to provide supportive environmental conditions that facilitate research selfefficacy. This implies a supportive and efficient collective system. The possible effects of performance ratings and reward systems at the institution also need to be considered. Secondly, mentoring needs to create opportunities for young researchers to experience successful learning as a result of appropriate action. To this end, mentees need to be involved in actual research projects in small groups. At the same time the mentor needs to facilitate skills development by coaching and encouragement. Thirdly, mentors need to encourage mentees to believe in their ability to successfully complete research projects. This implies encouraging positive emotional states, stimulating self-reflection and self-comparison with others in the group, giving positive evaluative feedback and being an intentional role model.

  11. Inert gas effects on embryonic development.

    Science.gov (United States)

    Weiss, H. S.; Grimard, M.

    1972-01-01

    It had been found in previous investigations that hatchability of fertile chicken eggs is reduced to 50% or less of controls if incubation takes place in a low nitrogen atmosphere containing He. Although these results suggest some role for nitrogen in embryogenesis, it is possible that a requirement exists for an inert molecule closer in physical characteristics to nitrogen than is He. An investigation is conducted involving incubation at ground level pressure in a gas mixture in which the 79% inert component was either neon or argon. The effect of varying combinations of nitrogen, helium, and oxygen was also studied.

  12. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings.

    Science.gov (United States)

    Opar, David A; Williams, Morgan D; Timmins, Ryan G; Dear, Nuala M; Shield, Anthony J

    2013-01-01

    The effect of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. To determine if recreational athletes with a history of unilateral hamstring strain injury will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development (RTD), and impulse (IMP) at 30, 50, and 100 milliseconds after the onset of myoelectrical activity or torque development in the previously injured limb compared with the uninjured limb. Case control study; Level of evidence, 3. Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head), and 13 had no history of hamstring strain injury. Following familiarization, all athletes undertook isokinetic dynamometry testing and surface electromyography (integrated EMG; iEMG) assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -180 deg·s(-1). In the injured limb of the injured group, compared with the contralateral uninjured limb, RTD and IMP was lower during -60 deg·s(-1) eccentric contractions at 50 milliseconds (RTD: injured limb, 312.27 ± 191.78 N·m·s(-1) vs uninjured limb, 518.54 ± 172.81 N·m·s(-1), P = .008; IMP: injured limb, 0.73 ± 0.30 N·m·s vs uninjured limb, 0.97 ± 0.23 N·m·s, P = .005) and 100 milliseconds (RTD: injured limb, 280.03 ± 131.42 N·m·s(-1) vs uninjured limb, 460.54 ± 152.94 N·m·s(-1), P = .001; IMP: injured limb, 2.15 ± 0.89 N·m·s vs uninjured limb, 3.07 ± 0.63 N·m·s, P contraction. Biceps femoris long head muscle activation was lower at 100 milliseconds at both contraction speeds (-60 deg·s(-1), normalized iEMG activity [×1000]: injured limb, 26.25 ± 10.11 vs uninjured limb, 33.57 ± 8.29, P = .009; -180 deg·s(-1), normalized iEMG activity [×1000]: injured limb, 31.16 ± 10.01 vs uninjured limb, 39.64

  13. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  14. Gas detectors: recent developments and future perspectives

    International Nuclear Information System (INIS)

    Sauli, F.

    1998-01-01

    Thirty years after the invention of the multi-wire proportional chamber, and 20 from the first Vienna Wire Chamber Conference, the interest and research efforts devoted to gas detectors are still conspicuous, as demonstrated by the number of papers submitted to this conference. Innovative and performing devices have been perfected over the years, used in experiments, and still developed today. Introduced 10 years ago, the micro-strip gas chamber appears to fulfill the needs of high-luminosity trackers; progress in this field will be reported, followed by a discussion on discharge problems encountered and possible solutions. Recent and potentially more powerfull devices such as the micro-gap, narrow-gap and micro-dot chambers will be described. A new generation of detectors exploiting avalanche multiplication in narrow gaps has emerged recently, namely micromegas, CAT (compteur a trous) and the Gas Electron Multiplier (GEM); whilst still in their infancy, they have promising performances with increased reliability in harsh operating conditions. I will describe also some 'tools of trade' used to model the counting action and to analyze the properties of the detectors, discuss limitations to their performances, and suggest ways to improvement. Several still controversial subjects of study (as for example, aging), and imaginative efforts of the experimenters ensure a continuing progress in the field of gas detectors, and new editions of this conference for years to come. (author)

  15. Effect of previous exhaustive exercise on metabolism and fatigue development during intense exercise in humans

    DEFF Research Database (Denmark)

    Iaia, F. M.; Perez-Gomez, J.; Nordsborg, Nikolai

    2010-01-01

    The present study examined how metabolic response and work capacity are affected by previous exhaustive exercise. Seven subjects performed an exhaustive cycle exercise ( approximately 130%-max; EX2) after warm-up (CON) and 2 min after an exhaustive bout at a very high (VH; approximately 30 s), high...... during a repeated high-intensity exercise lasting 1/2-2 min....

  16. Middle East gas: utilization, development and policies

    International Nuclear Information System (INIS)

    Mabro, R.

    1997-01-01

    The relationships between gas and liquid hydrocarbon fuels are interesting.Gas can be and being used to boost oil production and recovery factors in oil fields. This is proper use of gas. Gas displaces oil as a fuel in energy markets but yields a low net back. If all gas and oil producers formed a single cartel they will produce oil first and delay gas. But they are not. As a result the drive for gas harms oil and there is therefore an opportunity cost which gas producers who, in many instances, are also oil exporters, should consider. The economics of gas often depend on the condensates. In some instance gas is the economics by-product of condensates and not the other way round. Thus more gas means also more oil supplies in international markets

  17. Development of natural gas vehicles in China

    Energy Technology Data Exchange (ETDEWEB)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  18. Coalbed gas : responsibility developed for British Columbians

    Energy Technology Data Exchange (ETDEWEB)

    Coward, M. [British Columbia Ministry of Energy and Mines, Victoria, BC (Canada)

    2005-07-01

    This presentation provided a general background of coalbed gas (CBG) development opportunities in British Columbia. It included a review of the coal resource and geology; the regulatory process and other useful information for potential investors; geoscience and the environment; and community and First Nations issues. CBG activity in British Columbia is in the early stage of exploration. Fifty wells have been evaluated since 1999 and it is expected that CBG will play a large role in the province's future energy supplies. The common concerns that have been expressed by various communities throughout the province include responsible development and mitigating any impacts on land, air, water, wildlife and people. In response to public interest, the British Columbia Ministry of Energy and Mines has taken measures to regulate the environment and produced water. The government's approach to communities involves consultation with First Nations, which are key to resource development. tabs., figs.

  19. Synchronous development of breast cancer and chest wall fibrosarcoma after previous mantle radiation for Hodgkin's disease

    International Nuclear Information System (INIS)

    Patlas, Michael; McCready, David; Kulkarni, Supriya; Dill-Macky, Marcus J.

    2005-01-01

    Survivors of Hodgkin's disease are at increased risk of developing a second malignant neoplasm, including breast carcinoma and sarcoma. We report the first case of synchronous development of chest wall fibrosarcoma and breast carcinoma after mantle radiotherapy for Hodgkin's disease. Mammographic, sonographic and MR features are demonstrated. (orig.)

  20. Exploring the effects of shale gas development on natural gas markets : A multi-method approach

    NARCIS (Netherlands)

    Moorlag, R.; Auping, W.L.; Pruyt, E.

    2014-01-01

    Now that conventional gas resources are rapidly declining in many industrialised regions, national governments are considering the exploration and production of unconventional resources, with shale gas in particular. Large-scale development of these resources could significantly lower import

  1. Sustainable development, tourism and territory. Previous elements towards a systemic approach

    Directory of Open Access Journals (Sweden)

    Pierre TORRENTE

    2009-01-01

    Full Text Available Today, tourism is one of the major challenges for many countries and territories. The balance of payments, an ever-increasing number of visitors and the significant development of the tourism offer clearly illustrate the booming trend in this sector. This macro-economic approach is often used by the organizations in charge of tourism, WTO for instance. Quantitative assessments which consider the satisfaction of customers’ needs as an end in itself have prevailed both in tourism development schemes and in prospective approaches since the sixties.

  2. Some aspects of natural gas and economic development - a short note

    International Nuclear Information System (INIS)

    Banks, F.E.

    1992-01-01

    Just because gas is labelled the fuel of the future does not ensure that it will become exactly that; but faith is important. If the world's energy establishments really want to expand their use of natural gas, all the objective conditions exist to make this expansion possible: large and increasing gas supplies; impressive changes in gas-burning technologies; a widespread acceptance of gas by both the general public and environmentalists; and so on. The considerable increase in the supply of gas is probably regarded as bad news by many exporters of gas, but I am not so sure that this will prove to be the case. Instead, a situation may be foreseen where the widely advertized rising supply will tend to encourage demand, since many actual and potential gas users will be inclined to interpret rapidly increasing gas reserves as the forerunner of an extended buyers' market. Two other factors working in favour of natural gas are the growing belief that the remaining reserves of oil are considerably more limited than previously believed and the increase in the value of natural gas due to technological advances being made in gas-burning equipment. The pattern of economic growth and development in Sweden which does not have natural gas and the key role of the electricity sector, is a pointer to countries which do possess gas that they should pay particular attention to its value in electricity generation. (author)

  3. Gas Cell Development for Infrared Spectra Calibration

    Science.gov (United States)

    Valdivielso, Luisa; Esparza, Pedro; Martín, Eduardo L.

    NAHUAL is a high-resolution near-infrared echelle spectrograph of high stability on preliminary phase development for GTC (Gran Telescopio de Canarias). Its natural location is a Nasmyth focus. One of the principal scientific aims is to carry out high precision radial velocity measurements (from 1 to 10 m/s) in the near infrared. To achieve high stability on radial velocity measurements, NAHUAL needs a calibration unit that uses a mixture of gases whose absorption spectra must be as homogeneous as possible between 0.95 and 2.4 μm. We report on the measurements done to date with potentially active gas mixtures as acetylene, methane, nitrous oxide or hydrocarbons.

  4. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  5. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  6. Gas sector developments in Trinidad and Tobago

    International Nuclear Information System (INIS)

    McGuire, G.

    1997-01-01

    The outlook for the natural gas industry in Trinidad and Tobago was discussed. The country's proven reserves, as of January 1997, were estimated at 16.1 trillion cubic feet. The National Gas Company (NGC) is key to expansion of the country's gas business. In 1996 NGC sold 683 million cubic feet of natural gas. The petrochemical sector accounted for 57.6 per cent of sales, power generation 22.4 per cent and metal and other heavy industry 19 per cent. Amoco, Enron and British Gas are the principal suppliers. Natural gas demand in Trinidad and Tobago is predicted to surpass the 1.5 billion cubic feet per day threshold by the year 2001, rising to 2.1 billion cubic feet per day by 2006. During the 1997-2001 period, gas sales to the petrochemical sector will increase by a compounded average of 24 per cent per year due to new plant expansions in the methanol and ammonia sectors. Trinidad expects to be firmly established as the world's leading exporter of methanol and ammonia by the year 2001. Increased gas sales will also be stimulated by the proposed establishment of an aluminium smelter in Trinidad. 1 tab., 1 fig

  7. Research and Development Concerning Coalbed Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good

  8. Fission gas release from oxide fuels at high burnups (AWBA development program)

    International Nuclear Information System (INIS)

    Dollins, C.C.

    1981-02-01

    The steady state gas release, swelling and densification model previously developed for oxide fuels has been modified to accommodate the slow transients in temperature, temperature gradient, fission rate and pressure that are encountered in normal reactor operation. The gas release predictions made by the model were then compared to gas release data on LMFBR-EBRII fuels obtained by Dutt and Baker and reported by Meyer, Beyer, and Voglewede. Good agreement between the model and the data was found. A comparison between the model and three other sets of gas release data is also shown, again with good agreement

  9. The Spanish experience - future developments in the gas industry

    International Nuclear Information System (INIS)

    Moraleda, P.

    1996-01-01

    Spanish experience is presented concerned it may be useful at the time of setting up a natural gas industry. The Spanish natural gas industry is of recent creation. Developing infrastructure and securing gas supplies have been major challenges. Challenges which, are also common for majority of the countries. The presentation is split into two blocks: the first one is on our experience in the establishment and consolidation of the market for natural gas in Spain. The second block deals with future developments aiming to strengthen the security of supply; and with the opportunities and threats the gas industry will face

  10. Development of a Dual-Fuel Gas Turbine Engine of Liquid and Low-Calorific Gas

    Science.gov (United States)

    Koyama, Masamichi; Fujiwara, Hiroshi

    We developed a dual-fuel single can combustor for the Niigata Gas Turbine (NGT2BC), which was developed as a continuous-duty gas turbine capable of burning both kerosene and digester gas. The output of the NGT2BC is 920kW for continuous use with digester gas and 1375kW for emergency use with liquid fuel. Digester gas, obtained from sludge processing at sewage treatment plants, is a biomass energy resource whose use reduces CO2 emissions and take advantage of an otherwise wasted energy source. Design features for good combustion with digester gas include optimized the good matching of gas injection and swirl air and reduced reference velocity. The optimal combination of these parameters was determined through CFD analysis and atmospheric rig testing.

  11. Unconventional Oil and Natural Gas Development

    Science.gov (United States)

    EPA works with states and other key stakeholders, through sound scientific research and regulation; to help ensure that natural gas extraction from shale formations, also called fracking or hydrofracking, does not harm public health and the environment.

  12. Gas Industry in China: a New Resource for Development

    Directory of Open Access Journals (Sweden)

    Sergey Petrovich Popov

    2013-06-01

    Full Text Available Development of the gas industry in China since 1986 is considered by regions, by various consumer groups, gaseous fuels consumption pattern change with the development of gas transportation transmission and distribution systems. Current production of gaseous fuels, import infrastructure and natural gas prices in China are summarized. Implications on gas consumption growth in terms of customers and their geographical origin are provided. Competitive price stimations of the Russian natural gas for Chinese and other major gas importers in Eastern Asia are presented. Conclusion is made about Chinese monopsony on export gas pipelines from Siberia. The measures for elimination and/or reduction of such monopsony at the Asia-Pacific regional markets are offered

  13. Eastern Canada natural gas market development

    International Nuclear Information System (INIS)

    Laird, N.

    2001-01-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs

  14. Conference Reports: New developments affecting natural gas sales contracts

    International Nuclear Information System (INIS)

    1999-01-01

    Papers presented at a conference examining and reviewing recent trends in natural gas sales contracts are contained in this volume. Conference participants heard 14 presentations, with topics including pricing provisions in gas contracts, security of supply, cross-border issues, legislative reform of electronic data interchange, digital signatures, new developments in managing contracts in a competitive environment, the changing role of natural gas aggregators, drafting 'force majeure' clauses in natural gas purchase/sale contracts and the consequences and remedies for breach of natural gas contracts. The volume also includes biographical notes, and current addresses of the speakers

  15. Natural gas as raw material for industrial development

    International Nuclear Information System (INIS)

    Kvisle, Steinar

    2006-01-01

    Industrial development based on natural gas has broad, industrial implications. Norway has a vital industry based on natural gas as raw material, here under Ormen Lange, Snoehvit LNG, Tjeldbergodden and Petrochemical Grenland. The petrochemical industry has challenges, e.g. the cost of raw materials and energy, localization related to the markets, and recruitment, but considerable investments are made in the sector. The Northern areas in Norway may have special challenges related to bringing the product to the market. Solutions to this challenge are in LNG (liquid natural gas), GTL (gas to liquids), and GTO (gas to olefins)

  16. Building alliances for natural gas development

    Energy Technology Data Exchange (ETDEWEB)

    Kangles, N. [Novacorp International, Alberta (Canada)

    1993-12-31

    NOVA Corporation of Alberta is a widely held company operating internationally from headquarters in Calgary, Alberta, Canada. NOVA adds value to energy through producing, marketing and transporting natural gas and upgrading natural gas and other hydrocarbons into chemicals and plastics. In 1992, NOVA generated $3 billion in revenue and $164 million in net income. Assets at the end of 1992 totalled $6.2 billion. Shares trade on the Toronto, Montreal, Alberta, New york and London stock exchanges, and on Swiss stock exchanges in Geneva, Zurich and Basle. Worldwide, NOVA employs over 6000 people.

  17. Building alliances for natural gas development

    International Nuclear Information System (INIS)

    Kangles, N.

    1993-01-01

    NOVA Corporation of Alberta is a widely held company operating internationally from headquarters in Calgary, Alberta, Canada. NOVA adds value to energy through producing, marketing and transporting natural gas and upgrading natural gas and other hydrocarbons into chemicals and plastics. In 1992, NOVA generated $3 billion in revenue and $164 million in net income. Assets at the end of 1992 totalled $6.2 billion. Shares trade on the Toronto, Montreal, Alberta, New york and London stock exchanges, and on Swiss stock exchanges in Geneva, Zurich and Basle. Worldwide, NOVA employs over 6000 people

  18. Regulation and development of the Argentinean gas market

    Energy Technology Data Exchange (ETDEWEB)

    Ponzo, Ricardo, E-mail: rponzoa@repsolypf.co [YPF, Buenos Aires (Argentina); Dyner, Isaac, E-mail: idyner@unal.edu.c [Energy Institute and CeiBA, National University of Colombia (Colombia); Arango, Santiago, E-mail: saarango@unal.edu.c [Energy Institute and CeiBA, National University of Colombia (Colombia); Larsen, Erik R., E-mail: erik.larsen@unisi.c [University of Lugano, Via Buffi 13, CH-6904 Lugano (Switzerland)

    2011-03-15

    Gas markets are becoming increasingly important around the world and the long-term evolution of these markets is of strategic importance for many countries. This makes it essential to understand how regulation and intervention in these markets affects the long-term prospect for the secure supply of gas. We use Argentina as a case to illustrate some of the issues and consequences of gas regulation. Argentina is a country that has had a significant increase in the use of gas over the years, and where a potential gas deficit looms large in the present and the future. Based on a simulation model developed to understand the supply of gas in Argentina, we discuss how regulation will influence the long-term supply of gas in both Argentina and surrounding countries. Using the model, we develop a series of scenarios to highlight the consequences of different current and possible future interventions in the market by the Regulator. Finally, we discuss short-term regulatory options to reduce the impact of a gas deficit, and the possibility of securing the long-term supply of gas in Argentina. - Research Highlights: {yields}This study show that even short intervention in markets can have long term impact. {yields}Simulation can help to understand the evolution of the Argentinean gas markets. {yields}Scenarios highlight the gas shortage.

  19. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  20. Suggestions on the development strategy of shale gas in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-12-01

    Full Text Available From the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1 Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2 Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3 The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4 Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5 Reform the mining rights management system, establish information platform of shale

  1. Development of a Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Becker, A.B.; Pepper, W.J.

    1995-01-01

    Objective of developing this model (GSAM) is to create a comprehensive, nonproprietary, PC-based model of domestic gas industry activity. The system can assess impacts of various changes in the natural gas system in North America; individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system assesses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices. Distribution, storage, and utilization of natural gas in a dynamic market-gased analytical structure is assessed. GSAM is designed to provide METC managers with a tool to project impacts of future research, development, and demonstration benefits

  2. Development of gas turbines simplified mathematical models; Desenvolvimento de modelos matematicos simplificados das turbinas a gas

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Leonardo Vinicius; Mendes, Pedro Paulo C. [Escola Federal de Engenharia de Itajuba, MG (Brazil). Dept. de Eletrotecnica; Ferreira, Claudio [Agencia Nacional de Energia Eletrica (ANEEL), Brasilia, DF (Brazil)

    1999-07-01

    This paper presents the development and analysis of various mathematical models for gas turbine which can be incorporated to dynamic stability or to electric power systems. The work provides answers for questions such as: the dynamic behaviour of gas turbine driven generator unities, the influence of those equipment in the other elements and the best operational conditions for the equipment.

  3. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  4. Shale gas development impacts on surface water quality in Pennsylvania.

    Science.gov (United States)

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  5. Development of a gas microvalve based on fine and micromachining

    NARCIS (Netherlands)

    Fazal, I.

    2007-01-01

    The work presented in this thesis is generated in the frame of the project “Micro and Miniaturized Flow Controller for Gas Chromatography�? financially supported by the Dutch Technology Foundation (STW). The aim of the project is to develop a miniature instrument for the control of gas flow

  6. Nuclear Waste Disposal: A Cautionary Tale for Shale Gas Development

    Science.gov (United States)

    Alley, William M.; Cherry, John A.; Parker, Beth L.; Ryan, M. Cathryn

    2014-07-01

    Nuclear energy and shale gas development each began with the promise of cheap, abundant energy and prospects for national energy independence. Nuclear energy was touted as "too cheap to meter," and shale gas promised jobs and other economic benefits during a recession.

  7. Latest development on the membrane formation for gas separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The first scientific observation related to gas separation was encountered by J.K Mitchell in 1831. However, the most remarkable and influential contribution to membrane gas separation technology was the systematic study by Thomas Graham in 1860. However only in 1979, membrane based gas separation technology was available and recognized as one of the most recent and advanced unit operations for gas separation processes. Membrane is fabricated by various methods and the parameters involved to a certain extent are very complicated. The phase inversion technique that is normally employed to produce membranes are dry/wet, wet, dry and thermal induced phase separation. Other techniques used to produce membrane are also reviewed. This paper reports the latest development in membrane formation for gas separation. The route to produce defect-free and ultrathin-skinned asymmetric membrane is also presented that represents the cutting edge technology in membrane gas separation process

  8. Development of Shale Gas Supply Chain Network under Market Uncertainties

    Directory of Open Access Journals (Sweden)

    Jorge Chebeir

    2017-02-01

    Full Text Available The increasing demand of energy has turned the shale gas and shale oil into one of the most promising sources of energy in the United States. In this article, a model is proposed to address the long-term planning problem of the shale gas supply chain under uncertain conditions. A two-stage stochastic programming model is proposed to describe and optimize the shale gas supply chain network. Inherent uncertainty in final products’ prices, such as natural gas and natural gas liquids (NGL, is treated through the utilization of a scenario-based method. A binomial option pricing model is utilized to approximate the stochastic process through the generation of scenario trees. The aim of the proposed model is to generate an appropriate and realistic supply chain network configuration as well as scheduling of different operations throughout the planning horizon of a shale gas development project.

  9. Development history of the gas turbine modular high temperature reactor

    International Nuclear Information System (INIS)

    Brey, H.L.

    2001-01-01

    The development of the high temperature gas cooled reactor (HTGR) as an environmentally agreeable and efficient power source to support the generation of electricity and achieve a broad range of high temperature industrial applications has been an evolutionary process spanning over four decades. This process has included ongoing major development in both the HTGR as a nuclear energy source and associated power conversion systems from the steam cycle to the gas turbine. This paper follows the development process progressively through individual plant designs from early research of the 1950s to the present focus on the gas turbine modular HTGR. (author)

  10. The development of Middle-East natural gas markets

    International Nuclear Information System (INIS)

    Bahgat, G.

    2001-01-01

    The economic, political and strategic environment under which plans to explore and develop gas fields in the Middle East have been drawn and implemented are reviewed. The topic is of particular importance in view of the fact that the Middle East holds more than one third of the world's proven reserves of natural gas, largely underdeveloped and under utilized as of the beginning of the second millennium. Particular attention is paid to Saudi Arabia, Iran and Israel, where despite serious challenges and political uncertainties, significant developments are underway to develop the region's natural gas potential. 27 refs., 1 tab

  11. Multiclass pesticide analysis in fruit-based baby food: A comparative study of sample preparation techniques previous to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Petrarca, Mateus H; Fernandes, José O; Godoy, Helena T; Cunha, Sara C

    2016-12-01

    With the aim to develop a new gas chromatography-mass spectrometry method to analyze 24 pesticide residues in baby foods at the level imposed by established regulation two simple, rapid and environmental-friendly sample preparation techniques based on QuEChERS (quick, easy, cheap, effective, robust and safe) were compared - QuEChERS with dispersive liquid-liquid microextraction (DLLME) and QuEChERS with dispersive solid-phase extraction (d-SPE). Both sample preparation techniques achieved suitable performance criteria, including selectivity, linearity, acceptable recovery (70-120%) and precision (⩽20%). A higher enrichment factor was observed for DLLME and consequently better limits of detection and quantification were obtained. Nevertheless, d-SPE provided a more effective removal of matrix co-extractives from extracts than DLLME, which contributed to lower matrix effects. Twenty-two commercial fruit-based baby food samples were analyzed by the developed method, being procymidone detected in one sample at a level above the legal limit established by EU. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Plan for gas overcrowding; Development in last decade

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    2000-01-01

    The plan for gas overcrowding, is one of the most important determinations of energy politics in last decade. It is an integral plan of consumption of combustible gas; that is to say, cover the natural gas and the liquefied gas of petroleum. In this article, the UPME wants to show the results of the implementation of this measure. The analysis shows, in the first place the impact achieved in the diversification of the energetic basket, with the penetration of the combustible gas. Facts and indicators of development of the plan are given that include an evaluation of the direct financial benefit that receive the homes, when using a more economic fuel. On the other hand, it puts on of present the government effort carried out through ECOPETROL and that of some private agents to start the plan. Finally, the investments made until today and the problems of low use of some nets of transport, related with the development of the market

  13. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    Science.gov (United States)

    Paewpanchon, P; Chanyotha, S

    2017-11-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Development of the charcoal adsorption technique for determination of radon content in natural gas

    International Nuclear Information System (INIS)

    Paewpanchon, P.; Chanyotha, S.

    2017-01-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. (authors)

  15. Natural gas in Europe: Development prospects

    International Nuclear Information System (INIS)

    Pasetto, R.

    1992-01-01

    Today, natural gas covers 16% of primary energy demand in Europe. Consumption of this fuel is set at about 380 billion cubic meters to which we can add about 700 billion consumed in the ex-COMECON countries. Europe's consumption alone is forecasted by many to rise to 500 billion cubic meters at the turn of the century and to 600 billion by the year 2010. It is expected that the power plant sector will account for one-third of this rise in consumption. Even if domestic production of this fuel is maximized and foreign suppliers maintain their production trends, the expected demand increases in industriali--ed countries can be sufficiently satisfied only by recourse to new suppliers located in the far reaches of the globe

  16. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  17. Water Availability for Shale Gas Development in Sichuan Basin, China.

    Science.gov (United States)

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  18. Baseline Gas Turbine Development Program. Fourteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E

    1976-04-30

    Progress is reported for a Baseline Gas Turbine Development Program sponsored by the Heat Engine Systems Branch, Division of Transportation Energy Conservation (TEC) of the Energy Research and Development Administration (ERDA). Structurally, this program is made up of three parts: (1) documentation of the existing automotive gas turbine state-of-the-art; (2) conduction of an extensive component improvement program; and (3) utilization of the improvements in the design, and building of an Upgraded Engine capable of demonstrating program goals.

  19. Gas pricing in developing countries: A case study of Pakistan

    International Nuclear Information System (INIS)

    Sohail, H.M.; Abid, M.S.; Ansari, A.M.

    1994-01-01

    Pakistan, a developing country, has gone through various phases of formulating gas pricing policies during its 40-year history of natural gas production and consumption. This paper identifies critical factors that influenced gas pricing policies in Pakistan and adverse effects experienced when any of these factors was not given proper consideration. For instance, on the producer's side, discounted pricing formulas discouraged further exploration and development, leaving high-potential areas unexplored and discovered fields dormant for more than a decade. On the consumer's side, subsidized gas prices encouraged consumption to rise steeply without new discoveries to offset additional surplus consumption. The paper also discusses various short- and long-term variables that should go into a gas pricing policy for developing countries. References to recent policies are also given, indicating how these variables were incorporated in real terms. The conclusions and recommendations, based on Pakistan's long experience with the gas industry, should be useful for other oil-importing countries rich in indigenous gas resources

  20. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  1. Development of Exhaust Gas Driven Absorption Chiller-Heater

    Science.gov (United States)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  2. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  3. Development of Europe's gas hubs: Implications for East Asia

    Directory of Open Access Journals (Sweden)

    Xunpeng Shi

    2016-10-01

    Full Text Available Gas trading hubs have been initially developed in the US in 1980s, UK in 1990s, more recently in European in the 2000s and mulled in East Asia now. Due to its freshness and diversification in nationality, governance and culture, the European hub experience can offer valuable lessons for East Asia. This paper seeks to advance understanding of gas hub development in Europe and provide lessons for East Asia. The European experience highlights that market liberalization and transition of gas pricing mechanism are necessary in creating the competitive markets that are needed for functional gas hubs. Political will and regulations further safeguard the competition environment needed for hub development. Natural factors, such as significant domestic production and culture could have a significant impact on the hub development and transition of pricing mechanism. In East Asia, the path to gas trading hubs might be more difficult than in Europe but a growing market creates an opportunity to start new terms with new contracts. Nevertheless, East Asian needs to work hard to development its indigenous gas or LNG trading hubs.

  4. Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields.

    Science.gov (United States)

    Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin; Strawn, Laura K

    2016-02-01

    Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  6. The perspectives of development of natural gas for vehicles

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This short paper analyses the actions carried out in the world, and in particular in France, to develop and promote the use of natural gas for vehicles (NGV). In France, a protocol of agreement was signed in June 1994 between the French car manufacturers, Gaz de France and the French Association of Natural Gas for Vehicles (AFGNV) in order to develop new kinds of gas fueled vehicles, more optimized engines, to increase the number of gas distribution stations, to ratify the new models of vehicles and the specific parts for these vehicles (composite materials tanks), to carry out R and D work on gas compressors, and to develop public and private fleets of urban buses and public service vehicles. The forthcoming application of the 'Clean Air Law' will support these actions. Significant and similar developments take place also in more than 30 other countries under the same environmental motivation and ambitious programs are planned in the USA, Japan and Argentina for the year 2000. The R and D effort now focusses on the use of LNG instead of compressed natural gas. (J.S.)

  7. “Greenwashing gas: Might a ‘transition fuel’ label legitimize carbon-intensive natural gas development?”

    International Nuclear Information System (INIS)

    Stephenson, Eleanor; Doukas, Alexander; Shaw, Karena

    2012-01-01

    Natural gas is widely considered to be the crucial “bridging fuel” in the transition to the low-carbon energy systems necessary to mitigate climate change. This paper develops a case study of the shale gas industry in British Columbia (BC), Canada to evaluate this assumption. We find that the transition fuel argument for gas development in BC is unsubstantiated by the best available evidence. Emissions factors for shale gas and LNG remain poorly characterized and contested in the academic literature, and context-specific factors have significant impacts on the lifecycle emissions of shale gas but have not been evaluated. Moreover, while the province has attempted to frame natural gas development within its ambitious climate change policy, this framing misrepresents substantive policy on gas production. The “transition fuel” and “climate solution” labels applied to development by the BC provincial government risk legitimizing carbon-intensive gas development. We argue that policy makers in BC and beyond should abandon the “transition fuel” characterization of natural gas. Instead, decision making about natural gas development should proceed through transparent engagement with the best available evidence to ensure that natural gas lives up to its best potential in supporting a transition to a low-carbon energy system. - Highlights: ► Transition fuel discourse may greenwash gas development. ► Gaps in research obscure emissions factors for LNG and shale gas. ► Climate solution label for shale gas and LNG development in BC is unsubstantiated.

  8. [Incidence and clinical risk factors for the development of diabetes mellitus in women with previous gestational diabetes].

    Science.gov (United States)

    Domínguez-Vigo, P; Álvarez-Silvares, E; Alves-Pérez M T; Domínguez-Sánchez, J; González-González, A

    2016-04-01

    Gestational diabetes is considered a variant of diabetes mellitus as they share a common pathophysiological basis: insulin resistance in target and insufficient secretion of it by pancreatic p-cell bodies. Pregnancy is a unique physiological situation provides an opportunity to identify future risk of diabetes mellitus. To determine the long-term incidence of diabetes mellitus in women who have previously been diagnosed with gestational diabetes and identifying clinical risk factors for developing the same. nested case-control cohort study. 671 patients between 1996 and 2009 were diagnosed with gestational diabetes were selected. The incidence of diabetes mellitus was estimated and 2 subgroups were formed: Group A or cases: women who develop diabetes mellitus after diagnosis of gestational diabetes. Group B or control: random sample of 71 women with a history of gestational diabetes in the follow-up period remained normoglycemic. Both groups were studied up to 18 years postpartum. By studying Kaplan Meier survival of the influence of different gestational variables it was obtained in the later development of diabetes mellitus with time parameter and COX models for categorical variables were applied. Significant variables were studied by multivariate Cox analysis. In all analyzes the Hazard ratio was calculated with confidence intervals at 95%. The incidence of diabetes mellitus was 10.3% in patients with a history of gestational diabetes. They were identified as risk factors in the index pregnancy to later development of diabetes mellitus: greater than 35 and younger than 27 years maternal age, BMI greater than 30 kg/m2, hypertensive disorders of pregnancy, insulin therapy, poor metabolic control and more than a complicated pregnancy with gestational diabetes. Clinical factors have been identified in the pregnancy complicated by gestational diabetes that determine a higher probability of progression to diabetes mellitus in the medium and long term.

  9. Planning policy, sustainability and housebuilder practices: The move into (and out of?) the redevelopment of previously developed land.

    Science.gov (United States)

    Karadimitriou, Nikos

    2013-05-01

    This paper explores the transformations of the housebuilding industry under the policy requirement to build on previously developed land (PDL). This requirement was a key lever in promoting the sustainable urban development agenda of UK governments from the early 1990s to 2010 and has survived albeit somewhat relaxed and permutated in the latest National Planning Policy Framework (NPPF). The paper therefore looks at the way in which the policy push towards densification and mixed use affected housebuilders' business strategy and practices and their ability to cope with the 2007 downturn of the housing market and its aftermath. It also points out the eventual feedback of some of these practices into planning policy. Following the gradual shift of British urban policy focus towards sustainability which started in the early 1990s, new configurations of actors, new skills, strategies and approaches to managing risk emerged in property development and housebuilding. There were at least two ways in which housebuilders could have responded to the requirements of developing long term mixed use high density projects on PDL. One way was to develop new products and to employ practices and combinations of practices involving phasing, a flexible approach to planning applications and innovative production methods. Alternatively, they could approach PDL development as a temporary turn of policy or view mixed use high density schemes as a niche market to be explored without drastically overhauling the business model of the entire firm. These transformations of the UK housebuilding sector were unfolding during a long period of buoyancy in the housing market which came to an end in 2007. Very little is known both about how housebuilder strategies and production practices evolved during the boom years as well as about how these firms coped with the effects of the 2007 market downturn. The paper draws on published data (company annual reports, government statistics) and primary

  10. Planning policy, sustainability and housebuilder practices: The move into (and out of?) the redevelopment of previously developed land

    Science.gov (United States)

    Karadimitriou, Nikos

    2013-01-01

    This paper explores the transformations of the housebuilding industry under the policy requirement to build on previously developed land (PDL). This requirement was a key lever in promoting the sustainable urban development agenda of UK governments from the early 1990s to 2010 and has survived albeit somewhat relaxed and permutated in the latest National Planning Policy Framework (NPPF). The paper therefore looks at the way in which the policy push towards densification and mixed use affected housebuilders’ business strategy and practices and their ability to cope with the 2007 downturn of the housing market and its aftermath. It also points out the eventual feedback of some of these practices into planning policy. Following the gradual shift of British urban policy focus towards sustainability which started in the early 1990s, new configurations of actors, new skills, strategies and approaches to managing risk emerged in property development and housebuilding. There were at least two ways in which housebuilders could have responded to the requirements of developing long term mixed use high density projects on PDL. One way was to develop new products and to employ practices and combinations of practices involving phasing, a flexible approach to planning applications and innovative production methods. Alternatively, they could approach PDL development as a temporary turn of policy or view mixed use high density schemes as a niche market to be explored without drastically overhauling the business model of the entire firm. These transformations of the UK housebuilding sector were unfolding during a long period of buoyancy in the housing market which came to an end in 2007. Very little is known both about how housebuilder strategies and production practices evolved during the boom years as well as about how these firms coped with the effects of the 2007 market downturn. The paper draws on published data (company annual reports, government statistics) and primary

  11. Shale gas development impacts on surface water quality in Pennsylvania

    OpenAIRE

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale...

  12. Analysis of the Energy Balance of Shale Gas Development

    Directory of Open Access Journals (Sweden)

    Hiroaki Yaritani

    2014-04-01

    Full Text Available Interest has rapidly grown in the use of unconventional resources to compensate for depletion of conventional hydrocarbon resources (“easy hydrocarbon” that are produced at relatively low cost from oil and gas fields with large proven reserves. When one wants to ensure the prospects for development of unconventional resources that are potentially vast in terms of their energy potential, it is essential to determine the quality of that energy. Here we consider the development of shale gas, an unconventional energy resource of particularly strong interest of late, through analysis of its energy return on investment (EROI, a key indicator for qualitative assessment of energy resources. We used a Monte Carlo approach for the carbon footprint of U.S. operations in shale gas development to estimate expected ranges of EROI values by incorporating parameter variability. We obtained an EROI of between 13 and 23, with a mean of approximately 17 at the start of the pipeline. When we incorporated all the costs required to bring shale gas to the consumer, the mean value of EROI drops from about 17 at the start of the pipeline to 12 when delivered to the consumer. The shale gas EROI values estimated in the present study are in the initial stage of shale gas exploitation where the quality of that resource may be considerably higher than the mean and thus the careful and continuous investigation of change in EROI is needed, especially as production moves off the initial “sweet spots”.

  13. Development of Micromachine Gas Turbine for Portable Power Generation

    Science.gov (United States)

    Isomura, Kousuke; Tanaka, Shuji; Togo, Shinichi; Kanebako, Hideki; Murayama, Motohide; Saji, Nobuyoshi; Sato, Fumihiro; Esashi, Masayoshi

    Micromachine gas turbine with centrifugal impellers of 10mm diameter fabricated by 5-axis micro-milling is under development at Tohoku University, in conjunction with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI), Tohoku-Gakuin University, and Sankyo Seiki Mfg. Co., Ltd. The development is currently at the stage of proving the feasibility of the gas turbine cycle by component tests. Micro-combustors have been developed for both hydrogen and methane fuel. Over 99.9% of the combustion efficiency has been realized in both combustors and the baseline configuration of the combustor for the gas turbine is set. A compressor of 10mm diameter has been developed as a micromachined turbocharger. The performance test of the micromachined turbocharger has been started, and ran up to 566000rpm, which is approximately 65% of the design speed. Compressor performance has been successfully measured along a constant speed line at 55% of the design speed.

  14. A model-based analysis of the implications of shale gas developments for the European gas market

    Energy Technology Data Exchange (ETDEWEB)

    De Joode, J.; Plomp, A.J.; Ozdemir, O. [ECN Policy Studies, Petten (Netherlands)

    2012-04-15

    Shale gas in Europe could potentially be a big thing, especially in particular regions. Whereas test drillings need to confirm the technical recoverability of deposits and further research is needed on the environmental and safety aspects of shale gas production, this paper illustrates that shale gas developments may have substantial implications for regional gas balances, gas flows, and infrastructure requirements throughout Europe in the next decades.

  15. The scientific assessment of shale gas development in South Africa

    CSIR Research Space (South Africa)

    Snyman-Van der Walt, Luanita

    2017-10-01

    Full Text Available This presentation discusses the scientific assessment of shale gas development in South Africa by Luanita Snyman Van der Walt at the 6th CSIR Conference: Ideas that work for industrial development, 5-6 October 2017, CSIR International Convention...

  16. Shale gas: challenges and questions for the development

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Bellier, Cyrille

    2014-12-01

    As the development of shale gas exploitation appears to be successful in the USA, and as, despite environmental consequences, many emerging or developing countries are wandering about the opportunity to implement exploration and exploitation programmes, this study, in its first part, precisely defines shale gas and its conditions of exploitation (drilling, hydraulic fracturing), highlights the ephemeral nature of this production (few years) compared to conventional gas (several tens of years), and outlines that this exploitation results in economic characteristics which are very unusual for the energy sector. Some other issues are then addressed: needs in water, sand, additive chemical products, road transport and gas transport infrastructures. Environmental issues are also addressed in detail, notably methane leakages which put the so-said harmlessness of shale gas for climate into question again. The USA experience is then analysed with respect to resource, from an industrial and economic point of view, and regarding environmental consequences. The second part proposes an analysis of the different determining parameters for the elaboration of a policy: resource (absolute value, years of consumption or production), level of gas dependency, population density, water resources, industrial experience, and regulation capacity of administrative authorities. The third part proposes an analysis grid for public authorities which comprises a set of issues to be addressed by ministries and institutional actors

  17. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  18. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  19. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    International Nuclear Information System (INIS)

    Bruns, Duane D.; Counce, Robert M.; Lima Rojas, Irma D.

    2010-01-01

    This research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  20. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  1. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  2. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  3. The gas turbine: Present technology and future developments

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    The gas turbine is the most widely used prime mover all over the world for either power generation or mechanical drive applications. The above fact is due to the recent great improvements that have been done especially in terms of efficiency, availability and reliability. The future for gas turbine technological development looks very promising. In fact, although tremendous growth has already taken place, there is still the potential for dramatic improvements in performance. Compared with the competitive prime movers (conventional steam power plants and reciprocating piston engines) the gas turbine technology is younger and still following a strong growth curve. The coming decades will witness the continued increasing in turbine inlet temperature, the development of new materials and refrigeration systems and the commercialization of inter cooled system and steam cooled turbines. With the very soon introduction of the G and H technology, expected single and combined cycle efficiencies for heavy duty machines are respectively 40% and 60%, while maintaining 'single digit' levels in pollutant emissions. In this report are given wide information on gas turbine present technology (Thermodynamics, features, design, performances, emission control, applications) and are discussed the main lines for the future developments. Finally are presented the research and technological development activities on gas turbine of Italian National Agency for new Technology Energy and the Environment Energy Department

  4. The opportunities for oil and gas development in the NWT

    International Nuclear Information System (INIS)

    Matthews, D.

    2000-01-01

    The oil and gas prospects for the Northwest Territories (NWT) were discussed with particular emphasis on issues regarding the development of natural gas in the Western Arctic. The future for northern gas resources looks promising as gas demand rises and supply falters. The author emphasized that if all current plans materialize, gas from the Mackenzie Delta should be flowing to southern markets by 2006-2007. This paper also described the three main risk types associated with natural gas development and the manner with which they will be dealt. The risks include geological risk, market risk and economic risk. The NWT natural gas resource base is considered to hold about 14.5 trillion cf, mostly in the Mackenzie Delta with the remaining in the Fort Liard and Colville Lake areas. Geologists are working on providing a better understanding of the common petroleum potential for the area immediately north and south of 60 degrees to determine the feasibility for a pipeline project. There is currently a market in North America for approximately 25 Tcf of natural gas per year, 22 of which is in the United States and the balance in Canada. This number is expected to grow to between 30 and 35 Tcf over the next 10 to 15 years. It was suggested that the best way to handle market risk is to avoid putting too much product into the market to avoid a price collapse, and to have a project with the highest possible producer netback to ride the market changes caused by others. A brief discussion about pipeline tolls, average and marginal costs was also included. One way to reduce the monetary risk in transportation is to use a link for revenue producing opportunities completely unrelated to fossil fuel transportation, such as fibre optic conduits which could be installed as the pipe goes into the ground. Issues regarding political and regulatory risks range from access to land to the uncertainty of the regulatory regime, to political involvement in routing

  5. Shale Gas Geomechanics for Development and Performance of Unconventional Reservoirs

    Science.gov (United States)

    Domonik, Andrzej; Łukaszewski, Paweł; Wilczyński, Przemysław; Dziedzic, Artur; Łukasiak, Dominik; Bobrowska, Alicja

    2017-04-01

    Mechanical properties of individual shale formations are predominantly determined by their lithology, which reflects sedimentary facies distribution, and subsequent diagenetic and tectonic alterations. Shale rocks may exhibit complex elasto-viscoplastic deformation mechanisms depending on the rate of deformation and the amount of clay minerals, also bearing implications for subcritical crack growth and heterogeneous fracture network development. Thus, geomechanics for unconventional resources differs from conventional reservoirs due to inelastic matrix behavior, stress sensitivity, rock anisotropy and low matrix permeability. Effective horizontal drilling and hydraulic fracturing technologies are required to obtain and maintain high performance. Success of these techniques strongly depends on the geomechanical investigations of shales. An inelastic behavior of shales draws increasing attention of investigators [1], due to its role in stress relaxation between fracturing phases. A strong mechanical anisotropy in the vertical plane and a lower and more variable one in the horizontal plane are characteristic for shale rocks. The horizontal anisotropy plays an important role in determining the direction and effectiveness of propagation of technological hydraulic fractures. Non-standard rock mechanics laboratory experiments are being applied in order to obtain the mechanical properties of shales that have not been previously studied in Poland. Novel laboratory investigations were carried out to assess the creep parameters and to determine time-dependent viscoplastic deformation of shale samples, which can provide a limiting factor to tectonic stresses and control stress change caused by hydraulic fracturing. The study was supported by grant no.: 13-03-00-501-90-472946 "An integrated geomechanical investigation to enhance gas extraction from the Pomeranian shale formations", funded by the National Centre for Research and Development (NCBiR). References: Ch. Chang M. D

  6. Opportunities and challenges in developing gas markets in South America

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Cristiano Boaventura [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The article has the objective of identifying and analyzing the key market levers and drivers, emerging issues and challenges in developing the gas markets in South America. In section 1, the paper provides an overview of the most relevant indicators in the natural gas markets of the region. Data such as natural gas proven reserves; production; consumption; trade movements (by pipeline and LNG) and main aspects of regulatory framework are shown. In section 2, some of the key challenges and opportunities in developing gas markets in the region are identified, including those relating to market integration, political aspects and the main players' investments. In section 3, possible strategies from governments and enterprises to overcome those challenges, and seize the potential opportunities of the region are examined. In section 4, the conclusions point to the potential of developing the gas markets as a means to diversify the energy sources in the region, fostering a successful process of economic growth and political integration in the area. (author)

  7. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)] [and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  8. Development status of liquefied natural gas industry in China

    International Nuclear Information System (INIS)

    Shi Guohua; Jing Youyin; Wang Songling; Zhang Xutao

    2010-01-01

    With the significant economic growth in China, energy related environmental issues become more and more serious. Most of air pollutants are produced by burning coal. In order to achieve a sustainable balance between economic growth and environmental protection, China has been taking measures to expand the role played by natural gas, especially since the beginning of the 21st century. As the liquid form of natural gas, liquefied natural gas (LNG) has also been paid more attention in the country. This paper explores main motives for the fast development of China's LNG industry. An overview of the industry is also described, covering LNG receiving terminals, plants and transportation. Despite a relatively short development history of LNG industry in China, there are many remarkable successes. City-gas supply by LNG is widely applied in many small to medium cities, and LNG vehicles and cold energy utilization are growing rapidly with governmental supports. At the end, the developmental trends of China's LNG industry are introduced. All the discussions show that LNG is strategically important in China's future energy infrastructure. - Research highlights: →Explore main momentums for the fast development of China's LNG industry→Analyze detailedly current states and future prospects of LNG infrastructure in China→Introduce and analyze the wide application of LNG-based gas supply mode in China→Discuss new developmental trends in China's LNG industry

  9. City-gas development in China-An NG perspective

    International Nuclear Information System (INIS)

    Wong, James W.K.

    2010-01-01

    Supply of piped gas in China has a long history but development was slow until the 21st century. The growing demand for cleaner fuel in the past ten years has encouraged domestic exploration and production of natural gas (NG) and the construction of long-haul pipelines linking upstream western regions of the country to downstream city-gas consumers in the eastern coastal areas. However, demand for NG in the cities is increasing so fast that recent winters have seen severe supply difficulties. This led to a government directive which set constraints on the domestic NG supplies and discouragement to gas power and petrochemical projects, and eventually to the Chinese government's willingness to accept the higher prices commanded by the international NG market. Nevertheless, the over demand situation has created a dominant market position for upstream NG producers and long-haul pipeline operators favouring their forward integration into downstream city-gas markets. Accordingly, pressures are building that may yet result in substantial pricing and regulatory reform in the city-gas industry.

  10. Advanced Seal Development for Large Industrial Gas Turbines

    Science.gov (United States)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  11. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball...... and photosynthesis rate, respectively, were significantly higher and lower than unity....... the stomatal conductance regulation. While previous models considered the same weighting for relative humidity and photosynthesis rate, we found that relative humidity has a more pronounced regulating effect on stomatal conductance than photosynthesis rate and the weightings for relative humidity...

  12. The development of a gas transmission system in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Proudian, Serko; Rickaert, Stefan [Tractebel Engineering, Brussels (Belgium)

    2005-07-01

    Tractebel Engineering is undertaking for the Lebanese Ministry of Energy and Water (MEW) advisory services for the launching and for the awarding of a DBOT (Design, Build, Operate and Transfer) contract for the development of a gas transmission system through Lebanon. The service embraces a global approach, integrating legal, market, technical and financial matters, to provide MEW with a clear strategy to its gas development program, aimed at attracting private investors willing to tender on this DBOT project.The Legal Framework Report examines the existing Lebanese legal system and analyzes its suitability to the regulatory framework required to operate gas networks; it also provides recommendations aimed at attracting potential DBOT developers, by facilitating bureaucratic procedures with possible enactment of new laws. The Gas Demand Due Diligence Report provides the market study for present and future demand of gas in Lebanon in the next 25 years (duration of the DBOT contract), with anticipated needs resulting from power generation, industrial sector, commercial and residential sectors. The Pipeline Alternative Solutions Report provides several alternative routing and configurations for the gas transmission pipeline, including surveys, in-land routing (through rough mountain and heavily populated areas), or off-shore routing (through rough marine canyons and sea water depth in excess of 1,500 meters). Basic technical economical study is elaborated for more than 30 options.The Pipeline Financial Optimization Report compares the economics and provides for each solution the expected postal tariff (the compensation that MEW would need to pay to the developer for the execution of the 25 year DBOT contract). The advisory services are completed with preparation of the Pre-Qualification Notice (aimed at selecting a short list of qualified Bidders), preparation of the Request For Proposal (bidding on the selected pipeline option), evaluation of proposal, selection of

  13. Development of 100MW Gas Turbine Shaft Sleeve Puller | Sadjere ...

    African Journals Online (AJOL)

    A Shaft Sleeve Puller was developed, designed and constructed in response to the need to pull-out / pull-in the 30-tonnes by 12m long rotor of the 100-MW gas turbine generator for inspection, as part of a refurbishment programme of a power station in Delta State, Nigeria. The design is a runway system, consisting of a ...

  14. Development and applications of gas electron multiplier detectors

    CERN Document Server

    Sauli, Fabio

    2003-01-01

    An overview of the recent developments in the field of gas electron multiplier (GEM) detectors was presented. Cascading of several GEM foils permits the sustaining of large gains and thereby allows the detection of minimum ionizing particles. The application of GEM included, fast and position sensitive detection in particle physics, medicine, neutron spectrometry, and astrophysics. (Edited abstract) 19 Refs.

  15. Development of gas sensors using ZnO nanostructures

    Indian Academy of Sciences (India)

    Administrator

    *For correspondence. Development of gas sensors using ZnO nanostructures. S K GUPTA. 1,. *, ADITEE JOSHI. 2 and MANMEET KAUR. 1. 1. Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre,. Mumbai 400 085. 2. Department of Electronics Science, University of Pune, Pune 411 007.

  16. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  17. Development of a honeycomb gas proportional counter array for ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 60; Issue 5. Development of a honeycomb gas proportional counter array for photon multiplicity measurements in high multiplicity environment. M S Ganti M M Aggarwal S K Badyal V S Bhatia S Chattopadhyay A K Dubey M R Majumdar M S Ganti A Kumar T K Nayak ...

  18. Development of Competitive Gas Trading in Continental Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In this publication the IEA examines the history of major gas markets' development in OECD Europe, and explores the possible expansion of trading through the mechanism of different hubs across the region. Lessons learned from North American markets on the benefits of regulatory convergence and investor-friendly legal framework are an important part of the analysis. Competitive trading based on transparent, non-discriminatory rules in a flexible and integrated European gas market will lead to more efficiency, timely investment, and greater market resilience, therefore ensuring more security for both customers and suppliers in the long term.

  19. Louisiana waterthrush and benthic macroinvertebrate response to shale gas development

    Science.gov (United States)

    Wood, Petra; Frantz, Mack W.; Becker, Douglas A.

    2016-01-01

    Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of

  20. Criteria Development for Gas Turbine Premixer Flameholding Tendencies of Natural Gas and High Hydrogen Content Fuels

    Science.gov (United States)

    Sullivan-Lewis, Elliot Gregory

    Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when the fuel contains hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor, flashback can occur under certain circumstances. Thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen containing fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of the airfoil's angle of rotation was also investigated. Blow off for hydrogen reactions was found to occur at much lower adiabatic flame temperatures than natural gas reactions. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame

  1. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  2. Further developments of the gas electron multiplier (GEM)

    CERN Document Server

    Benlloch, J M; Capéans-Garrido, M; Gruwé, M; Hoch, M; Labbé, J C; Placci, Alfredo; Ropelewski, Leszek; Sauli, Fabio

    1998-01-01

    We describe the development and operation of the Gas Electron Multiplier, a thin insulating foil metal-clad on both sides and perforated by a regular pattern of small holes. The mesh can be incorporat ed in the gas volume of an active detector to provide a first amplification channel for electrons, or used as stand alone. We report on the basic properties of GEMs manufactured with different geometr ies and operated in several gas mixtures as well as on their long-term stability after accumulation of charge equivalent to several years of operation in high luminosity experiments. Optimized GEMs re ach gains close to 10000 at safe operating voltages, permitting the detection of ionizing tracks, without other amplifying elements, on a simple printed circuit board (PCB), opening new possibilities for detector design.

  3. Indian gas field development plan aims for quick production

    International Nuclear Information System (INIS)

    Banerjee, N.

    1992-01-01

    The development of a new oil or gas field involves construction of various downstream facilities such as field flow lines, trunk lines, oil and gas collecting and processing stations, and transportation to refineries and consuming centers. This paper reports that it is essential that these facilities be built on a schedule that allows the products to be transported and processed as early as possible. Unless such an approach is initiated, the wells producing crude oil or natural gas will need to be shut-in in the absence of the other relative facilities. For quick returns on the investments, a realistic program and careful evaluation of the schedule is needed to ensure that early commissioning of the fields is possible

  4. The domestic natural gas industry in developing countries

    International Nuclear Information System (INIS)

    Klass, D.L.; Khan, R.A.; Khwaja, S.

    1992-01-01

    The domestic natural gas industry has generally exhibited slow growth in most developing countries that are fortunate enough to have sufficient proved gas reserves to meet energy needs. But supportive government policies that promote the use of indigenous reserves are now beginning to have a positive impact in many parts of the world. Supply and distribution infrastructures are being built or modernized. And natural gas is now or will be available at prices that encourage the displacement of competitive fuels in the larger, energy-intensive industrial and power-generation markets of these countries. It is expected that the domestic gas industry in many developing countries will expand at higher rates than in the past. In the next few decades, the resulting benefits will include reductions in oil consumption per capita, improvements in the balance of payments for oil-importing and exporting developing countries, greater efficiency of energy usage and lower energy consumption per output unit, and improved environmental quality. The national economies and living standards will also undergo significant advancement

  5. The capacity of states to govern shale gas development risks.

    Science.gov (United States)

    Wiseman, Hannah J

    2014-01-01

    The development of natural gas and oil from unconventional formations in the United States has grown substantially in recent years and has created governance challenges. In light of this recent growth, and increasing attention to global shale gas resources, the successes and failures of governance efforts in this country serve as important lessons for other nations that have their own unconventional petroleum resources and are beginning to move forward with development, thus calling for a more in-depth examination of the laws governing shale gas development and their implementation. Governance includes both the substance of laws and the activities of entities that implement and influence laws, and in the case of oil and gas, states are primarily responsible for risk governance. Nongovernmental actors and industry also work with states to shape and implement regulations and standards. This Policy Analysis introduces the role of various actors in U.S. shale gas governance, explaining why the states are primarily responsible for risk governance, and explores the capacity of states to conduct governance, examining the content of their laws and the strength of their regulatory entities. The Analysis concludes that states are, to a degree, addressing the changing risks of development. Gaps remain in the substance of regulations, however, and many states appear to lack adequate support or policies for training industry in compliance matters, monitoring activity at sites, prioritizing certain types of regulatory violations that pose the highest risks, enforcing laws, and ensuring that the public is aware of inspections and enforcement and can therefore monitor state activity.

  6. Offshore oil and gas : a community development perspective

    International Nuclear Information System (INIS)

    Pierce, J.; Vodden, K.; House, D.

    2003-01-01

    A community perspective on offshore oil and gas development in British Columbia was presented. It was noted that local benefits depend greatly on the level of regulation and government intervention in the industry. Community preparedness, jurisdictional certainty and corporate ethics also play a vital role. It is also necessary to clearly understand legal, economic, environmental, social and industrial aspects of offshore development. Jurisdictional concerns include the International Free Trade Agreement, ambiguities over mineral rights, and claims by First Nations to seabed and ocean resources. It was emphasized that the impact of offshore development on ecotourism and fisheries should not be underestimated. Community-based planning is critical. Economic imperatives include international prices, recovery costs, distribution of royalties, and alternative opportunities. It was also noted that communities in British Columbia have much to learn from other gas dependent regions

  7. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K. C.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature, but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for Comprehensive Test Ban Treaty Surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of DOE, DOD, and NRC-licensed facilities, and improved integrating Rn detectors for earthquake prediction. The purpose of the present paper is to present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. It is the authors' intention that the findings presented herein may be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  8. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K.C.; Andersen, A.; Russ, W.R.; Stuenkel, D.; Valentine, J.D.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for comprehensive test ban treaty surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of US Department of Energy, US Department of Defense, and US Nuclear Regulatory Commission licensed facilities, and improved integrating Rn detectors for earthquake prediction. They present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. They intend for the findings presented herein to be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  9. Spectrophotometric determination of uranium with arsenazo previous liquid-liquid extraction and colour development in organic medium

    International Nuclear Information System (INIS)

    Palomares Delgado, F.; Vera Palomino, J.; Petrement Eguiluz, J. C.

    1964-01-01

    The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs

  10. Development options for the Dutch gas distribution grid in a changing gas market

    NARCIS (Netherlands)

    Weidenaar, Taede; Hoekstra, S.; Wolters, Mannes

    2011-01-01

    The Dutch gas distribution grid faces several changes in the near future. Among others, the share of green gas will grow, the interaction with the electricity distribution grid and local heat grids will increase, and the grid will transform from a mono-gas system to a multi-gas system. The gas

  11. Investigating impacts of oil and gas development on greater sage-grouse

    Science.gov (United States)

    Green, Adam; Aldridge, Cameron L.; O'Donnell, Michael

    2017-01-01

    The sagebrush (Artemisia spp.) ecosystem is one of the largest ecosystems in western North America providing habitat for species found nowhere else. Sagebrush habitats have experienced dramatic declines since the 1950s, mostly due to anthropogenic disturbances. The greater sage-grouse (Centrocercus urophasianus) is a sagebrush-obligate species that has experienced population declines over the last several decades, which are attributed to a variety of disturbances including the more recent threat of oil and gas development. We developed a hierarchical, Bayesian state-space model to investigate the impacts of 2 measures of oil and gas development, and environmental and habitat conditions, on sage-grouse populations in Wyoming, USA using male lek counts from 1984 to 2008. Lek attendance of male sage-grouse declined by approximately 2.5%/year and was negatively related to oil and gas well density. We found little support for the influence of sagebrush cover and precipitation on changes in lek counts. Our results support those of other studies reporting negative impacts of oil and gas development on sage-grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage-grouse, development may also negatively affect other sagebrush-obligate species, and active management of sagebrush habitats may be necessary to maintain some species. 

  12. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  13. The insurance industry and unconventional gas development: Gaps and recommendations

    International Nuclear Information System (INIS)

    Wetherell, Daniel; Evensen, Darrick

    2016-01-01

    The increasingly growing and controversial practice of natural gas development by horizontal drilling and high volume hydraulic fracturing (‘fracking’) faces a severe environmental insurance deficit at the industry level. Part of this deficit is arguably inherent to the process, whereas another part is caused by current risk information shortfalls on the processes and impacts associated with development. In the short and long terms, there are several conventional and unconventional methods by which industry-level and governmental-level policy can insure against these risks. Whilst academic attention has been afforded to the potential risks associated with unconventional natural gas development, little consideration has been given to the lack of insurance opportunities against these risks or to the additional risks promulgated by the dearth of insurance options. We chronicle the ways in which insurance options are limited due to unconventional gas development, the problems caused by lack of insurance offerings, and we highlight potential policy remedies for addressing these gaps, including a range of government- and industry-specific approaches. - Highlights: •A gap exists in provision of liability insurance for ‘fracking’-related risks. •The market gap is due primarily to uncertainties about probabilistic risk. •Insurance for risks similar to ‘fracking’ highlight potential policy options. •Government regulation and/or industry agreements can effectively fill the gap. •Policies on insurance and liability coverage necessitate ethical considerations.

  14. Ozone impacts of natural gas development in the Haynesville Shale.

    Science.gov (United States)

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

  15. Deep Panuke offshore gas development comprehensive study report : Executive summary

    International Nuclear Information System (INIS)

    2002-10-01

    A project was proposed by EnCana Corporation (EnCana) for the development of the Deep Panuke Offshore Gas Development Project. Located offshore the Scotian Shelf, approximately 175 kilometres southeast of Goldboro, Nova Scotia and 250 kilometres southeast of Halifax, the development of this natural gas reservoir would allow EnCana to derive economic benefit from licences issued under the Canada-Nova Scotia Offshore Petroleum Resources Accord Implementation Act and the Canada-Nova Scotia Offshore Petroleum Resources Accord Implementation (Nova Scotia) Act. The Canadian Environmental Assessment Act required that a comprehensive study report be prepared, and the results were presented in this document. Consisting of three bottom-founded platforms in a water depth of approximately 40 metres, the wellhead platform would be used for dry wellheads, wellhead control system, and production manifolds. All power generation and processing equipment would be located on the production platform, and the accommodations platform would consist of the utilities, helicopter landing pad, refueling station and crew accommodations. It was determined that the Deep Panuke project was unlikely to result in adverse environmental effects. The offshore oil and gas industry in Atlantic Canada would benefit from this development as a result of the establishment of a viable facility and operation

  16. Synchronous development of breast cancer and chest wall fibrosarcoma after previous mantle radiation for Hodgkin's disease

    Energy Technology Data Exchange (ETDEWEB)

    Patlas, Michael [Hamilton General Hospital, Department of Radiology, Hamilton, ON (Canada); McCready, David [University Health Network and Mount Sinai Hospital, Department of Surgery, Toronto, ON (Canada); Kulkarni, Supriya; Dill-Macky, Marcus J. [University Health Network and Mount Sinai Hospital, Department of Medical Imaging, Toronto, ON (Canada)

    2005-09-01

    Survivors of Hodgkin's disease are at increased risk of developing a second malignant neoplasm, including breast carcinoma and sarcoma. We report the first case of synchronous development of chest wall fibrosarcoma and breast carcinoma after mantle radiotherapy for Hodgkin's disease. Mammographic, sonographic and MR features are demonstrated. (orig.)

  17. Gas-cooled reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-06-01

    The nearest term GCR is the steam-cycle HTGR, which can be used for both power and process steam production. Use of SC-HTGRs permits timely introduction of thorium fuel cycles and of high-thermal-efficiency reactors, decreasing the need for mined U 3 O 8 before arrival of symbiotic fueling of fast-thermal reactor systems. The gas-turbine HTGR offers prospects of lower capital costs than other nuclear reactors, but it appears to require longer and more costly development than the SC-HTGR. Accelerated development of the GT-HTGR is needed to gain the advantages of timely introduction. The Gas-Cooled Fast Breeder Reactor (GCFR) offers the possibility of fast breeder reactors with lower capital costs and with higher breeding ratios from oxide fuels. The VHTR provides high-temperature heat for hydrogen production

  18. Gas-Cooled Reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1978-01-01

    Gas-Cooled Reactors are considered to have a significant future impact on the application of fission energy. The specific types are the steam-cycle High-Temperature Gas-Cooled Reactor, the Gas-Cooled Fast Breeder Reactor, the gas-turbine HTGR, and the Very High-Temperature Process Heat Reactor. The importance of developing the above systems is discussed relative to alternative fission power systems involving Light Water Reactors, Heavy Water Reactors, Spectral Shift Controlled Reactors, and Liquid-Metal-Cooled Fast Breeder Reactors. A primary advantage of developing GCRs as a class lies in the technology and cost interrelations, permitting cost-effective development of systems having diverse applications. Further, HTGR-type systems have highly proliferation-resistant characteristics and very attractive safety features. Finally, such systems and GCFRs are mutally complementary. Overall, GCRs provide interrelated systems that serve different purposes and needs; their development can proceed in stages that provide early benefits while contributing to future needs. It is concluded that the long-term importance of the various GCRs is as follows: HTGR, providing a technology for economic GCFRs and HTGR-GTs, while providing a proliferation-resistant reactor system having early economic and fuel utilization benefits; GCFR, providing relatively low cost fissile fuel and reducing overall separative work needs at capital costs lower than those for LMFBRs; HTGR-GT (in combination with a bottoming cycle), providing a very high thermal efficiency system having low capital costs and improved fuel utilization and technology pertinent to VHTRs; HTGR-GT, providing a power system well suited for dry cooling conditions for low-temperature process heat needs; and VHTR, providing a high-temperature heat source for hydrogen production processes

  19. The status of graphite development for gas cooled reactors

    International Nuclear Information System (INIS)

    1993-02-01

    The meeting was convened by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors. It was attended by 61 participants from 6 countries. The meeting covered the following subjects: overview of national programs; design criteria, fracture mechanisms and component test; materials development and properties; non-destructive examination, inspection and surveillance. The participants presented 33 papers on behalf of their countries. A separate abstract was prepared for each of these papers. Refs, figs, tabs, photos and diagrams

  20. Development of microstrip gas chambers on substrata with electronic conductivity

    International Nuclear Information System (INIS)

    Bouclier, R.; Garabatos, C.; Manzin, G.; Sauli, F.; Shekhtman, L.; Temmel, T.; Della Mea, G.; Maggioni, G.; Rigato, V.; Logachenko, I.

    1994-01-01

    This paper describes several recent developments on Microstrip Gas Chambers (MSGCs). The authors have studied the operating behavior of the detectors in different gas mixtures; maximum stable gains have been achieved in mixtures of argon and dimethyl-ether (DME) in almost equal proportions. Using detectors manufactured on semi-conducting glass substrates, capable of withstanding very high rates (above 10 6 mm -2 s -1 ), they have demonstrated extended lifetime without gain modifications up to a collected charge of 130 mC cm -1 in clean laboratory operating conditions. They have also verified that relaxing the requirements on cleanness conditions, either in the gas mixing system or in the detector construction, may result in fast aging of the devices under irradiation. As an alternative to the semi-conducting glass, they have developed a novel technique to coat regular glass with a thin lead silicate layer having electron conductivity; a new development consisting in coating already manufactured MSGCs with the thin semi-conducting layer is also described. The preliminary results show an excellent rate capability of this kind of devices, intrinsically simpler to manufacture

  1. Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band

    Science.gov (United States)

    Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman

    2015-01-01

    The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.

  2. Perceptions of Shale Gas Development: Differences in Urban and Rural Communities

    Science.gov (United States)

    Melby, G.; Grubert, E.; Brandt, A. R.

    2016-12-01

    Shale gas development in Pennsylvania has been shown to have a large impact on nearby rural communities, but almost no research has been done on how development of the Marcellus Shale affects urban residents in neighboring cities. The goal of this project is to examine how the social and environmental priorities of urban and rural communities differ and to determine how well informed urban residents are on shale gas development. An anonymous web survey was used to survey 250 residents of Pennsylvania's largest cities on topics like how respondents prioritize different environmental and social factors and how well informed they feel about shale gas development. The results of this survey were compared to findings of previous surveys on rural communities located near energy development. In terms of environmental priorities, urban residents are more concerned about climate change and air pollution than rural residents. Both urban and rural respondents agreed that healthcare and education were their top social concerns, but urban respondents also prioritized housing and employment. Most urban respondents said that they were unfamiliar with shale gas development, although many were still concerned about what its environmental impacts might be. We also found that our results displayed two well known demographic trends: first, Democrats are far more likely to self identify as environmentalists than those who vote Republican, and second, that people of color are far less likely to identify as environmentalists than white respondents. As a result, there are disproportionately fewer self-identifying environmentalists in urban and largely Democrat-leaning areas with racially diverse populations. Our data displayed known trends in urban populations as well as new information on how urban residents differ from their rural counterparts in their views on shale gas development and their broader social and environmental priorities.

  3. The reliability of the Associate Platinum digital foot scanner in measuring previously developed footprint characteristics: a technical note.

    Science.gov (United States)

    Papuga, M Owen; Burke, Jeanmarie R

    2011-02-01

    An ink pad and paper, pressure-sensitive platforms, and photography have previously been used to collect footprint data used in clinical assessment. Digital scanners have been widely used more recently to collect such data. The purpose of this study was to evaluate the intra- and interrater reliability of a flatbed digital image scanning technology to capture footprint data. This study used a repeated-measures design on 32 (16 male 16 female) healthy subjects. The following measured indices of footprint were recorded from 2-dimensional images of the plantar surface of the foot recorded with an Associate Platinum (Foot Levelers Inc, Roanoke, VA) digital foot scanner: Staheli index, Chippaux-Smirak index, arch angle, and arch index. Intraclass correlation coefficient (ICC) values were calculated to evaluate intrarater, interday, and interclinician reliability. The ICC values for intrarater reliability were greater than or equal to .817, indicating an excellent level of reproducibility in assessing the collected images. Analyses of variance revealed that there were no significant differences between raters for each index (P > .05). The ICC values also indicated excellent reliability (.881-.971) between days and clinicians in all but one of the indices of footprint, arch angle (.689), with good reliability between clinicians. The full-factorial analysis of variance model did not reveal any interaction effects (P > .05), which indicated that indices of footprint were not changing across days and clinicians. Scanning technology used in this study demonstrated good intra- and interrater reliability measurements of footprint indices, as demonstrated by high ICC values. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  4. Future of oil and gas development in the western Amazon

    International Nuclear Information System (INIS)

    Finer, Matt; Babbitt, Bruce; Novoa, Sidney; Ferrarese, Francesco; Pappalardo, Salvatore Eugenio; Marchi, Massimo De; Saucedo, Maria; Kumar, Anjali

    2015-01-01

    The western Amazon is one of the world’s last high-biodiversity wilderness areas, characterized by extraordinary species richness and large tracts of roadless humid tropical forest. It is also home to an active hydrocarbon (oil and gas) sector, characterized by operations in extremely remote areas that require new access routes. Here, we present the first integrated analysis of the hydrocarbon sector and its associated road-building in the western Amazon. Specifically, we document the (a) current panorama, including location and development status of all oil and gas discoveries, of the sector, and (b) current and future scenario of access (i.e. access road versus roadless access) to discoveries. We present an updated 2014 western Amazon hydrocarbon map illustrating that oil and gas blocks now cover 733 414 km 2 , an area much larger than the US state of Texas, and have been expanding since the last assessment in 2008. In terms of access, we documented 11 examples of the access road model and six examples of roadless access across the region. Finally, we documented 35 confirmed and/or suspected untapped hydrocarbon discoveries across the western Amazon. In the Discussion, we argue that if these reserves must be developed, use of the offshore inland model—a method that strategically avoids the construction of access roads—is crucial to minimizing ecological impacts in one of the most globally important conservation regions. (letter)

  5. International oil and gas exploration and development activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  6. Development of the infrared instrument for gas detection

    Science.gov (United States)

    Chen, Ching-Wei; Chen, Chia-Ray

    2017-08-01

    MWIR (Mid-Wave Infrared) spectroscopy shows a large potential in the current IR devices market, due to its multiple applications, such as gas detection, chemical analysis, industrial monitoring, combustion and flame characterization. It opens this technique to the fields of application, such as industrial monitoring and control, agriculture and environmental monitoring. However, a major barrier, which is the lack of affordable specific key elements such a MWIR light sources and low cost uncooled detectors, have held it back from its widespread use. In this paper an uncooled MWIR detector combined with image enhancement technique is reported. This investigation shows good results in gas leakage detection test. It also verify the functions of self-developed MWIR lens and optics. A good agreement in theoretical design and experiment give us the lessons learned for the potential application in infrared satellite technology. A brief discussions will also be presented in this paper.

  7. Development of Micro-Pattern Gas Detectors Technologies

    CERN Multimedia

    Richer, J; Santos, D; Barsuk, S; Hamar, G; Shah, M K; Catanesi, M G; Colaleo, A; Maggi, M; Loddo, F; Berardi, V; Bagliesi, M; Menon, G; Richter, R; Lahonde-hamdoun, C; Dris, M; Chechik, R; Ochi, A; Hartjes, F; Lopes, I M; Deshpande, A; Franz, A; Dabrowski, W; Fiutowski, T A; Ferreira, A; Bastos de oliveira, C A; Miller, B W; Monrabal-capilla, F; Liubarsky, I; Plazas de pinzon, M C; Tsarfati, T; Voss, B J R; Carmona martinez, J M; Stocchi, A; Dinu, N; Semeniouk, I; Giebels, B; Marton, K; De leo, R; De lucia, E; Alviggi, M; Bellerive, A; Herten, L G; Zimmermann, S U; Giomataris, I; Peyaud, A; Schune, P; Delagnes, E; Delbart, A; Charles, G; Wang, W; Markou, A; Arazi, L; Cibinetto, G; Edo, Y; Neves, F F; Solovov, V; Stoll, S; Sampsonidis, D; Mindur, B; Sauli, F; Calapez de albuquerque veloso, J F; Kahlaoui, N; Sharma, A; Zenker, K; Cebrian guajardo, S V; Luzon marco, G M; Guillaudin, O J H; Cornebise, P; Lounis, A; Bruel, P J; Laszlo, A; Mukerjee, K; Nappi, E; Nuzzo, S V; Bencivenni, G; Tessarotto, F; Levorato, S; Dixit, M S; Riallot, M; Jeanneau, F; Nizery, F G; Maltezos, S; Kyriakis, A; Lyashenko, A; Van der graaf, H; Ferreira marques, R; Alexa, C; Liyanage, N; Dehmelt, K; Hemmick, T K; Polychronakos, V; Cisbani, E; Garibaldi, F; Koperny, S Z; Das neves dias carramate, L F; Munoz-vidal, J; Gutierrez, R; Van stenis, M; Resnati, F; Lupberger, M; Desch, K K; Adloff, C J; Chefdeville, M; Vouters, G; Ranieri, A; Lami, S; Shekhtman, L; Dolgov, A; Bamberger, A; Landgraf, U; Kortner, O; Ferrero, A; Aune, S; Attie, D M; Bakas, G; Balossino, I; Tsigaridas, S; Surrow, B; Gnanvo, K A K; Feege, N M; Woody, C L; Bhattacharya, S; Capogni, M; Zielinska, A Z; Veenhof, R J; Tapan, I; Dangendorf, V; Monteiro bernades, C M; Castro serrato, H F; De oliveira, R; Ropelewski, L; Behnke, T; Boudry, V; Radicioni, E; Lai, A; Shemyakina, E; Giganon, A E; Titov, M; Papakrivopoulos, I; Komai, H; Van bakel, N A; Tchepel, V; Repond, J O; Li, Y; Kourkoumelis, C; Tzamarias, S; Majumdar, N; Kowalski, T; Da rocha azevedo, C D; Serra diaz cano, L; Alvarez puerta, V; Trabelsi, A; Riegler, W; Ketzer, B F; Rosemann, C G; Herrera munoz, D C; Drancourt, C; Mayet, F; Geerebaert, Y; De robertis, G; Felici, G; Scribano memoria, A; Cecchi, R; Dalla torre, S; Gregori, M; Buzulutskov, A; Schwegler, P; Sanchez nieto, F J; Colas, P M A; Gros, M; Neyret, D; Zito, M; Ferrer ribas, E; Breskin, A; Martoiu, V S; Purschke, M L; Loomba, D; Gasik, P J; Petridou, C; Kordas, K; Mukhopadhyay, S; Bucciantonio, M; Biagi, S F; Ji, X; Kanaki, K; Zavazieva, D; Capeans garrido, M D M; Schindler, H; Kaminski, J; Krautscheid, T; Lippmann, C; Arora, R; Dafni, T; Garcia irastorza, I; Puill, V; Wicek, F B; Burmistrov, L; Singh, K P; Pugliese, G; Kroha, H; Kunne, F; Alexopoulos, T; Daskalakis, G; Geralis, T; Bettoni, D; Heijhoff, K; Xiao, Z; Tzanakos, G; Leisos, A; Frullani, S; Sahin, O; Kalkan, Y; Giboni, K; Krieger, C; Breton, D R; Bhattacharyya, S; Abbrescia, M; Erriquez, O; Paticchio, V; Cardini, A; Aloisio, A; Turini, N; Bressan, A; Tikhonov, Y; Schumacher, M; Simon, F R; Nowak, S; Herlant, S; Chaus, A; Fanourakis, G; Bressler, S; Homma, Y; Timmermans, J; Fonte, P; Underwood, D G; Azmoun, B; Fassouliotis, D; Wiacek, P; Dos santos covita, D; Monteiro da silva, A L; Yahlali haddou, N; Marques ferreira dos santos, J; Domingues amaro, F

    The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. Advances in particle physics have always been enabled by parallel advances in radiation-detector technology. Radiation detection and imaging with gas-avalanche detectors, capable of economically covering large detection volumes with a low material budget, have been playing an important role in many fields. Besides their widespread use in particle-physics and nuclear-physics experiments, gaseous detectors are employed in many other fields: astro-particle research and applications such as medical imaging, material science, and security inspection. While extensively employed at the LHC, RHIC, and other advanced HEP experiments, present gaseous detectors (wire-chambers, drift-tubes, resistive-plate chambers and others) have limitations which may prevent their use in future experiments. Present tec...

  8. Hemoglobin-Based Oxygen Carrier (HBOC) Development in Trauma: Previous Regulatory Challenges, Lessons Learned, and a Path Forward.

    Science.gov (United States)

    Keipert, Peter E

    2017-01-01

    Historically, hemoglobin-based oxygen carriers (HBOCs) were being developed as "blood substitutes," despite their transient circulatory half-life (~ 24 h) vs. transfused red blood cells (RBCs). More recently, HBOC commercial development focused on "oxygen therapeutic" indications to provide a temporary oxygenation bridge until medical or surgical interventions (including RBC transfusion, if required) can be initiated. This included the early trauma trials with HemAssist ® (BAXTER), Hemopure ® (BIOPURE) and PolyHeme ® (NORTHFIELD) for resuscitating hypotensive shock. These trials all failed due to safety concerns (e.g., cardiac events, mortality) and certain protocol design limitations. In 2008 the Food and Drug Administration (FDA) put all HBOC trials in the US on clinical hold due to the unfavorable benefit:risk profile demonstrated by various HBOCs in different clinical studies in a meta-analysis published by Natanson et al. (2008). During standard resuscitation in trauma, organ dysfunction and failure can occur due to ischemia in critical tissues, which can be detected by the degree of lactic acidosis. SANGART'S Phase 2 trauma program with MP4OX therefore added lactate >5 mmol/L as an inclusion criterion to enroll patients who had lost sufficient blood to cause a tissue oxygen debt. This was key to the successful conduct of their Phase 2 program (ex-US, from 2009 to 2012) to evaluate MP4OX as an adjunct to standard fluid resuscitation and transfusion of RBCs. In 2013, SANGART shared their Phase 2b results with the FDA, and succeeded in getting the FDA to agree that a planned Phase 2c higher dose comparison study of MP4OX in trauma could include clinical sites in the US. Unfortunately, SANGART failed to secure new funding and was forced to terminate development and operations in Dec 2013, even though a regulatory path forward with FDA approval to proceed in trauma had been achieved.

  9. Development of residential PEFC cogeneration systems at Osaka Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Osamu; Echigo, Mitsuaki; Shinke, Norihisa; Tabata, Takeshi [Osaka Gas Ltd., Kyoto (Japan)

    2001-07-01

    The outline of residential PEFC cogeneration system development at Osaka Gas is described in this presentation. The developments of CO preferential oxidation catalyst, fuel processor, and the evaluation study of MEA are explained in detail. Osaka Gas has developed CO preferential oxidation catalyst, which can reduce the concentration of CO in the reformed gas below 1 ppm at the O{sub 2}/CO of 1.5. The durability of the catalyst for more than 10,000 hours has also been confirmed. A fuel processor in which desulfurization, steam reforming, CO shift conversion and CO removal reactors are integrated has also been developed. Catalysts, the durability of which have been verified for more than 50,000 hours, were employed in the reactors for desulfurization, steam reforming and CO shift conversion, and newly developed catalyst mentioned above was employed for the CO preferential oxidation reactor. The initial performance of the fuel processor has been established. The thermal efficiency of 77% has been accomplished under the condition of S/C: 2.5, O{sub 2}/CO: 1.5 and the utilization rate of fuel at the cell stack (Uf): 80%. And further, the durability for more than 1000 hours was confirmed. Durability of MEAs manufactured by Japan Gore-Tex and 3M have been evaluated. Small degradation rate of ca. 2 mV 11,000 h was found at the current density of 300 mAcm{sup -2}, Uf of 60% and the temperature of 70 {sup o}C. The tolerance of anode for CO has also been investigated, and had confirmed that the decline of cell performance could be negligible when the concentration of CO was less than 10 ppm. (author)

  10. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  11. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  12. Shale Gas Exploitation: Challenges for Development in Algeria

    Directory of Open Access Journals (Sweden)

    Boualem Ammar CHEBIRA

    2017-06-01

    Full Text Available This paper aims to assess the situation of Algeria in the field of shale gas to illustrate the various potential benefits and risks in the exploitation area. The constraints for Algeria are numerous : the risks due in its exploitation, particularly the pollution generated by hydraulic fracturing and also the increased risk of earthquake; the scarcity of water resources and the high cost of such investments. Currently, and under conditions of non-availability of clean and safe technologies, the most available choice for Algeria is the diversification of non-hydrocarbon exports and the development of renewable energies.

  13. Development and perspectives of PE for gas networks in Italy

    International Nuclear Information System (INIS)

    Bergamino, R.; Cammelli, W.; Torre, C.

    1999-01-01

    After comparing the result of two large surveys carried out in 1998 and 1992 on the utilization of PE pipes for gas distribution, the features of PE pipe, which allow the adoption of innovative techniques such as 'rapid trenching' for the laying of new pipelines and 'NO-DIG' for the relining of old on, are described. The technical, operational and economical fea-activities developed in this field by AMGA SpA Genoa. Besides, the time behaviour of PE pipes welding is evaluated on the basis of values taken from AMGA's database [it

  14. Development of odorous gas model using municipal solid waste emission

    International Nuclear Information System (INIS)

    Mohd Nahar bin Othman; Muhd Noor Muhd Yunus; Ku Halim Ku Hamid

    2010-01-01

    The impact of ambient odour in the vicinity of the Semenyih MSW processing plant, commonly known as RDF plant, can be very negative to the nearby population, causing public restlessness and consequently affecting the business operation and sustainability of the plant. The precise source of the odour, types, emission level and the meteorological conditions are needed to predict and established the ambient odour level at the perimeter fence of the plant and address it with respect to the ambient standards. To develop the odour gas model for the purpose of treatment is very compulsory because in MSW odour it contain many component of chemical that contribute the smell. Upon modelling using an established package as well as site measurements, the odour level at the perimeter fence of the plant was deduced and found to be marginally high, above the normal ambient level. Based on this issue, a study was made to model odour using Ausplume Model. This paper will address and discuss the measurement of ambient gas odour, the dispersion modelling to establish the critical ambient emission level, as well as experimental validation using a simulated odour. The focus will be made on exploring the use of Ausplume modelling to develop the pattern of odour concentrations for various condition and times, as well as adapting the model for MSW odour controls. (author)

  15. Economic impact analysis of natural gas development and the policy implications

    International Nuclear Information System (INIS)

    De Silva, P.N.K.; Simons, S.J.R.; Stevens, P.

    2016-01-01

    In the US, the shale gas revolution ensured that the development costs of unconventional natural gas plummeted to the levels of $2–3/Mcf. This success has motivated the development of shale gas in other regions, including Australia and Europe. This study, focussing primarily on aspects of economic impact analysis, estimates the development costs of shale gas extraction in both Australia and Europe, based on both direct and fiscal costs, and also suggests policy initiatives. The increasing liquefied natural gas (LNG) developments in Australia are already straining domestic gas supplies. Hence, the development of more natural gas resources has been given a high priority. However, a majority of the Australian shale resources is non-marine in origin and significantly different to the marine-type shales in the US. In addition, the challenges of high development costs and the lack of infrastructure, service capacity and effective government policy are inhibiting shale gas development. Increasing the attractiveness of low risk investment by new, local, developers is critical for Australian shale gas success, which will simultaneously increase domestic gas security. In the European context, unconventional gas development will be challenged by direct, rather than fiscal costs. High direct costs will translate into average overall gas development costs over $13/Mcf, which is well over the existing market price. - Highlights: • The shale gas development potential of US, Europe and Australia are compared. • An economic impact analysis of shale gas development in Europe and Australia. • Factors important for shale gas development are discussed. • Policy pathways are suggested for shale gas development

  16. Ozone Air Quality Impacts of Shale Gas Development in South Texas Urban Areas

    Science.gov (United States)

    Chang, C.; Liao, K.

    2013-12-01

    . Overall, emissions associated with shale gas activities in South Texas have been affecting ozone air quality in neighboring urban areas. Developing effective control strategies for reducing emissions from shale gas activities and improving ozone air quality is an important issue in Texas and other states in the U.S..Changes in percentage of summertime 4th highest ozone daily maximum as comparing to previous year

  17. Membrane mediated development of the vertebrate blood-gas-barrier.

    Science.gov (United States)

    Makanya, Andrew N

    2016-03-01

    During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis. © 2016 Wiley Periodicals, Inc.

  18. Prospects of and challenges to natural gas industry development in China

    Directory of Open Access Journals (Sweden)

    Jia Chengzao

    2014-10-01

    Full Text Available An unprecedented breakthrough has been made over the past decades in natural gas industry, which helps improve energy mix and promote the low-carbon economy in China. With such abundant hydrocarbon resources, China owns two intensive oil and gas producing blocks in the Ordos Basin and Xinjiang province and two other concentrated gas producing blocks in Sichuan and Western South Sea. In addition, arterial gas lines have been connected as a gas grid all over China and natural gas market has become more and more mature and expanded. Thus, a natural gas industry system has come into being. However, with natural gas unevenly scattering all across China, the remnant resources mainly are distributed in the stratigraphic strata, deep strata in superimposed basins or in mature exploration zones, foreland basin thrust belts, marine gas fields, and so on. In reality, the future gas exploration should focus on such domains as the weathered crust karst reservoirs or carbonate and stratigraphic traps, deep clastic gas layers, and unconventional oil and gas plays. Achievements have been made in marine shale gas exploration, CBM gas steady development, and other unconventional natural gas resources. From the perspective of exploration potential, more giant oil and gas fields will be possibly discovered in deep strata or deep sea water, and stratigraphic hydrocarbon reservoirs and tight oil and gas reservoirs will also be the exploration focus. With the increase of exploration depth and degree, the overall oil and gas exploration cost will be significantly rising in general. New discoveries or reserves increase in natural gas exploration will highly depend upon research theory and technology progress, and such development technologies as 3D seismic survey, horizontal drilling and fracturing treatment will be more highlighted. Through enhancing the cost in natural gas exploration and development and strengthening the research of core technologies, natural gas

  19. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology

  20. Latest development on the membrane formation for gas separation

    OpenAIRE

    Ahmad Fausi Ismail; Norida Ridzuan; Sunarti Abdul Rahman

    2002-01-01

    The first scientific observation related to gas separation was encountered by J.K Mitchell in 1831. However, the most remarkable and influential contribution to membrane gas separation technology was the systematic study by Thomas Graham in 1860. However only in 1979, membrane based gas separation technology was available and recognized as one of the most recent and advanced unit operations for gas separation processes. Membrane is fabricated by various methods and the parameters involved to ...

  1. Development and remodeling of the vertebrate blood-gas barrier.

    Science.gov (United States)

    Makanya, Andrew; Anagnostopoulou, Aikaterini; Djonov, Valentin

    2013-01-01

    During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.

  2. Development and Remodeling of the Vertebrate Blood-Gas Barrier

    Directory of Open Access Journals (Sweden)

    Andrew Makanya

    2013-01-01

    Full Text Available During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG-β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.

  3. Development of oil and gas sector monitoring in Perm territory

    Directory of Open Access Journals (Sweden)

    Galina Vasil'evna Kutergina

    2012-03-01

    Full Text Available This paper reviews current approaches to the definition of «regional monitoring» and its contents. The work is based on the use of a systematic approach to the analysis of regional monitoring, reviewing it as part of the overall control system and risk management in the region.Organization of regional monitoring is considered on the example of oil and gas complex (OGC of Perm territory. This paper summarizes the structure of the OGC, the specific features of the activities of the enterprises that have the most significant impact on the organization of monitoring. The findings are based on an analysis and compilation of statistics. Authors consider in most details the subjects and objects of state and corporate level monitoring of the regional OGC in Perm territory, their main function of monitoring, interoperability issues, methodological support of various institutions in the periodic monitoring of OGC - the audit committees and internal audit units. Proposals for the development in most parts refer to the use of risk-oriented approach to organizing periodic monitoring of oil and gas industry in the territory on the basis of a common methodology for assessing its effectiveness. The proposals to expand cooperation between state agencies and regional bodies of governance of OGC enterprises in Perm territory on a wide range of areas of the organization of monitoring: the exchange of professional information, methodology, activities, staff and others.

  4. Development prospects of natural gas worldwide 2000-2030

    International Nuclear Information System (INIS)

    Maire, J.; Bouchard, G.

    1996-01-01

    Two differing models for the expansion of natural gas consumption worldwide are presented. Forecasting over the next five decades, gas consumption in various parts of the world are tabulated for a base case where gas consumption could increase by 75% by 2030 and an alternative case linked to relatively poor economic conditions with expansion at half that rate. (UK)

  5. Shale Gas Exploration and Development Progress in China and the Way Forward

    Science.gov (United States)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  6. Proceedings of the natural gas research and development contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W. (eds.)

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  7. Strategies for the development of CBM gas industry in China

    Directory of Open Access Journals (Sweden)

    Fuyuan Mu

    2015-10-01

    Full Text Available Since the environment for the CBM development in China has been changing in recent years, it is necessary to re-consider the relevant strategies. Through investigations, surveys, geologic assessment, strategic decision-making and other techniques, the strategies for CBM development in China were discussed in respect to present situations, opportunities, challenges, proved reserves, producing reserves, strategic principles, strategic countermeasures, time-spatial allocation of strategies, risk assessments, and elimination of relevant risks. Some research results were obtained. Firstly, still in its initial development stage with fast growth, the CBM industry in China has made outstanding achievements in six aspects and also faces challenges in six aspects. Secondly, strategic focus can be summarized as constructing six CBM production bases in Qinshui, Eastern margin of Ordos Basin, Southwest China, Changqing, Northwest China, and Northeast China, respectively, according to the principles of “steadily developing middle-high rank coals, accelerating the development of low-rank coals and strengthening the comprehensive utilization of mining gas wells”. It is expected that the producing reserves and peak-production rate will be 3–4 trillion m3 and 35–45 billion m3/a, respectively. Thirdly, major strategic risks in CBM development in China include low productivities of individual wells, improper understandings of geologic conditions, decline in investments and lack of technical reserves. To eliminate these risks, it is necessary to reinforce work in the following five aspects, namely, strengthening comprehensive exploration and development of coal-bearing formations, creating favorable environments for the development of private oil companies, expanding spaces for the growth of technical service companies, conducting more researches for the development of innovative technologies in more areas and intensifying law enforcement.

  8. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  9. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  10. The Relationship between Marcellus Shale Gas Development in Pennsylvania and Local Perceptions of Risk and Opportunity

    Science.gov (United States)

    Schafft, Kai A.; Borlu, Yetkin; Glenna, Leland

    2013-01-01

    Recent advances in gas and oil drilling technology have led to dramatic boomtown development in many rural areas that have endured extended periods of economic decline. In Pennsylvania's Marcellus gas fields, the recent development of unconventional shale gas resources has not been without controversy. It has been variously framed as a major…

  11. Development of failure detection system for gas-cooled reactor

    International Nuclear Information System (INIS)

    Feirreira, M.P.

    1990-01-01

    This work presents several kinds of Failure Detection Systems for Fuel Elements, stressing their functional principles and major applications. A comparative study indicates that the method of electrostatic precipitation of the fission gases Kr and Xe is the most efficient for fuel failure detection in gas-cooled reactors. A detailed study of the physical phenomena involved in electrostatic precipitation led to the derivation of an equation for the measured counting rate. The emission of fission products from the fuel and the ion recombination inside the chamber are evaluated. A computer program, developed to simulate the complete operation of the system, relates the counting rate to the concentration of Kr and Xe isotopes. The project of a mock-up is then presented. Finally, the program calculations are compared to experimental data, available from the literature, yielding a close agreement. (author)

  12. Development of multiwire gas detectors for X-rays

    International Nuclear Information System (INIS)

    Sales, Eraldo de

    2015-01-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  13. Brine contamination to aquatic resources from oil and gas development in the Williston Basin, United States

    Science.gov (United States)

    Gleason, Robert A.; Contributions by Chesley-Preston, Tara L.; Coleman, James L.; Haines, Seth S.; Jenni, Karen E.; Nieman, Timothy L.; Peterman, Zell E.; van der Burg, Max Post; Preston, Todd M.; Smith, Bruce D.; Tangen, Brian A.; Thamke, Joanna N.; Gleason, Robert A.; Tangen, Brian A.

    2014-01-01

    , abandoned wells (in terms of potential for affecting aquatic resources)?” Of special concern were the wetland habitats of the ecologically important Prairie Pothole Region, which overlays a part of the Williston Basin and is recognized for the production of a majority of North America’s migratory waterfowl. On the basis of the concerns raised by on-the-ground land managers, as well as findings from previous research, a comprehensive study was developed with the following goals: summarize existing information pertaining to oil and gas production and aquatic resources in the Williston Basin; assess brine plume migration from new and previously studied sites in the Prairie Pothole Region; perform a regional, spatial evaluation of oil and gas production activities and aquatic resources; assess the potential for brine contamination to wetlands and streams; and hold a decision analysis workshop with key stakeholders to discuss issues pertaining to oil and gas production and environmental effects and to identify information gaps and research needs. This report represents an initial, multidisciplinary evaluation of measured and potential environmental effects associated with oil and gas production in the Williston Basin and Prairie Pothole Region. Throughout this report there are reviews of current knowledge, and discussions relating to data gaps and research needs. On the basis of the information presented, future research needs include: regional geophysical and water-quality assessments to establish baselines for current conditions and estimate the extent of previous brine contamination, investigations into the direct effects of brine to biotic communities, and evaluations to identify the most effective techniques to mitigate brine contamination.

  14. Baseline gas turbine development program. Eighteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E [comps.

    1977-04-30

    Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound, but was also 43% deficient in power. A continuing corrective development effort has to date reduced the power deficiency to 32%. Compressor efficiency was increased 2 points by changing to a 28-channel diffuser and tandem deswirl vanes; improved processing of seals has reduced regenerator leakage from about 5 to 2.5% of engine flow; a new compressor turbine nozzle has increased compressor turbine stage efficiency by about 1 point; and adjustments to burner mixing ports has reduced pressure drop from 2.8 to 2.1% of engine pressure. Key compressor turbine component improvements are scheduled for test during the next quarterly period. During the quarter, progress was also made on development of the Upgraded Vehicle control system; and instrumentation of the fourth program engine was completed by NASA. The engine will be used for development efforts at NASA LeRC.

  15. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  16. High-energy gas-fracturing development. Quarterly report, October-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    Cuderman, J.F.

    1983-02-01

    The purpose of this study is to develop and optimize the High Energy Gas Fracturing (HEGF) technique to produce multiple fractures around a wellbore in order to stimulate natural-gas production in Devonian shale. The HEGF technique uses a wellbore charge of a propellant tailored to produce pressure loading in the borehole that avoids crushing yet produces multiple fractures radiating from the wellbore. The multiple-fracture regime has been characterized and releated to parameters such as borehole size, pressure risetime, and surface-wave velocity. Pressure risetimes and peak pressures, measured for different propellants in boreholes to specify a propellant for a desired peak pressure and pressure risetime. Semiempirical models, using results from previous experiments, successfully relate stress, acceleration, and fracture radii in surrounding rock to peak pressure and pressure risetime. A finite-element model also has been developed which predicts fracture type and direction of fractures as a function of pressure loading, in situ stress, and material properties. A full-scale HEGF system has been developed for application in gas-well-stimulation experiments in Devonian shale. During this quarter, a proof test of the full-scale HEGF was conducted at the Nevada Test Site (NTS). The designed pressure pulse of 0.5 ms risetime was achieved, and the tamp remained in place during the test. The borehole was successfully cleared posttest. Multiple fracturing was verified with a downhole TV camera. The test of the full-scale hardware and its operational capability was successful. As a result, the HEGF system is ready for application in gas-well-stimulation experiments in Devonian shale. Tests were conducted to determine worst-case accident scenarios to establish sensitivity to shock and fire. There appears to be no risk of initiation resulting from shock or breakage of the propellant-canister segments.

  17. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  18. Stream conversion technology and gas condensate field development

    Energy Technology Data Exchange (ETDEWEB)

    Kuntadi, Arif

    2012-07-01

    data for reservoir and production design, summarizing the impact of geologic zonation, areal and vertical communication, mean permeability and its variation, relative permeability, water encroachment, and fluid composition on field performance. Because most commercial development projects involving gas sales export are based on delivery contract quotas (DCQs) of 1-1.5 bcf/D for up to 25 years, well-average plateau length and rate-time is used as a primary measure of performance. We try to describe the interplay of reservoir and production-facilities performance on overall design of field deliverability and total well requirements. Other production issues not considered in our work but with significant impact on Khuff development strategy include gathering system design, rate metering, platform vs. onshore processing, and single-phase vs two-phase pipeline flow. Economics are not considered in our evaluation. We estimate deliverability impairment from condensate blockage using relative permeability models that reflect the impact of velocity (capillary number improvement and inertial effect). The velocity effect is particularly important in Khuff wells because of the high-k, low-h layers with unusually-high flow velocities and convergent flow. Layer vertical and areal connectivity can have a profound effect on water encroachment. When sufficient lateral continuity exists, even small aquifers can result in rapid water encroachment through thin, high-permeability zones. This has been studied and is shown to have a lesser effect in Khuff reservoirs.(Author)

  19. Implications of shale gas development for climate change.

    Science.gov (United States)

    Newell, Richard G; Raimi, Daniel

    2014-01-01

    Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.

  20. Development and modification of glass membranes for aggressive gas separations

    Energy Technology Data Exchange (ETDEWEB)

    Lindbraaten, Arne

    2004-07-01

    Chlorine as a chemical is widespread in industry and found in a great variety of processes ranging from water purification to plastic production. In this thesis, a magnesium production factory was chosen as an example because it involved both chlorine - air separation and hydrogen -hydrogen chloride separation. Previously, various types of membrane materials have been tested out for their applicability in the chosen process. The materials previously tested either lacked sufficient membrane performance or sufficient membrane stability. As an attempt to improve both the membrane performance and stability, glass membranes are used in this thesis. Glass membranes are prepared from a borosilicate glass, via a phase separation followed by an acid leaching route. By choosing the appropriate phase separation temperature and acid to glass ratio, the membrane can be produced with an average pore diameter of 2 nm (or 4 nm). However, the 2 nm average pore size is still too large to separate gases with separation selectivities beyond the selectivities predicted from Knudsen diffusion theory. If the pores are narrowed, the selectivity may be raised while the flux hopefully is maintained. The narrowing of the pores was done by a silane coupling to the surface OH-groups on the glass. The silane coupling agent is of the dimethyl-acyl-chlorosilane type, where the length of the acyl chain varies from 1 carbon up to 18 carbons. Glass fibres are also tested in this work, which are produced without phase separation and their average pore size is smaller than the surface-modified glasses. To be able to compare the performance of the various membranes, performance measurements are performed and these measurements are evaluated by the separation power (product of the selectivity and the permeability of the fastest permeating compound). Because of the harsh chlorine or hydrogen chloride environment, to which the membranes are exposed in this work, the membrane stability is at least as

  1. Baseline Gas Turbine Development Program ninth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C.E.

    1975-01-31

    Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. NASA completed the first phase of their baseline engine heat balance tests, and an upgraded engine compressor is being scaled for test. EPA completed their report on vehicle tests including emissions and vehicle performance, and a new endurance engine is on test. Significant development progress was made on both fixed and variable geometry combustors. After 45 hours of engine operation with Vendor A ceramic regenerator, no significant deterioration of the matrix, seals, or elastomeric mount was encountered. Ceramic regenerator stress analysis has commenced. Additional developments in non-nickel oxide regenerator rubbing seals are encouraging. The first preprototype integrated control system is in vehicle operation. Control adaptation for variable inlet guide vanes and water injection is progressing. AiRefrac turbine wheels were verified dimensionally and are being processed for engine testing. Water injection tests with a four nozzle system were run, and additional performance documentation of variable inlet guide vanes was obtained. Linerless insulation is on test in the free rotor engine, the new endurance engine, and a performance engine. The free rotor engine completed test cell checkout and was installed in a vehicle. Vehicle checkout, including a preprototype integrated control, is underway. Detailed specifications of the upgraded engine were written.

  2. Policies for technical innovations to promote natural gas market development

    International Nuclear Information System (INIS)

    Leblanc, M.B.

    1997-01-01

    Short-term and long-term perspectives of the natural gas market worldwide are discussed, covering demand and supply trends. Technologies determining the future of the natural gas market, and R and D needs for implementing future technological challenges are considered. (R.P.)

  3. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs

  4. Oil and gas exploration and development in oil importing developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    1985-12-01

    The rapid rise in oil prices and supply shortfalls during the 1970s did not bring a concomitant increase in oil and gas exploration and development to the oil importing developing countries (OIDCs). To be sure, total exploratory activity in the OIDCs, as measured by the number of seismic party-months and the number of exploratory wells drilled, did in fact increase in the 1970s, but relative to the rest of the world exploratory activity actually declined. The consensus among many investigators indicates that exploration and development in OIDCs was inhibited by a combination of factors. First, the geologic prospects for oil and gas were not conductive to exploration. The high cost, small-sized fields that are characteristic of OIDCs limit profit potential, increases risk, and provides for limited prospects of exportable surpluses, which are necessary to supply downstream operations. Second, the lack of infrastructure in many nonpetroleum producing OIDCs deterred oil and gas exploration. Third, restrictive contracts provided for an insufficient amount of risk sharing to attract foreign capital. Fourth, host government taxation policies discriminated against high cost, small-sized fields. Fifth, political risk and government instability did not encourage foreign investment, considering the usual 10- to 15-year petroleum exploration and development period. Finally, US taxation policies following the oil embargo were designed to encourage domestic exploration and development. The 1980s have seen a substantial decline in real prices for petroleum, high interest rates, a developing country debt crisis, and a worldwide economic recession. These conditions are likely to cause an absolute decline in exploratory activity in OIDCs that are considered high risk, and where the probability of finding oil and gas is low. This trend is already evident in the recent exploratory and development data. 15 refs., 10 figs., 3 tabs.

  5. Fission gas release behavior in high burnup UO2 fuels with developed rim-structure

    International Nuclear Information System (INIS)

    Une, Katsumi; Kashibe, Shinji; Hayashi, Kimio

    2002-01-01

    The effect of rim structure formation and external restraint pressure on fission gas release at transient conditions has been examined by using an out-of-pile high pressure heating technique for high burnup UO 2 fuels (60, 74 and 90 GWd/t), which had been irradiated in test reactors. The latter two fuels bore a developed rim structure. The maximum heating temperature was 1500 degC, and the external pressures were independently controlled in the range of 10-150 MPa. The present high burnup fuel data were compared with those of previously studied BWR fuels of 37 and 54 GWd/t with almost no rim structure. The fission gas release and bubble swelling due to the growth of grain boundary bubbles and coarsened rim bubbles were effectively suppressed by the strong restraint pressure of 150 MPa for all the fuels; however the fission gas release remarkably increased for the two high burnup fuels with the developed rim structure, even at the strong restraint conditions. From the stepwise de-pressurization tests at an isothermal condition of 1500degC, the critical external pressure, below which a large burst release due to the rapid growth and interlinkage of the bubbles abruptly begins, was increased from a 40-60 MPa level for the middle burnup fuels to a high level of 120-140 MPa for the rim-structured high burnup fuels. The high potential for transient fission gas release and bubble swelling in the rim-structured fuels was attributed to highly over-pressurized fission gases in the rim bubbles. (author)

  6. Contribution to complex gas-liquid flows: Development and validation of a mathematical model

    Science.gov (United States)

    Selma, Brahim

    This study describes the development and validation of Computational Fluid Dynamics (CFD) model for the simulation of dispersed two-phase flows taking in the account the population balance of particles size distribution. A two-fluid (Euler-Euler) methodology previously developed for complex flows is adapted to the present project. The continuous phase turbulence is represented using a two-equation k --- epsilon turbulence model which contains additional terms to account for the effects of the dispersed on the continuous phase turbulence and the effects of the gas-liquid interface. The inter-phase momentum transfer is determined from the instantaneous forces acting on the dispersed phase, comprising drag, lift, virtual mass and drift velocity. These forces are phase fraction dependent and in this work revised modelling is put forward in order to capture a good accuracy for gas hold-up, liquid velocity profiles and turbulence parameters. Furthermore, a correlation for the effect of the drift velocity on the turbulence behaviour is proposed. The revised modelling is based on an extensive survey of the existing literature. The conservation equations are discretised using the finite-volume method and solved in a solution procedure, which is loosely based on the PISO algorithm. Special techniques are employed to ensure the stability of the procedure when the phase fraction is high or changing rapidely [61]. Finally, assessment of the model is made with reference to experimental data for gas-liquid bubbly flow in a rectangular bubble column [133; 134; 135; 18], in a double-turbine stirred tank reactor [126; 127] and in an air-lift bioreacator [101]. Key words: mathematical modelling, complex flow gas-liquid, turbulence, population balance, computational fluids dynamics CFD, OpenFOAM, moments method, method of classes, QMOM, DQMOM.

  7. Status of the development of hot gas ducts for HTRs

    International Nuclear Information System (INIS)

    Stehle, H.; Klas, E.

    1984-01-01

    In the PNP nuclear process heat system the heat generated in the helium cooled core is transferred to the steam reformer and to the successive steam generator or to the intermediate heat exchanger by the primary helium via suitable hot gas ducts. The heat is carried over to the steam gasifier by the intermediate heat exchanger and a secondary helium loop. In both the primary and the secondary loop, the hot gas ducts are internally insulated by a ceramic fibre insulation to protect the support tube and the pressure housing from the high helium temperatures. A graphite hot gas liner will be used for the coaxial primary duct with an annular gap between support tube and pressure shell for the cold gas counterflow. A metallic hot gas liner will be installed in the secondary duct

  8. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  9. Generic Analysis Methods for Gas Turbine Engine Performance : The development of the gas turbine simulation program GSP

    NARCIS (Netherlands)

    Visser, W.P.J.

    2015-01-01

    Numerical modelling and simulation have played a critical role in the research and development towards today’s powerful and efficient gas turbine engines for both aviation and power generation. The simultaneous progress in modelling methods, numerical methods, software development tools and methods,

  10. Development of bremsstrahlung detection type tritium gas monitoring system, (1)

    International Nuclear Information System (INIS)

    Bingo, Kazuyoshi; Yoshida, Makoto; Chida, Tohru; Kawasaki, Katsuya

    1982-11-01

    A tritium monitoring system by means of bremsstrahlung detecting was developed. A prototype system consisted of a sampling cylinder, a gas circulating apparatus, an NaI(T1) detector, an amplifier and a multichannel analyzer. The sizes of sampling cylinders used 208 mm phi x 290; 170; 70 mmH, 133 mm phi x 292; 172; 72 mmH and 55 mm phi x 294; 174; 74 mmH, respectively. The sensitivity of prototype system was from 12 to 57 cps/μCi.cm - 3 , depending on the size of sampling cylinder and an efficiency of NaI(T1) detector. When pulses due to breamsstrahlungs with energy from 4 to 17 keV were counted, the minimum detectable concentration of the prototype tritium monitoring system was obtained to be 5.2 x 10 - 3 μCi/cm 3 . It was evaluated that the detectable range of concentration was from 1 x 10 - 2 to 1 x 10 3 μCi/cm 3 . (author)

  11. Legal aspects of financing Canadian offshore oil and gas developments

    International Nuclear Information System (INIS)

    Green, J.M.; Hudec, A.J.

    1992-01-01

    A review is presented of the significant legal considerations involved in structuring, negotiating, and documenting commercial financing of a Canadian offshore oil and gas production facility. Emphasis is placed on the Hibernia Project in the Newfoundland offshore as an example, and more specifically the $450 million bank financing completed in November 1991. The legal framework governing offshore production financing in this case was complex, due to the project's location in international waters on the continental shelf. Complex intergovernmental arrangements have been implemented between Canada and Newfoundland to govern the offshore area and regulate the project. An agreement called the Atlantic Accord allowed the Canada Newfoundland Offshore Petroleum Board (CNOPB) to grant production licenses and to regulate offshore exploration and development, with matters relating to legislation, taxation, and royalties shared between the governments. Certain other acts were enacted or extended for application to the offshore area. The CNOPB administers a registry system for transfers and security interests in offshore licenses. Security interests including property are ensured by the Hibernia Act, which makes Newfoundland's existing security interest regime applicable to the offshore. The project owners are operating Hibernia as a joint venture, and the structure of project financing and inter-creditor arrangements is examined. The competing security interest of project lenders and non-defaulting participants is discussed, along with assignment of priorities on the security in case of default

  12. Development of exhaust gas treatment technologies for environment protection

    International Nuclear Information System (INIS)

    David, E.; Stefanescu, I.; Stanciu, V.; Niculescu, V.; Sandru, C.; Armeanu, A.; Bucura, F.; Sisu, C.

    2006-01-01

    Full text: The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the immediate term over the next 10 - 20 years at least, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove other pollutants such as SO x and NO x which are released in the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this types of plants. Hence, efficient, cost-effective capture/separation technologies will need to be developed in order to allow their large-scale use. (authors)

  13. Baseline Gas Turbine Development Program. Tenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F.W.; Wagner, C.E.

    1975-04-30

    Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. A fuel control system is being developed to allow program evaluation of a very promising low emissions, single stage, fixed geometry proprietary burner. Ceramic regenerators are under test in the free-rotor vehicle, and some have completed 30 hours of performance evaluation. Three-dimensional ceramic regenerator transient thermal and structural analysis programs are operational. Initial friction and wear test fixture results show that zirconium oxide fully stabilized by yttrium oxide is an effective substitute for nickel oxide in a plasma sprayed seal. A preprototype control system was adapted for variable inlet guide vane control in a vehicle installation. An evaluation of the free-rotor accessory drive concept in a vehicle showed no serious mechanical integrity problems. Simplifications are being made to the water injection system; significant metallurgical analysis of observed erosion/corrosion problems was accomplished. Variable inlet guide vane aerodynamic loss characteristics were determined. Generally satisfactory results with linerless insulation are resulting in extended use and application. Pattern work for the upgraded engine housing and the power turbine wheel castings are in process. A computer design analysis of the regenerator drive gears was made, and an analysis was completed of a three peripheral roller regenerator support and drive proposal for the upgraded engine.

  14. The gas turbine: Present technology and future developments; La turbina a gas: Tecnologie attuali e gli sviluppi futuri

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E. [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-03-01

    The gas turbine is the most widely used prime mover all over the world for either power generation or mechanical drive applications. The above fact is due to the recent great improvements that have been done especially in terms of efficiency, availability and reliability. The future for gas turbine technological development looks very promising. In fact, although tremendous growth has already taken place, there is still the potential for dramatic improvements in performance. Compared with the competitive prime movers (conventional steam power plants and reciprocating piston engines) the gas turbine technology is younger and still following a strong growth curve. The coming decades will witness the continued increasing in turbine inlet temperature, the development of new materials and refrigeration systems and the commercialization of inter cooled system and steam cooled turbines. With the very soon introduction of the {sup G }and {sup H }technology, expected single and combined cycle efficiencies for heavy duty machines are respectively 40% and 60%, while maintaining single digit levels in pollutant emissions. In this report are given wide information on gas turbine present technology (Thermodynamics, features, design, performances, emission control, applications) and are discussed the main lines for the future developments. Finally are presented the research and technological development activities on gas turbine of Italian National Agency for new Technology Energy and the Environment Energy Department.

  15. The Status, Obstacles and Policy Recommendations of Shale Gas Development in China

    Directory of Open Access Journals (Sweden)

    Guanglin Pi

    2015-02-01

    Full Text Available The Chinese government has introduced numerous policies and development plans to boost its shale gas industry in recent years. However, China’s shale gas exploration and development is still in the initial stage and has been confronted with many challenges. This paper systematically analyzes the current status of China’s shale gas industry from five aspects for the first time—resource situation, exploration and development status, policy and planning situation, technology status and international cooperation—then respectively elaborates on the different obstacles of shale gas development in the short run and the medium and long term. We argue that short-term barriers to the Chinese shale gas industry mainly include objective factors, such as geological and surface conditions, shale gas proven reserves, technology innovation and environmental concerns, while some man-made obstacles (except for water scarcity may restrict shale gas development in the medium and long term. In order to better tackle the short-term challenges, this paper proposes policy recommendations from five perspectives: strengthening the investigation and evaluation of China’s shale gas resources; perfecting shale gas industry policy; establishing a national shale gas comprehensive experimental zone; enhancing scientific and technological research; and establishing a shale gas regulatory system with an emphasis on environmental protection and supervision.

  16. NATURAL GAS - A CHANCE FOR SUSTAINABLE DEVELOPMENT OF SERBIAN ENERGY SECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Krstic, S.; Djajic, N.; Kukobat, M.

    2007-07-01

    Republic Serbia has produced and consumed natural gas domestically since 1952, but has always been net importer. Strategy of Energy Development in Serbia and, especially, National Action Plan for the Gasification on the Territory of Republic of Serbia dedicated special attention to gas economy development in respect with expected contribution in efficient energy use and environmental policy protection in our country. Option of expanded share of natural gas in fulfilling energy requirements in future is reasonable, considering natural gas with its energetic, ecological and economical characteristics as very suitable fuel. Also, in mid-term and most probably in long-term period, the gas import is expected to be more advantageous than oil import. The paper deals the basic features of natural gas consumption in Serbia in nineties and analyses the further development in gas sector for next period until 2015 based on strategic analyses. (auth)

  17. Development of a large position-sensitive gas ionization chamber

    International Nuclear Information System (INIS)

    Adler, L.; Rogers, R.

    1977-01-01

    The basic design of a position-sensitive gas ionization chamber is described. It spans an angle of 97 0 and fits inside at 15'' radius scattering chamber. Construction features and preliminary performance data are discussed. 2 figures, 1 table

  18. Developments in the North American gas services business

    International Nuclear Information System (INIS)

    Haughey, D.J.

    1995-01-01

    The gas services business sector was briefly defined. Emerging issues of the business were reviewed as seen from the vantage point of Westcoast Gas Services Inc. The traditional gas market was described as one in which marketer's credit was overlooked, formal risk management was not employed, unpriced imbedded options were common, there was little capital investment, and there were no cash trading exchanges. Specific industry forces and customer needs were said to have created a powerful driving force which will fundamentally change this outdated framework of the gas service industry. Two key issues were said to emerge from this renewal. One of these is risk management, the other is the need for major ongoing investments. Skilled people, scale and scope of the business, transactional excellence, credit worthiness and systems technology were the other forces driving the upcoming transformation of the industry during the next few years

  19. Analyses of Injection-Coupled Combustion Instability from J-2X Gas Generator Development

    Science.gov (United States)

    Hulka, James R.; Kenny, R. Jeremy; Protz, Chris; Casiano, Matthew

    2011-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, combustion instabilities were observed near the frequency of the first longitudinal acoustic mode of the hot gas combustion chamber duct. These instabilities were similar to intermediate-frequency or buzz-type instabilities as described in historical programs, except for several aspects: 1) the frequencies were low, in the realm of chug; 2) at times the instability oscillation amplitudes were quite large, with peak-to-peak amplitudes exceeding 50% of the mean chamber pressure along with the appearance of harmonics; 3) the chamber excitation was related to but not exactly at the first longitudinal combustion chamber acoustic mode; and 4) the injector provided mass flow rate oscillations induced by capacitance and inertance effects in the injector rather than by organ pipe resonances of the coaxial oxidizer posts. This type of combustion instability is referred to as "injection coupling" because one critical driving source of the instability is mass flow rate oscillations from the injector. However, the type of injection coupling observed here is different than observed in previous instances of buzz instability with coaxial injectors, because of the lower frequencies and lack of influence from the oxidizer post organ pipe resonances. Test data and preliminary analyses of the initial combustion instabilities were presented in several papers at the 5th Liquid Propulsion Subcommittee meeting. Since that time, additional hot-fire tests with several new hardware configurations have been conducted, and additional analyses have been completed. The analytical models described in previous papers have been updated to include the influences of new geometrical configurations, including a different oxidizer injector manifold configuration and a branch pipe in the hot gas duct that supplies gaseous helium during the start transient to pre-spin the turbine. In addition, the

  20. Natural gas: energy, environment, development and externalities; Gas natural: energia, meio-ambiente, desenvolvimento e externalidades

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Eduardo F. de [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    Natural gas is a major source of non-renewable energy in the Brazilian energy matrix, and the noticeable increase in demand for this energy. This can be checked with the expansion of investments in Brazil and in the state of Bahia for the various sectors. The environmental benefits of natural gas highlight the advantages of using this input to the other fossil fuels. This paper discusses the availability of natural gas in Brazil and how it occurs its participation in the national energy matrix. This issue of the vulnerability of the market by the conflict between the growing demand from various industries and the need for order of thermal. It indicates scenarios and future prospects, and limiting factors for their growth. (author)

  1. Development and characterization of semiconductor gas discharge microstructure

    International Nuclear Information System (INIS)

    Yucel Kurt, H.; Kurt, E.; Salamov, B.G.; Salamov, B.G.

    2009-01-01

    In a semiconductor gas discharge structure with diameters much larger than an inter-electrode distance, the effects of different parameters (electrodes separation, gas pressure, diameter and conductivity of the GaAs photodetector) on electrical breakdown and current oscillations of the current have been studied. Instabilities of spatially non-uniform distributions resulting in the formation of multiple current filaments with increasing voltages above the critical values have been observed. (author)

  2. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil

  3. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs

    Directory of Open Access Journals (Sweden)

    Liming Huang

    2015-10-01

    Full Text Available In China, there are a lot of high-sulfur gas reservoirs with total proved reserves of over 1 trillion m3, most of which were discovered in the Sichuan Basin. Most high-sulfur gas reservoirs in China, distributed in marine carbonate zones, are characterized by great buried depths, complex geologic conditions, high temperatures, high pressures, high H2S and CO2 content, presenting various challenges in gas field development engineering and production safety. Since the development of Sinian high-sulfur gas reservoirs in the Weiyuan area of the Sichuan Basin started in the 1960s, Wolonghe, Zhongba and other medium to small-scale gas reservoirs with medium to low sulfur content have been developed. Ever since 2009, successful production of Longgang and Puguang in the Sichuan Basin, together with some other high-sulfur gas reservoirs highlighted the breakthroughs in development technologies for high-sulfur gas reservoirs in China. This paper reviews the progress made in gas reservoir engineering, drilling and completion engineering, gas production, pipeline transportation, corrosion control, natural gas purification, HSE and other aspects with consideration of specific requirements related to safe, clean and high-efficient development of high-sulfur gas reservoirs since the “12th Five-Year Plan” period. Finally, considering the challenges in the development of high-sulfur gas reservoirs in China, we summarized the trend in future technological development with the following goals of reducing risks, minimizing environmental damages, and enhancing the efficiency of high-sulfur gas reservoir development.

  4. Development of oil and gas fields in the Arctic seas and other Russian offshore areas

    Directory of Open Access Journals (Sweden)

    Bogoyavlensky V. I.

    2015-09-01

    Full Text Available The results of development of the Arctic and other Russian seas oil and gas fields have been presented. The state of the offshore seismic exploration and drilling fleets has been analysed. Seismic monitoring has been recommended for efficiency and safety of the offshore fields development increasing. Main directions of Russian oil and gas industry development have been determined

  5. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  6. Study on direct measurement of diesel exhaust gas flow rate. Development of ultrasonic exhaust gas flowmeter; Diesel hai gas ryuryo no chokusetsu sokuteiho ni kansuru kenkyu. Choonpa hai gas ryuryokeino kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, A.; Takamoto, M.; Yamzaki, H. [National Research Laboratory of Meteology, Tsukuba (Japan); Hosoi, K. [Japan Automobile Research Institute Inc., Tsukuba (Japan); Arai, S.; Shimizu, K. [Kaijo Corp., Tokyo (Japan)

    2000-02-25

    The partial flow dilution method is one of the typical measurement methods for particulate matter emission from diesel engines. In this method, exhaust gas at a transient flow rate should be transferred to a dilution tunnel at a constant ratio of exhaust gas. The present partial flow dilution method is used under steady-state engine operating conditions in lieu of direct flow rate measurement of exhaust gas. A more practical control of exhaust emission is, however, required world widely; therefore development of an exhaust gas flowmeter is indispensable in the partial flow dilution method for transient engine operating conditions. An ultrasonic exhaust gas flowmeter has been developed and been demonstrated to be capable of measuring the exhaust gas flow rate with sufficient accuracy. (author)

  7. Office of oil and natural gas supply development

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A. L.

    1978-11-01

    From its origin in the Department of the Interior until its transfer to the Federal Energy Office in December 1973, the Office of Oil and Gas served as the focal point for the coordination of all of the federal government's many interests in oil and gas. A sttaff agency, reporting originally to the Secretary of the Interior and later to the Assistant Secretary for Mineral Resources, it was responsible for providing the data and knowledge upon which oil and gas policy at various levels of the government was formulated. It was an effective channel of communication with the appropriate state agencies, with the domestic oil and gas industry, and with international organizations concerned with the supply of oil and gas. Working through a complicated system of industry-government committees, the office was responsible for the production of an enormous volume of significant reports through the years. It was the action agency for emergency preparedness, providing the Secretary of the Interior with a capability to respond effectively to emergencies, both large and small, which might affect the nation's supply of oil and gas. In the 27-year history of the Office of Oil and Gas, the emergency readiness functions emerge as by far the most absorbing of its many concerns. The events and actions of the office, during those times when instability in the Middle East and around the world threatened to interrupt the flow of petroleum, make interesting studies of the unique cooperation between the federal government and an industry so essential to the nation's well-being.

  8. PREVIOUS SECOND TRIMESTER ABORTION

    African Journals Online (AJOL)

    PNLC

    PREVIOUS SECOND TRIMESTER ABORTION: A risk factor for third trimester uterine rupture in three ... for accurate diagnosis of uterine rupture. KEY WORDS: Induced second trimester abortion - Previous uterine surgery - Uterine rupture. ..... scarred uterus during second trimester misoprostol- induced labour for a missed ...

  9. Study of gas ionization in a glow discharge and development of a micro gas ionizer for gas detection and analysis

    OpenAIRE

    Longwitz, Ralf G.

    2004-01-01

    In the pursuit of a portable gas detector/analyser we studied the components of an ion mobility spectrometer (IMS), which is a device that lends itself well to miniaturisation. The component we focused on was the ionizer. We fabricated a series of micro ionizers with micro electromechanical systems (MEMS) technology, which had a gap spacing between 1 and 50 μm and a thickness from 0.3 to 50 μm. They were used to examine micro discharges as such and as a means of ionization. In our measurement...

  10. Study of gas ionization in a glow discharge and development of a micro gas ionizer for gas detection and analysis

    OpenAIRE

    Longwitz, Ralf G.; Renaud, Philippe

    2005-01-01

    In the pursuit of a portable gas detector/analyser we studied the components of an ion mobility spectrometer (IMS), which is a device that lends itself well to miniaturisation. The component we focused on was the ionizer. We fabricated a series of micro ionizers with micro electromechanical systems (MEMS) technology, which had a gap spacing between 1 and 50 μm and a thickness from 0.3 to 50 μm. They were used to examine micro discharges as such and as a means of ionization. In our measurement...

  11. Ameloblastic fibroma: a stage in the development of a hamartomatous odontoma or a true neoplasm? Critical analysis of 162 previously reported cases plus 10 new cases.

    Science.gov (United States)

    Buchner, Amos; Vered, Marilena

    2013-11-01

    To analyze neoplastic and hamartomatous variants of ameloblastic fibromas (AFs). Analysis of 172 cases (162 previously reported, 10 new). AF emerged as a lesion primarily of children and adolescents (mean age, 14.9 years), with about 80% diagnosed when odontogenesis is completed (age, 22 years are considered true neoplasms, while those in younger patients may be either true neoplasms or odontomas in early stages of development. Although the histopathology of hamartomatous and neoplastic variants of AF are indistinguishable, clinical and radiologic features can be of some help to distinguish between them. Asymptomatic small unilocular lesions with no or minimal bone expansion in young individuals are likely to be developing odontomas, and large, expansile lesions with extensive bone destruction are neoplasms. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Interpreting "Personality" Taxonomies: Why Previous Models Cannot Capture Individual-Specific Experiencing, Behaviour, Functioning and Development. Major Taxonomic Tasks Still Lay Ahead.

    Science.gov (United States)

    Uher, Jana

    2015-12-01

    As science seeks to make generalisations, a science of individual peculiarities encounters intricate challenges. This article explores these challenges by applying the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) and by exploring taxonomic "personality" research as an example. Analyses of researchers' interpretations of the taxonomic "personality" models, constructs and data that have been generated in the field reveal widespread erroneous assumptions about the abilities of previous methodologies to appropriately represent individual-specificity in the targeted phenomena. These assumptions, rooted in everyday thinking, fail to consider that individual-specificity and others' minds cannot be directly perceived, that abstract descriptions cannot serve as causal explanations, that between-individual structures cannot be isomorphic to within-individual structures, and that knowledge of compositional structures cannot explain the process structures of their functioning and development. These erroneous assumptions and serious methodological deficiencies in widely used standardised questionnaires have effectively prevented psychologists from establishing taxonomies that can comprehensively model individual-specificity in most of the kinds of phenomena explored as "personality", especially in experiencing and behaviour and in individuals' functioning and development. Contrary to previous assumptions, it is not universal models but rather different kinds of taxonomic models that are required for each of the different kinds of phenomena, variations and structures that are commonly conceived of as "personality". Consequently, to comprehensively explore individual-specificity, researchers have to apply a portfolio of complementary methodologies and develop different kinds of taxonomies, most of which have yet to be developed. Closing, the article derives some meta-desiderata for future research on individuals' "personality".

  13. Development of polypyrrole coated copper nanowires for gas sensor application

    Directory of Open Access Journals (Sweden)

    H. Shokry Hassan

    2015-09-01

    Full Text Available Both polypyrrole (PPy and polypyrrole coated copper thin films were synthesized successfully via two-step methods. PPy nanorods films were first grown chemically, and then PPy thin films were fabricated on glass substrates using dip-coating technique. The resulting films were examined via various characterization methods such as X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR and Thermal Gravimetric Analysis (TGA. Gas sensor devices were fabricated and the gas sensitivity for (PPy coated copper was measured as a function of temperature for both O2 and CO2 gases. The maximum sensitivity for O2 gas was around 160% and the maximum sensitivity for CO2 was 300%.

  14. The development of the natural gas market in the USA

    International Nuclear Information System (INIS)

    Herbert, J.H.; Heinkel, J.E.

    1995-01-01

    In the early Eighties producers mostly sold their gas to pipeline companies on the basis of relatively long-term, fixed price contrasts. These pipeline companies transported, and partly stored, the natural gas and resold it to local distributors and end consumers. Today's system permits local distributors and end consumers to make supply contracts directly with the producer and separate contracts for the utilisation of transport and storage capacities. These capacity titles are not only available to end consumers, retailers, and wholesalers but can also be traded in secondary markets. (orig./UA) [de

  15. Development of a Database Program for Managing Drilling Data in the Oil and Gas Industry

    Science.gov (United States)

    Suh, J.; Choi, Y.; Park, H.; Choe, J.

    2008-12-01

    This study presents a prototype of database program for managing drilling data for the oil and gas industry. The characteristics of petrophysical data from drilling cores were categorized to define the schema of database system such as data fields in tables, the relationships between those tables and key index fields to create the relationships. And many types of drilling reports and previous drilling database systems were reviewed to design of relational database program. Various algorithms of logging tool were analyzed to offer many kinds of function for user. Database program developed in this study provides well-organized graphic user interfaces for creating, editing, querying, exporting and visualizing the drilling data as well as for interchanging data with a spreadsheet such as MS-Excel.

  16. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  17. China's natural gas exploration and development strategies under the new normal

    Directory of Open Access Journals (Sweden)

    Jialiang Lu

    2015-12-01

    Full Text Available China's natural gas industry has experienced a great leap-forward development in the past decade. Since the second half of 2014, however, international oil price has dropped sharply and global oil and gas markets have been sluggish. In China, economy growth rate slows down and resource environments tend to be more restricted. And energy production and consumption revolution speed up, and the development of natural gas industry experience profound changes internally and externally. Through review on the achievements in recent high-speed development and analysis on the future development of China's natural gas industry, it is believed that the growth rates of China's natural gas output and consumption will slow down and the supply and demand fundamentals present loose states. Low-permeability tight, deep–extra deep and unconventional reservoirs will be the principal targets of natural gas exploration and development and the tendency of resource deterioration is inevitable. The pressure to the decrease of gas price rises due to the sustained recession of oil price and the sharp decrease of alternative energy price. The normal means to increase benefits is to control investment strictly and reduce cost greatly. As for the new normal, five suggestions are proposed for natural gas exploration and development in China. Firstly, reinforce exploration continuously by guaranteeing work load and investment at the required level, and tamp the development basis. Secondly, pay much attention to early development evaluation, give prominence to plan implementation design and control productivity construction rhythm. Thirdly, pay attention to the top-level design of mature gas field development and adjustment, with fine description and management as the priority, and improve overall development level. Fourthly, strengthen the researches on exploration and development technologies, with the simplification and practicability of technologies as the focus, and

  18. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  19. Development of gas sensors using ZnO nanostructures

    Indian Academy of Sciences (India)

    Administrator

    Different ZnO nanostructures such as nanowires, nanobelts and tetrapods have been grown and used for preparation of thick film (with random ... Gas sensors; nanowires; ZnO; tetrapods; NO; H2S. 1. Introduction. Semiconductor metal-oxide .... at room temperature is shown in figure 3. Here, response is defined by: 100.

  20. Development of gas boy medical incinerator as a substitute for ...

    African Journals Online (AJOL)

    The stench that emanates from the burial of placentas, limbs etc especially after rainfall, are unbearable and awful within most hospital environments. A solution has been found in the engineering of all-in-one medical gas boy incinerator with quick rise in temperature and even distribution of heat, with drying and firing cycles ...

  1. Development of gas sensors using ZnO nanostructures

    Indian Academy of Sciences (India)

    Different ZnO nanostructures such as nanowires, nanobelts and tetrapods have been grown and used for preparation of thick film (with random grain boundaries) as well as isolated nanowire/nanobelt gas sensors. Sensitivity of different type of sensors has been studied to H2S and NO gases. The results show that the ...

  2. Recent developments in the natural gas regulatory arena

    International Nuclear Information System (INIS)

    Hollis, S.S.

    1997-01-01

    The changes made by the US Federal Energy Regulatory Commission's (FERC) order no. 636 in traditional trading partner relationships, wherein contracts, not regulators have the most important role in defining the rights between the parties, were discussed. Implications of the unbundling of the natural gas industry were analyzed. While on the whole the policy appears to be a wise one, there are a number of questions yet to be answered about how well customers are served by the policy. The opinion of this author is that for a company to 'take charge of its energy destiny' will involve added costs in terms of having to re-engineer the company's organisation, or having to pay a middleman who is familiar with all the intricacies of gas procurement, trading and transmission. The restructuring of the gas market and the advent of customer oriented service also is driving the next wave of the energy business, namely the provision of integrated services which are the likely consequences of restructuring of the electric industry resulting from FERC orders 888 and 889. The integrated market encouraged by deregulation of the natural gas and electric industries will be one in which sellers will offer all forms of energy from a single source, and a marketplace where different forms of energy can be exchanged or converted. In such a market the role of regulators will be mainly to facilitate competition and to assure a level playing field for all players. 150 refs

  3. Ceramic stationary gas turbine development. Final report, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  4. Development of a thermal desorption modulator for gas chromatography

    NARCIS (Netherlands)

    Geus, H.J.; Boer, de J.; Brinkman, U.A.Th.

    1997-01-01

    The separation space in gas chromatography can be enhanced dramatically by the comprehensive coupling of two independent separation dimensions. An interface between the two columns must accumulate analytes eluting from the first dimension, focus them and at the appropriate moment transfer them to

  5. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  6. Technological innovations to development remote gas reserves: gas-to-liquids; Inovacoes tecnologicas no desenvolvimento de reservas remotas de gas natural: gas-to-liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maculan, Berenice D. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Falabella, Eduardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The GTL - gas to liquids technology was born in Germany, after the 20's with the goal to product liquid fuel from coal to supply the bellicose and domestic demand. The grow of the petroleum industry lead the world to the forgiveness of the GTL technology, except in South Africa. In the last two decades the number of news natural gas reserves and the perspectives of the increase demand from natural gas for the next 20 years change this scenario. Nearly 60% of this reserves are calling stranded or remote, meaning reserves which can't produce with conventional technologies (logistics and economics barriers). So, the oil and gas industry restart to analyze the economics and applicability of the GTL technology. The competitively and applicability of this technology were evaluated and compared to the traditional way of natural gas transport, as well as the solidification of the new environmental rules and the creation of niche to this kind of fuel - the cleans ones - seams the cause of this changes in the oil and gas industries. Which began to adjust to all this news rules and conditions, as show in the sum of investments in R and D area. So, is in this new scenario that the reappear of GTL technology is consider has a technological innovation. (author)

  7. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing

    International Nuclear Information System (INIS)

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R ampersand D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining

  8. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods such as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only

  9. DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    Energy Technology Data Exchange (ETDEWEB)

    E. Kelner; T.E. Owen; D.L. George; A. Minachi; M.G. Nored; C.J. Schwartz

    2004-03-01

    In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures; (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.

  10. Current developments on the coal and gas markets and their retroactive effects on the Merit Order

    International Nuclear Information System (INIS)

    Hecking, Harald; Cam, Eren; Schoenfisch, Max; Schulte, Simon

    2017-01-01

    Coal and gas continue to play a significant role in the European power generation system, especially in Germany. According to the AG energy balances, the share of hard coal in German gross electricity generation in 2016 was 17.2% and natural gas 12.4%. In addition to the CO 2 price, the prices for steam coal and natural gas are a key factor in determining which gas or coal power station is in Merit Order and whether it comes to a fuel switch. Declining gas prices have been rising sharply since the middle of 2016, and the volatile prices for steam coal have been rising. This article discusses the developments and factors responsible for these developments, which could be expected in the near future, and the implications for the gas-coal spread in the electricity market. [de

  11. Technical status and challenges of shale gas development in Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Pingli Liu

    2015-03-01

    This paper begins with the introduction of shale gas reserve distribution in China and the identified shale gas formation in Sichuan Basin. The following paper reviews the methodology employed in the geophysical prospecting, drilling and completion, and hydraulic fracturing process. Since China is in the early stage of shale gas development, there is a great technical gap between China and North America. Based on literature review, the major challenges faced in the exploration and production process are identified. What presented in this paper should be of particular interest to the personnels involved in shale gas production in China and countries that are about to set foot in shale gas business. It will also be of interest to researchers who are dedicated to developing these technologies to unlock unconventional gas resources in China.

  12. The Asian Development Bank's past and future involvement in financing gas projects in developing member countries of the Bank

    International Nuclear Information System (INIS)

    Chua, S.B.

    1991-01-01

    This paper presents a review of the Bank's involvement in financing gas projects in its developing member countries (DMC's). The paper highlights the scope of the Bank's past activities in the sector, the DMC's which had received assistance from the Bank, the types of projects financed by the Bank, the benefits expected to be derived from the projects, and the past problems encountered by the Bank. The operational framework under which past Bank lending to the gas sector was conducted is also described. The prospects of natural gas playing a prominent role as an environmentally preferred energy source to oil and coal are outlined. Indications of the direction of the Bank's future efforts to help its gas-resource-rich as well as its gas-resource-poor DMC's to quicken the use of natural gas are given. While emphasizing the Bank's contributions in helping its DMC's to increase gas supply to alleviate energy shortages, the paper stresses the important role the Bank has played and will play in institution-building and sector-development work. The paper explores the possibility for the Bank to expand its operations in the gas sector which will lead to the efficient and accelerated development of a clean energy source that will help its DMC's avoid a third oil crisis and reduce the damaging build-up of a greenhouse gas which now threatens to harm the global environment

  13. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  14. Landowner attitudes toward natural gas and wind farm development in northern Pennsylvania

    International Nuclear Information System (INIS)

    Jacquet, Jeffrey B.

    2012-01-01

    The US has undergone a recent boom in the development of onshore wind farm and natural gas energy projects and contentious debates over the construction of these projects are common in communities across the US. A survey of landowners in a region of Northern Pennsylvania (N=1028) undergoing simultaneous development of both wind and natural gas development shows that landowners are generally much more polarized and negative towards gas development than wind farm development, and that attitudes toward natural gas development is highly dependent on environmental attitudes and industry leasing, development, or employment experience. Landowner proximity to the development explains a small amount of the variation in attitudes towards wind energy. Recommendations for energy policy and future research are discussed. - Highlight: ► A Pennsylvania survey reveals attitudes toward natural gas and wind development. ► Gas drilling attitudes became more negative; wind farm attitudes more positive. ► Environmental concern and industry experience influence attitudes toward energy. ► Proximity to wind is weakly related to attitudes; proximity to gas is not related.

  15. Opportunities - oil and gas development in the Mexican market

    International Nuclear Information System (INIS)

    1997-01-01

    This review of business opportunities is intended as a guide for Alberta companies who are interested in investing or otherwise participating in the Mexican oil and gas industry. The guide provides a brief summary of Mexico, its political, legal and economic system, a brief review of the Mexican oil and gas industry, environmental legislation, the financial institutions, labour/management relations and overseas trade relations. Opportunities for Alberta firms in the Mexican resources industry are identified. Steps to follow for anyone contemplating business with Pemex, the state-owned oil company, are outlined and sources of assistance available to Alberta companies are reviewed. There are various lists of private consultants, Canadian banks in Mexico, accounting firms, customs brokers, freight forwarders and tips on Canadian and Mexican sources of financing. There is also a summary of commercial regulations between Pemex and its suppliers, and an organization chart of the Exploration and Production Branch of Petroleos Mexicanos. tabs., figs

  16. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  17. Development of a hydrogen gas sensor using microfabrication technology

    Science.gov (United States)

    Liu, Chung-Chiun; Wu, Qinghai; Stuczynski, Matthew; Madzsar, George C.

    1992-01-01

    Microfabrication and micromachining technologies are used to produce a hydrogen gas sensor based on a palladium-silver film. The sensor uses a heater that is fabricated by diffusing p-type borones into the substrate, forming a resistance heater. A diode for temperature measurement is produced using p-type boron and n-type phosphor diffused into the substrate. A thickness of the palladium-silver film is approximately 300 arcsec. The hydrogen gas sensor employs the proven palladium-silver diode structure and is surrounded by a phosphor doped resistance heater which can be heated up to a temperature of 250 C. Experimental results show that the sensor is capable of operating over a wide range of hydrogen concentration levels between 0-95 percent without any hysteresis effects.

  18. New high temperature gas flow cell developed at ISIS

    Science.gov (United States)

    Haynes, R.; Norberg, S. T.; Eriksson, S. G.; Chowdhury, M. A. H.; Goodway, C. M.; Howells, G. D.; Kirichek, O.; Hull, S.

    2010-11-01

    A flow-through quartz gas cell, together with a gas flow control and monitoring system, has been designed and constructed at ISIS. This equipment allows neutron powder diffraction data to be collected on samples at temperatures up to around 1300 K when exposed to user chosen mixtures of O2, Ar, CO2, and CO. By exploiting the sensitivity of neutrons to the presence of light atoms such as oxygen, it is possible to probe the crystal structure of oxide materials as a function of oxygen partial pressures down to log10p(O2) of about -20. The resultant structural information can then be correlated with the bulk properties of the materials, whose research and technological interests lie in fields such as energy production, storage materials, catalysis, and earth science.

  19. New high temperature gas flow cell developed at ISIS

    International Nuclear Information System (INIS)

    Haynes, R; Norberg, S T; Eriksson, S G; Chowdhury, M A H; Goodway, C M; Howells, G D; Kirichek, O; Hull, S

    2010-01-01

    A flow-through quartz gas cell, together with a gas flow control and monitoring system, has been designed and constructed at ISIS. This equipment allows neutron powder diffraction data to be collected on samples at temperatures up to around 1300 K when exposed to user chosen mixtures of O 2 , Ar, CO 2 , and CO. By exploiting the sensitivity of neutrons to the presence of light atoms such as oxygen, it is possible to probe the crystal structure of oxide materials as a function of oxygen partial pressures down to log 10 p(O 2 ) of about -20. The resultant structural information can then be correlated with the bulk properties of the materials, whose research and technological interests lie in fields such as energy production, storage materials, catalysis, and earth science.

  20. The development of a natural gas transportation logistics management system

    International Nuclear Information System (INIS)

    Pereira dos Santos, Sidney; Eugenio Leal, Jose; Oliveira, Fabricio

    2011-01-01

    Efficient management of the natural gas business chain - based on pipeline transmission networks and taking into consideration the interaction among the main players (e.g., shippers, suppliers, transmission companies and local distribution companies) - requires the use of decision-making support systems. These support systems maximise resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages and market demand shortfalls. This study presents a practical use for technologies, such as a thermohydraulic simulation of gas flow through pipelines, a Monte Carlo simulation for compressor station availability studies, an economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for the maximisation of income and the minimisation of contractual penalties. The proposed system allows the optimum availability level to be defined and maintained by the Transporter (by installing reserve capacity) to mitigate losses related to revenue and contractual penalties. It also economically identifies, quantifies and justifies the installation of stand-by compressor units that can mitigate the Transporter's exposure to losses caused by capacity shortfalls as a consequence of scheduled and non-scheduled outages. - Highlights: → We present a DSS to help the decision on investments on spare compressor units of pipelines systems. → The system may be applied to new or existing projects. → The system is able to estimate the revenue losses and the contractual penalties. → An economical evaluation shows the NPV for each configuration of spare units. → The method was applied to the case study of the Bolivia-Brazil gas pipeline.

  1. Design and Development of Gas Leakage Monitoring System Using Arduino and ZigBee

    OpenAIRE

    Yan, Huan Hui; Rahayu, Yusnita

    2014-01-01

    Gas leakage in industrial area causes many health issues. Thus, to prevent such disasters happen, the atmosphere of a workplace should be regularly monitored and controlled, in order to maintain the clean air environment. However, efforts in industrial air quality control have been impeded by the lack of science-based approaches to identify and assess atmosphere air quality and level of dangerous gas. Therefore, a monitoring system for gas leakage detection needs to be developed. For the deve...

  2. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    Science.gov (United States)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom

  3. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    E. Atherton

    2017-10-01

    Full Text Available North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3–6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s−1 at our average detection distance (319 m. Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s−1 contribute more than 111 800 t of methane annually to the atmosphere

  4. Increased LNG into North America may threaten northern/Arctic gas development

    International Nuclear Information System (INIS)

    Howard, P.

    2006-01-01

    Since 2000, liquefied natural gas (LNG) has attracted considerable attention in response to record high price, high demand and tight supply of natural gas. LNG trade is expected to be 18 per cent of North American gas supply by 2020. The natural gas market is also affected by demand dominated by gas-fired power generation. The balance between supply and demand, combined with external factors of economic upsets and weather, has resulted in a volatile market place. LNG can currently be landed in North American at prices that compete with the average continental well head price. In January 2006, there were more than 60 competing LNG regasification projects proposed to access the North American gas market. This presentation listed the proposed facilities to import LNG and emphasized the need for a comprehensive analysis of gas development, given the degree of uncertainty regarding significant investment in gas supply, demand, pipelines and LNG projects. While only a few of the proposed projects will actually be constructed, they will more than double the existing output by 2010. The many possible changes in regional marketplace conditions were discussed with particular attention to the effects on the economic viability of natural gas developments; the impacts of LNG imports on capacities and flows in natural gas pipeline corridors; and, the influence of increased natural gas supplies on local and regional prices. It was noted that since conventional resources in Canada and the United States have reached a plateau, the next logical supply sources are Alaska, the Beaufort Sea, the Mackenzie Delta and the Arctic Islands. However, the development of northern and Arctic gas resources may be delayed if the level of LNG imports is sufficient to fill the deficiency in supply and demand. tabs., figs

  5. Gas in the developing world--The role of the World Bank

    International Nuclear Information System (INIS)

    Malhotra, A.K.

    1991-01-01

    Over a third of the world's supply of energy today comes from the developing countries, a percentage that is likely to increase to almost 43% by the year 2000. One of the major areas of growth is expected to be in natural gas, which may supply over 20% of the total world's energy by 2000. Though there are major gas reserves in the developing world, they are not being exploited optimally. Growth of the gas industry requires resolution of a number of issues--financial, technical, and institutional. International trade in gas has shown recent signs of recovery, but over 70% of the gas produced in the developing countries is expected to be consumed domestically. The development and management of this emerging gas sector in the domestic economies of the developing countries will be one of the major challenges of the future. These issues are discussed in some detail. The role of the World Bank in financing natural gas projects is also discussed. The World Bank Group comprises the International Bank for Reconstruction and Development Association (IBRD) and its affiliates, the International Development Association (IDA), the International Finance Corporation (IFC), and the Multilateral Investment Guarantee Agency (MIGA)

  6. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  7. Conceptual aspects: analyses law, ethical, human, technical, social factors of development ICT, e-learning and intercultural development in different countries setting out the previous new theoretical model and preliminary findings

    NARCIS (Netherlands)

    Kommers, Petrus A.M.; Smyrnova-Trybulska, Eugenia; Morze, Natalia; Issa, Tomayess; Issa, Theodora

    2015-01-01

    This paper, prepared by an international team of authors focuses on the conceptual aspects: analyses law, ethical, human, technical, social factors of ICT development, e-learning and intercultural development in different countries, setting out the previous and new theoretical model and preliminary

  8. New Fabrication Methodologies for the Development of Low Power Gas Sensors Based on Semiconducting Nanowires

    OpenAIRE

    Samà Monsonís, Jordi

    2016-01-01

    La tesis titulada New Fabrication Methodologies for the Development of Low Power Gas Sensors Based on Semiconducting Nanowires, se enmarca dentro de los sensores de gas para la monitorización ambiental de la calidad del aire, con el objetivo de detectar la presencia de gases nocivos para la salud humana. El trabajo desarrollado se basa en el uso de sensores de gas resistivos, es decir, que la adsorción de un gas en la superficie del sensor da lugar a un cambio en la conductividad del sens...

  9. Exploring the environmental effects of shale gas development in the Chesapeake Bay watershed

    Science.gov (United States)

    Scientific and Technical Committee [STAC]. Chesapeake Bay Program

    2013-01-01

    On April 11-12, 2012, the Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) convened an expert workshop to investigate the environmental effects of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage scientists from across the nation in a review of the state-of-the-science regarding shale gas...

  10. Development and test of an evaluation protocol for heavy gas dispersion models

    NARCIS (Netherlands)

    Duijm, N.J.; Carissimo, B.; Mercer, A.; Bartholome, C.; Giesbrecht, H.

    1997-01-01

    In order to improve the quality (i.e. fitness-for-purpose) of models used to describe the atmospheric dispersion of heavy gas, an evaluation methodology has been developed and tested through a small evaluation exercise. This activity was carried out by the Heavy Gas Dispersion Expert Group, which

  11. Development of Key-Enabling Technologies for a Variable-blend Natural Gas Vehicle

    Science.gov (United States)

    2017-12-01

    A portable, economic and reliable sensor for the Natural Gas (NG) fuel quality has been developed. Both Wobbe Index (WI) and Methane Indexes (MI) as well as inert gas content (inert%) of the NG fuel can be measured in real time within 5% accuracy. Th...

  12. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  13. Shale Gas Development and Brook Trout: Scaling Best Management Practices to Anticipate Cumulative Effects

    Science.gov (United States)

    Smith, David; Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.; Faulkner, Stephen P.

    2012-01-01

    Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.

  14. Natural gas domestic market development for total elimination of routine flares in Nigeria's upstream petroleum operations

    International Nuclear Information System (INIS)

    Sonibare, J.A.; Akeredolu, F.A.

    2006-01-01

    Several research findings confirmed that gaseous emissions and thermal radiation emanate from flaring activities during separation of oil from gas in the petroleum upstream operations. This, coupled with identified degradation potential of flares, makes flaring of about 71 million m 3 /day of associated gas a great concern. In this paper, several efforts hitherto made by government and organized private sectors at monetizing associated natural gas being flared on daily basis in Nigeria were reviewed. Domestic market development, if adopted, could eliminate routine gas flaring by 2008, meeting a goal set by Nigerian Government. Various scenarios considered showed that relatively minor amounts of natural gas could be consumed domestically for cooking; the balance would be absorbed by thermal electricity generation. It could lead to total consumption of between 92 and 140 million m 3 /day of natural gas in the country, representing a fraction of the domestic energy market

  15. Development of lab scale fast gas injection system for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Pathan, F.S.; Banaudha, Moni; Khristi, Yohan; Khan, M.S.; Khan, Ziauddin; Raval, D.C.; Khirwadkar, Samir

    2017-01-01

    The plasma density control plays an important role in Tokamak operation. The factors that influence plasma density in a Tokamak device are working gas injection, pumping, ionization rate and the recycle coefficient representing the wall conditions. Among these factors, gas injection is relatively convenient to be controlled. Hence, the most frequently adopted method to control the plasma density is to control the fast gas injection. This paper describes the design and experimental work carried out towards the development of Fast Gas Injection System for SST-1 Tokamak. Laboratory based test setup was successfully established for Fast Gas Injection System that can feed predefined quantity of gas in a controlled manner into vacuum chamber. Further, this FGIS system will be implemented in SST-1 Tokamak environment with online density feedback signal

  16. International oil and gas exploration and development: 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

  17. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  18. Development and implementation of a 600-MW natural gas cogeneration project - a financial case history

    International Nuclear Information System (INIS)

    Quinn, N.K.; Sherrill, R.L.

    1992-01-01

    In February 1990, General Electric Capital Corporation (GECC), through its wholly owned subsidiary, General Electric Power Funding Corporation (GEPFC), provided a number of commitments to a partnership (the Partnership) formed by a company that develops, owns, and operates cogeneration facilities to fund the development, construction, and permanent debt and equity financing of a 614 megawatt (M) cogeneration facility (the Project) to be located near a large refinery in the northeastern United States. The Project is unusual both for the magnitude of its natural gas requirements and for its contractual configuration. The Project's entire transportation needs and a substantial portion of its gas requirements will be met by a joint venture between two local gas distribution companies (the Joint Venture), one of which is a large gas-consuming utility in the eastern United States. The Project's power purchase customer, (the Utility Host), is another very large gas-consuming utility. Thus, the fuel cost recovery of the Project is determined by the Utility Host's gas costs while its actual bill for fuel will be heavily influenced by the Joint Venture's gas commodity and transportation costs. Therefore, in appraising the credit quality of the Project's proposed fuel supply arrangements, the key issue to be answered is: Are the Project's natural gas supply and transportation arrangements compatible with the fuel cost recovery provisions of the power sales agreement with the Utility Host? If so, then the sensitivity of the Project's financing to adverse gas price movements would be minimized

  19. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  20. Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape.

    Science.gov (United States)

    Langlois, Lillie A; Drohan, Patrick J; Brittingham, Margaret C

    2017-07-15

    Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we

  1. A hyper duplex stainless steel developed for oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Guocai; Kivisaekk, Ulf; Novak, Pavel [Sandvik Materials Technology (Sweden). R and D Centre; Finzetto, Leandro [Sandvik Materials Technology, Clarks Summit, PA (United States); Tokaruk, John [Sandvik Materials Technology (Norway)

    2008-07-01

    Subsea umbilical is operating under the sea as a connection between a platform's control station and the wells on the seabed to supply necessary control and chemicals to subsea oil and gas wells. The umbilical tube materials are required to have excellent corrosion resistance and high fatigue properties. The recent development and exploration in deep waters require the umbilicals with a length longer than 2500 meters. This indicates that the present umbilical tube can be so thick that they could not bear their own weight. Some new material will be needed. Another development is that some umbilicals will be used in high temperature sea water. With this background, Sandvik SAF 3207 HD has been newly developed. This paper gives an introduction of this new material. This new duplex stainless steel grade has a PRE number close to 50, which is therefore called hyper-duplex stainless steel. Sandvik SAF 3207 HD shows a yield strength 20% higher than those of super-duplex stainless steels, high fatigue properties, a service temperature up to 90 deg C and a good weldability. The benefits with this material when it comes to building umbilicals are considerable. Thinner walls and lighter installations make it possible to reach and operate ultra-deep wells that were previously too costly or too complex to exploit. At the same time, the temperature and pressure window widens - despite the thinner walls. (author)

  2. Developing of the System Safety Documentation for RSG-GAS

    International Nuclear Information System (INIS)

    Mariatmo; Korua, Johny A.

    2004-01-01

    P2TRR performs periodical evaluations on SAR documents to assess their conformance to the current field conditions. In case of non-conformance between the field conditions and SAR directly associated with the reactor safety, SAR documents will he immediately amended. Any changes in SAR documents will cause all documents associated with the reactor safety and operation be revised. Besides evaluation of field conditions, BAPETEN and IAEA also perform inspection. The results of BAPETEN and IAEA's inspection need to be seriously followed up because it is related to the reactor operation permit covered in the BAPETEN's authority. The RSG-GAS's SAR document needs to be revised based on the above considerations in addition to the inputs and suggestions from the issuer of reactor operation permit and other parties. (author)

  3. Gas Storage in Europe, recent developments and outlook to 2035

    International Nuclear Information System (INIS)

    Hureau, Geoffroy

    2015-01-01

    These slides present: the European gas storage market in 2014 (Review of 2014 trends, Current challenges, Role of storage); the Outlook to 2035 (Supply/Demand factors, Estimated Storage needs, Project backlog). In conclusion: an over capacity is expected until 2025.Supply and demand evolution, market liberalization and environmental constraints on coal will drive a new period of growth for UGS. Cedigaz estimates that European UGS capacity will increase by around 45 bcm by 2035. UGS projects represent 77 bcm Of which 22 bcm is under construction, there is a majority of salt-cavern projects (market liberalization), not so much new seasonal storage (security of supply?), not all planned storage will be built (Projects under competition for the same (regional) market, the situation is quite contrasted between NW Europe and South-Southeast Europe (and UK)). The challenges are the investment and the security of supply

  4. Development of AN Active 238UF6 Gas Target

    Science.gov (United States)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2014-09-01

    Detailed studies of the fission process, e.g., the search for parity nonconservation (PNC) effects, the energy dependence of fission modes or the population of fission isomers, depend on high quality data, therefore requiring high luminosities. An active gas target containing uranium may overcome the deterioration of energy and angular resolution caused by large solid target thicknesses. A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uranium hexafluoride (238UF6), utilizing a triple alpha source to evaluate signal quality and drift velocity. For mass fractions of up to 4 percent of 238U the drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  5. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    Science.gov (United States)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  6. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    International Nuclear Information System (INIS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-01-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release

  7. Risk modelling of shale gas development scenarios in the Central Karoo

    CSIR Research Space (South Africa)

    Schreiner, GO

    2018-06-01

    Full Text Available The scientific assessment of shale gas development was compiled by over 200 authors and peer reviewers from around the world. Novel assessment methods were used based on the concepts of risk, scenarios and predictive landscape modelling. Three...

  8. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  9. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  10. Socioeconomic impacts of outer continental shelf oil and gas development; a bibliography

    Science.gov (United States)

    Pattison, Malka L.

    1977-01-01

    The bibliography lists reports which are concerned primarily with the socioeconomic impacts of OCS oil and gas development or which, although not primarily concerned with such impacts, include sections that contain significant discussion of them. Several of the cited reports do not address socioeconomic issues directly, but have been included because of their value in providing a broad picture of OCS oil and gas development and the associated terminology and/or techical aspects. (Sinha - OEIS)

  11. Just fracking: a distributive environmental justice analysis of unconventional gas development in Pennsylvania, USA

    Science.gov (United States)

    Clough, Emily; Bell, Derek

    2016-02-01

    This letter presents a distributive environmental justice analysis of unconventional gas development in the area of Pennsylvania lying over the Marcellus Shale, the largest shale gas formation in play in the United States. The extraction of shale gas using unconventional wells, which are hydraulically fractured (fracking), has increased dramatically since 2005. As the number of wells has grown, so have concerns about the potential public health effects on nearby communities. These concerns make shale gas development an environmental justice issue. This letter examines whether the hazards associated with proximity to wells and the economic benefits of shale gas production are fairly distributed. We distinguish two types of distributive environmental justice: traditional and benefit sharing. We ask the traditional question: are there a disproportionate number of minority or low-income residents in areas near to unconventional wells in Pennsylvania? However, we extend this analysis in two ways: we examine income distribution and level of education; and we compare before and after shale gas development. This contributes to discussions of benefit sharing by showing how the income distribution of the population has changed. We use a binary dasymetric technique to remap the data from the 2000 US Census and the 2009-2013 American Communities Survey and combine that data with a buffer containment analysis of unconventional wells to compare the characteristics of the population living nearer to unconventional wells with those further away before and after shale gas development. Our analysis indicates that there is no evidence of traditional distributive environmental injustice: there is not a disproportionate number of minority or low-income residents in areas near to unconventional wells. However, our analysis is consistent with the claim that there is benefit sharing distributive environmental injustice: the income distribution of the population nearer to shale gas wells

  12. Impact of Shale Gas Development on Water Resource in Fuling, China

    Science.gov (United States)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun

    2015-04-01

    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  13. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling

  14. Striving for sustainable development in the oil and gas sector

    International Nuclear Information System (INIS)

    Miller, Bill; White, Gary

    2005-01-01

    The article discusses various global aspects of a sustainable development in the petroleum industry. Asset, risk and resource management, resource regeneration and climate change aspects are considered

  15. Developing competition while building up the infrastructure of the Brazilian gas industry

    International Nuclear Information System (INIS)

    De Mello Sant Ana, Paulo Henrique; De Martino Jannuzzi, Gilberto; Valdir Bajay, Sergio

    2009-01-01

    For the last 20 years, countless countries have been carrying out structural reforms in the natural gas industry, trying to achieve efficiency and economic rationality with the introduction of competition. The objective of the paper is to present an approach to the development of competition and infrastructure of the Brazilian natural gas industry. This approach is based on a market projection to 2011, on the international experience and on the characteristics of the Brazilian market, infrastructure and regulatory framework. Possible impacts of the proposed measures are also provided. According to the market projection carried out in this paper, in 2011 there will be a possible surplus of natural gas in the country, which includes a dependence diminishing of the Bolivian gas supply. This gas surplus, allied to an upcoming Gas Law and the trade liberalization in the states of Sao Paulo and Rio de Janeiro, can stimulate the development of competition, if some changes that proposed in this paper are made in the current Gas Bills. The approach proposed herein seeks to stimulate non-discriminatory open access, focused on information transparency and tariff regulation to help the development of infrastructure and competition. (author)

  16. Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

    Science.gov (United States)

    Leimkuehler, Thomas O.; Spelbring, Chris; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling. In addition, the next generation gas trap will essentially be a 'dropin" design such that no modifications to the ITCS pump package assembly (PPA) will be required, and the implementation of the new design will not affect changes to the ITCS operational conditions, interfaces, or software. This paper will present the initial membrane module design and development work which has included (1) a trade study among several conceptual designs, (2) performance modeling of a hydrophobic-only design, and (3) small-scale development test data for the hydrophobic-only design. Testing has shown that the hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal.

  17. DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen; Russell T. Johns; Gary A. Pope

    2003-08-21

    The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

  18. Gas Strategy of China: Developing competition between national production and imports

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-10-01

    The Chinese gas market is facing four key challenges and the government is elaborating responses which will have implications for the Chinese and world energy markets: - Enabling the development of gas demand in order to fight against the issue of air pollution which is particularly strong in the big coast cities of the East and South-East of the country. This means replacing coal and oil by cleaner energy sources, including natural gas for which demand is booming. In such a young market, everything needs to be put in place: from the construction of LNG terminals to the sale and installation of gas stoves. The price of gas needs to be competitive for the market to develop. - Securing supplies: As national production is struggling to follow the rise in demand and as shale gas - of which China owns the second largest reserves in the world - is still a distant dream, this country is more and more reliant on imports. For evident energy security reasons, China diversifies its supplies at the maximum level and develops new energy partnerships. Four importing routes are favoured: LNG transported by ships, the West axis with Central Asia, the South axis with Burma and the new North-East axis with Russia. These imports, which amounted to 53 bcm in 2013, may triple by 2020. Even though China managed to negotiate a favourable price with Russia and its LNG importing price is lower than the one of Japan - thanks to its first LNG importing contracts signed in the early 2000 - imports are expensive, in particular for a country used to producing or importing coal at a very low cost. Up to now, the price at which gas is sold could not cover the import price and this system is not sustainable. - Developing national production: Despite important gas reserves - in particular for unconventional gas (shale gas, tight gas, CBM) - production in China is still not much developed in comparison with its potential and the growth opportunities are significant. Making the best of this potential

  19. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    In order to address these tar related problems a cleaning and cooling system has been developed in house that facilitates tar removal to acceptable levels tolerated by the internal combustion (IC) engine and meets emission standards as well. The main objective of the present work is to reduce tar level and develop control ...

  20. Opportunity, challenges and policy choices for China on the development of shale gas

    International Nuclear Information System (INIS)

    Hu, Desheng; Xu, Shengqing

    2013-01-01

    With the highest shale gas reserves worldwide and huge need for energy, the Chinese government has introduced many incentives to accelerate the development of shale gas, including subsidies and reduction or waiver of the related fees or taxes. However, the challenges posed by a lack of advanced technologies, environmental protection, a shortage of water in quantity and a knowledge of how to develop a good industry–local community relationship are anticipated in the realization of the predicted golden age of the Chinese shale gas industry. Based on the particular situation and available resources in China, and with reference to the experiences in countries with a developed shale gas industry (such as the U.S.A.) and suggestions by the International Energy Agency, recommendations about the choices facing China can be summarized as follows: allowing foreign investors directly to hold exploration and mining rights in shale gas could facilitate the obtainment of advanced technologies; the improvement of the regulatory arrangements related to environmental protection could make developers more responsible; prompting developers to improve their water-use efficiency could help in not worsening the water supply to some extent; and SLO-based mechanism guidance could be helpful in developing a mutual-trust and -benefit relationship between the shale gas industry and the local community. - Highlights: • China faces four major challenges in shale gas development. • Granting foreign investors mining rights is helpful to get advanced technology soon. • Improving environmental regulation could make developers more responsible. • Developers' efficient water-use could help in not worsening water supply. • SLO-based mechanism guidance may improve industry–community relationship

  1. Features, present condition of development and future scope on the high temperature gas reactor as an innovative one

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2001-01-01

    The high temperature gas reactor has some features without previous reactors such as high temperature capable of taking-out, high specific safety, feasibility adaptable to versatile fuel cycle, and so on. Then, it is expected to be an innovative reactor to contribute to diversification of energy supply and expansion of energy application field. In Japan, under the HTTR (high temperature engineering test reactor) plan, construction of HTTR, which is the first high temperature gas reactor in Japan, was finished and its output upgrading test has been promoted. And, on the HTTR plan, together with promotion of full power operation, reactor performance tests, safety proof test, and so on, it is planned to carry out study on application of the high temperature heat such as hydrogen production and so on to aim to practise establishment and upgrading of technologies on high temperature gas reactor in Japan. Here were introduced features and present condition of development of the high temperature gas reactor as an innovative type reactor and described role and future scope in Japan. (G.K.)

  2. Law project on the gas utility modernization and gas industries development. Law project synthesis on the gas utility modernization and gas industries development; Projet de loi relatif a la modernisation du service public du gaz naturel et au developpement des entreprises gazieres.Synthese du projet de loi sur la modernisation du service public du gaz et le developpement des entreprises gazieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The french government would like to develop a law concerning the gas utility modernization and gas industries development, which completes the today system, more particularly, the law of 1946. This project specifies and comforts the gas utility, it gives to the energy policy tools adapted to the new european context. It helps the natural gas industry to become more competitive. The method chosen by the government is presented and discussed in these three documents. (A.L.B.)

  3. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in

  4. Unconventional gas development and its effect on forested ecosystems in the Northern Appalachians, USA

    Science.gov (United States)

    Drohan, Patrick; Brittingham, Margaret; Mortensen, David; Barlow, Kathryn; Langlois, Lillie

    2017-04-01

    Worldwide unconventional shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S.A. Appalachian Mountains across the states of Pennsylvania, West Virginia, Ohio, and Kentucky, are experiencing rapid landscape change as unconventional gas development occurs. We highlight several years of our research from this region in order to demonstrate the unique effect unconventional development has had on forested ecosystems. Infrastructure development has had a wide-reaching and varied effect on forested ecosystems and their services, which has resulted in temporary disturbances and long-lasting ones altering habitats and their viability. Corridor disturbances, such as pipelines, are the most spatially extensive disturbance and have substantially fragmented forest cover. Core forest disturbance, especially, in upper watershed positions, has resulted in disproportionate disturbances to forested ecosystems and their wildlife, and suggests a need for adaptive land management strategies to minimize and mitigate the effects of gas development. Soil and water resources are most affected by surface disturbances; however, soil protection and restoration strategies are evolving as the gas play changes economically. Dynamic soil properties related to soil organic matter and water availability respond uniquely to unconventional gas development and new, flexible restoration strategies are required to support long-term ecosystem stability. While the focus of management and research to date has been on acute disturbances to forested ecosystems, unconventional gas development is clearly a greater chronic, long-term disturbance factor in the Appalachian Mountains. Effectively managing ecosystems where unconventional gas development is occurring is a complicated interplay between public, private and corporate interests.

  5. Technical potential for developing natural gas use in the Brazilian red ceramic industry

    International Nuclear Information System (INIS)

    Schwob, Marcelo Rousseau Valenca; Henriques, Mauricio Jr.; Szklo, Alexandre

    2009-01-01

    The red ceramic industry in Brazil, consisting of over 7000 companies, requires large amounts of thermal energy, currently being met mainly by native fuelwood, which causes serious deforestation and soil erosion problems. The use of firewood does not allow achieving good energy performance in industrial ceramic kilns, causing high energy losses, low productivity and low quality products (bricks and roof tiles). Thus, to implement higher added value products, besides mitigate environmental problems caused by deforestation, the use of natural gas by the sector seems to be a promising alternative. Brazil's natural gas market has grown at a fast pace in recent years. Its share in the country's primary energy consumption increased from 3.7% to 9.3% between 1998 and 2007, compared to almost 21% in the world. The development of the Brazilian natural gas industry was grounded on stepping up supplies through integration with Bolivia from where natural gas is imported, together with fiscal incentives for promoting the demand. This paper estimates that the natural gas market that could be developed in the Brazilian red ceramic industry corresponds to less than 5% of the total industrial natural gas consumption, meaning that a major technological transformation of the country's red ceramic industry will not severely affect the natural gas market equilibrium, contributing to reduce the country's high rates of deforestation. (author)

  6. ¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Karena Shaw

    2013-05-01

    Full Text Available Shale gas proponents argue this unconventional fossil fuel offers a “bridge” towards a cleaner energy system by offsetting higher-carbon fuels such as coal. The technical feasibility of reconciling shale gas development with climate action remains contested. However, we here argue that governance challenges are both more pressing and more profound. Reconciling shale gas and climate action requires institutions capable of responding effectively to uncertainty; intervening to mandate emissions reductions and internalize costs to industry; and managing the energy system strategically towards a lower carbon future. Such policy measures prove challenging, particularly in jurisdictions that stand to benefit economically from unconventional fuels. We illustrate this dilemma through a case study of shale gas development in British Columbia, Canada, a global leader on climate policy that is nonetheless struggling to manage gas development for mitigation. The BC case is indicative of the constraints jurisdictions face both to reconcile gas development and climate action, and to manage the industry adequately to achieve social licence and minimize resistance. More broadly, the case attests to the magnitude of change required to transform our energy systems to mitigate climate change.

  7. Global and local stability and instability of the constant spatially developing gas flow

    Directory of Open Access Journals (Sweden)

    Agneta M. BALINT

    2015-12-01

    Full Text Available In this paper different types of stabilities (global, local with respect to instantaneous perturbations and permanent source produced time harmonic perturbations are presented in case of a spatially developing gas flow. Some types of instabilities (global absolute, local convective are also presented. For this purpose the Euler equations linearized at the constant gas flow are used. It is shown for instance, that the constant gas flow is global absolutely unstable with respect to some instantaneous and some permanent source produced time harmonic perturbations. The locally convective instability is also proven with respect to some instantaneous and permanent source produced time harmonic perturbations.

  8. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  9. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  10. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  11. Operating experience of gas bearing helium circulators in HTGR development facility

    International Nuclear Information System (INIS)

    Shimomura, H.; Kawaji, S.; Fujisaki, K.; Ihizuka, T.

    1988-01-01

    The large scale helium gas test facility (HENDEL) has been constructed and operated since March 1982 at the Japan Atomic Energy Research Institute to develop HTGR components. The five electric driven gas circulators with dynamic gas bearings are used to circulate the helium gas of 4MPa and 400 deg. C in loops for their compactness, gas tightness, easy maintenance and free from gas contamination. All of these circulators are variable speed types of 3,000 to 12,000 rpm and have the same gas bearings and electric motors. The four machines among them are equipped with centrifugal impeller and one other machine has regenerative type, and the weight of both type rotors are nearly the same. After the troubles and repairing, both type of circulators were tested and the vibration characteristics were measured as preventing maintenance. From the test and measurements of the circulators, it was presumed that the first trouble on regenerative type was caused from excess unbalance force by falling off of a small pin from the rotating part and the second severe trouble on it was caused by the whipping in gas bearing. The static load on tilting pads indicated close relations to occurrence of the whirling through the measurements. It is recognized that fine balancing of the rotors and delicate clearance adjustment of the bearings are very important for the rotor stability and that the mechanism should be designed and machined so precise as to be adjustable. As the gas bearing would be damaged in an instantaneously short time, the monitoring technique for it should be so fast and predictive as to prevent serious damage. Through the tests, the vibration spectrum monitoring method seems to be predictive and useful for early detection of the shaft instability. It will be concluded that the gas bearing machine is an excellent system in its design philosophy, however, it also needs highly precise machining and delicate maintenance technique. 4 refs, 10 figs, 1 tab

  12. Greenhouse gas emission reduction policies in developing countries

    International Nuclear Information System (INIS)

    Halsnaes, K.

    2001-01-01

    The chapter begins with an introduction of the main arguments for why global cost-effectiveness in GHG emission reduction policies will suggest that an international collaboration about the policies is established such as initiated by the Kyoto Protocol of the United Nations Framework Convention on Climate Change. A general conceptual overview is given on the cost concepts that are relevant to apply to the evaluation of GHG emission reduction policies, and the methodological framework of GHG emission reduction cost studies for developing countries are introduced. The studies have in particular focussed on GHG emission reduction options in the energy sector, and a number of costing results are reported for this sector. Finally, the chapter considers potential local side-impacts on development, the local environment, and social policy objectives of GHG emission reduction projects seen from the perspective of developing countries. It is concluded that there is a potential for combining global cost-effectiveness principles for GHG emission reduction policies, and local policy objectives of developing countries. (LN)

  13. DEVELOPMENT PROGRAM INVESTMENT GAS INDUSTRY IN THE REPUBLIC OF IRAQ

    Directory of Open Access Journals (Sweden)

    Aziz Hayder Saleh

    2014-01-01

    Full Text Available In modern world. Economy of the biggest part of states based on the foreigninvestments, which are quite necessaryfor developing their economy and infrastructure. On the present stage of thedevelopment the Republic of Iraq the gassector problems could be solved onlythrough investments.

  14. CURRENT LEVEL OF TECHNOLOGICAL DEVELOPMENT OF INTERNATIONAL OIL AND GAS COMPANIES

    Directory of Open Access Journals (Sweden)

    O. B. Lomakina

    2013-01-01

    Full Text Available In the article the questions of modern situation of the development of oil and gas branch of Russian economy are arisen with the accent to the problems, difficulties and role of high technologies in their overcoming. The comparative analysis of investment volumes and their efficiency in oil and gas branch of different countries is made. There is an attempt to investigate the reasons of the modern situation of this branch of economy and to give some recommendations.

  15. Shale Gas Development Requires Bipartisan Path Forward, U.S. Senator Wyden Urges

    Science.gov (United States)

    Showstack, Randy

    2013-08-01

    "How do we work in a bipartisan way to lock in the lead that the country has with respect to natural gas and win all the gold that we want in the economic Olympic games?" That is a question U.S. Sen. Ron Wyden (D-Oreg.) posed during his keynote address at a 25 July forum in Washington, D. C., on the future of shale gas development.

  16. Wastewater management and Marcellus Shale gas development: trends, drivers, and planning implications.

    Science.gov (United States)

    Rahm, Brian G; Bates, Josephine T; Bertoia, Lara R; Galford, Amy E; Yoxtheimer, David A; Riha, Susan J

    2013-05-15

    Extraction of natural gas from tight shale formations has been made possible by recent technological advances, including hydraulic fracturing with horizontal drilling. Global shale gas development is seen as a potential energy and geopolitical "game-changer." However, widespread concern exists with respect to possible environmental consequences of this development, particularly impacts on water resources. In the United States, where the most shale gas extraction has occurred, the Marcellus Shale is now the largest natural gas producing play. To date, over 6,000,000 m(3) of wastewater has been generated in the process of extracting natural gas from this shale in the state of Pennsylvania (PA) alone. Here we examine wastewater management practices and trends for this shale play through analysis of industry-reported, publicly available data collected from the Pennsylvania Department of Environmental Protection Oil and Gas Reporting Website. We also analyze the tracking and transport of shale gas liquid waste streams originating in PA using a combination of web-based and GIS approaches. From 2008 to 2011 wastewater reuse increased, POTW use decreased, and data tracking became more complete, while the average distance traveled by wastewater decreased by over 30%. Likely factors influencing these trends include state regulations and policies, along with low natural gas prices. Regional differences in wastewater management are influenced by industrial treatment capacity, as well as proximity to injection disposal capacity. Using lessons from the Marcellus Shale, we suggest that nations, states, and regulatory agencies facing new unconventional shale development recognize that pace and scale of well drilling leads to commensurate wastewater management challenges. We also suggest they implement wastewater reporting and tracking systems, articulate a policy for adapting management to evolving data and development patterns, assess local and regional wastewater treatment

  17. Current status and future development of modular high temperature gas cooled reactor technology

    International Nuclear Information System (INIS)

    2001-02-01

    associated with these R and D programmes. Also, support of specific HTGR related research projects is included in the European Union's Fifth Framework Program beginning in 2000. Further opportunities and capabilities of the HTGR in the development of co-generation and non-electric applications are presented in Chapter 7. Spent fuel disposal and decommissioning are key issues that are significantly influencing the future of nuclear power. Chapter 8 addresses the anticipated manner of handling these areas within the PBMR and GT-MHR. Also addressed are the activities associated with spent fuel disposal and decommissioning of HTGRs previously shut down. The development and commissioning of any new nuclear plant concept is subject to risks and challenges to its commercialization. This is also evident in the closed cycle gas turbine, particularly with regard to the design and development of the power conversion system (PCS). The GT-MHR and the PBMR (as well as many other designs under consideration) incorporate state-of-the-art components in their PCS that must operate safely and efficiently for this concept to succeed. These components include magnetic bearings on the rotating machines, large compact plate-fin recuperator modules and seals between PCS components that have size, orientation or environmental operating characteristics yet to be fully demonstrated and proven. These challenges to the commercialization of the GT-MHR and PBMR are discussed in Chapter 9. The IAEA is advised on its activities in development and application of gas cooled reactors by the IWGGCR which is a committee of leaders in national programmes in this technology. The IWGGCR meets periodically to serve as a global forum for information exchange and progress reports on the national programmes, to identify areas of collaboration and to advise the IAEA on its programme. Countries with representation in the IWGGCR include Austria, China, France, Germany, Indonesia, Italy, Japan, the Netherlands, Poland, the

  18. Replacement of upper core structure in experimental fast reactor Joyo - 2) Development of cover gas recycling system with precise pressure control - 15021

    International Nuclear Information System (INIS)

    Ushiki, H.; Okuda, E.; Suzuki, N.; Ohta, K.; Kawahara, H.; Takamatsu, M.

    2015-01-01

    The upper core structure (UCS) replacement in the experimental sodium-cooled fast reactor (SFR) Joyo (thermal power: 140 MW) was initiated in May 2014. During UCS replacement, precisely controlling the cover gas pressure slightly positive was required to prevent the cover gas release and the contamination of impurities in case of a boundary failure. In previous in-vessel repair works in Joyo, the cover gas pressure was controlled by supplying and exhausting the cover gas manually. However, UCS replacement requires much manual work because of the requirement for a large supply of cooling gas for a much longer time. On the basis of this requirement, a cover gas recycling system with precise pressure control was developed. The primary objectives of this system are to provide (1) precise pressure control and (2) the recyclability of the cover gas. The performance was successfully confirmed in ex-vessel test, in-vessel test, and trial operation for one month. The good performance of the precise pressure control and the recyclability of the cover gas achieved resource savings, reduction in the operation burden, and secure boundary. This study will provide valuable insights for further improving repairs in SFRs. (authors)

  19. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N.; Omata, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  20. Natural Resources Investment of Oil and Gas and Regional Development Impact on Community Empowerment

    Directory of Open Access Journals (Sweden)

    Ridwan Nyak Baik

    2015-06-01

    Full Text Available This study was done in Bekasi district, at West Java, Indonesia, with the aims to analyze the management of upstream activities (exploration and production of oil and gas industry and its impact on improving the quality of infrastructure, the equal benefits proportion for the corporation, local government and society, and CSR programs that would affect the community empowerment. The analysis would be calculated based on the per capita income, the number of medical personals, and the number of teachers. Based on that calculation, this study analyzed the impact of oil and gas activities to the regional development of the area under this study. Analysis of regional development was calculated through number of industry in the area, the economic growth, and local government revenue that affects community empowerment in Bekasi.Analyzed by structural equation modeling (SEM, the results showed that: (1 management of upstream oil and gas activities in this area have a positive influence, but no significant effect on community empowerment; (2 management of upstream oil and gas activities have a significant positive impact on regional development; (3 regional development has a significant positive impact on community empowerment; (4 management of upstream oil and gas activities have a greater positive influence towards community empowerment through regional development, because of the multiplier effect of the development of the region.

  1. Finding and development costs for oil and gas in Western Canada : 1992-1996

    International Nuclear Information System (INIS)

    Quinn, D.; Luthin, A.

    1997-01-01

    The role that finding and development (F and D) costs play in determining the level of profits in the oil and gas industry in Canada was discussed. Although exploration is necessary for the growth of the Canadian oil and gas industry, it is widely recognized that finding and development costs must be minimized if the companies are to have continued success. The average finding and development costs for developing reserves of crude oil and natural gas in the Western Canada Sedimentary Basin for 43 companies over a five year period from 1992 to 1996 were reviewed. The average F and D cost for the sample of companies was $7.51 per barrel of oil equivalent. Intermediate companies had higher costs than either the junior or senior companies. But despite the differences in the five-year averages, F and D costs for the senior, intermediate, and junior companies tended to converge from 1992 to 1996. It was noted that the companies that focused on finding and developing natural gas reserves had lower F and D costs than those companies that concentrated on oil. Overall, the absence of any significant upward trends in F and D costs is an encouraging result for the oil and gas industry in Western Canada. Much of the stability in the cost of finding and developing new resources was found to be attributable to judicious deployment of new technology. 19 refs., 29 tabs., 47 figs

  2. Reptile, amphibian, and small mammal species associated with natural gas development in the Monongahela National Forest, West Virginia

    Science.gov (United States)

    Kurtis R. Moseley; W. Mark Ford; John W. Edwards; Mary B. Adams

    2010-01-01

    Burgeoning energy demand in the United States has led to increased natural gas exploration in the Appalachian Basin. Despite increasing natural gas development in the region, data about its impacts to wildlife are lacking. Our objective was to assess past and ongoing natural gas development impacts on reptiles, amphibians, and small mammals in the Monongahela National...

  3. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  4. Enhancing water security in a rapidly developing shale gas region

    Directory of Open Access Journals (Sweden)

    Shannon Holding

    2017-06-01

    New hydrological insights for the region: Initiatives and tools enhancing water security in the region include strategic partnerships and stakeholder collaborations, policy and regulation development, and data collection and distribution efforts. The contributions and limitations of each of these are discussed. A vulnerability mapping framework is presented which addresses data gaps and provides a tool for decision-making surrounding risk to water quality from various hazards. An example vulnerability assessment was conducted for wastewater transport along pipeline and trucking corridors.

  5. From prototype to product. The development of low emission natural gas- and biogas buses

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, M. [Strateco Development AB, Haninge (Sweden)

    1998-01-01

    The objective of this report is to show the development of natural gas and bio gas buses and trucks since the termination of the `Co-Nordic GasBus Project`, to which KFB was a major contributor and one of the initiators. Sweden have some 325 heavy duty methane vehicles of which almost 100 are bio gas operated. Scania and Volvo have produced, or have orders for, 500 gas buses to 6 different countries since 1990. The Project objectives were obtained and the significantly reduced emission levels aimed for, were shown. The international bus manufacturing industry followed, and have since shown the same low levels of emissions from gas bus engines. Sweden has taken the lead in the use of bio gas, by operating nearly 100 buses and trucks. Bio gas is still an underestimated fuel when it comes to supply, as it can provide fuel for 50% of the domestic use of diesel oil. Future development need to include control systems for more stable emissions, lower weight cylinders, less costly compressors, cleaning equipment and storage cylinders as well as more fuel efficient engines that can reduce mainly the discharge of CO2, NOx and CH4 further. Societal costs, regardless of who pays, for methane operated buses is still somewhat higher compared with best use of diesel + CRT technology. As commercialization develops, it is expected that the price of the vehicle will be reduced and emissions improved. It is therefore expected that the stake holders costs will be lower then that of diesel technology in the future

  6. Development of biological coal gasification (MicGAS) process

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.; Barik, S.

    1992-11-01

    Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

  7. Development of biological coal gasification (MicGAS) process

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.; Barik, S.

    1992-01-01

    Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

  8. Computation and Database Development for Flue Gas Treatment on Electron Beam Machine (EBM)

    International Nuclear Information System (INIS)

    Tono Wibowo; Slamet Santosa

    2007-01-01

    A computation and database development for parameter calculations of SO 2 and NO x flue-gas treatment have been done. This computation and database development will make easier for researchers in calculations of flue gas parameters for various specifications and recur in such a way that saves time and apparatus. Analysis and calculation design of flue gas treatment using EBM right now is performing in Microsoft Excel program and calculator, therefore with a computation and database it is expected that can be developed for further parameter calculations of flue gas treatment and having user friendly characteristic. Computation for parameter calculations of flue gas treatment is developed on Borland Delphi version 7.0 with arithmetic and graphic components are in active and for database function is used dBase and Paradox through Borland Database Engine (BDE). Developed calculations include removal efficiency, dose and time of irradiation and the power of MBE. For the purpose of further calculations and bigger application, database functions have been prepared for SQL-Links. From the operation test, program can be run as expected. (author)

  9. Joint exploration and development: A self-salvation road to sustainable development of unconventional oil and gas resources

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2017-11-01

    Full Text Available Commercial production of unconventional oil and gas resources will not be easily achieved without large-scale engineering measures, let alone the additional operation cost, increasingly stricter requirement for safety and environment, fluctuating low oil and gas prices, etc., defeating the confidence of those investors. Therefore, unconventional measures are urgently needed to guide the exploration and exploitation of unconventional oil and gas resources. Thus, we put forward the concept of joint exploration and development by integrating research methodologies and operating techniques for a variety of oil and gas resources to simultaneously achieve analysis, construction, gathering and exploitation of multiple hydrocarbon sources. In this way, the annoying interference between the produced mixture of hydrocarbon flow resulting in the reduction of single-well flowrate will be possibly turned into a dynamic mutual force to enhance the well's flowrate. We also point out that the inevitability of joint exploration and development is determined by the occurrence conditions of oil and gas resources, its feasibility relies on the advancement of technologies, and its arduous and long-term nature is attributed to the current energy market and environment. In spite of various problems and difficulties, we believe that joint exploration and development will be a feasible option to achieve both cost reduction and production & benefit enhancement, boost investors' confidence, raise energy comprehensive utilization, and enhance energy supply efficiency. In conclusion, the advantages of joint exploration and development outweigh its disadvantages for both countries and enterprises.

  10. A case of cutaneous squamous cell carcinoma associated with small cell carcinoma of lung developing a skin metastasis on previously irradiated area

    International Nuclear Information System (INIS)

    Kohda, Mamoru; Takei, Yoji; Ueki, Hiroaki

    1983-01-01

    Squamous cell carcinoma which occurred in the penis of a 61-year-old male patient was treated surgically and by Linac (a total of 10,400 rad). However, it was not cured. Abnormal shadows in the lung and multiple liver tumor was noted one month before death. Autopsy revealed generalized metastases of pulmonary small-cell carcinoma, and persistent squamous cell carcinoma of the penis with no metastases. Skin metastasis of lung carcinoma occurred only in the area previously irradiated. (Ueda, J.)

  11. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY)

  12. Development of CO2 and KrF gas lasers as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rockwood, S.D.

    1983-01-01

    Several different driver systems are currently under development in the national ICF program. Los Alamos has traditionally emphasized gas laser systems because of their intrinsic high average power capability and ease of operation. This paper will review the status of activities in both carbon dioxide (CO 2 ) and krypton fluoride (KrF) development at the Laboratory

  13. Shared technologies in the development of the Titan 250 gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Knodle, M.S.; Novaresi, M.A. [Solar Turbines Inc., San Diego, CA (United States). Titan Gas Turbine Systems Division

    2009-07-01

    Development of the Titan 250 industrial gas turbine system began in 2005 in response to demands from the petroleum industry and electricity producers for higher performance industrial gas turbine products in the 15-30 MW (25,000-45,000 hp) power range. The Titan 250 is Solar Turbine's most powerful package and its evolutionary hybrid-type design approach was based on shared aerodynamic, thermal, mechanical, and combustion technologies borrowed from the Taurus 65TM, Titan 130TM, and Mercury 50TM gas turbine systems. It produces 50 per cent more power than the Titan 130, while providing 40 per cent shaft efficiency with significantly fewer emissions. Thorough combustion system testing, use of proven materials, and hot section cooling provided a solid design basis. The engine is a two-shaft design that includes a 16-stage axial-flow compressor, a dry low emissions combustor for low NOx and CO output, a two-stage gas producer turbine operating at a turbine rotor inlet temperature of 1204 degrees C, and a three-stage, all-shrouded blade power turbine for maximum efficiency. The design also minimizes maintenance intervals to increase equipment availability. The gas turbine and gas compressor have been tested in component, subsystem, and full-scale development, and will be starting field operation in late 2009 to verify performance and mechanical integrity under all operating conditions. 3 refs., 1 tab., 26 figs.

  14. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T., E-mail: tetsu@riken.jp [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wada, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tomita, H.; Sakamoto, C.; Takatsuka, T. [Faculty of Engineering, Nagoya University, Nagoya 464-8603 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, Tokyo 116-8551 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Iimura, H. [Japan Atomic Energy Agency (JAEA), Tokaimura 319-1100 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ito, Y. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kubo, T.; Matsuo, Y. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Naimi, S. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nakamura, S. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Noto, T. [Faculty of Engineering, Nagoya University, Nagoya 464-8603 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Schury, P. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shinozuka, T. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); and others

    2013-01-15

    A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN’s fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa–10{sup −3} Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by a quadrupole mass separator. Observed behaviors agree with the results of gas flow and Monte Carlo simulations.

  15. The role of the spiracles in gas exchange during development of Samia cynthia (Lepidoptera, Saturniidae).

    Science.gov (United States)

    Hetz, Stefan K

    2007-12-01

    Spiracles and the tracheal system of insects allow effective delivery of respiratory gases. During development, holometabolous insects encounter large changes in the functional morphology of gas exchange structures. To investigate changes in respiratory patterns during development, CO2-release was measured in larvae, pre-pupae and pupae of Samia cynthia (Lepidoptera, Saturniidae). Gas exchange patterns showed great variability. Caterpillars had high metabolic rates and released carbon dioxide continuously. Pre-pupae and pupae showed typical discontinuous gas exchange cycles (DGC) at reduced metabolic rates. Changes in gas exchange patterns can partly be explained with low metabolic rates during pupation. Sequential blocking of spiracles in pre-pupae and pupae reduced spiracle conductance with tracheal conductance remaining unaffected. Analysis of gas exchange patterns indicates that caterpillars and pre-pupae use more than 14 spiracles simultaneously while pupae only use 8 to 10 spiracles. Total conductance is not a simple multiple of single spiracles, but may be gradually adaptable to gas exchange demands. Surprisingly, moth pupae showed a DGC if all except one spiracle were blocked. The huge conductance of single spiracles is discussed as a pre-adaptation to high metabolic demands at the beginning and the end of the pupal as well as in the adult stage.

  16. TiO2-Based Nanoheterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects

    Science.gov (United States)

    Wang, Yuan; Wu, Tao; Zhou, Yun; Meng, Chuanmin; Zhu, Wenjun; Liu, Lixin

    2017-01-01

    Gas sensors based on titanium dioxide (TiO2) have attracted much public attention during the past decades due to their excellent potential for applications in environmental pollution remediation, transportation industries, personal safety, biology, and medicine. Numerous efforts have therefore been devoted to improving the sensing performance of TiO2. In those effects, the construct of nanoheterostructures is a promising tactic in gas sensing modification, which shows superior sensing performance to that of the single component-based sensors. In this review, we briefly summarize and highlight the development of TiO2-based heterostructure gas sensing materials with diverse models, including semiconductor/semiconductor nanoheterostructures, noble metal/semiconductor nanoheterostructures, carbon-group-materials/semiconductor nano- heterostructures, and organic/inorganic nanoheterostructures, which have been investigated for effective enhancement of gas sensing properties through the increase of sensitivity, selectivity, and stability, decrease of optimal work temperature and response/recovery time, and minimization of detectable levels. PMID:28846621

  17. Feasibility study of hydrogen determination in blended gas mixture by an indigenously developed hydrogen determinator

    International Nuclear Information System (INIS)

    Gaikwad, Revati; Sonar, V.R.; Pandey, R.K.; Karekar, C.D.; Raul, Seema; Mahanty, B.; Kelkar, A.; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    It is required to determine accurately the percentage composition of hydrogen in the blended gas of N 2 and H 2 prior to deliver to the sintering furnace. A feasibility study has been carried out to determine the percentage composition of hydrogen in the blended gas by using an indigenously developed hydrogen determinator. The instrument uses gas chromatograph-thermal conductivity (GC-TCD) technique to determine hydrogen. The flow of carrier gas was kept at 100 mL min -1 during the analysis. A very close agreement between the determined value and the reported value of hydrogen content in the commercially available N 2 -H 2 mixed cylinder was found by using the indigenous hydrogen determinator. (author)

  18. Development of natural gas in the French-speaking part of Switzerland

    International Nuclear Information System (INIS)

    Defago, E.

    1992-01-01

    Natural gas has known a rapid development in the French-speaking part of Switzerland and this trend is still continuing. Natural gas represents 13% of the overall energy consumption, which lies significantly above the Swiss average and, in the year 2000, it should reach about 20%. In order to meet the expected growth of consumption, Gaznat has already contracted, under long term agreements, large quantities of natural gas from diversified sources. Underground storage capacities in nearby France have been considerably increased and new gas-pipelines are being built. These pipelines will enable to double the supply capacity of the French-speaking part of Switzerland within the next three years. (orig.) [de

  19. Technological development for increasing the natural gas market; Desenvolvimento tecnologico para o incremento do mercado do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Arno; Romanos, Rafael Reami; Konishi, Ricardo; Lehmkuhl, Willian Anderson [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)

    2008-07-01

    This paper presents the results achieved in technological development projects for the use of natural gas in furnaces for producing ceramic frits, in plastic film thermoforming and in hardwoods drying. In the case of the production of frits, the analysis of a typical furnace showed that its productivity is better, compared with the use of conventional fuel oil and around 60% of losses of energy were detected, resulting in a proposal of a new model to increase its efficiency, recovering the energy of exhaust gases from the chimney. For the thermoforming, it was shown that the isolation of its sides enable improvements in the order of 7% in its efficiency. Comparing the operating costs, the replacement of electric radiators by porous radiating burners generates savings of around 30% to 45%, with an expected return on investment in about 2.5 years. The drying of hardwoods with natural gas can be carried out in only 26 days, kept all the required technical characteristics, thanks to the good controllability of the conditions of the drying heater, providing a technologically feasible opportunity to reduce the drying time, which in conventional methods is in the order of 90 to 120 days. (author)

  20. CRE deliberation concerning balancing regime developments for the natural gas transmission network in France

    International Nuclear Information System (INIS)

    2006-06-01

    GRTgaz has presented a project of progressive changeover to a new market-based balancing system, according to the following principles: quantities of gas required to ensure transmission network balancing are purchased from or sold on the daily and intra-day market by transmission system operators (TSOs); a daily gas balancing price reflecting actual costs borne by every TSO is defined according to these purchases and sales; every day, each shipper residual position after use of the available flexibility and tolerance, is cleared off by transactions at the daily balancing gas price, under terms encouraging shippers to minimise their imbalance. In order to incorporate current development of the French market, which still has low liquidity, GRTgaz proposes to progressively develop the volume of its market transactions. Within this context, from 4 May to 6 June 2006, CRE organised a public consultation concerning balancing regime developments, a summary of which is presented. The last part concerns the CRE decisions. (A.L.B.)

  1. Imperatives of globalization and Nigeria oil and gas development

    International Nuclear Information System (INIS)

    Palma, S.

    1998-01-01

    Open economies and flexible labour markets are considered net creators of wealth and jobs. Globalisation in the form of access to overseas markets and a growing integration of the world economy has in general been an engine of mutual enrichment. The great power of globalisation can be seen in the strength of its lifeline. As a report of the International Monetary Fund dryly stated, globalisation reflects the growing economic interdependence of countries worldwide through the increasing volume and variety of cross-border transactions in goods and services and of international capital flows, and also through the more rapid and widespread diffusion of technology. This hydra-headed growth is more than other macroeconomic trend. It is shaping a new epoch where the tempo and breadth of change in the international economy both alters the character of the multinational corporation and makes porous the economic frontiers of the state. Result: a different paradigm of opportunities and interdependencies, as well as new terms and conditions for competitive success. Big oil companies are old hands at globalisation in terms of geographic reach and in the ethnic diversity of their leadership. But the way they approach the world is changing in response to a more competitive market in developmed countries. Faced with a forecast of demand growth of a mere 1 or 2 percent in OECD nations, the petroleum giants are hoping to benefit from recent and prospective de-regulation of state-run monopolies in other parts of the world. As a result, they are vigorously making new downstream investments in emerging economies. But for them, globalisation has yet another dimension - the quest for true enterprise integration via big investments in new communications and information systems. According to an OECD study, by the year 2020 a third of world output could be accounted for by China (with the biggest economy), Russia, India, Indonesia and Brazil. Over the intervening years, all developing

  2. Development of an engine control system using city gas and biogas fuel mixture

    International Nuclear Information System (INIS)

    Yamasaki, Yudai; Kanno, Masanobu; Suzuki, Yoshitaka; Kaneko, Shigehiko

    2013-01-01

    Highlights: ► The gas engine control system was developed using both city gas and biogas flexibly. ► The developed control system corporates with an original controller. ► The target value of O 2 emission is decided by Wobbe index of mixture fuel and load. ► The controller achieved stable operation for fuel mix ratio and load changing. -- Abstract: In this paper, a gas engine system capable of stable operation at any mix ratio of city gas 13A and biogas was developed. The gas engine system consists of a spark-ignition gas engine, an additional electric throttle valve for fuel and our own control algorithm. The engine is a 3-cylinder 1.6-l engine that was originally used for co-generation, and the fuel throttle valve was added to respond to different fuel compositions. The control algorithm was also designed to adjust the fuel and air ratio to attain a higher generation efficiency and lower NOx emission with different mix ratios of city gas 13A, biogas and load. Before developing the controller, the effect of the mix ratio on generation efficiency and NOx emission was investigated under various load conditions. The following summarizes the experimental results: a control algorithm using the Wobbe index for mixed fuels was formulated; this index determines the target fuel-to-air ratio. Next, operation tests were performed under varying fuel mix ratios and loads by applying the control algorithm to the gas engine. The target engine rotational speed and exhaust O 2 concentration was realized in 5 s when the biogas fraction varied from 20% to 40% and from 70% to 40%. When the load was also varied from 9.4 kW to 0.5 kW and from 0.5 kW to 9.4 kW at a constant rate, the rotational speed and exhaust O 2 concentration achieved the target values in 20 s. Under both transient operation conditions, the engine system met the NOx emission requirement, and the results indicate that the simple hardware modification to a conventional gas engine and our original control

  3. CHALLENGES AND PROSPECTS FOR DEVELOPMENT OF UKRAINIAN OIL AND GAS COMPLEX ENTITIES

    Directory of Open Access Journals (Sweden)

    Mikhail Borodin

    2016-11-01

    Full Text Available The aim of the paper is to analyze the current state of the oil and gas complex of Ukraine, upon which to identify the challenges and to justify the development prospects of the effective activities of complex entities. Comprehensive introduction of the advanced mechanisms for the development of oil and gas complex entities’ development will contribute to the economic growth of other industries and the Ukrainian economy as a whole, as well as decrease in the energy dependence and security of the state interests. Methods. The following methods were used in research: systematic, economic and mathematical, balancing, judgment-based and abstract-logical. In addition, methods of statistical analysis, analytical spread sheet tabulation method, and method of scientific hypothesis modelling for studied processes. Results. The effectiveness of introduction of the proposed perspective trends of the entities of Ukrainian oil and gas complex is estimated. It is proved that their comprehensive implementation will improve the competitiveness of their operations, and energy independence of Ukraine. The necessity of introduction of the innovative technologies and new approaches to solution of the management problems at oil and gas complex entities is proved. Implementation of prospective mechanisms for the development of effective activity of oil and gas entities shall be based on economic competition between the entities with simultaneous implementation of the measures of state support for the promising modernization technologies reflecting the public interest to the energy security improvement. Practical significance. A study of the current state of oil and gas complex of Ukraine and challenges of development of the complex entities contributes to the identification of areas for balancing and substantiation of the development prospects of the oil and gas sector of economy in order to ensure its energy security, taking into account the strategic orientations

  4. Regional Analysis of the Effects of Oil and Gas Development on Groundwater Resources in California

    Science.gov (United States)

    Landon, M. K.; McMahon, P. B.; Kulongoski, J. T.; Ball, L. B.; Gillespie, J. M.; Shimabukuro, D.; Taylor, K. A.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess potential interactions between oil/gas stimulation treatment and groundwater resources. The effects of stimulation on groundwater resources will be difficult to distinguish from the effects of other past or present components of oil and gas development. As a result, the RMP is designed to provide an overall assessment of the effects of oil and gas development on groundwater quality. During 2016-17, the study is focused on selected priority oilfields in the eastern and western portions of the San Joaquin Valley in Kern County to: (1) produce three-dimensional (3D) salinity maps, (2) characterize the chemical composition of groundwater and produced water, and (3) identify the extent to which fluids from oil and gas development may be moving into protected (total dissolved solids less than 10,000 milligrams per liter) groundwater at regional scales. Analysis of available salinity data near oil/gas fields indicates there are regional patterns to salinity depth profiles; however, data gaps between the depths of water and oil/gas wells are common. These results provide a foundation for more detailed oilfield-scale salinity mapping, which includes geophysical methods (borehole, surface, and airborne) to fill data gaps. The RMP sampling-well networks are designed to evaluate groundwater quality along transects from oil/gas fields into adjacent aquifers and consist of existing wells supplemented by monitoring-well installation in priority locations identified by using 3D visualization of hydrogeologic data. The analytes include constituents with different transport characteristics such as dissolved gases, inorganic components (brines), and petroleum compounds. Analytes were selected because of their potential usefulness for understanding processes and pathways by which fluids from oilfield sources reach groundwater.

  5. Development of multiwire gas detectors for X-rays; Desenvolvimento de detectores a gas multifilares para raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Eraldo de

    2015-06-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  6. Oil and gas in British Columbia : 10 steps to responsible development

    International Nuclear Information System (INIS)

    2004-04-01

    The British Columbia government has proposed to double production of oil and gas, the burning of which causes global warming. West Coast Environmental Law (WCEL) claims there is a strong divide between British Columbia's plans to expand the production and use of fossil fuels, and the international scientific consensus regarding the negative aspects of global warming. The impacts of oil and gas production negatively affect the health of local citizens, First Nations rights and the environment. Offshore oil and gas development could also threaten fisheries and pollute sensitive marine ecosystems. WCEL criticizes the fact that the British Columbia government has streamlined environmental regulations, has laid off compliance monitoring staff, and has given subsidies to the highly profitable oil and gas industry. WCEL argues that the impact of fossil fuel production must be mitigated to limit the damage to lands and people in British Columbia. The organization has proposed 10 recommendations to the British Columbia government. The recommendations focus on impacts of land-based oil and gas development rather than offshore impacts. WCEL claims that adoption of the 10-point mitigation plan is vital for putting British Columbia on the path toward sustainable development. 43 refs

  7. Global climate change implications for coastal and offshore oil and gas development

    International Nuclear Information System (INIS)

    Burkett, Virginia

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. - Highlights: ► Climate change effects on coastal and offshore energy development have been observed in some regions. ► Key drivers include changes in temperature, precipitation, sea level rise, storm intensity and wave regime. ► These can independently and cumulatively affect coastal and offshore exploration, production, and transportation. ► A methodical vulnerability and impact assessment is needed to support adaptation in this sector of the global economy.

  8. A theoretical cost optimization model of reused flowback distribution network of regional shale gas development

    International Nuclear Information System (INIS)

    Li, Huajiao; An, Haizhong; Fang, Wei; Jiang, Meng

    2017-01-01

    The logistical issues surrounding the timing and transport of flowback generated by each shale gas well to the next is a big challenge. Due to more and more flowback being stored temporarily near the shale gas well and reused in the shale gas development, both transportation cost and storage cost are the heavy burden for the developers. This research proposed a theoretical cost optimization model to get the optimal flowback distribution solution for regional multi shale gas wells in a holistic perspective. Then, we used some empirical data of Marcellus Shale to do the empirical study. In addition, we compared the optimal flowback distribution solution by considering both the transportation cost and storage cost with the flowback distribution solution which only minimized the transportation cost or only minimized the storage cost. - Highlights: • A theoretical cost optimization model to get optimal flowback distribution solution. • An empirical study using the shale gas data in Bradford County of Marcellus Shale. • Visualization of optimal flowback distribution solutions under different scenarios. • Transportation cost is a more important factor for reducing the cost. • Help the developers to cut the storage and transportation cost of reusing flowback.

  9. Oil and gas development influences big-game hunting in Wyoming

    Science.gov (United States)

    Dorning, Monica; Garman, Steven L.; Diffendorfer, James E.; Semmens, Darius J.; Hawbaker, Todd J.; Bagstad, Kenneth J.

    2017-01-01

    Development from extracting oil and gas resources can have unintended effects on multiple ecosystem functions, with cascading effects on wildlife, ecosystem services, and local economies. Big-game hunting opportunities may be closely related to these effects, but empirical analyses of impacts of energy development on hunting are limited. We examined the influence of oil and gas development density on harvest efficiency, or harvest per unit of hunter effort, within all hunt areas in Wyoming, USA, from 2008 to 2014 for 3 big-game species: elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana). Using harvest/hunter day as the response variable, we compared linear mixed-effects models for each species that included total well density (i.e., all wells constructed up to the year of record), active well density (i.e., only those wells currently producing oil or gas in that year), or neither as a predictor variable. We used well densities as indicators of development in the absence of data specifying the locations of other oil and gas infrastructure (e.g., roads, well pads). Models also accounted for the fixed effects of road density, hunter density, proportion of the area that is public land with unrestricted hunter access, proportion of the area that is forested, year of observation, and random effects of variation among hunt areas nested within associated game herd units. Presence of oil and gas wells had a positive influence on harvest efficiency for elk and mule deer. Although there was no overall effect to pronghorn, there was a negative influence of wells on juvenile pronghorn harvest efficiency. Changes in harvest efficiency due to expanding oil and gas development could alter the time spent hunting by hunters and their chances of harvesting an animal. This could have subsequent impacts on hunter satisfaction, game populations, and economic revenue generated from recreational hunters.

  10. Examination of issues related to U. S. Lake Erie natural gas development

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, D.L.

    1978-09-01

    A report is presented which marks the culmination of a preliminary identification and examination of issues related to U.S. Lake Erie (USLE) natural gas development. A brief synopsis of the Canadian Lake Erie gas development program is presented. Also reviewed are (1) relevant natural gas economics, (2) the existing institutional framework for administering a USLE gas development program, and (3) drilling technology related to Lake Erie gas exploitation. The issues were identified through a structured selection process, and are examined using a question-response format following each of the topical (economic, institutional, technological) overviews. The results of research and analysis efforts described briefly at the end of the report are crucial to conclusions developed in the final environmental impact statement. The study region addressed is defined by U.S. waters extending eastward from a north-south boundary line between Marblehead, Ohio, and the tip of Pt. Pelee, Ontario, to Buffalo, New York--an area which corresponds roughly to the U.S. portion of the central and eastern basins of Lake Erie. The inland portion of the study area includes those counties of Ohio, Pennsylvania, and New York adjacent to the Lake, from Ottawa, Ohio, to Erie, New York. This region was defined to concentrate assessment efforts to those areas where development and production activities would have direct environmental consequences. However, where appropriate, the study area was expanded to meet the needs of issue identification and examination. Examination of natural gas economics often required expansion of investigation to a state, regional, or national level. Also, many environmental parameters were examined to gain a Great Lakes watershed perspective.

  11. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  12. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  13. Acceleration of the development of TTF and the wholesale market for natural gas

    International Nuclear Information System (INIS)

    2007-09-01

    This report provides the vision of the NMa/DTe (The Netherlands Competition Authority/The Office of Energy Regulation) on the question how the operations of the virtual gas marketplace TTF (Title Transfer Facility) and the wholesale market for gas can be improved at a higher pace and in such a way that the security of supply and the competition on the national gas market can be improved, with the Netherlands positioning themselves as the gas roundabout. Accelerating the development of the TTF and the gas wholesale market operations in general is necessary and feasible. By removing barriers in (detail) regulation and changing the manner of doing business on the low-calorific market structural progression can be achieved in the short term. In the medium and long term investments and the process of internationalization offer solutions. This way, the efforts of the market parties, GTS (Gas Transport Services) and the government enhance the security of supply and the market operations. [mk] [nl

  14. Gas infrastructure development in the countries of East Baltic as a way to increase energy security

    Directory of Open Access Journals (Sweden)

    Golyashev Alexander

    2013-06-01

    Full Text Available In the context of regional gas infrastructure development this paper considers the issue of energy security of the countries of East Baltic, which depend heavily on a single energy supplier — Russia. In recent years, the countries of the region have announced several LNG terminal construction projects. The European Union will provide political and financial support to only one of these projects. The paper explores the role of gas and energy in the economy of the Eastern Baltic countries. The author concludes that the countries mostly dependent on Russian gas are Lithuania and Latvia. The announced LNG terminal projects are being reviewed in detail. Their necessity is estimated from the perspective of the current and future demand for natural gas, including the terms and conditions of contracts concluded with OAO Gazprom. Different scenarios and prospects for individual LNG terminal projects and associated pipeline infrastructure are evaluated. It is shown that the inability of countries to find a political compromise on this issue and the terms of existing contracts for Russian gas, as well as low domestic demand for gas hamper the implementation of a regional LNG terminal project even in the long term.

  15. Development of Insulation Technology in Compact SF6 Gas-filled Bushings

    Science.gov (United States)

    Rokunohe, Toshiaki; Kato, Tatsuro; Hirose, Makoto; Ishiguro, Tetsu

    As for gas insulated switchgear (GIS), small space requirement and economical efficiency have been demanded. Circuit breakers (CB), disconnecting switches (DS) and earthing switches (ES) have been designed toward compactness. Compact & light bushings have been also required. As for bushings of GIS, there are roughly three types; capacitor, gas-filled and molding bushings. Since gas-filled bushings have the feature which is both of the lightness and the economical efficiency, it is important to develop compact and light gas-filled bushings by improvement of insulation technology. The main subject for compact design is reduction of electric field strength on the outside hollow insulator around the inside grounded electrode tip. We devised a new inner grounded electrode structure which consists of some column electrodes. This paper describes the effect of reduction of maximum value of electric field strength on the outside hollow insulator by a new inner grounded electrode. Then, improvement of insulation performance for electrodes with insulation coating in SF6 gas is described as composite insulation technology. Finally, the efficacy of these insulation technologies is described by fundamental insulation test results of prototype compact 800kV SF6 gas-filled bushing.

  16. Development and Creating of Gas-Sensor System Based on Low Dimensional Metal Oxides

    Directory of Open Access Journals (Sweden)

    Bovhyra, R.V.

    2016-11-01

    Full Text Available Peculiarities of photoluminescent properties of metal oxide nanopowders (ZnO, TiO2, SnO2, WO3 including laser-modified and surface doped by impurities (Au, Ag, Pt, Ni, Cu, Sn, in gases (О2, N2, H2, CO, CO2 were studied. Nature of sensor properties of the metal oxide nanopowders (adsorption capacity, speed, sensitivity, selectivity were established; the best structure and materials for the development of a multicomponent recording matrix were selected. The efficiency of the constructed sensor system for the gases’ and their mixtures detection and analysis was found. The developed gas sensor system allows detecting not only separate gas components, but their mixture with high sensitivity and selectivity, providing the possibility to reach the modern level of the formation of gas sensor systems with improved performance.

  17. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  18. European gas markets and Russian LNG. Prospects for the development of European gas markets and model simulations of possible new LNG supplies from year 2000

    International Nuclear Information System (INIS)

    Eldegard, Tom

    1996-01-01

    The study aims at clarifying the framework for possible LNG exports from Northern Russia and focuses on the European natural gas markets. The first stage provides general background information on the market structure and related topics. In the second stage this information is used to develop a formal market model and subject it to simulations with various assumptions of the future gas supply. The model is described and results from simulations are given. In the first stage facts from the history of the European natural gas market are outlined. Underlying conditions for the development of natural gas markets in Europe are addressed. The EU has been promoting trade liberalisation in the energy sector but most counties resist freer gas trade across the boarders. New infrastructure development for natural gas are either underway or planned. Some important projects are mentioned. Gas in a global perspective is discussed. The cost structure of the LNG chain is mentioned and an overview of existing LNG export capacities world-wide and major reception terminals in Europe and the USA is given. The second stage employs a scenario analysis to evaluate the economic effects of hypothetical LNG deliveries from Northern Russia. The model is developed for the analysis of West European natural gas markets and designed to allow users to create a structural system of interconnected producers and market regions. Basic assumptions for the evolution of natural gas markets till 2005 is developed and base case scenarios calculated for the years 2000 and 2005 and used as a point of reference for the alternative scenarios considered. According to the analysis the introduction of a new LNG supplier in the European gas market will inflict a substantial loss upon all the existing producers. The primary keys to this result are the assumptions made for gas demand and supply capacity. The LNG alternative will hardly be approved for purely economic reasons as long as the Russians maintain

  19. European gas markets and Russian LNG. Prospects for the development of European gas markets and model simulations of possible new LNG supplies from year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Eldegard, Tom [Foundation for Research in Economics and Business Administration, Bergen (Norway)

    1996-07-01

    The study aims at clarifying the framework for possible LNG exports from Northern Russia and focuses on the European natural gas markets. The first stage provides general background information on the market structure and related topics. In the second stage this information is used to develop a formal market model and subject it to simulations with various assumptions of the future gas supply. The model is described and results from simulations are given. In the first stage facts from the history of the European natural gas market are outlined. Underlying conditions for the development of natural gas markets in Europe are addressed. The EU has been promoting trade liberalisation in the energy sector but most counties resist freer gas trade across the boarders. New infrastructure development for natural gas are either underway or planned. Some important projects are mentioned. Gas in a global perspective is discussed. The cost structure of the LNG chain is mentioned and an overview of existing LNG export capacities world-wide and major reception terminals in Europe and the USA is given. The second stage employs a scenario analysis to evaluate the economic effects of hypothetical LNG deliveries from Northern Russia. The model is developed for the analysis of West European natural gas markets and designed to allow users to create a structural system of interconnected producers and market regions. Basic assumptions for the evolution of natural gas markets till 2005 is developed and base case scenarios calculated for the years 2000 and 2005 and used as a point of reference for the alternative scenarios considered. According to the analysis the introduction of a new LNG supplier in the European gas market will inflict a substantial loss upon all the existing producers. The primary keys to this result are the assumptions made for gas demand and supply capacity. The LNG alternative will hardly be approved for purely economic reasons as long as the Russians maintain

  20. FINANCING OF INVESTMENT PROJECTS OF GAS DISTRIBUTION ENTERPISES AS A FACTOR OF THEIR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Svitlana Korol

    2016-03-01

    Full Text Available In the article theoretical questions of formation sources of financing investments   are  considered, the analysis of investment activities is carried out by the sources of funding for gas  utility. The purpose of this article is to identify priority sources of financing investment activities of gas distribution enterprises. The  methodology  of  research.  To  achieve  this  goal  the  author  used  methods  of  theoretical generalization; statistical and financial methods in the study of dynamics and structure of  investment; tabular methods to display the structure of the main sources of financing of  the  investment program of gas distribution enterprises; consistency and comparison, to determine the relationship between the main components of investment sources of financing. As a result of research by critical retrospective analysis to determine the structure of sources of financing investment activities of gas distribution enterprises. It is established that the main sources of financing the investment program are the tariffs for transportation and supply of gas, says the national Commission, carrying out state regulation in the areas of energy and  utilities (NCREU. It is filed the structure of the main financing sources of the investment  program of gas distribution enterprises. It is proved that the level of funding depends on the size  of NCREU rates and gas consumption. Scientific novelty of the article is lack in domestic and foreign areas of research priority  selection of sources financing of the investment program for gas distribution enterprises. The practical significance is that the theoretical concepts, practical results and conclusions of  articles that reveal the essence of the problem of investment sources of financing, can be used in  the activity of gas distribution enterprises taking into account the current state of development  of the economy. Keywords: investment  resources,  financing

  1. Water Resource Impacts During Unconventional Shale Gas Development: The Pennsylvania Experience

    Science.gov (United States)

    Brantley, S. L.; Yoxtheimer, D.; Arjmand, S.; Grieve, P.; Vidic, R.; Abad, J. D.; Simon, C. A.; Pollak, J.

    2013-12-01

    The number of unconventional Marcellus shale wells in PA has increased from 8 in 2005 to more than 6000 today. This rapid development has been accompanied by environmental issues. We analyze publicly available data describing this Pennsylvania experience (data from www.shalenetwork.org and PA Department of Environmental Protection, i.e., PA DEP). After removing permitting and reporting violations, the average percent of wells/year with at least one notice of violation (NOV) from PA DEP is 35 %. Most violations are minor. An analysis of NOVs reported for wells drilled before 2013 revealed a rate of casing, cement, or well construction issues of 3.4%. Sixteen wells were given notices specifically related to migration of methane. A similarly low percent of wells were contaminated by brine components. Such contamination could derive from spills, subsurface migration of flowback water or shallow natural brines, or contamination by drill cuttings. Most cases of contamination of drinking water supplies with methane or brine components were reported in the previously glaciated part of the state. Before 2011, flowback and production water was often discharged legally into streams after minimal treatment, possibly increasing dissolved Br concentrations in some rivers. The rate of large spills or releases of gas-related industrial wastes in the state peaked in 2009 but little evidence of spills has been found in publicly available surface water chemistry data. The most likely indicators of spillage or subsurface release of flowback or production waters are the dissolved ions Na, Ca, and Cl. However, the data coverage for any given analyte is generally spatially and temporally sparse. Publicly available water quality data for before and after spills into Larrys Creek and Bobs Creek document the difficulties of detecting such events. An observation from the Pennsylvania experience is that the large number of people who have complained about their water supply (~1000 letters

  2. Transparency, consultation and conflict: Assessing the micro-level risks surrounding the drive to develop Peru's Amazonian oil and gas resources

    DEFF Research Database (Denmark)

    Haselip, James Arthur

    2011-01-01

    Since the 1990s, successive Governments in Peru have sought to expand the exploration and production of the country's oil and gas resources. This economic agenda poses significant opportunities and risks which are usually considered at the macro-level and framed by debates regarding the so....... In the case of Peru, this is especially relevant to the vast areas of ecologically sensitive and previously under-developed Amazonia that are now under concession to oil and gas companies. Low levels of industry transparency combined with a lack of uniform free, prior and informed consent are exacerbating...

  3. Development of the Low Swirl Injector for Fuel-Flexible GasTurbines

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

    2007-02-14

    Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

  4. Study of development of disturbance waves in annular gas-liquid flow

    Science.gov (United States)

    Cherdantsev, Andrey V.; Cherdantsev, Mikhail V.; Isaenkov, Sergey V.; Markovich, Dmitriy M.

    2017-09-01

    Downstream development of disturbance waves properties in annular regime of gas - liquid flow was conducted in adiabatic air-water downwards flow in a vertical pipe with inner diameter of 11.7 mm. The measurements were conducted using brightness-based laser-induced fluorescence technique. Instantaneous distributions of local thickness of liquid film along one longitudinal section of the duct over the first 45 cm from the inlet were obtained with sampling frequency of 10 kHz. Based on these spatiotemporal plots, dependence of local average velocity of disturbance waves on downstream distance was obtained for a wide range of gas and liquid flow rates. Three main stages of flow development were identified: a stage prior to formation of disturbance waves, a stage of constant acceleration of disturbance waves and a stage of deceleration nearly compensating the initial acceleration. Transitions to both second and third stages occur closer to the inlet at higher gas velocities and lower liquid flow rates. The initial acceleration is defined by the effect of the gas shear; it grows in parabolic manner with superficial gas velocity and shows weak dependence on liquid flow rate. The deceleration is supposed to occur due to entrainment of liquid from disturbance waves.

  5. Developing an equitable fee structure for gas processing services: JP-90 and beyond

    International Nuclear Information System (INIS)

    Kingsbury, J.D.; Moller, I.

    1996-01-01

    The Joint Industry Gas Processing Fee Task Force Report, JP-90, was designed to promote negotiation of gas processing fees that are based on principles of equity and fairness for both natural gas producers and processors. Another purpose of the JP-90 was to develop an effective dispute resolution process for use in those cases where negotiations have failed. At its inception, JP-90 was the only guideline for unregulated fee practices in the oil and gas sector in North America. Today PJVA-95, the revised version of JP-90, is in its final draft. It addresses the changing focus of the gas processing business, and changing regulatory roles in Alberta and British Columbia. A number of other fee mechanisms also have been described, such as the jumping pound formula, fixed fees, fees based on price, wellhead purchases, and others. These mechanisms developed over time to allow the processor and the producer to share the price risk. The changing role of regulatory agencies in fee dispute resolution was also discussed briefly

  6. Geosciences Acting Out: Using Theatre to Understand Citizen Values and Concerns with Respect to Marcellus Gas Development

    Science.gov (United States)

    Orland, B.; Doan, W. J.; Russell, S. B.; Belser, A.

    2014-12-01

    Marcellus shale gas is being developed with unprecedented speed. The highly capitalized energy industry has influenced major changes in the regulatory framework at federal and state levels and entered into mineral lease agreements 100-fold bigger that previously seen in Northern Pennsylvania. At the same time, the technical and scientific issues at play from geology and hydrology through ecology and sociology effectively block local citizens from fully understanding and participating in decision-making about their own futures. The Marcellus Community-Based Performance Program engages adult residents, landowners, and local decision makers in knowledge-generating performances made collectively with those most impacted by shale gas development. Unlike traditional proscenium stage theatre, community-based performance is a collaborative means for exploring a collectively significant issue or circumstance. The choice to use a community-based theatre method, which engages the spectators in the performance itself as a way of making meaning, was based on the following goals to achieve good debate; to engage community participants in discussion through the exchange of ideas, argument and counter-argument, in an effort to further the education of all; to facilitate the perspectives of citizens in communities where different responses to the risk issues exist because of local economies and legacies with resource extraction. The plays and performances, developed around the broad theme of Living with Risk and Uncertainty, use existing research, reports, newspaper articles, and interviews to present the range of perceptions, facts, and issues surrounding the environmental risks associated with natural gas drilling and focused on developing scientific understanding. Performances have been assessed by seeking direct feedback from participants through pre-performance surveys, post-performance dialogues (talk-backs), and exit interviews. Participants have reported the highest levels

  7. Data acquisition system development for the detection of X-ray photons in multi-wire gas proportional counters

    International Nuclear Information System (INIS)

    Kimpton, J.A.; Kinnane, M.N.; Smale, L.F.; Chantler, C.T.; Hudson, L.T.; Henins, A.; Szabo, C.I.; Gillaspy, J.D.; Tan, J.N.; Pomeroy, J.M.; Takacs, E.; Radics, B.

    2007-01-01

    A new data acquisition system coupled to a backgammon-type gas proportional counter capable of single-photon counting over a wide range of count rates has been developed and replaces a CAMAC-based system. The new apparatus possesses improved architecture, interface technology, speed and diagnostic capability. System efficiency and throughput is significantly improved, especially in addressing earlier problems of hardware buffer downloads containing zero or repeat data and inefficient gating control. The new system is a PXI-based data acquisition apparatus including additional electronics, controlled by a graphical programming environment. It allows development of superior diagnostic tools for system optimisation and more stable performance. System efficiency is improved by 10% over a wide range of count rates (0.5 Hz-50 kHz). For the Backgammon Detector type, this represents a significant improvement in performance and applicability over previous systems. Characteristic and few-electron spectra collected on the new acquisition system are illustrated

  8. Research and development for high temperature gas cooled reactor in Japan

    International Nuclear Information System (INIS)

    Taketani, K.

    1978-01-01

    The paper describes the current status of High Temperature Gas Cooled Reactor research and development work in Japan, with emphasis on the Experimental Very High Temperature Reactor (Exp. VHTR) to be built by Japan Atomic Energy Research Institute (JAERI) before the end of 1985. The necessity of construction of Exp. VHTR was explained from the points of Japanese energy problems and resources

  9. Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II

    Science.gov (United States)

    The long-term dynamic changes in the triad, energy consumption, economic development, and Greenhouse gas (GHG) emissions, in Japan after World War II were quantified, and the interactions among them were analyzed based on an integrated suite of energy, emergy and economic indices...

  10. Development of a New Drag Coefficient Model for Oil and Gas ...

    African Journals Online (AJOL)

    Development of a New Drag Coefficient Model for Oil and Gas Multiphase Fluid Systems. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  11. Final environmental impact statement, Beaufort Sea oil and gas development/Northstar Project. Appendix K (continued)

    International Nuclear Information System (INIS)

    1999-02-01

    BP Exploration (Alaska) Inc. (BPXA) submitted a permit application to the US Army Engineer District, Alaska to initiate the review process for BPXA's plans to develop and produce oil and gas from the Northstar Unit. This report contains Appendices K (continued) of an Environmental Impact Statement which was undertaken to identify and evaluate the potential effects the proposed project may have on the environment

  12. Pirate, the development of an autonomous gas distribution system inspection robot

    NARCIS (Netherlands)

    Pulles, C.; Dertien, Edwin Christian; van de Pol, H.J.; Nispeling, R.

    2008-01-01

    A consortium of four companies is developing an autonomous inspection system for small diameter, low pressure gas distribution mains. Such a system could eventually replace the current practice of leak survey and improve the assessment of the quality of the mains, being able to investigate the mains

  13. The Development of a New Practical Activity: Using Microorganisms to Model Gas Cycling

    Science.gov (United States)

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2014-01-01

    For many in the school science classroom, the term "microbiology" has become synonymous with "bacteriology". By overlooking other microbes, teachers may miss out on powerful practical tools. This article describes the development of an activity that uses algae and yeast to demonstrate gas cycling, and presents full instructions…

  14. The Prospects for Industrial Development in the Context of High Natural Gas Prices

    Directory of Open Access Journals (Sweden)

    Anatolii G. Goncharuk

    2015-09-01

    Full Text Available The article presentsa study of the source providing a key role in investment activity of the enterprises of metallurgy and chemical industries during a period of high natural gas prices. Based on the results of the study there suggested public policies aimed at revitalizing its work, giving prospects of industrial development.

  15. RADON BASELINE MONITORING AROUND A POTENTIAL SHALE GAS DEVELOPMENT SITE IN YORKSHIRE, ENGLAND.

    Science.gov (United States)

    Daraktchieva, Z; Wasikiewicz, J M; Howarth, C B; Bradley, E J

    2017-11-01

    The Vale of Pickering in Yorkshire, England has been identified as a potential area for shale gas extraction. Public Health England joined a collaboration led by the British Geological Survey for environmental baseline monitoring near the potential shale gas extraction site following a grant award from UK Government Department for Business, Energy and Industrial Strategy. The analysis of results for the first 6 months of indoor monitoring indicated that the results followed a log-normal distribution. The numbers of homes found to be at or above the Action Level followed the numbers predicted by the radon potential maps. The results from the measurements of outdoor air in this study indicated that the radon concentrations are slightly higher than previously measured but close to the detection limit of the technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids.

    Science.gov (United States)

    Oliveira-Rodríguez, Myriam; López-Cobo, Sheila; Reyburn, Hugh T; Costa-García, Agustín; López-Martín, Soraya; Yáñez-Mó, María; Cernuda-Morollón, Eva; Paschen, Annette; Valés-Gómez, Mar; Blanco-López, Maria Carmen

    2016-01-01

    Exosomes are cell-secreted nanovesicles (40-200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×10(5) exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.

  17. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids

    Directory of Open Access Journals (Sweden)

    Myriam Oliveira-Rodríguez

    2016-08-01

    Full Text Available Exosomes are cell-secreted nanovesicles (40–200 nm that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.

  18. THE PROSPECTS OF INNOVATIVE DEVELOPMENT OF DOMESTIC OIL AND GAS COMPLEX

    OpenAIRE

    A. N. Dmitrievskii; N. I. Komkov; M. V. Krotova

    2015-01-01

    The New industrialization of the Russian economy is not possible without the formation of forward-looking strategy of innovative development of oil and gas complex, combining related industries. Oil and gas complex of Russia, its fi elds and infrastructure – is key to the territorial integrity of the country, the guarantor of stable functioning of the economy, the most important component of export potential and low-income. During the past decades, a combination of favorable external conditio...

  19. Development of a gas cell-based laser ion source for RIKEN PALIS

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T., E-mail: tetsu@riken.jp; Wada, M. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T. [Nagoya University, Faculty of Engineering (Japan); Iimura, H. [Japan Atomic Energy Agency (JAEA) (Japan); Matsuo, Y.; Kubo, T. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Shinozuka, T.; Wakui, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Mita, H. [Tsukuba University, Department of Physics (Japan); Naimi, S. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Itou, Y.; Schury, P. [Tsukuba University, Department of Physics (Japan); Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y. [High Energy Accelerator Research Organization (KEK) (Japan); and others

    2013-04-15

    We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).

  20. Development of the institutional framework of interaction with engineering UFD Russian oil and gas complex

    Directory of Open Access Journals (Sweden)

    S. Y. Yurpalov

    2005-03-01

    Full Text Available The trends developing in the Russian market of equipment for the oil and gas industry. The main reasons for the decline in production in the oil and gas engineering. The estimation of the negative trends of decrease in volumes of exploration works, the institutional environment of economic activity. The directions of cooperation of engineering enterprises of the Urals Federal District, serving the energy industry, with consumers. A set of measures to strengthen cooperation with Innovative Energy Engineering at the various levels of state regulation.

  1. RedeGasEnergia - gas and energy excellence network: a strategy for development the Brazilian natural gas market; RedeGasEnergia - rede de excelencia de gas e energia: uma estrategia para o desenvolvimento do mercado do gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio L.F. dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Gerencia de Tecnologia do Gas Natural; Freire, Luiz G.M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Tecnologia da RedeGasEnergia

    2004-07-01

    The present work aims at to present a new methodology of Excellency Net of Natural Gas - RedeGasEnergia for the development do natural gas market no Brazil, through in the application do model management for technologies associates different segments da economy: residential, commercial, industrial, Vehicle and of cogeneration, in accord with the Strategical Planning of the PETROBRAS. The developed methodology is based on the interaction enters the technological lines of direction of the segments of the economy and marketing lines of direction, inside of a corporative environment enters the some agents of the productive chain of the Natural Gas, which is: University, the delivering and transporting Institutions of Research and Technologies (technological arm) and companies of NG, municipal, state and federal equipment manufacturers (enterprise arm) and agencies, trade associations (governmental arm) to which of integrated and articulated form carry through a sustainable development of the Natural Gas market in Brazil. A study of case of the methodology will be shown, from the analysis of the current scenes of the use of the natural gas in light vehicles and weighed, locomotives and boats, as well as the available infrastructure for the Vehicle applications. (author)

  2. Disaggregating reserve-to-production ratios: An algorithm for United States oil and gas reserve development

    Science.gov (United States)

    Williams, Charles William

    Reserve-to-production ratios for oil and gas development are utilized by oil and gas producing states to monitor oil and gas reserve and production dynamics. These ratios are used to determine production levels for the manipulation of oil and gas prices while maintaining adequate reserves for future development. These aggregate reserve-to-production ratios do not provide information concerning development cost and the best time necessary to develop newly discovered reserves. Oil and gas reserves are a semi-finished inventory because development of the reserves must take place in order to implement production. These reserves are considered semi-finished in that they are not counted unless it is economically profitable to produce them. The development of these reserves is encouraged by profit maximization economic variables which must consider the legal, political, and geological aspects of a project. This development is comprised of a myriad of incremental operational decisions, each of which influences profit maximization. The primary purpose of this study was to provide a model for characterizing a single product multi-period inventory/production optimization problem from an unconstrained quantity of raw material which was produced and stored as inventory reserve. This optimization was determined by evaluating dynamic changes in new additions to reserves and the subsequent depletion of these reserves with the maximization of production. A secondary purpose was to determine an equation for exponential depletion of proved reserves which presented a more comprehensive representation of reserve-to-production ratio values than an inadequate and frequently used aggregate historical method. The final purpose of this study was to determine the most accurate delay time for a proved reserve to achieve maximum production. This calculated time provided a measure of the discounted cost and calculation of net present value for developing new reserves. This study concluded that

  3. Development of silver impregnated alumina for iodine separation from off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  4. Development trends in the Azerbaijan oil and gas sector: Achievements and challenges

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Nasirov, Shahriyar

    2012-01-01

    This article is study of Azerbaijan oil and gas industry. It illustrates the business climate, the impact of this sector on Azerbaijan's economy including role of SOFAZ and highlights recent developments in the energy production and the main concepts of . Meanwhile, the article establishes the government policy by indentifying several factors that influenced to attract foreign investment to oil and gas sector and examines significant challenges that still remain for further development of the country's oil industry. - Highlights: ► In this study, we review the oil and gas sector in Azerbaijan and describe the main government policies for attracting foreign investment to the sector. ► We showed that providing a predictable legislative and regulatory framework and attractive conditions for oil contracting encourages foreign investment inflows to the country. ► Issues such as the lack of independent regulatory institutions, rehabilitation of oil refineries and resolution of the legal status of the Caspian Sea remain major challenges for further development of the oil and gas industries.

  5. Analysis of China Fiscal System for Deepwater Oil and Gas Development under Uncertainty

    Directory of Open Access Journals (Sweden)

    Mingming Liu

    2014-05-01

    Full Text Available World deepwater is famous for its rich oil and gas reserves, and has become an important source of global oil and gas supply, with a rising investment which will be over the shallow water counterparts in the next few years, as well as an expansion of oil and gas output. The ‘Deepwater Golden Triangle’ of the North American Gulf of Mexico, Brazil and West Africa has been leading the most exploration, development and investment activities in the world, and their experience on fiscal system during different development stages has great reference value other than advanced technologies. Under the assumptions of uncertain oil price and producing cost, this paper analyzed China fiscal system for deepwater oil and gas development, modeled the free natural resource tax, uplifting the threshold of special oil levy, and other scenarios, and compared their results on contractor’s net presented value, internal return rate and present index. Based on net present value, internal return rate, profitability index, as well as the domestic fiscal policies, this paper found that Special Oil Levy levied only on profit oil and the cancel of government share oil would have the most significant incentives, while lower the income tax rate to 15%, raising the threshold price at which the Special Oil Levy payable by 15 $/bbl and zero Value-added tax have much higher feasibility.

  6. Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space

    Science.gov (United States)

    Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory

    2016-01-01

    Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.

  7. The development of competition in the gas market. A micro economic analysis

    International Nuclear Information System (INIS)

    Parati, M.

    2000-01-01

    This paper analyzes, from a theoretical point of view, the most likely strategy for an incumbent to face the threat of new competitors to enter the gas market. This strategy is suggested to monopolize the residual demand, so to leave new entrants choosing the quantity they are willing to sell in the market. However, this quantity will be probably bounded by the existing take-or-pay contracts. The potential barrier to entry arising from the take-or-pay contracts already signed could be high. The take-or-pay clause transforms a typical variable cost (the cost of gas) in a fixed cost so changing the incentive for an incumbent to define its strategy: pushing the quantity sold in the gas market below the take-or-pay level could be extremely expensive. It is argued that the less efficiency gap with respect to the incumbent (measured by means of the difference in marginal costs) the stronger the penetration of new competitors in the gas market. The implementation of a gas release program could be useful for development of concurrence. This would reduce directly the barrier set out by the existing take-or-pay contracts [it

  8. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  9. Bridging the data gap: engaging developing country farmers in greenhouse gas accounting

    Science.gov (United States)

    Paustian, Keith

    2013-06-01

    For many developing countries, the land use sector, particularly agriculture and forestry, represents a large proportion of their greenhouse gas (GHG) emissions, making this sector a priority for GHG mitigation activities. Previous global surveys (e.g., IPCC 2000) as well as the most recent IPCC assessment report clearly indicate that the greatest technical potential for carbon sequestration and reductions of non-CO2 GHG emissions from the land use sector is in developing countries. Estimates that consider economic feasibility suggest that agriculture and forestry together provide among the greatest opportunities for short-term and low-cost mitigation measures across all sectors of the global economy1 (IPCC 2007). In addition, it is widely recognized that the ecosystem changes entailed by most mitigation practices, i.e., building soil organic matter, reducing losses and tightening nutrient cycles, more efficient production systems and preserving native vegetation, are well aligned with goals of increasing food security and rural development as well as buffering land use systems against climate change (Lal 2004). Hence, there is growing interest in jump-starting the capacity for broad-based engagement in agriculturally-based GHG mitigation projects in developing countries. Against this favorable background, there are a number of significant challenges—in addition to the fundamental need for comprehensive mandatory reduction policies—to accelerating the involvement of agriculture in GHG mitigation. As detailed by articles in this special issue, quantifying emissions and emission reductions/sequestration of agricultural sources of CO2,N2O and CH4 is difficult. Emissions and C sequestration are distributed across the landscape, with high spatial and temporal variability and with multiple and interacting climate, soil and management factors that affect rates. In most cases, this makes instrument-based measurement of fluxes and C stock changes in agricultural

  10. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    Energy Technology Data Exchange (ETDEWEB)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  11. Birth Outcomes and Maternal Residential Proximity to Natural Gas Development in Rural Colorado

    Science.gov (United States)

    Guo, Ruixin; Witter, Roxana Z.; Savitz, David A.; Newman, Lee S.; Adgate, John L.

    2014-01-01

    Background: Birth defects are a leading cause of neonatal mortality. Natural gas development (NGD) emits several potential teratogens, and U.S. production of natural gas is expanding. Objectives: We examined associations between maternal residential proximity to NGD and birth outcomes in a retrospective cohort study of 124,842 births between 1996 and 2009 in rural Colorado. Methods: We calculated inverse distance weighted natural gas well counts within a 10-mile radius of maternal residence to estimate maternal exposure to NGD. Logistic regression, adjusted for maternal and infant covariates, was used to estimate associations with exposure tertiles for congenital heart defects (CHDs), neural tube defects (NTDs), oral clefts, preterm birth, and term low birth weight. The association with term birth weight was investigated using multiple linear regression. Results: Prevalence of CHDs increased with exposure tertile, with an odds ratio (OR) of 1.3 for the highest tertile (95% CI: 1.2, 1.5); NTD prevalence was associated with the highest tertile of exposure (OR = 2.0; 95% CI: 1.0, 3.9, based on 59 cases), compared with the absence of any gas wells within a 10-mile radius. Exposure was negatively associated with preterm birth and positively associated with fetal growth, although the magnitude of association was small. No association was found between exposure and oral clefts. Conclusions: In this large cohort, we observed an association between density and proximity of natural gas wells within a 10-mile radius of maternal residence and prevalence of CHDs and possibly NTDs. Greater specificity in exposure estimates is needed to further explore these associations. Citation: McKenzie LM, Guo R, Witter RZ, Savitz DA, Newman LS, Adgate JL. 2014. Birth outcomes and maternal residential proximity to natural gas development in rural Colorado. Environ Health Perspect 122:412–417; http://dx.doi.org/10.1289/ehp.1306722 PMID:24474681

  12. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)

    2016-10-17

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

  13. THE PROSPECTS OF INNOVATIVE DEVELOPMENT OF DOMESTIC OIL AND GAS COMPLEX

    Directory of Open Access Journals (Sweden)

    A. N. Dmitrievskii

    2015-01-01

    Full Text Available The New industrialization of the Russian economy is not possible without the formation of forward-looking strategy of innovative development of oil and gas complex, combining related industries. Oil and gas complex of Russia, its fi elds and infrastructure – is key to the territorial integrity of the country, the guarantor of stable functioning of the economy, the most important component of export potential and low-income. During the past decades, a combination of favorable external conditions for the activities of oil and gas companies such as easily recoverable reserves and long-term prospect of rising prices for raw materials – allow these companies do not pay enough attention to the innovation component. The approaching exhaustion of Russian stocks in the «easy» oil and toughening global competition for energy resources and technology made such an inertial approach to innovation is inadmissible; sanctions and the fall in world prices for hydrocarbons requires the development strategy of innovative development of oil and gas based approach combining resource and innovative potential of Russia.Objective: To analyze opportunities for integration into a coherent innovation strategy of fundamental and applied research of Russian scientists, including IPNG Russian Academy of Sciences, Institute of Economic Forecasting, and other scientifi c organizations.Objectives: To propose a mechanism of management of development based management model basic technical and economic parameters of oil and (or gas through its full life cycle, as well as to demonstrate the possibility of forming a strategic decision of a higher level, combining new technologies and market management methods.Methodology: systematic approach, investment analysis, models of the full life cycle of natural and man-made objects, the fundamentals of feasibility and tax planning.Practical application of the results of this work: management model of oil and gas deposits

  14. The gas century: worldwide LNG developments may deal death blow to Alaskan pipeline dream

    International Nuclear Information System (INIS)

    Lorenz, A.

    2004-01-01

    The growing interest in liquefied natural gas (LNG), which casts doubt on the viability of the Alaska gas pipeline, and the potential impacts on Canadian gas exports to the United States are discussed. There is currently a proposal before Congress for an Alaskan LNG project, and consensus appears to be building among American energy experts and law-makers that building a multitude of LNG facilities would be more flexible and cheaper than building the proposed Alaska pipeline. As further proof of the growing popularity of LNG, U.S. industry lobbyists are said to be rapidly gaining congressional support for the idea of building eight to ten billion cubic feet per day of LNG capacity along the U. S. coast. Either development, -- LNG facilities or the Alaska pipeline -- have the potential to seriously impact Canadian natural gas exports. If the Alaska pipeline is built, the addition of five billion cubic feet per day of new gas on the market would cause gas prices to fall; if the U.S. decides to subsidize its gas industry, Canadian gas would be put at a serious disadvantage. Conversely, if the Alaskan LNG proposal were to succeed, the potential demise of the Alaska pipeline would mean the loss of about 12,000 jobs that would be created during the Canadian construction phase of the pipeline, as well as the loss of tariffs. Industry experts predict that by 2005 LNG terminals will dot the periphery of the U. S. coast line; to prepare for these eventualities, Canadian companies, such as Irving Oil, TransCanada Pipelines and EnCana are taking note, and are scrambling not to be left out of the game. As proof of the seriousness of their concern, Irving Oil is adding a Can$500 million LNG facility to its Canaport terminal on the Scotian shelf; TCPL is working to supply an LNG terminal offshore Massachusetts, and EnCana is refurbishing a Louisiana salt cavern to prepare for storage of gas delivered to the Gulf Coast

  15. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  16. The Eukaryotic Microbiome: Origins and Implications for Fetal and Neonatal life note bene: previous titles: The Microbiome in the Development of Terrestrial Life,and,The Origins and Development of the Neonatal Microbiome

    Directory of Open Access Journals (Sweden)

    William B. Miller

    2016-09-01

    Full Text Available All eukaryotic organisms are holobionts representing complex collaborations between the entire microbiome of each eukaryote and its innate cells. These linked constituencies form complex localized and interlocking ecologies in which the specific microbial constituents and their relative abundance differ substantially according to age and environmental exposures. Rapid advances in microbiology and genetic research techniques have uncovered a significant previous underestimate of the extent of that microbial contribution and its metabolic and developmental impact on holobionts. Therefore, a re-calibration of the neonatal period is suggested as a transitional phase in development that includes the acquisition of consequential collaborative microbial life from extensive environmental influences. These co-dependent, symbiotic relationships formed in the fetal and neonatal stages extend into adulthood and even across generations.

  17. Development of a natural gas systems analysis model (GSAM). Annual report, July 1996--July 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of GSAM development is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the system, including the resource base, exploration and development practices, extraction technology performance and costs, project economics, transportation costs and restrictions, storage, and end-use. The primary focus is the detailed characterization of the resource base at the reservoir and subreservoir level. This disaggregation allows direct evaluation of alternative extraction technologies based on discretely estimated, individual well productivity, required investments, and associated operating costs. GSAM's design allows users to evaluate complex interactions of current and alternative future technology and policy initiatives as they directly impact the gas market. GSAM development has been ongoing for the past five years. Key activities completed during the past year are described

  18. Development of a natural gas systems analysis model (GSAM). Annual report, July 1996--July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The objective of GSAM development is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the system, including the resource base, exploration and development practices, extraction technology performance and costs, project economics, transportation costs and restrictions, storage, and end-use. The primary focus is the detailed characterization of the resource base at the reservoir and subreservoir level. This disaggregation allows direct evaluation of alternative extraction technologies based on discretely estimated, individual well productivity, required investments, and associated operating costs. GSAM`s design allows users to evaluate complex interactions of current and alternative future technology and policy initiatives as they directly impact the gas market. GSAM development has been ongoing for the past five years. Key activities completed during the past year are described.

  19. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  20. Recent Developments of Advanced Austenitic and Duplex Stainless Steels for Oil and Gas Industry

    Science.gov (United States)

    Chai, Guocai; Kangas, Pasi

    The demands for fuel and the development of the fuel exploitation processes have made it economically possible to produce oil-gas from deeper and more corrosive wells where the parameters such as high chloride, H2S or CO2 content, high temperature and pressure, erosion and bioactivities in seawater should be considered. In these applications, special grades of stainless steels with greater corrosion resistance at a broad range of temperatures and high strength have to be used to meet the requirements. This paper provides an overview on the development, properties and applications of these advanced materials for oil & gas industry. They include recently developed advanced super austenitic stainless steels with high Mo, Ni, Cr and N contents with a PRE (pitting resistance equivalent) number up to 52 and hyper duplex stainless steels.

  1. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-04-01

    Full Text Available The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors.

  2. Understanding the psychological impact of unconventional gas developments in affected communities

    International Nuclear Information System (INIS)

    Lai, Po-Hsin; Lyons, Kevin D.; Gudergan, Siegfried P.; Grimstad, Sidsel

    2017-01-01

    The rapid growth of unconventional gas developments has created widespread community concerns in many parts of the world. This study adds to the literature on the psychological impact of related developments by drawing upon Conservation of Resources (COR) theory and the concept of place attachment. In providing a holistic framework, it examines community residents’ appraisals of and emotional responses to impacts of an unconventional gas development, and establishes heterogeneity in these appraisals and responses among residents. The findings show that perceived negative impact on resources that encompass personal and communal resources due to the development contributes to negative emotions that can lead to deteriorated psychological well-being. Conversely, perceived positive impact on resources is conducive to positive emotions that in turn can foster residents’ psychological well-being. The findings further reveal that perceived impact on place attachment partially mediates the relationship between perceived impact on resources and negative emotions. Importantly, these effects differ in strength for residents characterized by different ages, lengths of residence, and distances of their properties from the development. Implications for how this framework can be applied to minimize unwanted impacts and be incorporated into social license that goes beyond the current model of community consultation are discussed. - Highlights: • The psychological impact of a gas project in a rural community is examined. • A sense of perceived loss to personal and communal resources is revealed. • Loss to resources leads to negative emotions mediated by loss to place attachment. • Heterogeneity in perceived impacts and emotional responses is evident.

  3. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  4. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  5. Natural gas projects in the developing world: An empirical evaluation of merits, obstacles, and risks

    Science.gov (United States)

    Mor, Amit

    Significant amounts of natural gas have been discovered in developing countries throughout the years during the course of oil exploration. The vast majority of these resources have not been utilized. Some developing countries may benefit from a carefully planned utilization of their indigenous resources, which can either be exported or used domestically to substitute imported or exportable fuels or feedstock. Governments, potential private sector investors, and financiers have been searching for strategies to promote natural gas schemes, some of which have been in the pipeline for more than two decades. The purpose of this thesis is to identify the crucial factors determining the success or failure of launching natural gas projects in the developing world. The methodology used to evaluate these questions included: (1) establishing a representative sample of natural gas projects in developing countries that were either implemented or failed to materialize during the 1980-1995 period, (2) utilizing a Probit limited dependent variable econometric model in which the explained variable is project success or failure, and (3) choosing representing indicators to reflect the assumed factors affecting project success. The study identified two conditions for project success: (1) the economic viability of the project and (2) securing financing for the investment. The factors that explain the ability or inability of the sponsors to secure financing were: (1) the volume of investment that represented the large capital costs of gas transportation, distribution, and storage, (2) the level of foreign exchange constraint in the host country, and (3) the level of development of the country. The conditions for private sector participation in natural gas projects in developing countries were identified in the study by a Probit model in which the explained variable was private sector participation. The results showed that a critical condition for private sector participation is the

  6. Development of an Improved Methodology to Assess Potential Unconventional Gas Resources

    International Nuclear Information System (INIS)

    Salazar, Jesus; McVay, Duane A.; Lee, W. John

    2010-01-01

    Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic

  7. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    Directory of Open Access Journals (Sweden)

    Thara Seesaard

    2015-01-01

    Full Text Available Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose. The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  8. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    International Nuclear Information System (INIS)

    Klass, D.L.; Khwaja, S.

    1991-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. Technical assistance will be provided to enhance the skills ofPGN and the Ministry of Mines and Energy, and a Gas Technology Unit similar to the Institute of Gas Technology will be established at Indonesia's Research and Development Center for Oil and Gas (LEMIGAS) in Jakarta. 14 refs., 3 figs., 11 tabs

  9. Gas chromatography in space

    Science.gov (United States)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  10. Cyber-Spatial Academic Networking for Energy (Oil, Natural Gas, Electricity Development in Nigeria

    Directory of Open Access Journals (Sweden)

    Richard INGWE

    2014-01-01

    Full Text Available Philosophers of society/sociology recently espoused the concept of a new society and its new paradigm distinguished from the old that was based on industry and the energy forms that drove them since the industrial revolution. The new society which is driven by information and communications technologies (ICTs has created the network society whereby cyber-spatial (internet-based platforms operate in leveraging previous and conventional interaction among researchers concerned with single subjects and/or multi-disciplinary research projects, exchanges of ideas, opinions, concerns/worries, viewpoints, project management, among other issues in the nexus of developing and applying academic knowledge. While most of those that are popularly used are of the universal (non-specific nationality or global character, fairly country-specific (i.e. restricted membership or nation-focused cyber-spatial platforms present opportunities for enhancing or optimizing the profit of academic interaction and exchanges that concentrate on challenges that are limited to one country but promote greater understanding among those academics involved compared to the rather universal cyber-spatial platforms. Here, we conceive and hypothetically theorize a cyber-spatial platform for enhancing interaction among Nigerian scholars and academics concerned with energy which has been driving industry. Examined in this article are: contexts of scholarship in Nigeria (tertiary educational institutions, research and knowledge needs for sustainable development; the network society as a suitable framework for theoretically framing the cyber-spatial platform; an exemplary multi-disciplinary approach for multi-disciplinary petroleum oil, natural gas and energy concentrating on (or drawing from the social sciences; management of the program; discussion and conclusion. The implications of this article for policy is that while the National Universities’ Commission and the Federal Ministry of

  11. Prospects for Strengthening the Security of Ukraine’s Energy Supply through Development of Unconventional Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2016-05-01

    Full Text Available The article presents an analysis of the American experience in development of natural shale gas in the US, identifies the causes that led to the shale revolution. Its current state is characterized by achieving the peak production simultaneously with shift in the emphasis from natural shale gas to shale oil. The potential technically extracted gas reserves as well as trends in terms of the growth of conventional natural gas reserves and the development of trade in liquefied natural gas are regarded as global preconditions for enlargement of the shale natural gas output. Natural shale gas can be considered as an alternative project only for liquefied natural gas while, compared to pipeline gas, its production is uncompetitive. The national preconditions for development of the industry of nonconventional natural gas production are determined on the basis of the current trends in Ukraine’s gas market. The main obstacles to the realization of this direction are reduction of the gas needs and liberalization of natural gas trade on the basis of European principles. Economic evaluation of the feasibility of natural shale gas production made it possible to forecast its production cost at the wellhead at different depths and estimate its investment attractiveness in different aggregate states. On the basis of the approbation of the presented methodological approach carried out for the Dnieper-Donets and Carpathian shale basins, it was concluded that the investment attractiveness of the first one is higher, given its reservoir properties and the presence of deposits of nonconventional hydrocarbons in different states of aggregation.

  12. Design, develop, and manufacture process gas lubricated hot recycle gas circulators. Final technical report, MTI--77TR5

    Energy Technology Data Exchange (ETDEWEB)

    Dominy, D.G.; Hurley, J.D.

    1976-10-01

    In the SYNTHANE coal gasification process raw product gas of approximately 35 mole % methane is passed through a methanator which increases the methane content (and heating value) to approximately 86 mole % methane. The reaction is highly exothermic. In order to limit the temperature rise of the reaction, high BTU methane process gas is diluted with raw product gas. A pressure increase is necessary to force the mixed gases back into the methanator. In addition, varying recycle ratios affect the total flow of the gas stream necessitating a compressor or other device to operate at varying flow capacities. The present hot gas recycle methanator system utilized an eductor to mix and raise the pressure of the product gas. This method has limitations. The pressure rise is small, in the order of 1/2 psig, and the eductor does not allow proper mixing pressures and temperatures if the flow conditions are changed. An eductor is useful for this purpose only in a pilot plant and represents an expedient solution to the problem. For commercial use a compressor is essential.

  13. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  14. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  15. FY 1998 annual report. Research and development on ceramic gas turbine (300kW class)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research and development have been made on a small ceramic gas turbine which is high in efficiency, low in pollutant emission, capable of corresponding to different fuels, and can be utilized in cogeneration and/or movable electric power generation systems. Fundamental researches in developing and researching heat resistant ceramic parts have been carried out on a method for fabricating turbine nozzles using heat resistant silicon nitride, improvement in accuracy in fabricating combustors using the heat resistant silicon nitride, and casting of turbine blades made from sialon. In developing the devices, researches were made on reliability of bond between a ceramic blade and a metallic disk, air-fuel ratio in a combustor, distribution of fuel concentrations, fuel injection methods, reduction of loss in a diffuser in a compressor, and matching of the diffuser with an impeller. In addition, research and development were performed on a single shaft ceramic gas turbine for cogeneration and a double shaft ceramic gas turbine. Researches were executed on reliability of ceramic materials. (NEDO)

  16. Growth in European gas demand

    International Nuclear Information System (INIS)

    Clement, B.

    1993-01-01

    The last three decades witnessed mainly the development of gas pipeline systems as a result of major onshore and offshore gas strikes in the fifties and sixties as well as the increase in gas sales on market segments which has been previously cornered by oil and coal products. Power generation currently is an additional potential market for which the availability of adequate resources plays a major role

  17. Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  18. Laboratory Development of A High Capacity Gas-Fired paper Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Institute, Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Institute, Des Plaines, IL (United States); Sherrow, Lester [Gas Technology Institute, Des Plaines, IL (United States)

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  19. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  20. Acceleration of the development of TTF and the wholesale market for natural gas; Versnelling van de ontwikkeling van TTF en de groothandelsmarkt voor gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This report provides the vision of the NMa/DTe (The Netherlands Competition Authority/The Office of Energy Regulation) on the question how the operations of the virtual gas marketplace TTF (Title Transfer Facility) and the wholesale market for gas can be improved at a higher pace and in such a way that the security of supply and the competition on the national gas market can be improved, with the Netherlands positioning themselves as the gas roundabout. Accelerating the development of the TTF and the gas wholesale market operations in general is necessary and feasible. By removing barriers in (detail) regulation and changing the manner of doing business on the low-calorific market structural progression can be achieved in the short term. In the medium and long term investments and the process of internationalization offer solutions. This way, the efforts of the market parties, GTS (Gas Transport Services) and the government enhance the security of supply and the market operations. [mk]. [Dutch] Voorliggend rapport geeft de visie van NMa/DTe op de vraag hoe de werking van gasmarktplaats TTF (Title Transfer Facility) en de groothandelsmarkt voor gas versneld verbeterd kan worden, zodanig dat de leveringszekerheid en de concurrentie op de nationale gasmarkt worden versterkt en Nederland zich positioneert als gasrotonde. Versnellen van de ontwikkeling van TTF en de werking van de groothandelsmarkt gas in het algemeen is noodzakelijk en mogelijk. Door het wegnemen van barrieres in onder andere (detail)regelgeving en door de manier van zakendoen op de laagcalorische markt te veranderen, kan op korte termijn structurele progressie worden geboekt. Op de middellange en langere termijn bieden investeringen en het internationaliseringproces uitkomst. Zo worden door inspanningen van marktpartijen, GTS (Gas Transport Services) en de overheid de leveringszekerheid en de marktwerking versterkt.

  1. Minimizing the environmental impact of oil and gas developments in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, A.B.; Gordon, D.L.; Guerin-McManus, M. [Conservation International, Washington, DC (United States)

    1997-07-01

    The next big frontier for oil and gas development will be the humid tropics, where more than 80% of exploration and production is expected to take place in the next decade. The tropical areas targeted by these operations not only hold large stores of oil and gas, but are also frequently undeveloped and remote, located in or near important and sensitive ecosystems. Within the tropics the most heavily targeted area is the Latin American Neotropics (New World tropics), which include South America, Mesoamerica and the Caribbean. A regionwide move toward privatization of state oil industries, growing liberalization of markets, and contractual incentives for foreign investment make this region a prime target for oil exploration and development. Proper evaluation of available technologies and planning will help determine how and where mitigation efforts should be directed to prevent and control environmental impacts.

  2. Strategy of steady economic development for petroleum and gas production enterprises in Kyzylorda region

    International Nuclear Information System (INIS)

    Dosmanbetov, B.S.; Kim, I.L.

    1997-01-01

    Main purpose of economic development strategy of Kyzylorda region is fastening of achieved results in area of micro-economic stabilization and structural and institutional transformation, cessation of production recession, rising of economy and growth of people's living standard. Growth of physical volumes of production and further decrease of annual rates of inflation is anticipated. It is noted, that during last years significant change in structure of industry branches have been happened. Specific gravity of branches related with raw petroleum and gas mining and processing became dominating one. Petroleum and gas industry development growth rate is caused by discovery of Kumkol deposit in 1984. Extracted supply is estimating in 90 million tones. The deposit has enormous importance for economy of Kyzylorda region

  3. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    International Nuclear Information System (INIS)

    Vandenbroucke, Maxence

    2012-01-01

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm 2 Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  4. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, Maxence

    2012-07-02

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm{sup 2} Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  5. Development of a new solvent-free flow efficiency coating for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Graham A.; Morse, Jennifer [Bredero Shaw, Houston, TX (United States)

    2005-07-01

    Pipeline design engineers have traditionally considered external anti-corrosion coatings for the protection of gas transmission pipelines, with less consideration given to the benefits of internal flow efficiency coatings. This paper reviews the benefits of using a traditional solvent-based flow efficiency coating, and the relationship between the internal surface roughness of a pipe, the pressure drop across the pipeline, and the maximum flow rate of gas through the pipeline. To improve upon existing solvent-based flow efficiency coatings, a research program was undertaken to develop a solvent-free coating. The stages in the development of this coating are discussed, resulting in the plant application of the coating and final qualification to API RP 5L2. (author)

  6. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia.

    Science.gov (United States)

    Ziemkiewicz, Paul F; Thomas He, Y

    2015-09-01

    Hydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides. This study examined the chemical evolution of liquid process and waste streams (including makeup water, HF fluids, and flowback) in four Marcellus Shale gas well sites in north central West Virginia. Concentrations of organic and inorganic constituents and radioactive isotopes were measured to determine changes in waste water chemistry during shale gas development. We found that additives used in fracturing fluid may contribute to some of the constituents (e.g., Fe) found in flowback, but they appear to play a minor role. Time sequence samples collected during flowback indicated increasing concentrations of organic, inorganic and radioactive constituents. Nearly all constituents were found in much higher concentrations in flowback water than in injected HF fluids suggesting that the bulk of constituents originate in the Marcellus Shale formation rather than in the formulation of the injected HF fluids. Liquid wastes such as flowback and produced water, are largely recycled for subsequent fracturing operations. These practices limit environmental exposure to flowback. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Elucidating Environmental Fingerprinting Mechanisms of Unconventional Gas Development through Hydrocarbon Analysis.

    Science.gov (United States)

    Piotrowski, Paulina K; Weggler, Benedikt A; Yoxtheimer, David A; Kelly, Christina N; Barth-Naftilan, Erica; Saiers, James E; Dorman, Frank L

    2018-03-29

    Hydraulic fracturing is an increasingly common technique for the extraction of natural gas entrapped in shale formations. This technique has been highly criticized due to the possibility of environmental contamination, underscoring the need for method development to identify chemical factors that could be utilized in point-source identification of environmental contamination events. Here, we utilize comprehensive two-dimensional gas chromatography (GC × GC) coupled to high-resolution time-of-flight (HRT) mass spectrometry, which offers a unique instrumental combination allowing for petroleomics hydrocarbon fingerprinting. Four flowback fluids from Marcellus shale gas wells in geographic proximity were analyzed for differentiating factors that could be exploited in environmental forensics investigations of shale gas impacts. Kendrick mass defect (KMD) plots of these flowback fluids illustrated well-to-well differences in heteroatomic substituted hydrocarbons, while GC × GC separations showed variance in cyclic hydrocarbons and polyaromatic hydrocarbons among the four wells. Additionally, generating plots that combine GC × GC separation with KMD established a novel data-rich visualization technique that further differentiated the samples.

  8. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  9. Development and verification of fission gas release model for the design and analysis of future fuel

    International Nuclear Information System (INIS)

    Ku, Yang Hyun; Sohn, Dong Sung.

    1997-08-01

    A mechanistic model has been developed to predict the release behavior of fission gas during steady-state and transient conditions for both LWR UO 2 and MOX fuel. Under the assumption that UO 2 grain surface is composed of fourteen identical circular faces and grain edge bubble can be represented by a triangulated tube around the circumference of three circular grain faces, it introduces the concept of continuous formation of open grain edges tunnels that is proportional to grain edge swelling. In addition, it takes into account the interaction between the gas release from matrix to grain boundary and the reintroduction of gas atoms into the matrix by the irradiation-induced re-solution of grain face bubbles. It also treats analytically the behavior of intragranular, intergranular, and grain edge bubbles under the assumption that both intragranular and intergranular bubbles are uniform in both radius and number density. The effect of contact pressure between clad and pellet on the inter-granular bubble's storage capacity of fission gas has been considered. (author). 43 refs., 4 tabs., 35 figs

  10. A development of gas scintillation proportional counter for space observations of cosmic x-rays

    International Nuclear Information System (INIS)

    Inoue, H.; Koyama, K.; Mae, T.; Matsuoka, M.; Ohashi, T.

    1978-01-01

    Gas Scintillation proportional counter has been developed for the space observation of cosmic X-rays. This technique provides twice as good an energy resolution as that of ordinary proportional counters, hence a powerful tool for the spectroscopy of the X-ray sources. The characteristics of the gas scintillation proportional counter are reviewed, and technical problems are discussed. In particular, the properties for soft X-rays in the energy range 0.1 - 1.5 keV were extensively examined. A significant distortion of the pulse-height distribution due to a low-energy tail is noticed. This feature is interpreted in terms of a loss of primary electrons captured by the entrance window. The influence of impurities on the gain and the resolution is particularly important for the gas scintillation proportional counters and the effect is quantitatively analysed. Gas scintillation proportional counter equipped with the window consisting of very thin polypropylene film is discussed, which was successfully used for rocket observations of cosmic soft X-rays. (author)

  11. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  12. DEVELOPMENT OF PROGRAM MODULE FOR CALCULATING SPEED OF TITANIC PLASMA SEDIMENTATION IN ENVIRONMENT OF TECHNOLOGICAL GAS

    Directory of Open Access Journals (Sweden)

    S. A. Ivaschenko

    2006-01-01

    Full Text Available The program module has been developed on the basis of package of applied MATLAB programs which allows to calculate speed of coating sedimentation over the section of plasma stream taking into account magnetic field influence of a stabilizing coil, and also to correct the obtained value of sedimentation speed depending on the value of negative accelerating potential, arch current, technological gas pressure. The program resolves visualization of calculation results.

  13. 77 FR 38790 - Noble Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b...

    Science.gov (United States)

    2012-06-29

    ... Corp. authority to import/ export natural gas from/ to Canada/Mexico, and to import LNG from various...); Notice of Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During May... issued Orders granting authority to import and export natural gas and liquefied natural gas. These Orders...

  14. Review of the Ikhil gas development and pipeline regulatory and environmental process : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    This paper presented a case study of a gas development project in order to identify strengths and weaknesses in the environmental assessment process, permitting processes, and monitoring procedures related to Mackenzie Delta hydrocarbon developments. The Ikhil project is the sole oil and gas production and transportation facility situated within the Inuvialuit Settlement Region (ISR). The study involved interviews with members of the oil and gas industry, federal regulators and agencies, Inuvialuit agencies and organizations, and government agencies within the Northwest Territories (NT). Issues related to permitting requirements, regulatory approvals, assessment methodologies and environmental management plans were discussed. Results indicated that the majority of respondents approved of the regulatory process. However, respondents agreed that further guidelines are needed to assist project proponents in determining an approach for the collection and use of traditional knowledge and an understanding of cumulative effects. Other recommendations included clarifying the environmental review process for trans-boundary projects; the development of guidelines for the disposal of drilling wastes; and further refinement and clarifications of the roles of various agencies. 10 refs., 3 tabs., 1 fig.

  15. Economic evaluation on tight sandstone gas development projects in China and recommendation on fiscal and taxation support policies

    Directory of Open Access Journals (Sweden)

    Zhen Yang

    2016-11-01

    Full Text Available China is rich in tight sandstone gas resources (“tight gas” for short. For example, the Sulige Gasfield in the Ordos Basin and the Upper Triassic Xujiahe Fm gas reservoir in the Sichuan Basin are typical tight gas reservoirs. In the past decade, tight gas reserve and production both have increased rapidly in China, but tight gas reservoirs are always managed as conventional gas reservoirs without effective fiscal, taxation and policy supports. The potential of sustainable tight gas production increase is obviously restricted. The tight gas development projects represented by the Sulige Gasfield have failed to make profit for a long period, and especially tight gas production has presented a slight decline since 2015. In this paper, a new economic evaluation method was proposed for tight gas development projects. The new method was designed to verify the key parameters (e.g. production decline rate and single-well economic service life depending on tight gas development and production characteristics, and perform the depreciation by using the production method. Furthermore, the possibility that the operation cost may rise due to pressure-boosting production and intermittent opening of gas wells is considered. The method was used for the tight gas development project of Sulige Gasfield, showing that its profit level is much lower than the enterprise's cost level of capital. In order to support a sustainable development of tight gas industry in China, it is recommended that relevant authorities issue value-added tax (VAT refund policy as soon as possible. It is necessary to restore the non-resident gas gate price of the provinces where tight gas is produced to the fair and reasonable level in addition to the fiscal subsidy of CNY0.24/m3, or offer the fiscal subsidy of CNY0.32/m3 directly based on the on-going gate price. With these support policies, tax income is expected to rise directly, fiscal expenditure will not increase, and gas

  16. Kentucky State Primer. A Primer on Developing Kentucky's Landfill Gas-to-Energy Potential

    Science.gov (United States)

    2000-05-01

    Throughout the country, the number of landfill gas-to-energy (LFGTE) projects is growing. Recovering methane gas at solid waste landfills provides significant environmental and economic benefits by eliminating methane emissions while capturing the emissions energy value. The methane captured from landfills can be transformed into a cost-effective fuel source for generating electricity and heat, firing boilers, or even powering vehicles. Permits, incentive programs, and policies for LFGTE project development vary greatly from state to state. To guide LFGTE project developers through the state permitting process and to help them to take advantage of state incentive programs, the U.S. Environmental Protection Agencys (EPAs) Landfill Methane Outreach Program (LMOP) has worked with state agencies to develop individual primers for states participating in the State Ally Program. By presenting the latest information on federal and state regulations and incentives affecting LFGTE projects in this primer, the LMOP and Kentucky state officials hope to facilitate development of many of the landfills listed in Table A. To develop this primer, the Commonwealth of Kentucky identified all the permits and funding programs that could apply to LFGTE projects developed in Kentucky. It should be noted, however, that the regulations, agencies, and policies described are subject to change. Changes are likely to occur whenever a state legislature meets, or when the federal government imposes new directions on state and local governments. LFGTE project developers should verify and continuously monitor the status of laws and rules that might affect their plans or the operations of their projects.

  17. Developing wood construction in France in order to enhance energy independence, reduce greenhouse gas emissions and develop employment

    International Nuclear Information System (INIS)

    2015-05-01

    In France, forests represent a third of the surface of the whole country, whereas the national commercial balance on transformed wood shows a large deficit. A well designed development of wood production and transformation for the construction sector could induce many beneficial effects: diminution of greenhouse gas (CO 2 ) emissions related to the production of construction materials (cement, steel); substitution of a part of space heating fuels by wood collection and transformation by-products and wastes; and decrease of imports of hydrocarbons (through fuel substitution) and transformed woods (through a better transformation in France of timbers grown in French forests). Some recommendations concerning the development of the wood construction sector are given

  18. Development of a motor for use compressed biogas or natural gas; Desenvolvimento de um motor para uso de biogas e gas natural comprimidos

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Ricardo S. de [Mercedes Benz do Brasil S.A. (Brazil)

    1986-12-31

    The Mercedes Benz do Brazil S/A since 1983 has been testing the utilization of biogas in a bus equipped with otto cycle motor. The main preoccupation was develop a specific motor for gas and not adapted a alcohol or gasoline motor. Biogas was tested in Sao Paulo in a bus that go through 40000 Km and natural gas was tested in 3 bus in Natal city. The results obtained until now show the good possibilities of both alternatives. All the developments utilized adapted motors and the results will be transpose for a new motor that will be produced by Mercedes Benz do Brazil. 3 tabs., 18 figs.

  19. Latest developments in prestressed concrete vessels for gas-cooled reactors

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1979-01-01

    This paper is an update of the design development of prestressed concrete vessels, commonly referred to as 'PCRVs' starting with the first single-cavity PCRV for the Fort St. Vrain Nuclear Generating Station to the latest multi-cavity PCRV configurations being utilized as the primary reactor vessels for both the High Temperature Gas-Cooled Reactor (HTGR) and the Gas-Cooled Fast Breeder Reactor (GCFR) in the U.S.A. The complexity of PCRV design varies not only due to the type of vessel configuration (single versus multi-cavity) but also on the application to the specific type of reactor concept. PCRV technology as applied to the Steam Cycle HTGR is fairly well established; however, some significant technical complexities are associated with PCRV design for the Gas Turbine HTGR and the GCFR. For the Gas Turbine HTGR, for instance, the fluid dynamics of the turbo-machinery cause multi-pressure conditions to exist in various portions of the power conversion loops during operation. This condition complicates the design approach and the proof test specification for the PCRV. The geometric configuration of the multi-cavity PCRV is also more complex due to the introduction of large horizontal cylindrical cavities (housing the turbo/machines for the Gas Turbine HTGR and circulators for the GCFR) in addition to the vertical cylindrical cavities for the core and heat exchangers. Because of this complex geometry, it becomes difficult to achieve an optimum prestressing arrangement for the PCRV. Other novel features of the multi-cavity PCRV resulting from the continuing design optimization effort are the incorporation of an asymmetric (offset core) configuration and the use of large vessel cavity/penetration concrete closures directly held down by prestressing tendons for both economic and safety reasons. (orig.)

  20. Recent developments, trends and innovations in the use of natural gas storage in the U.S.A

    International Nuclear Information System (INIS)

    Thrash, J.C.; Thrash, J.F.

    1990-01-01

    It is reported that in recent years there have been a number of changes in the control, regulation and operation of the interstate natural gas industry in the US. These changes and evolution of of the natural gas industry resulting from these changes are reviewed and discussed in the hope that the information presented will be useful in analyzing any similar conditions which might be developing in the natural gas industry in the European community of nations

  1. Impact of improved technology on industrial greenhouse-gas emissions in developing countries. Phase 1

    International Nuclear Information System (INIS)

    1997-06-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. These sectors currently include iron and steel, petroleum refining, cement, paper and pulp and nitrogen fertilizers. The aim of this first phase was to describe: how energy is used in the energy-intensive industries in developing countries today; what current trends indicate for the future; the potential contribution of improved technologies and practices to moving toward more sustainable industrial production in developing countries, and to provide developing countries with an analytical tool for evaluating opportunities to limit industrial greenhouse-gas (GHG) emissions in their industrial sectors through the transfer of improved technologies and processes. The immediate objectives of Phase 1 were twofold: to provide information to developing countries in the form of an inventory of energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors, and; to provide an analytical methodology in the form of a software tool that enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology and process options. To meet these objectives, the first phase of the study comprised: a Report entitled Industrial Greenhouse-gas Emissions from Developing Countries; a Software Package containing, an Industrial Technology Inventory, and an Analysis Tool, and; Industry/country-specific Case Studies. The Report describes current energy use and greenhouse-gas emissions in energy-intensive industries in developing countries, and similar industries exemplifying good

  2. Soil Erosion and Surface Water Quality Impacts of Natural Gas Development in East Texas, USA

    Directory of Open Access Journals (Sweden)

    Matthew McBroom

    2012-11-01

    Full Text Available Due to greater demands for hydrocarbons and improvements in drilling technology, development of oil and natural gas in some regions of the United States has increased dramatically. A 1.4 ha natural gas well pad was constructed in an intermittent stream channel at the Alto Experimental Watersheds in East Texas, USA (F1, while another 1.1 ha well pad was offset about 15 m from a nearby intermittent stream (F2. V-notch weirs were constructed downstream of these well pads and stream sedimentation and water quality was measured. For the 2009 water year, about 11.76 cm, or almost 222% more runoff resulted from F1 than F2. Sediment yield was significantly greater at F1, with 13,972 kg ha−1 yr−1 versus 714 kg ha−1yr−1 at F2 on a per unit area disturbance basis for the 2009 water year. These losses were greater than was observed following forest clearcutting with best management practices (111–224 kg ha−1. Significantly greater nitrogen and phosphorus losses were measured at F1 than F2. While oil and gas development can degrade surface water quality, appropriate conservation practices like retaining streamside buffers can mitigate these impacts.

  3. Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres

    Science.gov (United States)

    Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu

    2018-02-01

    For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.

  4. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  5. Effects of Fusarium circinatum on Disease Development and Gas Exchange in the Seedlings of Pinus spp.

    Directory of Open Access Journals (Sweden)

    Kwan-Soo Woo

    2011-08-01

    Full Text Available Four-year-old seedlings of Pinus thunbergii, Pinus densiflora and Pinus rigida were inoculated with Fusarium circinatum isolate (FT-7, the pitch canker fungus, from P. thunbergii, to evaluate the effects of the pathogen on disease development and gas exchange rate. Needle dehydration was evident on 2 of 10 seedlings of P. thunbergii and P. rigida at 18 and 21 days after inoculation, respectively, while no symptoms were observed in P. densiflora seedlings throughout the experiment. Gas exchange stopped completely in 4 of 5 measured seedlings of P. thunbergii and 2 of 5 measured seedlings of P. rigida at 25 days after inoculation, and in the remaining 3 seedlings of P. rigida at 39 days after inoculation. Disease development in P. thunbergii seedlings was faster than that in P. rigida seedlings. By the time, the experiment was ended at 78 days after inoculation, 9 of 10 seedlings of P. rigida and 8 of 10 seedlings of P. thunbergii seedlings treated with FT-7 was almost dead, but all seedlings of P. densiflora were still healthy. We suggest that P. densiflora is resistant to F. circinatum in the current study, and gas exchange rate of the species after inoculation does not differ significantly compared to that of untreated control.

  6. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    International Nuclear Information System (INIS)

    DeFries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; De Souza, C. Jr

    2007-01-01

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis

  7. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    NEIL K. MCDOUGALD

    2005-04-30

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using

  8. MHTGR [Modular High-Temperature Gas-Cooled Reactor] technology development plan

    International Nuclear Information System (INIS)

    Homan, F.J.; Neylan, A.J.

    1988-01-01

    This paper presents the approach used to define the technology program needed to support design and licensing of a Modular High-Temperature Gas-Cooled Reactor (MHTGR). The MHTGR design depends heavily on data and information developed during the past 25 years to support large HTGR (LHTGR) designs. The technology program focuses on MHTGR-specific operating and accident conditions, and on validation of models and assumptions developed using LHTGR data. The technology program is briefly outlined, and a schedule is presented for completion of technology work which is consistent with completion of a Final Safety Summary Analysis Report (FSSAR) by 1992

  9. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  10. Air Impacts of Unconventional Natural Gas Development: A Barnett Shale Case Study

    Science.gov (United States)

    Moore, C. W.; Zielinska, B.; Campbell, D.; Fujita, E.

    2013-12-01

    Radiello samplers. In addition, weekly PM2.5 samples were collected on Teflon and quartz filters that were analyzed for mass and elements (Teflon filters), for organic and elemental carbon (OC and EC) by thermal/optical reflectance (TOR) method and for polycyclic aromatic hydrocarbons (PAH) using a gas chromatography/mass spectrometry (GC/MS) technique (quartz filters).VOC emissions from condensate tanks were largely low molecular weight hydrocarbons, however these tanks were enhancing local benzene concentrations mostly through malfunctioning valves. PAH concentrations were low (in pg m-3 range) but the average PAH concentration profiles (higher fraction of methylated PAHs) indicated an influence of compressor engine exhausts and increased diesel transportation traffic. These measurements, however, only represent a small 'snap-shot' of the overall emissions picture from this area. For instance during this one month study, the compressor station was predominantly downwind of the community and this may not be the case in other times of the year. Long-term study of these systems, especially in areas that have yet to experience this type of exploration, but will in the future, is needed to truly evaluate the air impacts of unconventional natural gas development.

  11. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xinhua Ma

    2016-03-01

    Full Text Available The Lower Cambrian Longwangmiao Fm gas reservoir in Moxi block of the Anyue Gas field, Sichuan Basin, is the largest single-sandbody integrated carbonate gas reservoir proved so far in China. Notwithstanding this reservoir's advantages like large-scale reserves and high single-well productivity, there are multiple complicated factors restricting its efficient development, such as a median content of hydrogen sulfide, low porosity and strong heterogeneity of fracture–cave formation, various modes of gas–water occurrences, and close relation between overpressure and stress sensitivity. Up till now, since only a few Cambrian large-scale carbonate gas reservoirs have ever been developed in the world, there still exists some blind spots especially about its exploration and production rules. Besides, as for large-scale sulfur gas reservoirs, the exploration and construction is costly, and production test in the early evaluation stage is severely limited, all of which will bring about great challenges in productivity construction and high potential risks. In this regard, combining with Chinese strategic demand of strengthening clean energy supply security, the PetroChina Southwest Oil & Gas Field Company has carried out researches and field tests for the purpose of providing high-production wells, optimizing development design, rapidly constructing high-quality productivity and upgrading HSE security in the Longwangmiao Fm gas reservoir in Moxi block. Through the innovations of technology and management mode within 3 years, this gas reservoir has been built into a modern large-scale gas field with high quality, high efficiency and high benefit, and its annual capacity is now up to over 100 × 108 m3, with a desirable production capacity and development indexes gained as originally anticipated. It has become a new model of large-scale gas reservoirs with efficient development, providing a reference for other types of gas reservoirs in China.

  12. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  13. Development of a primary diffusion source of organic vapors for gas analyzer calibration

    Science.gov (United States)

    Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.

    2018-03-01

    The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.

  14. High temperature gas cooled reactor technology development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-12-01

    The successful introduction of an advanced nuclear power plant programme depends on many key elements. It must be economically competitive with alternative sources of energy, its technical development must assure operational dependability, the support of society requires that it be safe and environmentally acceptable, and it must meet the regulatory standards developed for its use and application. These factors interrelate with each other, and the ability to satisfy the established goals and criteria of all of these requirements is mandatory if a country or a specific industry is to proceed with a new, advanced nuclear power system. It was with the focus on commercializing the high temperature gas cooled reactor (HTGR) that the IAEA's International Working Group on Gas Cooled Reactors recommended this Technical Committee Meeting (TCM) on HTGR Technology Development. Over the past few years, many Member States have instituted a re-examination of their nuclear power policies and programmes. It has become evident that the only realistic way to introduce an advanced nuclear power programme in today's world is through international co-operation between countries. The sharing of expertise and technical facilities for the common development of the HTGR is the goal of the Member States comprising the IAEA's International Working Group on Gas Cooled Reactors. This meeting brought together key representatives and experts on the HTGR from the national organizations and industries of ten countries and the European Commission. The state electric utility of South Africa, Eskom, hosted this TCM in Johannesburg, from 13 to 15 November 1996. This TCM provided the opportunity to review the status of HTGR design and development activities, and especially to identify international co-operation which could be utilized to bring about the commercialization of the HTGR

  15. Resilient but not sustainable? Public perceptions of shale gas development via hydraulic fracturing

    Directory of Open Access Journals (Sweden)

    Darrick Evensen

    2017-03-01

    Full Text Available Complex energy development, such as associated with extraction and processing of shale gas, may affect the future sustainability and resilience of the small, often rural communities where development occurs. A difficulty for understanding the connection between sustainability, resilience, and shale gas development (hereafter "SGD" is that definitions of sustainability and resilience are often muddled and unclear. Nevertheless, the ways in which development could affect sustainability and resilience have been discussed and contested in academic literature. Little is known, however, about the general public's thoughts on how SGD relates to sustainability and resilience. Despite the overlap and conflation of these two concepts, research indicates some differences between characterizations of the two. While acknowledging difficulties in defining the terms, we included questions on a few broad attributes of the two concepts in a survey (n = 1202 of a random sample of residents in the Marcellus Shale region of NY and PA, to explore the relationship between support for / opposition to SGD and perceived importance of community sustainability and resilience. Our survey revealed that beliefs about the importance of sustainability, as measured by three items that clearly pool together as a single factor, are associated with opposition to SGD; beliefs about the importance of resilience, measured by four clearly connected items, are associated with support for SGD. This finding is particularly intriguing and relevant for communication and policy about sustainability and resilience in connection with energy development, because of the common conflation of the two terms.

  16. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  17. Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC

    Science.gov (United States)

    Radke, Christopher; Studak, Joseph

    2017-01-01

    Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.

  18. Environmental risks of the gas hydrate field development in the Eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, K.; Nagakubo, S.

    2009-12-01

    To establish any kinds of new energy resources, environmental impacts of the technology should be well understood before full industrial implementation. Methane hydrate (MH), a relatively clean fossil energy with low CO2 and no SOx emission, is not an exception. Because methane gas itself has strong greenhouse gas effect, and methane hydrate is not stable under the atmospheric pressure and room temperature, public image of MH field development is very risky game and potentially disastrous to the global climate. However, the real physics of the MH bearing sediments is far different from such images. MH21 Research Consortium in Japan has studied about the resource assessment and production techniques to develop MH since 2001. As the results, we found several gas hydrate concentrated zones with pore filling type hydrate in sandy layers of turbidite sediment in the Eastern Nankai Trough area off coasts of the Central Japan. The depressurization technique, in the other word, in-situ MH dissociation by water production and natural heat supply from surrounding formation, will be used as the basic method to produce methane gas from MH. Under the conditions, we have evaluated realistic environmental risk of the MH production. Because the most MH found in the Eastern Nankai Trough are composed of biogenic and almost pure methane, there is no concern of sea water contamination by oil releases that is the most common environmental disaster caused by misconducts of the oil industry. Also MH reservoirs there are not pressurized, and blowout of wells during drilling is very unlikely. Endothermic MH dissociation process decreases formation temperature with depressurization, and give negative feedback, then, there is no chance of chain reaction. Heat supply from surrounding formations is necessary for continuous dissociation, but heat transfer in the formations is relatively slow, and the dissociation rate is limited. Once the operation to pump water in boreholes for

  19. Oil and gas development in Greenland: A social license to operate, trust and legitimacy in environmental governance

    NARCIS (Netherlands)

    Smits, C.; Leeuwen, van J.; Tatenhove, van J.P.M.

    2017-01-01

    Since the turn of the century, Greenland has been examining the possibilities to develop its potential oil and gas resources. The large scale oil and gas activities will impact the small Greenlandic society, both positively and negatively. In this paper we employ the concept of a social license to

  20. Development of a technique for mercury speciation and quantification using gas chromatography/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Barshick, S.A.; Barshick, C.M.; Britt, P.F.; Vance, M.A.; Duckworth, D.C.

    1997-07-01

    One element of concern to DOE is mercury. Mercury was used extensively at the DOE facilities in Oak Ridge, Tennessee from 1950 to 1963 in the process of making lithium deuteride, a component of nuclear weapons. Although both the inorganic and organometallic forms of mercury are toxic to humans, the organic compounds are often more toxic. Since the toxicity of mercury is a function of its chemical form, an understanding of the interactions between commercially discharged mercury, naturally occurring mercury, and the environment in which they are present is vital. In this report, the authors have been investigating gas chromatography/mass spectrometry (GC/MS) for the analysis of both the organometallic and inorganic forms of mercury in the same environmental sample (e.g., solutions, soils, and sludges). Although gas chromatography is the classical technique for analyzing organic molecules, (e.g., organometallic compounds) little has been done on the analysis of inorganic compounds. In a previous publication, the authors described how a solid phase microextraction (SPME) fiber could be used to sample organomercurials from aqueous samples. An alkylation reaction was then carried out to transform chemically mercury nitrate into dimethylmercury; subsequent GC/MS analysis of this compound permitted quantification of the inorganic constituent. Subsequently, several different alkylation reagents have been synthesized that methylate any inorganic mercury compound to methylmercury iodide. Here, the authors report results on alkylation reaction time and the effect of pH on the population of the product.

  1. Placental complications after a previous cesarean section

    OpenAIRE

    Milošević Jelena; Lilić Vekoslav; Tasić Marija; Radović-Janošević Dragana; Stefanović Milan; Antić Vladimir

    2009-01-01

    Introduction The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complic...

  2. Development of mathematical models for the aero derivative and heavy duty gas turbines; Desenvolvimento de modelos matematicos para as turbinas a gas aeroderivativas e heavy duty

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Marcelo; Mendes, Pedro Paulo de C.; Ferreira, Claudio; Passaro, Mauricio Campos; Gomes, Leonardo Vinicius [Escola Federal de Engenharia de Itajuba, MG (Brazil). Dept. de Eletronica]. E-mails: freire_marcelo@hotmail.com; ppaulo@iee.efei.br; claudio@iee.efei.br; mcpassaro@uol.com.br; leonardo@iee.efei.br

    2002-07-01

    This paper develops, implements and simulates simplified mathematical models of multiple shafts, aero derivatives and heavy-duty gas turbines, aiming the subsides for studies of power systems dynamic behaviour. These components are fundamental to an approximated evaluation of the National Integrated System after the new thermoelectric plants are incorporated.

  3. Conditions of the optimum development of a high-pressure natural gas pipeline system regarding up-to-date gas economy. [Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Csako, D.; Torok, A.; Vasvari, V.

    1980-03-01

    Hungarian engineers enumerate the factors to consider in the planning, construction, and expansion of gas pipeline systems to obtain an optimum solution, both technically and economically. Future development of pipeline systems in Hungary will place equal emphasis on system quality and network expansion.

  4. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    International Nuclear Information System (INIS)

    Klass, D.L.; Khwaja, S.

    1992-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. Approximately 350 new industrial, 800 new commercial, and 12,700 new residential natural gas customers are expected from this project. Incremental gas sales are projected to be about 48.1 million CF/d when the project is completed in 1992. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. The gas for Surabaya will be used for about 400 industrial and 150 commercial customers, and 3,600 households. The additional gas supply for Medan will be used for two power plants operated by the state electric utility, PLN. Incremental natural gas sales from this project are projected to be 68 million CF/d when it is

  5. Recent Developments in Film and Gas Research in Modified Atmosphere Packaging of Fresh Foods.

    Science.gov (United States)

    Zhang, Min; Meng, Xiangyong; Bhandari, Bhesh; Fang, Zhongxiang

    2016-10-02

    Due to the rise of consumer's awareness of fresh foods to health, in the past few years, the consumption of fresh and fresh-cut produces has increased sturdily. Modified atmosphere packaging (MAP) possesses a potential to become one of the most appropriate technologies for packaging fresh and fresh-cut produces. The MAP has advantages of extending the shelf-life, preserving or stabilizing the desired properties of fresh produces, and convenience in handing and distribution. The success of MAP-fresh foods depends on many factors including types of fresh foods, storage temperature and humidity, gas composition, and the characteristics of package materials. This paper reviews the recent developments highlighting the most critical factors of film and gas on the quality of MAP fresh foods. Although the innovations and development of food packaging technology will continue to promote the development of novel MAP, concentrated research and endeavors from scientists and engineers are still important to the development of MAP that focuses on consumers' requirements, enhancing product quality, environmental friendly design, and cost-effective application.

  6. Economic effects of oil and gas development on marine aquaculture leases. Study 17. Final report

    International Nuclear Information System (INIS)

    Caswell, M.F.

    1991-03-01

    There are three primary mariculture products grown in California waters: oysters, mussels, and abalone. In total, the California mariculture industry earns revenues of about $6.5 million. Water quality degradation was the primary concern of most growers. Coliform bacteria and pesticide residues are currently threatening several shallow-water sites. Lease holders (and potential lease holders) for deep-water sites state that coliform bacteria from municipal sewer outfalls and offshore oil and gas drilling effluents are the greatest dangers to their profitability. The Southern California Educational Initiative is an attempt to determine whether such concerns are warranted. A simple model of economic externalities was described to highlight the scientific data one must gather so as to choose the optimal production levels for both energy and mariculture resources. That information is necessary to assess the economic consequences to the California mariculture industry of chronic exposure to oil and gas development. The co-development model shows that the marginal (incremental) effects of oil production on mariculture costs needs to be assessed. The model also shows that if the effects are moderated by distance from the point of discharge, such changes must be estimated in order to determine optimal lease boundaries. The report concludes that interdisciplinary cooperation is essential for designing a co-development plan that maximizes the social welfare to be gained from developing multiple coastal resources

  7. The bundle below: Understanding unconventional oil and gas development through analysis of lease agreements

    International Nuclear Information System (INIS)

    Bugden, Dylan; Kay, David; Glynn, Russell; Stedman, Richard

    2016-01-01

    Unconventional oil and gas development (UOGD) has recently become the subject of much research. However, neglected during this effort are the leases signed between landowner and industry that act as the foundation for development and may influence the distribution and intensity of associated impacts. These leases amount to an inscribed collection of rules and practices that define a wide variety of conditions related to development. The temporal and geographic distribution of lease terms may directly influence a number of phenomena of interest to scholars studying UOGD. In order to advance research on the subject, we (1) describe and outline research topics that could be addressed by applying social science methods to the analysis of leases and specific lease provisions, (2) discuss challenges and strategies for data collection and (3) review policy implications of lease related research. - Highlights: •Leases are neglected in research on unconventional oil and gas development (UOGD). •Content of lease provisions may shape outcomes and impacts associated with UOGD. •Leases are a crucial piece of the larger UOGD policy picture.

  8. Oil and Gas Development in The Faroese Islands, Iceland and Greenland

    DEFF Research Database (Denmark)

    Smits, Coco C.A.; Justinussen, Jens Christian Svabo; Bertelsen, Rasmus Gjedssø

    2015-01-01

    perspective to Arctic operations, it is thus of major importance to gain the support of local stakeholders counter balancing international tumult. Gaining local support for developing offshore operations is dependent on a number of factors, including the benefits for local societies besides the taxes paid...... and quantify. This manuscript will look at three case studies: the Faroese Islands, Iceland and Greenland. These three microstates have the aim to develop an oil & gas sector. Potential impacts of these developments are mostly felt locally, while the product will be mainly exported globally. For this reason...... the local societies are aiming to maximise their benefits and use a number of policy instruments to ensure this will happen. This manuscript will examine the measures that are incorporated into the Faroese, Greenlandic and Icelandic policies to stimulate local competence development via higher...

  9. Point source attribution of ambient contamination events near unconventional oil and gas development.

    Science.gov (United States)

    Hildenbrand, Zacariah L; Mach, Phillip M; McBride, Ethan M; Dorreyatim, M Navid; Taylor, Josh T; Carlton, Doug D; Meik, Jesse M; Fontenot, Brian E; Wright, Kenneth C; Schug, Kevin A; Verbeck, Guido F

    2016-12-15

    We present an analysis of ambient benzene, toluene, and xylene isomers in the Eagle Ford shale region of southern Texas. In situ air quality measurements using membrane inlet mobile mass spectrometry revealed ambient benzene and toluene concentrations as high as 1000 and 5000 parts-per-billion, respectively, originating from specific sub-processes on unconventional oil and gas well pad sites. The detection of highly variant contamination events attributable to natural gas flaring units, condensate tanks, compressor units, and hydrogen sulfide scavengers indicates that mechanical inefficiencies, and not necessarily the inherent nature of the extraction process as a whole, result in the release of these compounds into the environment. This awareness of ongoing contamination events contributes to an enhanced knowledge of ambient volatile organic compounds on a regional scale. While these reconnaissance measurements on their own do not fully characterize the fluctuations of ambient BTEX concentrations that likely exist in the atmosphere of the Eagle Ford Shale region, they do suggest that contamination events from unconventional oil and gas development can be monitored, controlled, and reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Gas Carburization of Linear Cellular Alloys as a Novel Alloy Development Tool

    Science.gov (United States)

    Dial, Laura C.; Sanders, Thomas H.; Cochran, Joe K.

    2012-04-01

    Investigations of the production of thin-walled steel alloys through the gas carburization of structures made from reduced and sintered metal oxide powders were performed. Extrusions with low-alloy steel composition were produced successfully without the occurrence of metal dusting, yielding a novel technique for the production of thin-walled steel structures. Thin strip geometries (~200 to 300 μm final thickness) of samples with the composition of 4140 steel, without carbon, were produced through the extrusion of a paste of metal-oxide powders. Full reduction and sintering in a 10 pct H2/90 pct Ar atmosphere yielded a metal part containing all necessary alloying elements except carbon. Gas carburization in a controlled CO/CO2 atmosphere was then used to introduce carbon through the thickness of the structure while carburization parameters were controlled such that metal dusting was not observed. It has been shown in this study, through heat treatment and microstructural investigations, that structures with 4140 composition displaying microstructures and mechanical properties comparable with conventionally made steels can be reached in approximately 30 minutes during gas carburization. The research shows that carbon contents above the eutectoid composition can be reached in less than 30 minutes. As a result, a novel alloy development tool has been introduced.

  11. Novel strategies for development of gas sensors for combustion and medical applications

    Science.gov (United States)

    Fulmer, Adam; Mullen, Max; Sun, Chenhu; Dutta, Prabir K.

    2014-06-01

    Chemical gas sensors can have an enormous impact on optimizing complex processes as well as facilitate disease diagnosis. In this article, we demonstrate how sensing of gas molecules is influencing the next generation of engines for transportation applications, as well as in disease diagnosis. In such applications, the demands on sensors are quite extreme. Not only does the device have to detect the gas of interest with high sensitivity, it also has to discriminate against other species present in a complex environment, such as combustion exhaust and human breath. In addition, the sensors will need to have as small a footprint as possible in size and power requirements. With these varied requirements in mind, only electrochemical sensors have the potential to be practical. This article focuses on nitric oxide (NOx) and ammonia (NH3) sensor necessary for emission control of next generation, high efficiency, lean burn engines and nitric oxide (NO) sensor for breath analysis for diagnosis of respiratory diseases. In all of these applications, there has been significant recent commercial activity. We indicate the electrochemical principles of these commercial sensors, and the development from our research group. We present potentiometric total NOx sensors that can operate in harsh environments, and impedance-based NH3 sensor for transportation industry. For detecting NO in human breath, we have demonstrated two strategies, the first using a resistive approach, and the second with an array of potentiometric sensors. Data from these sensors, their limitations as well as novel MEMS-based approaches for miniaturization is presented.

  12. Generating and Synthesizing Information about Risks in Unconventional Oil and Gas Development

    Science.gov (United States)

    Wiseman, H.

    2013-12-01

    Hannah Wiseman, Florida State University College of Law Stakeholders, agency staff, and policymakers all need more and better information about the risks of unconventional oil and gas development, including horizontal drilling and hydraulic fracturing. To create more accurate and accessible information in this area, three steps are needed: better production of information about technologies; better production of information about risks; and better synthesis and organization of information. We also must decide who should be primarily responsible for these tasks. First, we must produce information about the technologies involved at each stage of well development. It is impossible to understand the risks without understanding the technologies behind them. When the Bureau of Land Management proposed that all oil and gas operators on BLM lands would have to submit a cement bond log for each well, industry actors argued that cement bond log readings are often unreliable close to the surface due to temperatures and acoustics. Industry has the most knowledge in this area, and government officials need to work with industry to better understand the technology and communicate information about it to the public. This is likely best done by a federal agency: the technologies are, broadly speaking, similar across regions--even for shale oil and gas. To understand and communicate risks we also need better data about risks. Industry actors often have few incentives to share information about known risks, as more data could lead to more regulation. States, who have the most jurisdictional authority over the risks, therefore should require industry to produce limited data. Alternatively, states--or the federal government--must collect this data themselves, as the U.S. Geological Survey has already begun to do for water in oil and gas regions. Specifically, they should require: baseline and post-development testing of surface and underground water sources around well sites before

  13. Development of gas-phase sample-introduction techniques for analytical atomic spectrometry.

    Science.gov (United States)

    Nakahara, Taketoshi

    2005-05-01

    For the last 30 years, several types of gas-phase sample-introduction methods in analytical atomic spectrometry, i.e., atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) and atomic fluorescence spectrometry (AFS), have been investigated and developed in the author's laboratory. Their fundamental results are summarized in this review article. The gas-phase sample-introduction techniques developed in the author's laboratory can be roughly divided into four groups: i) hydride generation, ii) cold-vapor generation of mercury, iii) analyte volatilization reactions and iv) miscellaneous. The analytical figures of merit of the gas-phase sample-introduction methods have been described in detail. Hydride generation has been coupled with the AAS of As, Bi, Ge, Pb, Sb, Se, Sn and Te, with the inductively coupled plasma (ICP) AES of As, Bi, Sn, Se and Sb, with the high-power nitrogen microwave-induced plasma (N2-MIP) AES of As, Bi, Pb, Sb, Se, Sn and Te by their single- and multi-element determinations, with the AFS of As, Bi, Pb, Sb, Se, Sn and Te, and with the ICP mass spectrometry (MS) of As and Se. The cold-vapor generation method for Hg has been combined with atmospheric-pressure helium microwave-induced plasma (He- or Ar-MIP)-AES and AFS. Furthermore, analyte volatilization reactions have been employed in the ICP-AES of iodine, in the He-MIP-AES of iodine bromine, chlorine, sulfur and carbon, and in the ICP-MS of sulfur. As a result, when compared with conventional solution nebulization, a great improvement in the sensitivity has been attained in each instance. In addition, the developed techniques coupled with analytical atomic spectrometry have been successfully applied to the determination of trace elements in a variety of practical samples.

  14. Emerging natural gas markets in the East Asian countries - Challenges for market development and international cooperation

    International Nuclear Information System (INIS)

    Ozaki, Hiroshi

    1997-01-01

    Energy and natural gas demand as well as the natural gas market in East Asia is analyzed. Gas distribution and long distance gas transmission pipelines are considered. International cooperation is outlined for meeting the market challenges in the region. (R.P.)

  15. The Spatial and Temporal Consumptive Water Use Impacts of Rapid Shale Gas Development and Use in Texas

    Science.gov (United States)

    Pacsi, A. P.; Allen, D.

    2013-12-01

    Over the past several years, the development of shale gas resources has proceeded rapidly in many areas of the United States, and this shale gas development requires the use of millions of gallons of water, per well, for hydraulic fracturing. Recent life cycle assessments of natural gas from shale formations have calculated the potential for water use reduction when water use is integrated along the entire natural gas supply chain, if the shale gas is used in natural-gas power plants to displace coal-fired electricity generation. Actual grid operation, however, is more complicated and would require both that sufficient unused natural gas generation capacity exists for the displacement of coal-fired power generation and that the natural gas price is low enough that the switching is financially feasible. In addition, water savings, which would occur mainly from a reduction in the cooling water demand at coal-fired power plants, may occur in different regions and at different times than water used in natural gas production. Thus, consumptive water impacts may be spatial and temporally disparate, which is not a consideration in current life-cycle literature. The development of shale gas resources in Texas in August 2008 through December 2009 was chosen as a case study for characterizing this phenomenon since Texas accounted for two-thirds of the shale gas produced in the United States during this period and since the price of natural gas for electricity generation dropped significantly over the episode. Changes to the Texas self-contained electric grid (ERCOT) for a scenario with actual natural gas production and prices was estimated using a constrained grid model, rather than assuming that natural gas generation would displace coal-fired power plant usage. The actual development scenario was compared to an alternative development scenario in which natural gas prices remained elevated throughout the episode. Upstream changes in water consumption from lignite (coal

  16. Model for the development of competition in the natural gas industry in Brazil; Modelo para o desenvolvimento da competicao na industria de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Sant Ana, Paulo Henrique de Mello; Jannuzzi, Gilberto de Martino; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico

    2008-07-01

    In the last 20 years, several countries have undergone to structural reforms in the gas sector, to increase the economic efficiency through the introduction of competition. This work proposes a framework to stimulate the development of competition in the gas sector in Brazil, based on a market forecast, the international experience and the characteristics of the market, structure and regulation in Brazil; the impacts of this framework in the market are also analyzed. According to the market forecasting, there will be a likely surplus of natural gas in Brazil. This surplus, allied with retail trading competition to be introduced in the states of Sao Paulo and Rio de Janeiro, together with a sound regulation that promote open access and transparency, moreover a regulated transmission, distribution and storage, may help to stimulate competition. If the framework is implemented, it would probably help the creation a wholesale and a retail gas market; stimulating risk management tools, i.e. derivative instruments; promoting a shift from long-term to short-term contracts between LDC's and shippers; creating a spot and future markets; and promoting a move towards spot and futures gas price indexing in mid- and long-term supply contracts. Competition would probably bring end-user prices down, as it happened in other countries that faced deregulation process. (author)

  17. Documentation of the Oil and Gas Supply Module (OGSM). Appendix, Model developers report

    International Nuclear Information System (INIS)

    1995-01-01

    The Office of Integrated Analysis and Forecasting (OIAF) is required to provide complete model documentation to meet the EIA Model Acceptance Standards. The Documentation for the Oil and Gas Supply Module (OGSM) provides a complete description of the OGSM methodology, structure, and relation to other modules in the National Energy Modeling System (NEMS). This Model Developers Report (MDR) serves as an appendix to the methodology documentation. This report provides an overview of the model and an assessment of the sensitivity of OGSM results to changes in input data or parameters

  18. Horn river basin (shale gas): A primer of challenges and solutions to development

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Colin; Williams-Kovacs, Jesse; Jackson, Rob

    2010-09-15

    Unconventional sources of fossil fuels The Horn River Basin, a massive unconventional shale gas resource, covers an area of approximately 3 million acres in North East British Columbia stretching from Fort Nelson to the Northwest Territories, will need to be significant part of the Canadian energy mix. Yet, this play is still in the early stages of development despite significant economic and supply potential. This paper will outline the many technical and economic challenges, as well as the possible solutions and strategies being employed to reduce risk and make the play a commercial success.

  19. Problems raised by the development of the natural gas deposit at Valempoulieres Jura Mts

    Energy Technology Data Exchange (ETDEWEB)

    Socrate, L.

    1967-01-01

    The Valempoulieres deposit recently discovered in the Central Jura Mts., France, at a depth of 800 m, raised a series of problems. Not only did the development of this structure risk being costly and the operation of its wells showed signs of being difficult, but the necessity for desulfurizing the gas and avoiding the formation of hydrates raised weighty technico-economic problems for a deposit whose importance had already placed it at the limit of profitability. This paper explains the problems concerning operating and equipment, as well as the solutions applied to such problems.

  20. Development status and operational features of the high temperature gas-cooled reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winkleblack, R.K.

    1976-04-01

    The objective of this study is to investigate the maturity of HTR-technology and to look out for possible technical problems, concerning introduction of large HTR power plants into the market. Further state and problems of introducing and closing the thorium fuel cycle is presented and judged. Finally, the state of development of advanced HTR-concepts for electricity production, the direct cycle HTR with helium turbine, and the gas-cooled fast breeder is discussed. In preparing the study, both HTR concepts with spherical and block-type fuel elements have been considered.

  1. Development of a Ne gas target for {sup 22}Na production by proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Bidhan Ch., E-mail: mechbidhan@gmail.com; Pal, Gautam [Mechanical Engineering Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Barua, Luna; Das, Sujata Saha [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology, Variable Energy Cyclotron Centre, Kolkata 700 064 (India)

    2016-03-15

    The article presents the design and development of a neon gas target for the production of {sup 22}Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of {sup 22}Na in a 6 day long 17 MeV, 5 μA proton irradiation run.

  2. Development of a record retention and retrieval system for the Baltimore Gas and Electric Company

    International Nuclear Information System (INIS)

    Hoffman, H.L.

    1976-01-01

    The records associated with the design and construction of a nuclear power plant have increased in both volume and complexity. Baltimore Gas and Electric Company chose to retain and make available these records by using microfilm and a computer-generated index system. The technique of filming, data assembly, and controlled distribution of this material to various locations within the Company was developed and implemented. The index system has been designed to locate information and to provide a basis for searches of the data base for special information

  3. Development status and operational features of the high temperature gas-cooled reactor. Final report

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1976-04-01

    The objective of this study is to investigate the maturity of HTR-technology and to look out for possible technical problems, concerning introduction of large HTR power plants into the market. Further state and problems of introducing and closing the thorium fuel cycle is presented and judged. Finally, the state of development of advanced HTR-concepts for electricity production, the direct cycle HTR with helium turbine, and the gas-cooled fast breeder is discussed. In preparing the study, both HTR concepts with spherical and block-type fuel elements have been considered

  4. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application

    DEFF Research Database (Denmark)

    Gong, M.; Zhang, Y.; Weschler, Charles J.

    2014-01-01

    A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...

  5. Development of a Time Projection Chamber using CF4 gas for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Isobe, T.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Matsumoto, T.; Kametani, S.; Kajihara, F.; Gunji, T.; Kurihara, N.; Oda, S.X.; Yamaguchi, Y.L.

    2006-01-01

    A prototype Time Projection Chamber (TPC) using pure CF 4 gas was developed for possible use in heavy ion experiments. Basic characteristics such as gain, drift velocity, longitudinal diffusion and attenuation length of produced electrons were measured with the TPC. At an electric field of 900V/cm, the drift velocity and longitudinal diffusion for 1cm drift were obtained as 10cm/μs and 60μm, respectively. The relatively large gain fluctuation is explained to be due to the electron attachment process in CF 4 . These characteristics are encouraging for the measurement of the charged particle trajectories under high multiplicity conditions at RHIC

  6. Optimization techniques for the secondary development of old gas fields in the Sichuan Basin and their application

    Directory of Open Access Journals (Sweden)

    Chongshuang Xia

    2016-12-01

    Full Text Available After nearly 60 years of development, many old gas fields in the Sichuan Basin have come to middle–late development stages with low pressure and low yield, and some are even on the verge of abandonment, but there are plenty remaining gas resources still undeveloped. Analysis shows that gas fields which have the conditions for the secondary development are faced with many difficulties. For example, it is difficult to produce low permeable reserves and to unset the hydraulic seal which is formed by active formation water. In this paper, therefore, the technical route and selection conditions of old gas fields for the secondary development were comprehensively elaborated with its definition as the beginning. Firstly, geological model forward modeling and production performance inversion characteristic curve diagnosis are performed by using the pressure normalization curve and the identification and quantitative description method for multiple sets of storage–seepage body of complex karst fracture–cavity systems is put forward, after the multiple storage–seepage body mode of fracture–cavity systems is established. Combined with the new occurrence mode of gas and water in U-shape pipes, a new calculation technology for natural gas reserves of multiple fracture–cavity systems with strong water invasion is developed. Secondly, a numerical model of pore–cavity–fracture triple media is built, and simulation and result evaluation technology for the production pattern of “drainage by horizontal wells + gas production by vertical wells” in bottom-water fracture and cavity gas reservoirs with strong water invasion is developed. Thirdly, the geological model of gas reservoirs is reconstructed with the support of the integration technologies which are formed based on fine gas reservoir description. Low permeable reserves of gas reservoirs are evaluated based on each classification. The effective producing ratio is increased further by

  7. AREVA Modular Steam Cycle – High Temperature Gas-Cooled Reactor Development Progress

    International Nuclear Information System (INIS)

    Lommers, L.; Shahrokhi, F.; Southworth, F.; Mayer, J. III

    2014-01-01

    The AREVA Steam Cycle – High Temperature Gas-Cooled Reactor (SCHTGR) is a modular graphite-moderated gas-cooled reactor currently being developed to support a wide variety of applications including industrial process heat, high efficiency electricity generation, and cogeneration. It produces high temperature superheated steam which makes it a good match for many markets currently dependent on fossil fuels for process heat. Moreover, the intrinsic safety characteristics of the SC-HTGR make it uniquely qualified for collocation with large industrial process heat users which is necessary for serving these markets. The NGNP Industry Alliance has selected the AREVA SC-HTGR as the basis for future development work to support commercial HTGR deployment. This paper provides a concise description of the SC-HTGR concept, followed by a summary of recent development activities. Since this concept was introduced, ongoing design activities have focused primarily on confirming key system capabilities and the suitability for potential future markets. These evaluations continue to confirm the suitability of the SC-HTGR for a variety of potential applications that are currently dependent on fossil fuels. (author)

  8. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    Science.gov (United States)

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  9. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  10. Insight conference reports : liquid natural gas : maximizing opportunities for development and growth

    International Nuclear Information System (INIS)

    2005-01-01

    This conference focused on recent developments in the liquefied natural gas (LNG) industry. Strategic considerations in the development of successful international LNG projects were presented, as well as issues concerning the legal regulatory framework of LNG projects in Canada. The impact of LNG projects on North American markets was discussed, as well as challenges for future growth in the LNG industry. Proposed LNG storage facilities in Vancouver were evaluated, and issues concerning siting considerations were reviewed. Investment security was discussed with reference to government petroleum contracts. Returns to North American markets were reviewed, and issues concerning the financing LNG projects in Canada were examined. The importance of providing gas supplies to western Canada was emphasized. Risk management in the LNG industry was considered, as well as the impacts on existing infrastructure. Various LNG opportunities were considered, including the development of LNG facilities on the west coast of Canada. Issues concerning shipping were also reviewed. One of the 16 presentations featured at this conference has been catalogued separately for inclusion in this database. tabs., figs

  11. Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas Development: A National Spatial Analysis and Review.

    Science.gov (United States)

    Czolowski, Eliza D; Santoro, Renee L; Srebotnjak, Tanja; Shonkoff, Seth B C

    2017-08-23

    Higher risk of exposure to environmental health hazards near oil and gas wells has spurred interest in quantifying populations that live in proximity to oil and gas development. The available studies on this topic lack consistent methodology and ignore aspects of oil and gas development of value to public health-relevant assessment and decision-making. We aim to present a methodological framework for oil and gas development proximity studies grounded in an understanding of hydrocarbon geology and development techniques. We geospatially overlay locations of active oil and gas wells in the conterminous United States and Census data to estimate the population living in proximity to hydrocarbon development at the national and state levels. We compare our methods and findings with existing proximity studies. Nationally, we estimate that 17.6 million people live within 1,600m (∼1 mi) of at least one active oil and/or gas well. Three of the eight studies overestimate populations at risk from actively producing oil and gas wells by including wells without evidence of production or drilling completion and/or using inappropriate population allocation methods. The remaining five studies, by omitting conventional wells in regions dominated by historical conventional development, significantly underestimate populations at risk. The well inventory guidelines we present provide an improved methodology for hydrocarbon proximity studies by acknowledging the importance of both conventional and unconventional well counts as well as the relative exposure risks associated with different primary production categories (e.g., oil, wet gas, dry gas) and developmental stages of wells. https://doi.org/10.1289/EHP1535.

  12. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

    International Nuclear Information System (INIS)

    Raman, P.; Ram, N.K.; Gupta, Ruchi

    2013-01-01

    The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm −3 .Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators. - Highlights: • Hot air injection in dual fired reactor reduces the tar content to less than 100 mg Nm −3 . • In clean gas the tar content is 35 mg Nm −3 and the dust content is nil. • The specific gasification rate is 2.8 Nm 3 kg −1 of fuel wood and cold gas efficiency is 89.7%. • CV of the gas: 5.3 MJ Nm −3 , SFC: 1.1 kg kWh −1 and wood to power efficiency: 21%. • Cold gas efficiency is improved by optimizing the reactor's design and recycling the waste heat from hot gas

  13. Development of high velocity gas gun with a new trigger system-numerical analysis

    Science.gov (United States)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  14. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats

    Science.gov (United States)

    Brittingham, Margaret C.; Maloney, Kelly O.; Farag, Aïda M.; Harper, David D.; Bowen, Zachary H.

    2014-01-01

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  15. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  16. Analyzing the greenhouse gas impact potential of smallholder development actions across a global food security program

    Science.gov (United States)

    Grewer, Uwe; Nash, Julie; Gurwick, Noel; Bockel, Louis; Galford, Gillian; Richards, Meryl; Costa Junior, Ciniro; White, Julianna; Pirolli, Gillian; Wollenberg, Eva

    2018-04-01

    This article analyses the greenhouse gas (GHG) impact potential of improved management practices and technologies for smallholder agriculture promoted under a global food security development program. Under ‘business-as-usual’ development, global studies on the future of agriculture to 2050 project considerable increases in total food production and cultivated area. Conventional cropland intensification and conversion of natural vegetation typically result in increased GHG emissions and loss of carbon stocks. There is a strong need to understand the potential greenhouse gas impacts of agricultural development programs intended to achieve large-scale change, and to identify pathways of smallholder agricultural development that can achieve food security and agricultural production growth without drastic increases in GHG emissions. In an analysis of 134 crop and livestock production systems in 15 countries with reported impacts on 4.8 million ha, improved management practices and technologies by smallholder farmers significantly reduce GHG emission intensity of agricultural production, increase yields and reduce post-harvest losses, while either decreasing or only moderately increasing net GHG emissions per area. Investments in both production and post-harvest stages meaningfully reduced GHG emission intensity, contributing to low emission development. We present average impacts on net GHG emissions per hectare and GHG emission intensity, while not providing detailed statistics of GHG impacts at scale that are associated to additional uncertainties. While reported improvements in smallholder systems effectively reduce future GHG emissions compared to business-as-usual development, these contributions are insufficient to significantly reduce net GHG emission in agriculture beyond current levels, particularly if future agricultural production grows at projected rates.

  17. TAX TOOLS OF THE STATE POLICY(POLITICS AT DEVELOPMENT OF OIL-AND-GAS RESOURCES OF NEW REGIONS

    Directory of Open Access Journals (Sweden)

    V.E. Toskunina

    2007-12-01

    Full Text Available Development of oil-and-gas sector of economy of region and character of interaction between oil-and-gas sector and regional economy connected with tax system. In article the estimation of consequences of reforming of tax system in sphere of oil extraction and its influences on social and economic system of obtaining region is given. Methods and approaches of increase of efficiency of tax regulation of process of development of oil-and-gas resources of new regions are determined.

  18. Regional impacts of oil and gas development on ozone formation in the western United States.

    Science.gov (United States)

    Rodriguez, Marco A; Barna, Michael G; Moore, Tom

    2009-09-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico.

  19. To fully exert the important role of natural gas in building a modern energy security system in China: An understanding of China's National l3th Five-Year Plan for Natural Gas Development

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-07-01

    Full Text Available Along with the introduction of 13th Five-Year Plans in succession for natural gas development programmed by governments at all levels and much more attention paid to haze governance by relevant departments, natural gas, as one of the major energy sources, has ushered in a strategic opportunity era. In view of this, based upon China's National 13th Five-Year Plan for Natural Gas Development formulated by the National Development and Reform Commission, the developing trend of natural gas sector was predicted in the period of 13th Five-Year Plan in terms of supply side, demand side, pricing system, infrastructure construction, etc. and some feasible proposals were made on the whole industrial chain. In terms of the supply side, natural gas will be of availability, accessibility, assurance, affordability, and accountability in the production and supply chains. In terms of the demand side, air pollution treatment will indirectly stimulate gas consumption increase. Gas power generation will become the dominant. Natural gas as a transportation fuel will bring a good new opportunity. Thus it is believed that as the present natural gas development is restricted by both gas pricing system and infrastructure construction, further reform should be strengthened to break the barriers of systems and mechanisms; and that due to many uncertainties in the natural gas market, the decisive role of market in the resource allocation should be fully exerted to ensure the main force of natural gas in building a dependable energy strategic system in present and future China.

  20. Risk analysis applied to development of a gas field in Santos Basin; Analise de risco aplicada ao desenvolvimento de um campo de gas na Bacia de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Alexandre M.; Filoco, Paulo R.; Yamada, Debora T. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Decision analysis applied to the development phase of petroleum fields must take into account the risk associated to many kinds of uncertainties. In the transition of the appraisal to the development phases, the importance of risk associated to the production and the recovery factor may increase significantly. The process is complex due to high investments, large number of uncertain variables and strong dependence of the results with the production strategy definition. In E and P, several decisions must be taken considering the risks involved through the appraisal of the uncertainties impact in production of petroleum fields, increase the possibility of success, measuring possible lost and sub-optimized developments identifying new opportunities. In a specific scenario, like gas production, the risk associated to the project becomes larger due to the gas prices compared to oil, the demand, the distribution's structure and the deadlines defined in contracts. The objective of this paper is to show the results of a methodology developed in a detailed study of a risk analysis process in appraisal and development phases (execution and implementation) to one of the biggest gas fields in Brazil (Mexilhao Field) and support reliable future decisions. (author)

  1. Northern gas fields and NGH technology. A feasibility study to develop natural gas hydrate technology for the international gas markets; Nordlige gassfelt and NGH-teknologi. En studie av muligheter for utvikling av naturgasshydratteknologi for det internasjonale gassmarked

    Energy Technology Data Exchange (ETDEWEB)

    Ramsland, Trond Ragnvald; Loy, Erik F.; Doesen, Sturle

    1997-12-31

    Two natural gas fields have been studied for three different technological solutions using two different economic theories. The aim was to examine whether a new technology for transporting natural gas, Natural Gas Hydrates (NGH), can compete with the existing technologies pipeline and Liquefied Natural Gas (LNG). Natural gas can rarely be used immediately after production and the supply systems can be divided into four interrelated parts: 1) Exploration. 2) Development and production. 3) Transportation. 4) Distribution. The emphasis in the study is on production costs and transportation. Exploration is assumed carried out and thus viewed sunk cost. Distribution from landing point to consumers is not part of the study. Production can take place either onshore or offshore, the natural gas can be transported to the market either by pipeline or ship and the costs are becoming more important as the distance from the fields to the markets increase. Natural gas projects have long lead times and large capital requirements. New supplies will materialise then if there is confidence that demand for the gas exists at a profitable price. Therefore natural gas is generally sold on long term contracts. The conclusions are that economies of scale exist and that pipeline is the superior technology for high volumes but cannot compete for smaller volumes where the LNG technology has been the best alternative. However, the report concludes that the NGH can compete fully. The distance to the market where the natural gas is to be transported is crucial for choice of transportation mode. The shipping modes are superior for long transportation distances. NGH is superior to LNG also with regards to distance. Despite that the two economic models used for the evaluation have provided very different absolute project values, they have provided the same conclusions about the ranking of the different technologies. It is clear then that if NGH technology is developed further into a reliable and

  2. Draft of law relating to revamping of natural gas supply public service and to development of gas enterprises; Avant projet de loi relatif a la modernisation du service public du gaz naturel et au developpement des entreprises gazieres

    Energy Technology Data Exchange (ETDEWEB)

    Bricq [ed.] [Deputee de Seine-et-Marne, Assemblee Nationale, Paris (France)

    2000-02-07

    The state secretariat for industry has launched a large public debate between June and October 1999 based on a white book titled 'Towards the future organization of the gas sector'. The suggestions obtained were substantial. A brief presentation is added to the draft of the law devoted to revamping of natural gas supply public service and to development of gas enterprises. The presentation addresses the following points: 1. A public gas supply service modern and thought to reconcile the dynamism, equity and solidarity. 2. A controlled opening of the natural gas market towards competition: participating to the struggle for employment. 3. Tools ensuring the quality of gas supply and security of resources. 4. A transparent and efficient regulation: creating the conditions of a nondiscriminatory competition. 5. Requirements for developing the transport of natural gas regime. 6. Storage. 7. Social questions. The draft of the law relating to revamping of natural gas supply public service and to development of gas enterprises is a working document, not engaging the government. It is based on six titles. Title 1 and Title 2 treat the points 1 and 2 mentioned above. Title 3 contains two chapters devoted to transparency and accounting dissociation and to regulation in the natural gas sector, respectively. The Title 4 contains three chapters devoted to: 1. authorization of the works of natural gas transport; 2. gas distribution and 3. exploitation of the transport and natural gas distribution network. The fifth Title is dedicated to underground storage. The sixth Title presents diverse directives.

  3. Design and Development of Polysilicon-based Microhotplate for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    Mahanth PRASAD

    2009-04-01

    Full Text Available The paper presents the design and development of a polysilicon-based microhotplate (MHP on a SiO2 membrane formed by bulk micromachining in orientation P-type silicon. The chip comprises four microheater cells, which can be used separately or in series combination. The chip size is 2.1 × 2.1 sq. mm. The design and simulation of a single-cell microhotplate is carried out using ANSYS. The complete fabrication process is described in this paper. The temperature coefficient of resistance (TCR of polysilicon resistors of values 5.7 kW and 3.36 kW has been measured as 0.69 × 10-3 and 0.5 × 10-3 per °C respectively. These values are used to estimate the temperature of the polysilicon heater by measuring the change in resistance value of the resistor on applying a voltage to it. Temperatures up to 367 °C have been calculated at low bias voltages. As the sensitivity of the gas sensing film is temperature dependent, the developed hotplate will be used as a platform for fabricating the gas sensors.

  4. Gas electron multipliers: Development of large area GEMS and spherical GEMS

    International Nuclear Information System (INIS)

    Pinto, Serge Duarte

    2011-08-01

    Gaseous radiation detectors have been a crucial part of high-energy physics instrumentation since the 1960s, when the first multiwire proportional counters were built. In the 1990s the first micropattern gas detectors (MPGDS) saw the light; with sub-millimeter feature sizes these novel detectors were faster and more accurate than their predecessors. The gas electron multiplier (GEM) is one of the most successful of these technologies. It is a charge multiplication structure made from a copper clad polymer foil, pierced with a regular and dense pattern of holes. I describe the properties and the application of GEMs and GEM. detectors, and the research and development I have done on this technology. Two of the main objectives were the development of large area GEMs (∝m 2 ) for particle physics experiments and GEMs with a spherical shape for X-ray or neutron diffraction detectors. Both have been realized, and the new techniques involved are finding their way to applications in research and industry. (orig.)

  5. Gas Electron Multipliers: Development of large area GEMs and spherical GEMs

    CERN Document Server

    Duarte Pinto, Serge; Brock, Ian

    2011-01-01

    Gaseous radiation detectors have been a crucial part of high-energy physics instrumentation since the 1960s, when the first multiwire proportional counters were built. In the 1990s the first micropattern gas detectors (MPGDs) saw the light; with sub-millimeter feature sizes these novel detectors were faster and more accurate than their predecessors. The gas electron multiplier (GEM) is one of the most successful of these technologies. It is a charge multiplication structure made from a copper clad polymer foil, pierced with a regular and dense pattern of holes. I will describe the properties and the application of GEMs and GEM detectors, and the research and development I have done on this technology. Two of the main objectives were the development of large area GEMs (~m^2) for particle physics experiments and GEMs with a spherical shape for x-ray or neutron diffraction detectors. Both have been realized, and the new techniques involved are finding their way to applications in research and industry.

  6. Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane

    Directory of Open Access Journals (Sweden)

    Wendong Zhang

    2013-03-01

    Full Text Available In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal, the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements.