WorldWideScience

Sample records for previously consolidated memory

  1. Consolidation of an extinction memory depends on the unconditioned stimulus magnitude previously experienced during training.

    Science.gov (United States)

    Stollhoff, Nicola; Eisenhardt, Dorothea

    2009-07-29

    Here, we examine the role of the magnitude of the unconditioned stimulus (US) during classical conditioning in consolidation processes after memory retrieval. We varied the US durations during training and we test the impact of these variations on consolidation after memory retrieval with one or two conditioned stimulus-only trials. We found that the consolidation of an extinction memory depends on US duration during training and ruled out the possibility that this effect is attributable to differences in satiation after conditioning. We conclude that consolidation of an extinction memory is triggered only when the duration of the US reaches a critical threshold. This demonstrates that memory consolidation cannot be regarded as an isolated process depending solely on training conditions. Instead, it depends on the animal's previous experience as well.

  2. Schemas and memory consolidation.

    Science.gov (United States)

    Tse, Dorothy; Langston, Rosamund F; Kakeyama, Masaki; Bethus, Ingrid; Spooner, Patrick A; Wood, Emma R; Witter, Menno P; Morris, Richard G M

    2007-04-06

    Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.

  3. Memory consolidation

    NARCIS (Netherlands)

    Takashima, A.; Bakker, I.; Schmid, H.-J.

    2016-01-01

    In order to make use of novel experiences and knowledge to guide our future behavior, we must keep large amounts of information accessible for retrieval. The memory system that stores this information needs to be flexible in order to rapidly incorporate incoming information, but also requires that

  4. Neuromodulation: acetylcholine and memory consolidation.

    Science.gov (United States)

    Hasselmo

    1999-09-01

    Clinical and experimental evidence suggests that hippocampal damage causes more severe disruption of episodic memories if those memories were encoded in the recent rather than the more distant past. This decrease in sensitivity to damage over time might reflect the formation of multiple traces within the hippocampus itself, or the formation of additional associative links in entorhinal and association cortices. Physiological evidence also supports a two-stage model of the encoding process in which the initial encoding occurs during active waking and deeper consolidation occurs via the formation of additional memory traces during quiet waking or slow-wave sleep. In this article I will describe the changes in cholinergic tone within the hippocampus in different stages of the sleep-wake cycle and will propose that these changes modulate different stages of memory formation. In particular, I will suggest that the high levels of acetylcholine that are present during active waking might set the appropriate dynamics for encoding new information in the hippocampus, by partially suppressing excitatory feedback connections and so facilitating encoding without interference from previously stored information. By contrast, the lower levels of acetylcholine that are present during quiet waking and slow-wave sleep might release this suppression and thereby allow a stronger spread of activity within the hippocampus itself and from the hippocampus to the entorhinal cortex, thus facilitating the process of consolidation of separate memory traces.

  5. Dysfunctional overnight memory consolidation in ecstasy users.

    Science.gov (United States)

    Smithies, Vanessa; Broadbear, Jillian; Verdejo-Garcia, Antonio; Conduit, Russell

    2014-08-01

    Sleep plays an important role in the consolidation and integration of memory in a process called overnight memory consolidation. Previous studies indicate that ecstasy users have marked and persistent neurocognitive and sleep-related impairments. We extend past research by examining overnight memory consolidation among regular ecstasy users (n=12) and drug naïve healthy controls (n=26). Memory recall of word pairs was evaluated before and after a period of sleep, with and without interference prior to testing. In addition, we assessed neurocognitive performances across tasks of learning, memory and executive functioning. Ecstasy users demonstrated impaired overnight memory consolidation, a finding that was more pronounced following associative interference. Additionally, ecstasy users demonstrated impairments on tasks recruiting frontostriatal and hippocampal neural circuitry, in the domains of proactive interference memory, long-term memory, encoding, working memory and complex planning. We suggest that ecstasy-associated dysfunction in fronto-temporal circuitry may underlie overnight consolidation memory impairments in regular ecstasy users. © The Author(s) 2014.

  6. Dreaming and offline memory consolidation.

    Science.gov (United States)

    Wamsley, Erin J

    2014-03-01

    Converging evidence suggests that dreaming is influenced by the consolidation of memory during sleep. Following encoding, recently formed memory traces are gradually stabilized and reorganized into a more permanent form of long-term storage. Sleep provides an optimal neurophysiological state to facilitate this process, allowing memory networks to be repeatedly reactivated in the absence of new sensory input. The process of memory reactivation and consolidation in the sleeping brain appears to influence conscious experience during sleep, contributing to dream content recalled on awakening. This article outlines several lines of evidence in support of this hypothesis, and responds to some common objections.

  7. Sleep enhances memory consolidation in children.

    Science.gov (United States)

    Ashworth, Anna; Hill, Catherine M; Karmiloff-Smith, Annette; Dimitriou, Dagmara

    2014-06-01

    Sleep is an active state that plays an important role in the consolidation of memory. It has been found to enhance explicit memories in both adults and children. However, in contrast to adults, children do not always show a sleep-related improvement in implicit learning. The majority of research on sleep-dependent memory consolidation focuses on adults; hence, the current study examined sleep-related effects on two tasks in children. Thirty-three typically developing children aged 6-12 years took part in the study. Actigraphy was used to monitor sleep. Sleep-dependent memory consolidation was assessed using a novel non-word learning task and the Tower of Hanoi cognitive puzzle, which involves discovering an underlying rule to aid completion. Children were trained on the two tasks and retested following approximately equal retention intervals of both wake and sleep. After sleep, children showed significant improvements in performance of 14% on the non-word learning task and 25% on the Tower of Hanoi task, but no significant change in score following the wake retention interval. Improved performance on the Tower of Hanoi may have been due to children consolidating explicit aspects of the task, for example rule-learning or memory of previous sequences; thus, we propose that sleep is necessary for consolidation of explicit memory in children. Sleep quality and duration were not related to children's task performance. If such experimental sleep-related learning enhancement is generalizable to everyday life, then it is clear that sleep plays a vital role in children's educational attainment. © 2013 European Sleep Research Society.

  8. Acute exercise and motor memory consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard; Korsgaard Johnsen, Line; Geertsen, Svend Sparre

    2016-01-01

    where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score...... an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory.......A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting...

  9. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    NARCIS (Netherlands)

    Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; Schelling, G.; Campolongo, P.

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The

  10. Distributed learning enhances relational memory consolidation.

    Science.gov (United States)

    Litman, Leib; Davachi, Lila

    2008-09-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.

  11. Negative Reinforcement Impairs Overnight Memory Consolidation

    Science.gov (United States)

    Stamm, Andrew W.; Nguyen, Nam D.; Seicol, Benjamin J.; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J.

    2014-01-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into…

  12. [The consolidation of memory, one century on].

    Science.gov (United States)

    Prado-Alcala, R A; Quirarte, G L

    The theory of memory consolidation, based on the work published by Georg Elias Muller and Alfons Pilzecker over a century ago, continues to guide research into the neurobiology of memory, either directly or indirectly. In their classic monographic work, they concluded that fixing memory requires the passage of time (consolidation) and that memory is vulnerable during this period of consolidation, as symptoms of amnesia appear when brain functioning is interfered with before the consolidation process is completed. Most of the experimental data concerning this phenomenon strongly support the theory. In this article we present a review of experiments that have made it possible to put forward a model that explains the amnesia produced in conventional learning conditions, as well as another model related to the protection of memory when the same instances of learning are submitted to a situation involving intensive training. Findings from relatively recent studies have shown that treatments that typically produce amnesia when they are administered immediately after a learning experience (during the period in which the memory would be consolidating itself) no longer have any effect when the instances of learning involve a relatively large number of trials or training sessions, or relatively high intensity aversive events. These results are not congruent with the prevailing theories about consolidation.

  13. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Differential effects of non-REM and REM sleep on memory consolidation?

    Science.gov (United States)

    Ackermann, Sandra; Rasch, Björn

    2014-02-01

    Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.

  15. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Redolar-Ripoll, Diego

    2012-08-01

    Full Text Available The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of goal-directed behavior. The neural substrate underling this processing of reward information is a reliable way of improving learning and memory processes. Evidence from several studies indicates that this neural system can facilitate memory consolidation in a wide variety of learning tasks. From a molecular perspective, certain cardinal features of reward have been described as forms of memory. Studies of human addicts and studies in animal models of addiction show that chronic drug exposure produces stable changes in the brain at the cellular and molecular levels that underlie the long-lasting behavioral plasticity associated with addiction. These molecular and cellular adaptations involved in addiction are also implicated in learning and memory processes. Dopamine seems to be a critical common signal to activate different genetic mechanisms that ultimately remodel synapses and circuits. Despite memory is an active and complex process mediated by different brain areas, the neural substrate of reward is able to improve memory consolidation in a several paradigms. We believe that there are many equivalent traits between reward and learning and memory processes.

  16. Autobiographical thinking interferes with episodic memory consolidation.

    Directory of Open Access Journals (Sweden)

    Michael Craig

    Full Text Available New episodic memories are retained better if learning is followed by a few minutes of wakeful rest than by the encoding of novel external information. Novel encoding is said to interfere with the consolidation of recently acquired episodic memories. Here we report four experiments in which we examined whether autobiographical thinking, i.e. an 'internal' memory activity, also interferes with episodic memory consolidation. Participants were presented with three wordlists consisting of common nouns; one list was followed by wakeful rest, one by novel picture encoding and one by autobiographical retrieval/future imagination, cued by concrete sounds. Both novel encoding and autobiographical retrieval/future imagination lowered wordlist retention significantly. Follow-up experiments demonstrated that the interference by our cued autobiographical retrieval/future imagination delay condition could not be accounted for by the sound cues alone or by executive retrieval processes. Moreover, our results demonstrated evidence of a temporal gradient of interference across experiments. Thus, we propose that rich autobiographical retrieval/future imagination hampers the consolidation of recently acquired episodic memories and that such interference is particularly likely in the presence of external concrete cues.

  17. [Sleep-wake cycle and memory consolidation].

    Science.gov (United States)

    Baratti, Carlos M; Boccia, Mariano M; Blake, Mariano G; Acosta, Gabriela B

    2007-01-01

    Although several hypothesis and theories have been advanced as explanations for the functions of sleep, a unified theory of sleep function remains elusive. Sleep has been implicated in the plastic cerebral changes that underlie learning and memory, in particular those related to memory consolidation of recently acquired new information. Despite steady accumulations of positive findings over the last ten years, the precise role of sleep in memory and brain plasticity is unproven at all. This situation might be solved by more integrated approaches that combine behavioral and neurophysiological measurements in well described in vivo models of neuronal activity and brain plasticity.

  18. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    Science.gov (United States)

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nicotine facilitates memory consolidation in perceptual learning.

    Science.gov (United States)

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Consolidation and restoration of memory traces in working memory.

    Science.gov (United States)

    De Schrijver, Sébastien; Barrouillet, Pierre

    2017-10-01

    Consolidation is the process through which ephemeral sensory traces are transformed into more stable short-term memory traces. It has been shown that consolidation plays a crucial role in working memory (WM) performance, by strengthening memory traces that then better resist interference and decay. In a recent study, Bayliss, Bogdanovs, and Jarrold (Journal of Memory and Language, 81, 34-50, 2015) argued that this process is separate from the processes known to restore WM traces after degradation, such as attentional refreshing and verbal rehearsal. In the present study, we investigated the relationship between the two types of processes in the context of WM span tasks. Participants were presented with series of letters for serial recall, each letter being followed by four digits for parity judgment. Consolidation opportunity was manipulated by varying the delay between each letter and the first digit to be processed, while opportunities for restoration were manipulated by varying the pace at which the parity task had to be performed (i.e., its cognitive load, or CL). Increasing the time available for either consolidation or restoration resulted in higher WM spans, with some substitutability between the two processes. Accordingly, when consolidation time was added to restoration time in the calculation of CL, the new resulting index, called extended CL, proved a very good predictor of recall performance, a finding also observed when verbal rehearsal was prevented by articulatory suppression. This substitutability between consolidation and restoration suggests that both processes may rely on the same mechanisms.

  1. Interacting Brain Systems Modulate Memory Consolidation

    Science.gov (United States)

    McIntyre, Christa K.; McGaugh, James L.; Williams, Cedric L.

    2011-01-01

    Emotional arousal influences the consolidation of long-term memory. This review discusses experimental approaches and relevant findings that provide the foundation for current understanding of coordinated interactions between arousal activated peripheral hormones and the brain processes that modulate memory formation. Rewarding or aversive experiences release the stress hormones epinephrine (adrenalin) and glucocorticoids from the adrenal glands into the bloodstream. The effect of these hormones on memory consolidation depends upon binding of norepinephrine to beta-adrenergic receptors in the basolateral complex of the amygdala (BLA). Much evidence indicates that the stress hormones influence release of norepinephrine in the BLA through peripheral actions on the vagus nerve which stimulates, through polysynaptic connections, cells of the locus coeruleus to release norepinephrine. The BLA influences memory storage by actions on synapses, distributed throughout the brain, that are engaged in sensory and cognitive processing at the time of amygdala activation. The implications of the activation of these stress-activated memory processes are discussed in relation to stress-related memory disorders. PMID:22085800

  2. Reward Value Determines Memory Consolidation in Parasitic Wasps

    NARCIS (Netherlands)

    Kruidhof, H.M.; Pashalidou, F.G.; Fatouros, N.E.; Figueroa, I.A.; Vet, L.E.M.; Smid, H.M.; Huigens, M.E.

    2012-01-01

    Animals can store learned information in their brains through a series of distinct memory forms. Short-lasting memory forms can be followed by longer-lasting, consolidated memory forms. However, the factors determining variation in memory consolidation encountered in nature have thus far not been

  3. Emotional memory consolidation under lower versus higher stress conditions

    Directory of Open Access Journals (Sweden)

    Inna eKogan

    2010-12-01

    Full Text Available An exposure to stress can enhance memory for emotionally arousing experiences. The phenomenon is suggested to be amygdala-dependent and in accordance with that view the amygdala was found to modulate mnemonic processes in other brain regions. Previously, we illustrated increased amygdala activation and reduced activation of CA1 following spatial learning under high versus low emotionality conditions. When spatial learning was followed by reversal training interference, impaired retention was detected only under high emotionality conditions. Here we further evaluate the potential implications of the difference in the level of amygdala activation on the quality of the memory formed under these stress conditions. We attempted to affect spatial memory consolidation under low or high stress conditions by either introducing a foot shock interference following massed training in the water maze; by manipulating the threshold for acquisition employing either brief (3 trials or full (12 trials training sessions; or by employing a spaced training (over three days rather than massed training protocol. The current findings reveal that under heightened emotionality, the process of consolidation seems to become less effective and more vulnerable to interference; however, when memory consolidation is not interrupted, retention is improved. These differential effects might underlie the complex interactions of stress, and, particularly, of traumatic stress with memory formation processes.

  4. Consolidation of long-term memory: Evidence and alternatives.

    OpenAIRE

    Meeter, M.; Murre, J.M.J.

    2004-01-01

    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be impleme...

  5. Reward value determines memory consolidation in parasitic wasps.

    Science.gov (United States)

    Kruidhof, H Marjolein; Pashalidou, Foteini G; Fatouros, Nina E; Figueroa, Ilich A; Vet, Louise E M; Smid, Hans M; Huigens, Martinus E

    2012-01-01

    Animals can store learned information in their brains through a series of distinct memory forms. Short-lasting memory forms can be followed by longer-lasting, consolidated memory forms. However, the factors determining variation in memory consolidation encountered in nature have thus far not been fully elucidated. Here, we show that two parasitic wasp species belonging to different families, Cotesia glomerata (Hymenoptera: Braconidae) and Trichogramma evanescens (Hymenoptera; Trichogrammatidae), similarly adjust the memory form they consolidate to a fitness-determining reward: egg-laying into a host-insect that serves as food for their offspring. Protein synthesis-dependent long-term memory (LTM) was consolidated after single-trial conditioning with a high-value host. However, single-trial conditioning with a low-value host induced consolidation of a shorter-lasting memory form. For Cotesia glomerata, we subsequently identified this shorter-lasting memory form as anesthesia-resistant memory (ARM) because it was not sensitive to protein synthesis inhibitors or anesthesia. Associative conditioning using a single reward of different value thus induced a physiologically different mechanism of memory formation in this species. We conclude that the memory form that is consolidated does not only change in response to relatively large differences in conditioning, such as the number and type of conditioning trials, but is also sensitive to more subtle differences, such as reward value. Reward-dependent consolidation of exclusive ARM or LTM provides excellent opportunities for within-species comparison of mechanisms underlying memory consolidation.

  6. Post-study caffeine administration enhances memory consolidation in humans.

    Science.gov (United States)

    Borota, Daniel; Murray, Elizabeth; Keceli, Gizem; Chang, Allen; Watabe, Joseph M; Ly, Maria; Toscano, John P; Yassa, Michael A

    2014-02-01

    It is currently not known whether caffeine has an enhancing effect on long-term memory in humans. We used post-study caffeine administration to test its effect on memory consolidation using a behavioral discrimination task. Caffeine enhanced performance 24 h after administration according to an inverted U-shaped dose-response curve; this effect was specific to consolidation and not retrieval. We conclude that caffeine enhanced consolidation of long-term memories in humans.

  7. Differential effects of non-REM and REM sleep on memory consolidation?

    OpenAIRE

    Ackermann Sandra; Rasch  Bjoern

    2013-01-01

    Sleep benefitsmemory consolidation. Previous theoretical accounts have proposed a differential role of slowwave sleep (SWS) rapid eye movement (REM) sleep and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories whereas REMsleep is important for consolidation of non declarative procedural and emotional memories. In fact numerous recent studies do provide further support for the crucial role of SWS (or ...

  8. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes?

    NARCIS (Netherlands)

    Genzel, L.K.E.; Kroes, M.C.W.; Dresler, M.; Battaglia, F.P.

    2014-01-01

    Sleep is strongly involved in memory consolidation, but its role remains unclear. 'Sleep replay', the active potentiation of relevant synaptic connections via reactivation of patterns of network activity that occurred during previous experience, has received considerable attention. Alternatively,

  9. Acute exercise and motor memory consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity...... of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly...... assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were...

  10. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation

    OpenAIRE

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-01-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured s...

  11. Engagement of the PFC in Consolidation and Recall of Recent Spatial Memory

    Science.gov (United States)

    Leon, Wanda C.; Bruno, Martin A.; Allard, Simon; Nader, Karim; Cuello, A. Claudio

    2010-01-01

    The standard model of system consolidation proposes that memories are initially hippocampus dependent and become hippocampus independent over time. Previous studies have demonstrated the involvement of the medial prefrontal cortex (mPFC) in the retrieval of remote memories. The transformations required to make a memory undergo system's…

  12. Memory Consolidation and Gene Expression in "Periplaneta Americana"

    Science.gov (United States)

    Strausfeld, Nicholas J.; Pinter, Marianna; Lent, David D.

    2005-01-01

    A unique behavioral paradigm has been developed for "Periplaneta americana" that assesses the timing and success of memory consolidation leading to long-term memory of visual-olfactory associations. The brains of trained and control animals, removed at the critical consolidation period, were screened by two-directional suppression subtractive…

  13. Susceptibility of memory consolidation during lapses in recall.

    Science.gov (United States)

    Marra, Vincenzo; O'Shea, Michael; Benjamin, Paul R; Kemenes, Ildikó

    2013-01-01

    Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory.

  14. Consolidation of long-term memory: evidence and alternatives.

    Science.gov (United States)

    Meeter, Martijn; Murre, Jaap M J

    2004-11-01

    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be implemented in the brain. Moreover, consolidation is contrasted with alternative theories of the Ribot gradient. Consolidation theory, multiple trace theory, and semantization can all handle some findings well but not others. Conclusive evidence for or against consolidation thus remains to be found.

  15. Role of adult neurogenesis in hippocampal-cortical memory consolidation

    Science.gov (United States)

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  16. Sleep-related memory consolidation in primary insomnia.

    Science.gov (United States)

    Nissen, Christoph; Kloepfer, Corinna; Feige, Bernd; Piosczyk, Hannah; Spiegelhalder, Kai; Voderholzer, Ulrich; Riemann, Dieter

    2011-03-01

    It has been suggested that healthy sleep facilitates the consolidation of newly acquired memories and underlying brain plasticity. The authors tested the hypothesis that patients with primary insomnia (PI) would show deficits in sleep-related memory consolidation compared to good sleeper controls (GSC). The study used a four-group parallel design (n=86) to investigate the effects of 12 h of night-time, including polysomnographically monitored sleep ('sleep condition' in PI and GSC), versus 12 h of daytime wakefulness ('wake condition' in PI and GSC) on procedural (mirror tracing task) and declarative memory consolidation (visual and verbal learning task). Demographic characteristics and memory encoding did not differ between the groups at baseline. Polysomnography revealed a significantly disturbed sleep profile in PI compared to GSC in the sleep condition. Night-time periods including sleep in GSC were associated with (i) a significantly enhanced procedural and declarative verbal memory consolidation compared to equal periods of daytime wakefulness in GSC and (ii) a significantly enhanced procedural memory consolidation compared to equal periods of daytime wakefulness and night-time sleep in PI. Across retention intervals of daytime wakefulness, no differences between the experimental groups were observed. This pattern of results suggests that healthy sleep fosters the consolidation of new memories, and that this process is impaired for procedural memories in patients with PI. Future work is needed to investigate the impact of treatment on improving sleep and memory. © 2010 European Sleep Research Society.

  17. Memory processes during sleep: beyond the standard consolidation theory.

    Science.gov (United States)

    Axmacher, Nikolai; Draguhn, Andreas; Elger, Christian E; Fell, Juergen

    2009-07-01

    Two-step theories of memory formation suggest that an initial encoding stage, during which transient neural assemblies are formed in the hippocampus, is followed by a second step called consolidation, which involves re-processing of activity patterns and is associated with an increasing involvement of the neocortex. Several studies in human subjects as well as in animals suggest that memory consolidation occurs predominantly during sleep (standard consolidation model). Alternatively, it has been suggested that consolidation may occur during waking state as well and that the role of sleep is rather to restore encoding capabilities of synaptic connections (synaptic downscaling theory). Here, we review the experimental evidence favoring and challenging these two views and suggest an integrative model of memory consolidation.

  18. Does abnormal sleep impair memory consolidation in schizophrenia?

    Directory of Open Access Journals (Sweden)

    Dara S Manoach

    2009-09-01

    Full Text Available Although disturbed sleep is a prominent feature of schizophrenia, its relation to the pathophysiology, signs, and symptoms of schizophrenia remains poorly understood. Sleep disturbances are well known to impair cognition in healthy individuals. Yet, in spite of its ubiquity in schizophrenia, abnormal sleep has generally been overlooked as a potential contributor to cognitive deficits. Amelioration of cognitive deficits is a current priority of the schizophrenia research community, but most efforts to define, characterize, and quantify cognitive deficits focus on cross-sectional measures. While this approach provides a valid snapshot of function, there is now overwhelming evidence that critical aspects of learning and memory consolidation happen offline, both over time and with sleep. Initial memory encoding is followed by a prolonged period of consolidation, integration, and reorganization, that continues over days or even years. Much of this evolution of memories is mediated by sleep. This article briefly reviews (i abnormal sleep in schizophrenia, (ii sleep-dependent memory consolidation in healthy individuals, (iii recent findings of impaired sleep-dependent memory consolidation in schizophrenia, and (iv implications of impaired sleep-dependent memory consolidation in schizophrenia. This literature suggests that abnormal sleep in schizophrenia disrupts attention and impairs sleep-dependent memory consolidation and task automation. We conclude that these sleep-dependent impairments may contribute substantially to generalized cognitive deficits in schizophrenia. Understanding this contribution may open new avenues to ameliorating cognitive dysfunction and thereby improve outcome in schizophrenia.

  19. The role of the ventromedial prefrontal cortex in memory consolidation

    NARCIS (Netherlands)

    Nieuwenhuis, I.L.C.; Takashima, A.

    2011-01-01

    System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has

  20. Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained

    OpenAIRE

    Rodriguez-Ortiz, Carlos J.; De la Cruz, Vanesa; Gutiérrez, Ranier; Bermudez-Rattoni, Federico

    2005-01-01

    Consolidation theory proposes that through the synthesis of new proteins recently acquired memories are strengthened over time into a stable long-term memory trace. However, evidence has accumulated suggesting that retrieved memory is susceptible to disruption, seeming to consolidate again (reconsolidate) to be retained in long-term storage. Here we show that intracortical blockade of protein synthesis in the gustatory cortex after retrieval of taste-recognition memory disrupts previously con...

  1. Better than sleep: theta neurofeedback training accelerates memory consolidation.

    Science.gov (United States)

    Reiner, Miriam; Rozengurt, Roman; Barnea, Anat

    2014-01-01

    Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation.

    Science.gov (United States)

    Wang, Dong V; Yau, Hau-Jie; Broker, Carl J; Tsou, Jen-Hui; Bonci, Antonello; Ikemoto, Satoshi

    2015-05-01

    Sharp wave-associated field oscillations (∼200 Hz) of the hippocampus, referred to as ripples, are believed to be important for consolidation of explicit memory. Little is known about how ripples are regulated by other brain regions. We found that the median raphe region (MnR) is important for regulating hippocampal ripple activity and memory consolidation. We performed in vivo simultaneous recording in the MnR and hippocampus of mice and found that, when a group of MnR neurons was active, ripples were absent. Consistently, optogenetic stimulation of MnR neurons suppressed ripple activity and inhibition of these neurons increased ripple activity. Notably, using a fear conditioning procedure, we found that photostimulation of MnR neurons interfered with memory consolidation. Our results demonstrate a critical role of the MnR in regulating ripples and memory consolidation.

  3. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    Science.gov (United States)

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced

  4. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    Science.gov (United States)

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A unified theory for systems and cellular memory consolidation.

    Science.gov (United States)

    Dash, Pramod K; Hebert, April E; Runyan, Jason D

    2004-04-01

    The time-limited role of the hippocampus for explicit memory storage has been referred to as systems consolidation where learning-related changes occur first in the hippocampus followed by the gradual development of a more distributed memory trace in the neocortex. Recent experiments are beginning to show that learning induces plasticity-related molecular changes in the neocortex as well as in the hippocampus and with a similar time course. Present memory consolidation theories do not account for these findings. In this report, we present a theory (the C theory) that incorporates these new findings, provides an explanation for the length of time for hippocampal dependency, and that can account for the apparent longer consolidation periods in species with larger brains. This theory proposes that a process of cellular consolidation occurs in the hippocampus and in areas of the neocortex during and shortly after learning resulting in long-term memory storage in both areas. For a limited time, the hippocampus is necessary for memory retrieval, a process involving the coordinated reactivation of these areas. This reactivation is later mediated by longer extrahippocampal connectivity between areas. The delay in hippocampal-independent memory retrieval is the time it takes for gene products in these longer extrahippocampal projections to be transported from the soma to tagged synapses by slow axonal transport. This cellular transport event defines the period of hippocampal dependency and, thus, the duration of memory consolidation. The theoretical description for memory consolidation presented in this review provides alternative explanations for several experimental observations and presents a unification of the concepts of systems and cellular memory consolidation.

  6. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.

  7. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    Directory of Open Access Journals (Sweden)

    Kiran Maski

    Full Text Available Memory consolidation is stabilized and even enhanced by sleep (and particularly by 12-15 Hz sleep spindles in NREM stage 2 sleep in healthy children but it is unclear what happens to these processes when sleep is disturbed by obstructive sleep disordered breathing. This cross-sectional study investigates differences in declarative memory consolidation among children with primary snoring (PS and obstructive sleep apnea (OSA compared to controls. We further investigate whether memory consolidation group differences are associated with NREM stage 2 (N2 sigma (12-15 Hz or NREM slow oscillation (0.5-1 Hz spectral power bands. In this study, we trained and tested participants on a spatial declarative memory task with cued recall. Retest occurred after a period of daytime wake (Wake or a night of sleep (Sleep with in-lab polysomnography. 36 participants ages 5-9 years completed the protocol: 14 with OSA as defined by respiratory disturbance index (RDI > 1/hour, 12 with primary snoring (PS and 10 controls. OSA participants had poorer overall memory consolidation than controls across Wake and Sleep conditions [OSA: mean = -18.7% (5.8, controls: mean = 1.9% (7.2, t = -2.20, P = 0.04]. In contrast, PS participants and controls had comparable memory consolidation across conditions (t = 0.41; P = 0.38. We did not detect a main effect for condition (Sleep, Wake or group x condition interaction on memory consolidation. OSA participants had lower N2 sigma power than PS (P = 0.03 and controls (P = 0.004 and N2 sigma power inversely correlated with percentage of time snoring on the study night (r = -0.33, P<0.05. Across all participants, N2 sigma power modestly correlated with memory consolidation in both Sleep (r = 0.37, P = 0.03 and Wake conditions (r = 0.44, P = 0.009. Further observed variable path analysis showed that N2 sigma power mediated the relationship between group and mean memory consolidation across Sleep and Wake states [Bindirect = 6.76(3.5, z = 2

  8. Fear memory consolidation in sleep requires protein kinase A.

    Science.gov (United States)

    Cho, Jiyeon; Sypniewski, Krzysztof A; Arai, Shoko; Yamada, Kazuo; Ogawa, Sonoko; Pavlides, Constantine

    2018-05-01

    It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory. © 2018 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  9. How aging affects sleep-dependent memory consolidation?

    Directory of Open Access Journals (Sweden)

    Caroline eHarand

    2012-02-01

    Full Text Available Sleep plays multiple functions among which energy conservation or recuperative processes. Besides, growing evidence indicate that sleep plays also a major role in memory consolidation, a process by which recently acquired and labile memory traces are progressively strengthened into more permanent and/or enhanced forms. Indeed, memories are not stored as they were initially encoded but rather undergo a gradual reorganization process, which is favoured by the neurochemical environment and the electrophysiological activity observed during sleep. Two putative, probably not exclusive, models (hippocampo-neocortical dialogue and synaptic homeostasis hypothesis have been proposed to explain the beneficial effect of sleep on memory processes. It is worth noting that all data gathered until now emerged from studies conducted in young subjects. The investigation of the relationships between sleep and memory in older adults has sparked off little interest until recently. Though, aging is characterized by memory impairment, changes in sleep architecture, as well as brain and neurochemical alterations. All these elements suggest that sleep-dependent memory consolidation may be impaired or occurs differently in older adults.Here, we give an overview of the mechanisms governing sleep-dependent memory consolidation, and the crucial points of this complex process that may dysfunction and result in impaired memory consolidation in aging.

  10. No Associations between Interindividual Differences in Sleep Parameters and Episodic Memory Consolidation.

    Science.gov (United States)

    Ackermann, Sandra; Hartmann, Francina; Papassotiropoulos, Andreas; de Quervain, Dominique J-F; Rasch, Björn

    2015-06-01

    Sleep and memory are stable and heritable traits that strongly differ between individuals. Sleep benefits memory consolidation, and the amount of slow wave sleep, sleep spindles, and rapid eye movement sleep have been repeatedly identified as reliable predictors for the amount of declarative and/or emotional memories retrieved after a consolidation period filled with sleep. These studies typically encompass small sample sizes, increasing the probability of overestimating the real association strength. In a large sample we tested whether individual differences in sleep are predictive for individual differences in memory for emotional and neutral pictures. Between-subject design. Cognitive testing took place at the University of Basel, Switzerland. Sleep was recorded at participants' homes, using portable electroencephalograph-recording devices. Nine hundred-twenty-nine healthy young participants (mean age 22.48 ± 3.60 y standard deviation). None. In striking contrast to our expectations as well as numerous previous findings, we did not find any significant correlations between sleep and memory consolidation for pictorial stimuli. Our results indicate that individual differences in sleep are much less predictive for pictorial memory processes than previously assumed and suggest that previous studies using small sample sizes might have overestimated the association strength between sleep stage duration and pictorial memory performance. Future studies need to determine whether intraindividual differences rather than interindividual differences in sleep stage duration might be more predictive for the consolidation of emotional and neutral pictures during sleep. © 2015 Associated Professional Sleep Societies, LLC.

  11. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.

    Science.gov (United States)

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.

  12. Consolidation of long-term memory: Evidence and alternatives.

    NARCIS (Netherlands)

    Meeter, M.; Murre, J.M.J.

    2004-01-01

    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how

  13. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Delayed working memory consolidation during the attentional blink.

    Science.gov (United States)

    Vogel, Edward K; Luck, Steven J

    2002-12-01

    After the detection of a target (T1) in a rapid stream of visual stimuli, there is a period of 400-600 msec during which a subsequent target (T2) is missed. This impairment in performance has been labeled the attentional blink. Recent theories propose that the attentional blink reflects a bottleneck in working memory consolidation such that T2 cannot be consolidated until after T1 is consolidated, and T2 is therefore masked by subsequent stimuli if it is presented while T1 is being consolidated. In support of this explanation, Giesbrecht & Di Lollo (1998) found that when T2 is the final item in the stimulus stream, no attentional blink is observed, because there are no subsequent stimuli that might mask T2. To provide a direct test of this explanation of the attentional blink, in the present study we used the P3 component of the event-related potential waveform to track the processing of T2. When T2 was followed by a masking item, we found that the P3 wave was completely suppressed during the attentional blink period, indicating that T2 was not consolidated in working memory. When T2 was the last item in the stimulus stream, however, we found that the P3 wave was delayed but not suppressed, indicating that T2 consolidation was not eliminated but simply delayed. These results are consistent with a fundamental limit on the consolidation of information in working memory.

  15. Consolidation differentially modulates schema effects on memory for items and associations.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Rijpkema, Mark; Ruiter, Dirk J; Fernández, Guillén

    2013-01-01

    Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory) for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours) after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  16. Consolidation differentially modulates schema effects on memory for items and associations.

    Directory of Open Access Journals (Sweden)

    Marlieke T R van Kesteren

    Full Text Available Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  17. Susceptibility of memory consolidation during lapses in recall

    Science.gov (United States)

    Marra, Vincenzo; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó

    2013-01-01

    Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory. PMID:23481386

  18. Retrieval as a Fast Route to Memory Consolidation.

    Science.gov (United States)

    Antony, James W; Ferreira, Catarina S; Norman, Kenneth A; Wimber, Maria

    2017-08-01

    Retrieval-mediated learning is a powerful way to make memories last, but its neurocognitive mechanisms remain unclear. We propose that retrieval acts as a rapid consolidation event, supporting the creation of adaptive hippocampal-neocortical representations via the 'online' reactivation of associative information. We describe parallels between online retrieval and offline consolidation and offer testable predictions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Familiarity speeds up visual short-term memory consolidation.

    Science.gov (United States)

    Xie, Weizhen; Zhang, Weiwei

    2017-06-01

    Existing long-term memory (LTM) can boost the number of retained representations over a short delay in visual short-term memory (VSTM). However, it is unclear whether and how prior LTM affects the initial process of transforming fragile sensory inputs into durable VSTM representations (i.e., VSTM consolidation). The consolidation speed hypothesis predicts faster consolidation for familiar relative to unfamiliar stimuli. Alternatively, the perceptual boost hypothesis predicts that the advantage in perceptual processing of familiar stimuli should add a constant boost for familiar stimuli during VSTM consolidation. To test these competing hypotheses, the present study examined how the large variance in participants' prior multimedia experience with Pokémon affected VSTM for Pokémon. In Experiment 1, the amount of time allowed for VSTM consolidation was manipulated by presenting consolidation masks at different intervals after the onset of to-be-remembered Pokémon characters. First-generation Pokémon characters that participants were more familiar with were consolidated faster into VSTM as compared with recent-generation Pokémon characters that participants were less familiar with. These effects were absent in participants who were unfamiliar with both generations of Pokémon. Although familiarity also increased the number of retained Pokémon characters when consolidation was uninterrupted but still incomplete due to insufficient encoding time in Experiment 1, this capacity effect was absent in Experiment 2 when consolidation was allowed to complete with sufficient encoding time. Together, these results support the consolidation speed hypothesis over the perceptual boost hypothesis and highlight the importance of assessing experimental effects on both processing and representation aspects of VSTM. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Sleep-dependent memory consolidation in patients with sleep disorders.

    Science.gov (United States)

    Cipolli, Carlo; Mazzetti, Michela; Plazzi, Giuseppe

    2013-04-01

    Sleep can improve the off-line memory consolidation of new items of declarative and non-declarative information in healthy subjects, whereas acute sleep loss, as well as sleep restriction and fragmentation, impair consolidation. This suggests that, by modifying the amount and/or architecture of sleep, chronic sleep disorders may also lead to a lower gain in off-line consolidation, which in turn may be responsible for the varying levels of impaired performance at memory tasks usually observed in sleep-disordered patients. The experimental studies conducted to date have shown specific impairments of sleep-dependent consolidation overall for verbal and visual declarative information in patients with primary insomnia, for verbal declarative information in patients with obstructive sleep apnoeas, and for visual procedural skills in patients with narcolepsy-cataplexy. These findings corroborate the hypothesis that impaired consolidation is a consequence of the chronically altered organization of sleep. Moreover, they raise several novel questions as to: a) the reversibility of consolidation impairment in the case of effective treatment, b) the possible negative influence of altered prior sleep also on the encoding of new information, and c) the relationships between altered sleep and memory impairment in patients with other (medical, psychiatric or neurological) diseases associated with quantitative and/or qualitative changes of sleep architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-12-01

    Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Case-control study. Home-based study with sleep and wake conditions. Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. © 2015 Associated Professional Sleep Societies, LLC.

  2. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    Science.gov (United States)

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  3. The Limited Capacity of Sleep-Dependent Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Gordon B Feld

    2016-09-01

    Full Text Available Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n=101 learned lists of word-pairs varying in length (40, 160, 320 word-pairs in the evening before a night of sleep (sleep group or of sleep deprivation (wake group. After 36 h (including a night allowing recovery sleep retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01, importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep’s role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favour processes of forgetting over consolidation.

  4. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval.

    Science.gov (United States)

    Winters, Boyer D; Saksida, Lisa M; Bussey, Timothy J

    2008-07-01

    Tests of object recognition memory, or the judgment of the prior occurrence of an object, have made substantial contributions to our understanding of the nature and neurobiological underpinnings of mammalian memory. Only in recent years, however, have researchers begun to elucidate the specific brain areas and neural processes involved in object recognition memory. The present review considers some of this recent research, with an emphasis on studies addressing the neural bases of perirhinal cortex-dependent object recognition memory processes. We first briefly discuss operational definitions of object recognition and the common behavioural tests used to measure it in non-human primates and rodents. We then consider research from the non-human primate and rat literature examining the anatomical basis of object recognition memory in the delayed nonmatching-to-sample (DNMS) and spontaneous object recognition (SOR) tasks, respectively. The results of these studies overwhelmingly favor the view that perirhinal cortex (PRh) is a critical region for object recognition memory. We then discuss the involvement of PRh in the different stages--encoding, consolidation, and retrieval--of object recognition memory. Specifically, recent work in rats has indicated that neural activity in PRh contributes to object memory encoding, consolidation, and retrieval processes. Finally, we consider the pharmacological, cellular, and molecular factors that might play a part in PRh-mediated object recognition memory. Recent studies in rodents have begun to indicate the remarkable complexity of the neural substrates underlying this seemingly simple aspect of declarative memory.

  5. Acute exercise improves motor memory consolidation in preadolescent children

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Skriver, Kasper Christen; Nielsen, Jens Bo

    2017-01-01

    protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general...... immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running......Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise...

  6. Light exposure before learning improves memory consolidation at night

    Science.gov (United States)

    Shan, Li-Li; Guo, Hao; Song, Ning-Ning; Jia, Zheng-Ping; Hu, Xin-Tian; Huang, Jing-Fei; Ding, Yu-Qiang; Richter-Levine, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-01-01

    Light is recently recognized as a modulator able to activate the hippocampus and modulate memory processing, but little is known about the molecular mechanisms. Here, we report that in mice, a short pulse of white light before learning dramatically improves consolidation of contextual fear memory during the night. The light exposure increases hippocampal active p21-activated kinase 1 (PAK1) and CA1 long-term potentiation (LTP). These light effects are abolished in PAK1 knockout and dominant-negative transgenic mice, but preserved by expression of constitutively active PAK1 in the hippocampus. Our results indicate that light can act as a switch of PAK1 activity that modulate CA1 LTP and thereby memory consolidation without affecting learning and short-term memory. PMID:26493375

  7. Consolidation differentially modulates schema effects on memory for items and associations

    NARCIS (Netherlands)

    van Kesteren, Marlieke T R; Rijpkema, Mark; Ruiter, Dirk J; Fernández, Guillén

    2013-01-01

    Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongrSaveuent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always

  8. Consolidation differentially modulates schema effects on memory for items and associations

    NARCIS (Netherlands)

    Kesteren, M.T. van; Rijpkema, M.J.P.; Ruiter, D.J.; Fernandez, G.S.E.

    2013-01-01

    Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently

  9. Post-learning molecular reactivation underlies taste memory consolidation

    Directory of Open Access Journals (Sweden)

    Kioko eGuzman-Ramos

    2011-09-01

    Full Text Available It is considered that memory consolidation is a progressive process that requires post-trial stabilization of the information. In this regard, it has been speculated that waves of receptors activation, expression of immediate early genes and replenishment of receptor subunit pools occur to induce functional or morphological changes to maintain the information for longer periods. In this paper, we will review data related to neuronal changes in the post-acquisition stage of taste aversion learning that could be involved in further stabilization of the memory trace. In order to achieve such stabilization, evidence suggests that the functional integrity of the insular cortex (IC and the amygdala (AMY is required. Particularly the increase of extracellular levels of glutamate and activation of N-methyl-D-aspartate (NMDA receptors within the IC shows a main role in the consolidation process. Additionally the modulatory actions of the dopaminergic system in the IC appear to be involved in the mechanisms that lead to taste aversion memory consolidation through the activation of pathways related to enhancement of protein synthesis such as the Protein Kinase A pathway. In summary, we suggest that post-acquisition molecular and neuronal changes underlying memory consolidation are dependent on the interactions between the AMY and the IC.

  10. Sleep directly following learning benefits consolidation of spatial associative memory.

    Science.gov (United States)

    Talamini, Lucia M; Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Jensen, Ole

    2008-04-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is significantly higher following a 12-h retention interval containing sleep than following an equally long period of waking. Furthermore, retention is significantly higher over a 24-h sleep-wake interval than over an equally long wake-sleep interval. This difference occurs because retention during sleep was significantly better when sleep followed learning directly, rather than after a day of waking. These data demonstrate a beneficial effect of sleep on memory that cannot be explained solely as a consequence of reduced interference. Rather, our findings suggest a competitive consolidation process, in which the fate of a memory depends, at least in part, on its relative stability at sleep onset: Strong memories tend to be preserved, while weaker memories erode still further. An important aspect of memory consolidation may thus result from the removal of irrelevant memory "debris."

  11. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process.

    Science.gov (United States)

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-12-06

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.

  12. The role of sleep in declarative memory consolidation--direct evidence by intracranial EEG.

    NARCIS (Netherlands)

    Axmacher, N.; Haupt, S.; Fernandez, G.S.E.; Elger, C.E.; Fell, J.

    2008-01-01

    Two step theories of memory formation assume that an initial learning phase is followed by a consolidation stage. Memory consolidation has been suggested to occur predominantly during sleep. Very recent findings, however, suggest that important steps in memory consolidation occur also during waking

  13. Robust hippocampal responsivity during retrieval of consolidated associative memory.

    Science.gov (United States)

    Hattori, Shoai; Chen, Lillian; Weiss, Craig; Disterhoft, John F

    2015-05-01

    A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  14. Activation of Gαq Signaling Enhances Memory Consolidation and Slows Cognitive Decline.

    Science.gov (United States)

    Arey, Rachel N; Stein, Geneva M; Kaletsky, Rachel; Kauffman, Amanda; Murphy, Coleen T

    2018-05-02

    Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function G αq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced G αq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of G αq specifically in aged animals rescues the ability to form memory. Activation of G αq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The nature of short-term consolidation in visual working memory.

    Science.gov (United States)

    Ricker, Timothy J; Hardman, Kyle O

    2017-11-01

    Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    OpenAIRE

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  17. Declarative and non-declarative memory consolidation in children with sleep disorder

    Directory of Open Access Journals (Sweden)

    Eszter eCsabi

    2016-01-01

    Full Text Available Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction Time (ASRT task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12-hour offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline and give us insight into how sleep disturbances affects developing brain.

  18. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    Science.gov (United States)

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain.

  19. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Mañas, Mauro

    2012-08-01

    Full Text Available Prematurity is one of the most relevant health problems among children in the developed countries. Around 8 to 10% of children birth before the 37 week and/or with a very low birth weight (VLBW (1500 g. This causes 75% of the prenatal mortality and the 50% of the children disability. The aim of this study was to assess neuropsychological and emotional impairments in 7 year old children who were born VLBW. A clinical interview, the Children Neuropsychological Assessment Battery, and the Behavioral Assessment System for Children (BASC were administrated. VLBW children showed memory and executive function deficits, as well as, behavioral and attention problems. These results highlight the importance of long term follow up of the VLBW children and point out the necessity of developing adequate neuropsychological and emotional treatment program for these children.

  20. Structural Components of Synaptic Plasticity and Memory Consolidation

    Science.gov (United States)

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  1. Aversive Memory Reactivation Engages in the Amygdala Only Some Neurotransmitters Involved in Consolidation

    Science.gov (United States)

    Bucherelli, Corrado; Baldi, Elisabetta; Mariottini, Chiara; Passani, Maria Beatrice; Blandina, Patrizio

    2006-01-01

    Consolidation refers to item stabilization in long-term memory. Retrieval renders a consolidated memory sensitive, and a "reconsolidation" process has been hypothesized to keep the original memory persistent. Some authors could not detect this phenomenon. Here we show that retrieved contextual fear memory is vulnerable to amnesic treatments and…

  2. Possibility of "superfast" consolidation of long-term memory.

    Science.gov (United States)

    Podolski IYa

    1998-01-01

    Two new behavioural tests in rats are described which demonstrate the fast consolidation of the long-term memory (LTM) in a dangerous natural situation (water escape). It is shown that after one-trial learning of the motor skill (jumping out of the water), long-term memory traces are retained without forgetting and are resistant to the blockade of M-cholinoreceptors by scopolamine (2 mg/kg) and of D1/D2 dopamine receptors by haloperidol (10 mg/kg) as well as electroconvulsive shock applied tank wall, learning of necessary motor skills, automatization and minimization of the skilled movements in 1.5-3.0 min, after 5 to 7 trials at two-second intervals (superfast learning) is demonstrated. It is suggested that the superfast consolidation of LTM (several minutes) is possible in life-threatening situations, the necessary time being 1-2 orders of magnitude less than it is generally accepted in the modern theories of memory. The proposed behavioural models may be helpful in investigation of some fundamental physiological and molecular mechanisms of stable neuronal interactions, as a basis for LTM consolidation.

  3. The role of sleep in human declarative memory consolidation.

    Science.gov (United States)

    Alger, Sara E; Chambers, Alexis M; Cunningham, Tony; Payne, Jessica D

    2015-01-01

    Through a variety of methods, researchers have begun unraveling the mystery of why humans spend one-third of their lives asleep. Though sleep likely serves multiple functions, it has become clear that the sleeping brain offers an ideal environment for solidifying newly learned information in the brain. Sleep , which comprises a complex collection of brain states, supports the consolidation of many different types of information. It not only promotes learning and memory stabilization, but also memory reorganization that can lead to various forms of insightful behavior. As this chapter will describe, research provides ample support for these crucial cognitive functions of sleep . Focusing on the declarative memory system in humans, we review the literature regarding the benefits of sleep for both neutral and emotionally salient declarative memory. Finally, we discuss the literature regarding the impact of sleep on emotion regulation.

  4. REGULAR REHEARSAL HELPS IN CONSOLIDATION OF LONG TERM MEMORY

    Directory of Open Access Journals (Sweden)

    Milind Parle

    2006-03-01

    Full Text Available Memory, one of the most complex functions of the brain comprises of multiple components such as perception, registration, consolidation, storage, retrieval and decay. The present study was undertaken to evaluate the impact of different training sessions on the retention capacity of rats. The capacity of retention of learnt task was measured using exteroceptive behavioral models such as Hexagonal swimming pool apparatus, Hebb-Williams maze and Elevated plus-maze. A total of 150 rats divided into fifteen groups were employed in the present study. The animals were subjected to different training sessions during first three days. The ability to retain the learned task was tested after single, sub-acute, acute, sub-chronic and chronic exposure to above exteroceptive memory models in separate groups of animals. The memory score of all animals was recorded after 72 h, 192 h and 432 h of their last training trial. Rats of single exposure group did not show any effect on memory. Sub-acute training group animals showed improved memory up to 72 h only, where as in acute and sub-chronic training groups this memory improvement was extended up to 192 h. The rats, which were subjected to chronic exposures showed a significant improvement in retention capacity that lasted up to a period of eighteen days. These observations suggest that repeated rehearsals at regular intervals are probably necessary for consolidation of long-term memory. It was observed that sub-acute, acute and sub-chronic exposures, improved the retrieval ability of rats but this memory improving effect was short lived. Thus, rehearsal or training plays a crucial role in enhancing one's capacity of retaining the learnt information

  5. Working-memory consolidation : Insights from studies on attention and working memory

    NARCIS (Netherlands)

    Ricker, Timothy; Nieuwenstein, Mark; Bayliss, Donna; Barrouillet, Pierre

    2018-01-01

    Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: Consolidation, refreshing and removal. Here we discuss in

  6. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    OpenAIRE

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow...

  7. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    Directory of Open Access Journals (Sweden)

    Areg eBarsegyan

    2014-05-01

    Full Text Available Noradrenergic activation of the basolateral complex of the amygdala (BLA is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague–Dawley rats were exposed to two identical objects in one context for either 3 or 10 min, immediately followed by exposure to two other identical objects in a distinctly different context. Immediately after the training they received bilateral intra-BLA infusions of norepinephrine (0.3, 1.0 or 3.0 μg or the β-adrenoceptor antagonist propranolol (0.1, 0.3 or 1.0 μg. On the 24-h retention test, rats were placed back into one of the training contexts with one copy of each of the two training objects. Thus, although both objects were familiar, one of the objects had not previously been encountered in this particular test context. Hence, if the animal generated a long-term memory for the association between an object and its context, it would spend significantly more time exploring the object that was not previously experienced in this context. Saline-infused control rats exhibited poor 24-h retention when given 3 min of training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object-in-context training induced a dose-dependent memory enhancement, whereas propranolol administered after 10 min of training produced memory impairment. These findings provide evidence that posttraining noradrenergic activation of the BLA also enhances the consolidation of memory of object-in-context recognition training, enabling accuracy of episodic-like memories.

  8. User Preference-Based Dual-Memory Neural Model With Memory Consolidation Approach.

    Science.gov (United States)

    Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Nasir, Jauwairia; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2018-06-01

    Memory modeling has been a popular topic of research for improving the performance of autonomous agents in cognition related problems. Apart from learning distinct experiences correctly, significant or recurring experiences are expected to be learned better and be retrieved easier. In order to achieve this objective, this paper proposes a user preference-based dual-memory adaptive resonance theory network model, which makes use of a user preference to encode memories with various strengths and to learn and forget at various rates. Over a period of time, memories undergo a consolidation-like process at a rate proportional to the user preference at the time of encoding and the frequency of recall of a particular memory. Consolidated memories are easier to recall and are more stable. This dual-memory neural model generates distinct episodic memories and a flexible semantic-like memory component. This leads to an enhanced retrieval mechanism of experiences through two routes. The simulation results are presented to evaluate the proposed memory model based on various kinds of cues over a number of trials. The experimental results on Mybot are also presented. The results verify that not only are distinct experiences learned correctly but also that experiences associated with higher user preference and recall frequency are consolidated earlier. Thus, these experiences are recalled more easily relative to the unconsolidated experiences.

  9. The consolidation of implicit sequence memory in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Eszter Csabi

    Full Text Available Obstructive Sleep Apnea (OSA Syndrome is a relatively frequent sleep disorder characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent component of skill learning. However, the formation and consolidation of this fundamental learning mechanism remains poorly understood in OSA. In the present study we examined the consolidation of different aspects of implicit sequence learning in patients with OSA. We used the Alternating Serial Reaction Time task to measure general skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 10-hour offline period with sleep. Our data showed differences in offline changes of general skill learning between the OSA and control group. The control group demonstrated offline improvement from evening to morning, while the OSA group did not. In contrast, we did not observe differences between the groups in offline changes in sequence-specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the consolidation of sequence learning.

  10. Sensory memory consolidation observed: Increased specificity of detail over days

    Science.gov (United States)

    Weinberger, Norman M.; Miasnikov, Alexandre A.; Chen, Jemmy C.

    2010-01-01

    Memories are usually multidimensional, including contents such as sensory details, motivational state and emotional overtones. Memory contents generally change over time, most often reported as a loss in the specificity of detail. To study the temporal changes in the sensory contents of associative memory without motivational and emotional contents, we induced memory for acoustic frequency by pairing a tone with stimulation of the cholinergic nucleus basalis. Adult male rats were first tested for behavioral responses (disruption of ongoing respiration) to tones (1–15 kHz), yielding pre-training behavioral frequency generalization gradients (BFGG). They next received three days of training consisting of a conditioned stimulus (CS) tone (8.00 kHz, 70 dB, 2 s) either Paired (n = 5) or Unpaired (n = 5) with weak electrical stimulation (~48 μA) of the nucleus basalis (100 Hz, 0.2 s, co-terminating with CS offset). Testing for behavioral memory was performed by obtaining post-training BFGGs at two intervals, 24 and 96 h after training. At 24 h post-training, the Paired group exhibited associative behavioral memory manifested by significantly larger responses to tone than the Unpaired group. However, they exhibited no specificity in memory for the frequency of the tonal CS, as indexed by a flat BFGG. In contrast, after 96 h post-training the Paired group did exhibit specificity of memory as revealed by tuned BFGGs with a peak at the CS-band of frequencies. This increased detail of memory developed due to a loss of response to lower and higher frequency side-bands, without any change in the absolute magnitude of response to CS-band frequencies. These findings indicate that the sensory contents of associative memory can be revealed to become more specific, through temporal consolidation in the absence of non-sensory factors such as motivation and emotion. PMID:19038352

  11. Sensory memory consolidation observed: increased specificity of detail over days.

    Science.gov (United States)

    Weinberger, Norman M; Miasnikov, Alexandre A; Chen, Jemmy C

    2009-03-01

    Memories are usually multidimensional, including contents such as sensory details, motivational state and emotional overtones. Memory contents generally change over time, most often reported as a loss in the specificity of detail. To study the temporal changes in the sensory contents of associative memory without motivational and emotional contents, we induced memory for acoustic frequency by pairing a tone with stimulation of the cholinergic nucleus basalis. Adult male rats were first tested for behavioral responses (disruption of ongoing respiration) to tones (1-15 kHz), yielding pre-training behavioral frequency generalization gradients (BFGG). They next received three days of training consisting of a conditioned stimulus (CS) tone (8.00 kHz, 70 dB, 2 s) either Paired (n=5) or Unpaired (n=5) with weak electrical stimulation (approximately 48 microA) of the nucleus basalis (100 Hz, 0.2 s, co-terminating with CS offset). Testing for behavioral memory was performed by obtaining post-training BFGGs at two intervals, 24 and 96 h after training. At 24 h post-training, the Paired group exhibited associative behavioral memory manifested by significantly larger responses to tone than the Unpaired group. However, they exhibited no specificity in memory for the frequency of the tonal CS, as indexed by a flat BFGG. In contrast, after 96 h post-training the Paired group did exhibit specificity of memory as revealed by tuned BFGGs with a peak at the CS-band of frequencies. This increased detail of memory developed due to a loss of response to lower and higher frequency side-bands, without any change in the absolute magnitude of response to CS-band frequencies. These findings indicate that the sensory contents of associative memory can be revealed to become more specific, through temporal consolidation in the absence of non-sensory factors such as motivation and emotion.

  12. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia

    NARCIS (Netherlands)

    Genzel, L.K.E.; Dresler, M.; Cornu, M.; Jager, E.; Konrad, B.; Adamczyk, M.; Friess, E.; Steiger, A.; Czisch, M.; Goya-Maldonado, R.

    2015-01-01

    BACKGROUND: Overnight memory consolidation is disturbed in both depression and schizophrenia, creating an ideal situation to investigate the mechanisms underlying sleep-related consolidation and to distinguish disease-specific processes from common elements in their pathophysiology. METHODS: We

  13. Two waves of proteasome-dependent protein degradation in the hippocampus are required for recognition memory consolidation.

    Science.gov (United States)

    Figueiredo, Luciana S; Dornelles, Arethuza S; Petry, Fernanda S; Falavigna, Lucio; Dargél, Vinicius A; Köbe, Luiza M; Aguzzoli, Cristiano; Roesler, Rafael; Schröder, Nadja

    2015-04-01

    Healthy neuronal function and synaptic modification require a concert of synthesis and degradation of proteins. Increasing evidence indicates that protein turnover mediated by proteasome activity is involved in long-term synaptic plasticity and memory. However, its role in different phases of memory remains debated, and previous studies have not examined the possible requirement of protein degradation in recognition memory. Here, we show that the proteasome inhibitor, lactacystin (LAC), infused into the CA1 area of the hippocampus at two specific time points during consolidation, impairs 24-retention of memory for object recognition in rats. Administration of LAC after retrieval did not affect retention. These findings provide the first evidence for a requirement of proteasome activity in recognition memory, indicate that protein degradation in the hippocampus is necessary during selective time windows of memory consolidation, and further our understanding of the role of protein turnover in memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Piracetam, an AMPAkine drug, facilitates memory consolidation in the day-old chick.

    Science.gov (United States)

    Samartgis, Jodi R; Schachte, Leslie; Hazi, Agnes; Crowe, Simon F

    2012-12-01

    Piracetam is an AMPAkine drug that may have a range of different mechanisms at the cellular level, and which has been shown to facilitate memory, amongst its other effects. This series of experiments demonstrated that a 10mg/kg dose of piracetam facilitated memory consolidation in the day-old chick when injected from immediately until 120min after weak training (i.e. using a 20% v/v concentration of methyl anthranilate) with the passive avoidance learning task. Administration of piracetam immediately after training led to memory facilitation which lasted for up to 24h following training. This dose of the AMPAkine was not shown to facilitate memory reconsolidation. These findings support the contention that application of the AMPAkine piracetam facilitates memory using a weak training task, and extend the range of actions previously noted with NMDA-related agents to those which also facilitate the AMPA receptor. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The effect of mild acute stress during memory consolidation on emotional recognition memory.

    Science.gov (United States)

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2017-11-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The effect of mild acute stress during memory consolidation on emotional recognition memory

    Science.gov (United States)

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2018-01-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48 h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. PMID:28838881

  17. Regular rehearsal helps in consolidation of long term memory.

    Science.gov (United States)

    Parle, Milind; Singh, Nirmal; Vasudevan, Mani

    2006-01-01

    Memory, one of the most complex functions of the brain comprises of multiple components such as perception, registration, consolidation, storage, retrieval and decay. The present study was undertaken to evaluate the impact of different training sessions on the retention capacity of rats. The capacity of retention of learnt task was measured using exteroceptive behavioral models such as Hexagonal swimming pool apparatus, Hebb-Williams maze and Elevated plus-maze. A total of 150 rats divided into fifteen groups were employed in the present study. The animals were subjected to different training sessions during first three days. The ability to retain the learned task was tested after single, sub-acute, acute, sub-chronic and chronic exposure to above exteroceptive memory models in separate groups of animals. The memory score of all animals was recorded after 72 h, 192 h and 432 h of their last training trial. Rats of single exposure group did not show any effect on memory. Sub-acute training group animals showed improved memory up to 72 h only, where as in acute and sub-chronic training groups this memory improvement was extended up to 192 h. The rats, which were subjected to chronic exposures showed a significant improvement in retention capacity that lasted up to a period of eighteen days. These observations suggest that repeated rehearsals at regular intervals are probably necessary for consolidation of long-term memory. It was observed that sub-acute, acute and sub-chronic exposures, improved the retrieval ability of rats but this memory improving effect was short lived. Thus, rehearsal or training plays a crucial role in enhancing one's capacity of retaining the learnt information. Key PointsThe present study underlines the importance of regular rehearsals in enhancing one's capacity of retaining the learnt information. " Sub-acute, acute & sub-chronic rehearsals result in storing of information for a limited period of time.Quick decay of information or

  18. Opposite Effects of Cortisol on Consolidation of Temporal Sequence Memory during Waking and Sleep

    Science.gov (United States)

    Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2011-01-01

    Memory functions involve three stages: encoding, consolidation, and retrieval. Modulating effects of glucocorticoids (GCs) have been consistently observed for declarative memory with GCs enhancing encoding and impairing retrieval, but surprisingly, little is known on how GCs affect memory consolidation. Studies in rats suggest a beneficial effect…

  19. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    Directory of Open Access Journals (Sweden)

    Lisa Marshall

    Full Text Available Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz during non-rapid eye movement sleep (NonREM sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.

  20. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    Science.gov (United States)

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  1. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Daisuke Miyamoto

    2017-11-01

    Full Text Available Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation. Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  2. Money Enhances Memory Consolidation--But Only for Boring Material

    Science.gov (United States)

    Murayama, Kou; Kuhbandner, Christof

    2011-01-01

    Money's ability to enhance memory has received increased attention in recent research. However, previous studies have not directly addressed the time-dependent nature of monetary effects on memory, which are suggested to exist by research in cognitive neuroscience, and the possible detrimental effects of monetary rewards on learning interesting…

  3. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

    Directory of Open Access Journals (Sweden)

    Jesper Lundbye-Jensen

    2017-04-01

    Full Text Available Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children.Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON, high intensity intermittent floorball (FLB or running (RUN with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition.Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN.Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The

  4. Enhancing memory performance after organic brain disease relies on retrieval processes rather than encoding or consolidation

    NARCIS (Netherlands)

    Hildebrandt, H.; Gehrmann, A.; Mödden, C.; Eling, P.A.T.M.

    2011-01-01

    Neuropsychological rehabilitation of memory performance is still a controversial topic, and rehabilitation studies have not analyzed to which stage of memory processing (encoding, consolidation, or retrieval) enhancement may be attributed. We first examined the efficacy of a computer training

  5. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors,

  6. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories.

    Directory of Open Access Journals (Sweden)

    Manfred Hallschmid

    Full Text Available Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05. The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05. Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation.

  7. Memory consolidation and expression of object recognition are susceptible to retroactive interference.

    Science.gov (United States)

    Villar, María Eugenia; Martinez, María Cecilia; Lopes da Cunha, Pamela; Ballarini, Fabricio; Viola, Haydee

    2017-02-01

    With the aim of analyzing if object recognition long-term memory (OR-LTM) formation is susceptible to retroactive interference (RI), we submitted rats to sequential sample sessions using the same arena but changing the identity of a pair of objects placed in it. Separate groups of animals were tested in the arena in order to evaluate the LTM for these objects. Our results suggest that OR-LTM formation was retroactively interfered within a critical time window by the exploration of a new, but not familiar, object. This RI acted on the consolidation of the object explored in the first sample session because its OR-STM measured 3h after training was not affected, whereas the OR-LTM measured at 24h was impaired. This sample session also impaired the expression of OR memory when it took place before the test. Moreover, local inactivation of the dorsal Hippocampus (Hp) or the medial Prefrontal Cortex (mPFC) previous to the exploration of the second pair of objects impaired their consolidation restoring the LTM for the objects explored in the first session. This data suggests that both brain regions are involved in the processing of OR-memory and also that if those regions are engaged in another process before finishing the first consolidation process its LTM will be impaired by RI. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Safe taste memory consolidation is disrupted by a protein synthesis inhibitor in the nucleus accumbens shell.

    Science.gov (United States)

    Pedroza-Llinás, R; Ramírez-Lugo, L; Guzmán-Ramos, K; Zavala-Vega, S; Bermúdez-Rattoni, F

    2009-07-01

    Consolidation is the process by which a new memory is stabilized over time, and is dependent on de novo protein synthesis. A useful model for studying memory formation is gustatory memory, a type of memory in which a novel taste may become either safe by not being followed by negative consequences (attenuation of neophobia, AN), or aversive by being followed by post-digestive malaise (conditioned taste aversion, CTA). Here we evaluated the effects of the administration of a protein synthesis inhibitor in the nucleus accumbens (NAc) shell for either safe or aversive taste memory trace consolidation. To test the effects on CTA and AN of protein synthesis inhibition, anisomycin (100microg/microl) was bilaterally infused into the NAc shell of Wistar rats' brains. We found that post-trial protein synthesis blockade impaired the long-term safe taste memory. However, protein synthesis inhibition failed to disrupt the long-term memory of CTA. In addition, we infused anisomycin in the NAc shell after the pre-exposure to saccharin in a latent inhibition of aversive taste. We found that the protein synthesis inhibition impaired the consolidation of safe taste memory, allowing the aversive taste memory to form and consolidate. Our results suggest that protein synthesis is required in the NAc shell for consolidation of safe but not aversive taste memories, supporting the notion that consolidation of taste memory is processed in several brain regions in parallel, and implying that inhibitory interactions between both taste memory traces do occur.

  9. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats.

    Science.gov (United States)

    Ding, Zeng-Bo; Wu, Ping; Luo, Yi-Xiao; Shi, Hai-Shui; Shen, Hao-Wei; Wang, Shen-Jun; Lu, Lin

    2013-08-01

    Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory. Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats. Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection. Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.

  10. Corticosterone infused into the dorsal striatum selectively enhances memory consolidation of cued water-maze training

    NARCIS (Netherlands)

    Quirarte, Gina L.; Sofia Ledesma de la Teja, I.; Casillas, Miriam; Serafin, Norma; Prado-Alcala, Roberto A.; Roozendaal, Benno

    2009-01-01

    Glucocorticoid hormones enhance memory consolidation of hippocampus-dependent spatial/contextual learning, but little is known about their possible influence on the consolidation of procedural/implicit memory. Therefore, in this study we examined the effect of corticosterone (2, 5, or 10 ng) infused

  11. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults

    NARCIS (Netherlands)

    Berghuis, K. M. M.; Veldman, M. P.; Solnik, S.; Koch, G.; Zijdewind, I.; Hortobagyi, T.

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation

  12. On the interplay between working memory consolidation and attentional selection in controlling conscious access : Parallel processing at a cost-a comment on 'The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation'

    NARCIS (Netherlands)

    Wyble, Brad; Bowman, Howard; Nieuwenstein, Mark

    On the interplay between working memory consolidation and attentional selection in controlling conscious access: parallel processing at a cost-a comment on 'The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation'

  13. Autobiographical memory and hyperassociativity in the dreaming brain: Implications for memory consolidation in sleep

    Directory of Open Access Journals (Sweden)

    Caroline L Horton

    2015-07-01

    Full Text Available In this paper we argue that autobiographical memory activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography. They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualising those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of autobiographical memory to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of autobiographical memory during sleep.

  14. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process

    Science.gov (United States)

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-01-01

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory. DOI: http://dx.doi.org/10.7554/eLife.17769.001 PMID:27919318

  15. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  16. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  17. Functional Integrity of the Retrosplenial Cortex Is Essential for Rapid Consolidation and Recall of Fear Memory

    Science.gov (United States)

    Katche, Cynthia; Dorman, Guido; Slipczuk, Leandro; Cammarota, Martin; Medina, Jorge H.

    2013-01-01

    Memory storage is a temporally graded process involving different phases and different structures in the mammalian brain. Cortical plasticity is essential to store stable memories, but little is known regarding its involvement in memory processing. Here we show that fear memory consolidation requires early post-training macromolecular synthesis in…

  18. Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McReynolds, Jayme R.; Van der Zee, Eddy A.; Lee, Sangkwan; McGaugh, James L.; McIntyre, Christa K.

    2009-01-01

    Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing

  19. Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory.

    Science.gov (United States)

    Baratta, Michael V; Kodandaramaiah, Suhasa B; Monahan, Patrick E; Yao, Junmei; Weber, Michael D; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R; Boyden, Edward S; Goosens, Ki A

    2016-05-15

    Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation.

    Science.gov (United States)

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-05-01

    Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory - the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Double-blind, placebo-controlled, randomized, parallel-group study. Sleep laboratory. Twenty-five healthy men (mean age: 26.8 ± 5.6 y). 75 mg amitriptyline versus placebo. To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline.

  1. Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation.

    Science.gov (United States)

    Cairney, Scott A; Durrant, Simon J; Hulleman, Johan; Lewis, Penelope A

    2014-04-01

    To investigate the mechanisms by which auditory targeted memory reactivation (TMR) during slow wave sleep (SWS) influences the consolidation of emotionally negative and neutral memories. Each of 72 (36 negative, 36 neutral) picture-location associations were encoded with a semantically related sound. During a subsequent nap, half of the sounds were replayed in SWS, before picture-location recall was examined in a final test. Manchester Sleep Laboratory, University of Manchester. 15 adults (3 male) mean age = 20.40 (standard deviation ± 3.07). TMR with auditory cues during SWS. Performance was assessed by memory accuracy and recall response times (RTs). Data were analyzed with a 2 (sound: replayed/not replayed) × 2 (emotion: negative/neutral) repeated measures analysis of covariance with SWS duration, and then SWS spindles, as the mean-centered covariate. Both analyses revealed a significant three-way interaction for RTs but not memory accuracy. Critically, SWS duration and SWS spindles predicted faster memory judgments for negative, relative to neutral, picture locations that were cued with TMR. TMR initiates an enhanced consolidation process during subsequent SWS, wherein sleep spindles mediate the selective enhancement of reactivated emotional memories.

  2. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  3. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    OpenAIRE

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague-Dawley rats were exposed to two identical objects in one context for either 3 ...

  4. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory.

    Science.gov (United States)

    Alaghband, Yasaman; Marshall, John F

    2013-04-01

    Environmental stimuli or contexts previously associated with rewarding drugs contribute importantly to relapse among addicts, and research has focused on neurobiological processes maintaining those memories. Much research shows contributions of cell surface receptors and intracellular signaling pathways in maintaining associations between rewarding drugs (e.g., cocaine) and concurrent cues/contexts; these memories can be degraded at the time of their retrieval through reconsolidation interference. Much less studied is the consolidation of drug-cue memories during their acquisition. The present experiments use the cocaine-conditioned place preference (CPP) paradigm in rats to directly compare, in a consistent setting, the effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists MK-801 and memantine on the consolidation and reconsolidation of cocaine-cue memories. For the consolidation studies, animals were systemically administered MK-801 or memantine immediately following training sessions. To investigate the effects of these NMDA receptor antagonists on the retention of previously established cocaine-cue memories, animals were systemically administered MK-801 or memantine immediately after memory retrieval. Animals given either NMDA receptor antagonist immediately following training sessions did not establish a preference for the cocaine-paired compartment. Post-retrieval administration of either NMDA receptor antagonist attenuated the animals' preference for the cocaine-paired compartment. Furthermore, animals given NMDA receptor antagonists post-retrieval showed a blunted response to cocaine-primed reinstatement. Using two distinct NMDA receptor antagonists in a common setting, these findings demonstrate that NMDA receptor-dependent processes contribute both to the consolidation and reconsolidation of cocaine-cue memories, and they point to the potential utility of treatments that interfere with drug-cue memory reconsolidation.

  5. Does recall after sleep-dependent memory consolidation reinstate sensitivity to retroactive interference?

    Science.gov (United States)

    Deliens, Gaétane; Schmitz, Rémy; Caudron, Isaline; Mary, Alison; Leproult, Rachel; Peigneux, Philippe

    2013-01-01

    Previous studies have shown that newly encoded memories are more resistant to retroactive interference when participants are allowed to sleep after learning the original material, suggesting a sleep-related strengthening of memories. In the present study, we investigated delayed, long-term effects of sleep vs. sleep deprivation (SD) on the first post-training night on memory consolidation and resistance to interference. On day 1, participants learned a list of unrelated word pairs (AB), either in the morning or in the evening, then spent the post-training night in a sleep or sleep deprivation condition, in a within-subject paradigm. On day 4, at the same time of day, they learned a novel list of word pairs (AC) in which 50% of the word pairs stemmed with the same word than in the AB list, resulting in retroactive interference. Participants had then to recall items from the AB list upon presentation of the "A" stem. Recall was marginally improved in the evening, as compared to the morning learning group. Most importantly, retroactive interference effects were found in the sleep evening group only, contrary to the hypothesis that sleep exerts a protective role against intrusion by novel but similar learning. We tentatively suggest that these results can be explained in the framework of the memory reconsolidation theory, stating that exposure to similar information sets back consolidated items in a labile form again sensitive to retroactive interference. In this context, sleep might not protect against interference but would promote an update of existing episodic memories while preventing saturation of the memory network due to the accumulation of dual traces.

  6. Does recall after sleep-dependent memory consolidation reinstate sensitivity to retroactive interference?

    Directory of Open Access Journals (Sweden)

    Gaétane Deliens

    Full Text Available Previous studies have shown that newly encoded memories are more resistant to retroactive interference when participants are allowed to sleep after learning the original material, suggesting a sleep-related strengthening of memories. In the present study, we investigated delayed, long-term effects of sleep vs. sleep deprivation (SD on the first post-training night on memory consolidation and resistance to interference. On day 1, participants learned a list of unrelated word pairs (AB, either in the morning or in the evening, then spent the post-training night in a sleep or sleep deprivation condition, in a within-subject paradigm. On day 4, at the same time of day, they learned a novel list of word pairs (AC in which 50% of the word pairs stemmed with the same word than in the AB list, resulting in retroactive interference. Participants had then to recall items from the AB list upon presentation of the "A" stem. Recall was marginally improved in the evening, as compared to the morning learning group. Most importantly, retroactive interference effects were found in the sleep evening group only, contrary to the hypothesis that sleep exerts a protective role against intrusion by novel but similar learning. We tentatively suggest that these results can be explained in the framework of the memory reconsolidation theory, stating that exposure to similar information sets back consolidated items in a labile form again sensitive to retroactive interference. In this context, sleep might not protect against interference but would promote an update of existing episodic memories while preventing saturation of the memory network due to the accumulation of dual traces.

  7. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    Science.gov (United States)

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.

    Directory of Open Access Journals (Sweden)

    Mohammad Niknazar

    Full Text Available Sleep, specifically non-rapid eye movement (NREM sleep, is thought to play a critical role in the consolidation of recent memories. Two main oscillatory activities observed during NREM, cortical slow oscillations (SO, 0.5-1.0 Hz and thalamic spindles (12-15 Hz, have been shown to independently correlate with memory improvement. Yet, it is not known how these thalamocortical events interact, or the significance of this interaction, during the consolidation process. Here, we found that systemic administration of the GABAergic drug (zolpidem increased both the phase-amplitude coupling between SO and spindles, and verbal memory improvement in humans. These results suggest that thalamic spindles that occur during transitions to the cortical SO Up state are optimal for memory consolidation. Our study predicts that the timely interactions between cortical and thalamic events during consolidation, contribute to memory improvement and is mediated by the level of inhibitory neurotransmission.

  9. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    Science.gov (United States)

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  10. Serial consolidation of orientation information into visual short-term memory.

    Science.gov (United States)

    Liu, Taosheng; Becker, Mark W

    2013-06-01

    Previous research suggests that there is a limit to the rate at which items can be consolidated in visual short-term memory (VSTM). This limit could be due to either a serial or a limited-capacity parallel process. Historically, it has proven difficult to distinguish between these two types of processes. In the present experiment, we took a novel approach that allowed us to do so. Participants viewed two oriented gratings either sequentially or simultaneously and reported one of the gratings' orientation via method of adjustment. Performance was worse for the simultaneous than for the sequential condition. We fit the data with a mixture model that assumes performance is limited by a noisy memory representation plus random guessing. Critically, the serial and limited-capacity parallel processes made distinct predictions regarding the model's guessing and memory-precision parameters. We found strong support for a serial process, which implies that one can consolidate only a single orientation into VSTM at a time.

  11. Mind racing: The influence of exercise on long-term memory consolidation.

    Science.gov (United States)

    McNerney, M Windy; Radvansky, Gabriel A

    2015-01-01

    Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.

  12. Locus coeruleus and dopaminergic consolidation of everyday memory

    Science.gov (United States)

    Takeuchi, Tomonori; Duszkiewicz, Adrian J.; Sonneborn, Alex; Spooner, Patrick A.; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C.; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W.; Morris, Richard G. M.

    2016-01-01

    Summary The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine hydroxylase-expressing (TH+) neurons in the ventral tegmental area (VTA). We report that neuronal firing in the locus coeruleus (LC) is especially sensitive to environmental novelty, LC-TH+ neurons project more profusely than VTA-TH+ neurons to the hippocampus, optogenetic activation of LC-TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by VTA inactivation. Surprisingly, two effects of LC-TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptors blockade – memory enhancement and long lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, LC-TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in hippocampus. PMID:27602521

  13. Interference from previous distraction disrupts older adults' memory.

    Science.gov (United States)

    Biss, Renée K; Campbell, Karen L; Hasher, Lynn

    2013-07-01

    Previously relevant information can disrupt the ability of older adults to remember new information. Here, the researchers examined whether prior irrelevant information, or distraction, can also interfere with older adults' memory for new information. Younger and older adults first completed a 1-back task on pictures that were superimposed with distracting words. After a delay, participants learned picture-word paired associates and memory was tested using picture-cued recall. In 1 condition (high interference), some pairs included pictures from the 1-back task now paired with new words. In a low-interference condition, the transfer list used all new items. Older adults had substantially lower cued-recall performance in the high- compared with the low-interference condition. In contrast, younger adults' performance did not vary across conditions. These findings suggest that even never-relevant information from the past can disrupt older adults' memory for new associations.

  14. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Nina Herzog

    Full Text Available Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin, the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory and a list of semantically associated word pairs (declarative memory. After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG. Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also

  15. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Science.gov (United States)

    Herzog, Nina; Friedrich, Alexia; Fujita, Naoko; Gais, Steffen; Jauch-Chara, Kamila; Oltmanns, Kerstin M; Benedict, Christian

    2012-01-01

    Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the

  16. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes?

    Science.gov (United States)

    Genzel, Lisa; Kroes, Marijn C W; Dresler, Martin; Battaglia, Francesco P

    2014-01-01

    Sleep is strongly involved in memory consolidation, but its role remains unclear. 'Sleep replay', the active potentiation of relevant synaptic connections via reactivation of patterns of network activity that occurred during previous experience, has received considerable attention. Alternatively, sleep has been suggested to regulate synaptic weights homeostatically and nonspecifically, thereby improving the signal:noise ratio of memory traces. Here, we reconcile these theories by highlighting the distinction between light and deep nonrapid eye movement (NREM) sleep. Specifically, we draw on recent studies to suggest a link between light NREM and active potentiation, and between deep NREM and homeostatic regulation. This framework could serve as a key for interpreting the physiology of sleep stages and reconciling inconsistencies in terminology in this field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Theta Neurofeedback Effects on Motor Memory Consolidation and Performance Accuracy: An Apparent Paradox?

    Science.gov (United States)

    Reiner, Miriam; Lev, Dror D; Rosen, Amit

    2018-05-15

    Previous studies have shown that theta neurofeedback enhances motor memory consolidation on an easy-to-learn finger-tapping task. However, the simplicity of the finger-tapping task precludes evaluating the putative effects of elevated theta on performance accuracy. Mastering a motor sequence is classically assumed to entail faster performance with fewer errors. The speed-accuracy tradeoff (SAT) principle states that as action speed increases, motor performance accuracy decreases. The current study investigated whether theta neurofeedback could improve both performance speed and performance accuracy, or would only enhance performance speed at the cost of reduced accuracy. A more complex task was used to study the effects of parietal elevated theta on 45 healthy volunteers The findings confirmed previous results on the effects of theta neurofeedback on memory consolidation. In contrast to the two control groups, in the theta-neurofeedback group the speed-accuracy tradeoff was reversed. The speed-accuracy tradeoff patterns only stabilized after a night's sleep implying enhancement in terms of both speed and accuracy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available A new memory is initially labile and becomes stabilized through a process of consolidation, which depends on gene expression. Stable memories, however, can again become labile if reactivated by recall and require another phase of protein synthesis in order to be maintained. This process is known as reconsolidation. The functional significance of the labile phase of reconsolidation is unknown; one hypothesis proposes that it is required to link new information with reactivated memories. Reconsolidation is distinct from the initial consolidation, and one distinction is that the requirement for specific proteins or general protein synthesis during the two processes occurs in different brain areas. Here, we identified an anatomically distinctive molecular requirement that doubly dissociates consolidation from reconsolidation of an inhibitory avoidance memory. We then used this requirement to investigate whether reconsolidation and consolidation are involved in linking new information with reactivated memories. In contrast to what the hypothesis predicted, we found that reconsolidation does not contribute to the formation of an association between new and reactivated information. Instead, it recruits mechanisms similar to those underlying consolidation of a new memory. Thus, linking new information to a reactivated memory is mediated by consolidation and not reconsolidation mechanisms.

  19. Interaction between episodic and semantic memory networks in the acquisition and consolidation of novel spoken words

    NARCIS (Netherlands)

    Takashima, A.; Bakker, I.; Hell, J.G. van; Janzen, G.; McQueen, J.M.

    2017-01-01

    When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and

  20. Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans

    NARCIS (Netherlands)

    Varma, S.; Takashima, A.; Krewinkel, S.C.; Kooten, M.E. van; Fu, L.; Medendorp, W.P.; Kessels, R.P.C.; Daselaar, S.M.

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have only used tasks involving complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant

  1. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link?

    Science.gov (United States)

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel

    2015-08-01

    Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.

  2. Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events.

    Science.gov (United States)

    Murayama, Kou; Kitagami, Shinji

    2014-02-01

    Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.

  3. A severe capacity limit in the consolidation of orientation information into visual short-term memory.

    Science.gov (United States)

    Becker, Mark W; Miller, James R; Liu, Taosheng

    2013-04-01

    Previous research has suggested that two color patches can be consolidated into visual short-term memory (VSTM) via an unlimited parallel process. Here we examined whether the same unlimited-capacity parallel process occurs for two oriented grating patches. Participants viewed two gratings that were presented briefly and masked. In blocks of trials, the gratings were presented either simultaneously or sequentially. In Experiments 1 and 2, the presentation of the stimuli was followed by a location cue that indicated the grating on which to base one's response. In Experiment 1, participants responded whether the target grating was oriented clockwise or counterclockwise with respect to vertical. In Experiment 2, participants indicated whether the target grating was oriented along one of the cardinal directions (vertical or horizontal) or was obliquely oriented. Finally, in Experiment 3, the location cue was replaced with a third grating that appeared at fixation, and participants indicated whether either of the two test gratings matched this probe. Despite the fact that these responses required fairly coarse coding of the orientation information, across all methods of responding we found superior performance for sequential over simultaneous presentations. These findings suggest that the consolidation of oriented gratings into VSTM is severely limited in capacity and differs from the consolidation of color information.

  4. The Roles of Protein Expression in Synaptic Plasticity and Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Tali eRosenberg

    2014-11-01

    Full Text Available The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.

  5. Sleep-dependent memory consolidation--what can be learnt from children?

    Science.gov (United States)

    Wilhelm, I; Prehn-Kristensen, A; Born, J

    2012-08-01

    Extensive research has been accumulated demonstrating that sleep is essential for processes of memory consolidation in adults. In children and infants, a great capacity to learn and to memorize coincides with longer and more intense sleep. Here, we review the available data on the influence of sleep on memory consolidation in healthy children and infants, as well as in children with attention-deficit/hyperactivity disorder (ADHD) as a model of prefrontal impairment, and consider possible mechanisms underlying age-dependent differences. Findings indicate a major role of slow wave sleep (SWS) for processes of memory consolidation during early development. Importantly, longer and deeper SWS during childhood appears to produce a distinctly superior strengthening of hippocampus-dependent declarative memories, but concurrently prevents an immediate benefit from sleep for procedural memories, as typically observed in adults. Studies of ADHD children point toward an essential contribution of prefrontal cortex to the preferential consolidation of declarative memory during SWS. Developmental studies of sleep represent a particularly promising approach for characterizing the supra-ordinate control of memory consolidation during sleep by prefrontal-hippocampal circuitry underlying the encoding of declarative memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The effect of exogenous cortisol during sleep on the behavioral and neural correlates of emotional memory consolidation in humans

    NARCIS (Netherlands)

    Marle, H.J.F. van; Hermans, E.J.; Qin, S.; Overeem, S.; Fernandez, G.S.E.

    2013-01-01

    A host of animal work demonstrates that the retention benefit for emotionally aversive over neutral memories is regulated by glucocorticoid action during memory consolidation. Particularly, glucocorticoids may affect systems-level processes that promote the gradual reorganization of emotional memory

  7. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.

  8. Effects of cannabinoid CB1 receptor antagonist rimonabant in consolidation and reconsolidation of methamphetamine reward memory in mice.

    Science.gov (United States)

    Yu, Lu-lu; Wang, Xue-yi; Zhao, Mei; Liu, Yu; Li, Yan-qin; Li, Fang-qiong; Wang, Xiaoyi; Xue, Yan-xue; Lu, Lin

    2009-06-01

    Previous studies have shown that cannabinoid CB1 receptors play an important role in specific aspects of learning and memory, yet there has been no systematic study focusing on the involvement of cannabinoid CB1 receptors in methamphetamine-related reward memory. The purpose of this study was to examine whether rimonabant, a cannabinoid CB1 receptor antagonist, would disrupt the consolidation and reconsolidation of methamphetamine-related reward memory, using conditioned place preference paradigm (CPP). Separate groups of male Kunming mice were trained to acquire methamphetamine CPP. Vehicle or rimonabant (1 mg/kg or 3 mg/kg, i.p.) was given at different time points: immediately after each CPP training session (consolidation), 30 min before the reactivation of CPP (retrieval), or immediately after the reactivation of CPP (reconsolidation). Methamphetamine CPP was retested 24 h and 1 and 2 weeks after rimonabant administration. Rimonabant at doses of 1 and 3 mg/kg significantly inhibited the consolidation of methamphetamine CPP. Only high-dose rimonabant (3 mg/kg) disrupted the retrieval and reconsolidation of methamphetamine CPP. Rimonabant had no effect on methamphetamine CPP in the absence of methamphetamine CPP reactivation. Our findings suggest that cannabinoid CB1 receptors play a major role in methamphetamine reward memory, and cannabinoid CB1 receptor antagonists may be a potential pharmacotherapy to manage relapse associated with drug-reward-related memory.

  9. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    Science.gov (United States)

    Morgenthaler, Jarste; Wiesner, Christian D; Hinze, Karoline; Abels, Lena C; Prehn-Kristensen, Alexander; Göder, Robert

    2014-01-01

    Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM) sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students) were separated into two groups (undisturbed sleep and selective REM-sleep deprived). Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional) between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  10. Heart rate response to post-learning stress predicts memory consolidation.

    Science.gov (United States)

    Larra, Mauro F; Schulz, André; Schilling, Thomas M; Ferreira de Sá, Diana S; Best, Daniel; Kozik, Bartlomiej; Schächinger, Hartmut

    2014-03-01

    Stressful experiences are often well remembered, an effect that has been explained by beta-adrenergic influences on memory consolidation. Here, we studied the impact of stress induced heart rate (HR) responses on memory consolidation in a post-learning stress paradigm. 206 male and female participants saw 52 happy and angry faces immediately before being exposed to the Cold Pressor Test or a non-stressful control procedure. Memory for the faces and their respective expression was tested twice, after 30 min and on the next day. High HR responders (in comparison to low HR responders as well as to the non-stressful control group) showed enhanced recognition memory one day after learning. Our results show that beta-adrenergic activation elicited shortly after learning enhances memory consolidation and that the stress induced HR response is a predictor for this effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation

    Science.gov (United States)

    Lambon Ralph, Matthew A.; Kempkes, Marleen; Cousins, James N.; Lewis, Penelope A.

    2016-01-01

    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation. PMID:27030764

  12. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    Science.gov (United States)

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction

  13. Enhancing early consolidation of human episodic memory by theta EEG neurofeedback.

    Science.gov (United States)

    Rozengurt, Roman; Shtoots, Limor; Sheriff, Aviv; Sadka, Ofir; Levy, Daniel A

    2017-11-01

    Consolidation of newly formed memories is readily disrupted, but can it be enhanced? Given the prominent role of hippocampal theta oscillations in memory formation and retrieval, we hypothesized that upregulating theta power during early stages of consolidation might benefit memory stability and persistence. We used EEG neurofeedback to enable participants to selectively increase theta power in their EEG spectra following episodic memory encoding, while other participants engaged in low beta-focused neurofeedback or passively viewed a neutral nature movie. Free recall assessments immediately following the interventions, 24h later and 7d later all indicated benefit to memory of theta neurofeedback, relative to low beta neurofeedback or passive movie-viewing control conditions. The degree of benefit to memory was correlated with the extent of theta power modulation, but not with other spectral changes. Theta enhancement may provide optimal conditions for stabilization of new hippocampus-dependent memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Oxytocin receptor antagonist atosiban impairs consolidation, but not reconsolidation of contextual fear memory in rats.

    Science.gov (United States)

    Abdullahi, Payman Rasise; Eskandarian, Sharaf; Ghanbari, Ali; Rashidy-Pour, Ali

    2018-05-23

    There is increasing evidence that oxytocin is involved in learning and memory process. This study investigated the effects of blockade of oxytocin receptors using the selective oxytocin receptor antagonist atosiban (ATO) on contextual fear memory consolidation and reconsolidation in male rats. Post-training injections of different doses of ATO (1, 10, 100 or 1000 µg/kg) impaired the 48 h retention performance in a dose-dependent manner. The same doses of ATO following memory reactivation did not impair subsequent expression of contextual fear memories which formed under low or high shock intensities and tested 24 h or one week following memory reactivation. Also, no effect was found when ATO was administrated in the absence of memory reactivation. Our finding is the first report that indicates endogenous oxytocin released during training play an important role in the consolidation, but not reconsolidation of contextual fear memory in rats. Copyright © 2018. Published by Elsevier B.V.

  15. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.

    Science.gov (United States)

    Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie

    2012-10-01

    Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.

  16. Evidence for parallel consolidation of motion direction and orientation into visual short-term memory.

    Science.gov (United States)

    Rideaux, Reuben; Apthorp, Deborah; Edwards, Mark

    2015-02-12

    Recent findings have indicated the capacity to consolidate multiple items into visual short-term memory in parallel varies as a function of the type of information. That is, while color can be consolidated in parallel, evidence suggests that orientation cannot. Here we investigated the capacity to consolidate multiple motion directions in parallel and reexamined this capacity using orientation. This was achieved by determining the shortest exposure duration necessary to consolidate a single item, then examining whether two items, presented simultaneously, could be consolidated in that time. The results show that parallel consolidation of direction and orientation information is possible, and that parallel consolidation of direction appears to be limited to two. Additionally, we demonstrate the importance of adequate separation between feature intervals used to define items when attempting to consolidate in parallel, suggesting that when multiple items are consolidated in parallel, as opposed to serially, the resolution of representations suffer. Finally, we used facilitation of spatial attention to show that the deterioration of item resolution occurs during parallel consolidation, as opposed to storage. © 2015 ARVO.

  17. Additive effect of harmane and muscimol for memory consolidation impairment in inhibitory avoidance task.

    Science.gov (United States)

    Nasehi, Mohammad; Morteza-Zadeh, Parastoo; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2016-12-17

    In the current study, we examined the effect of bilateral intra-dorsal hippocampal (intra-CA1) microinjections of GABA A receptor agents on amnesia induced by a β-carboline alkaloid, harmane in mice. We used a single-trial step-down passive avoidance task to assess memory retention and then, open-field test to assess locomotor activity. The results indicated that post-training intra-CA1 injections of bicuculline - a GABA A receptor antagonist - had no significant effect, while muscimol (0.01 and 0.1μg/mouse) - a GABA A receptor agonist - impaired memory consolidation. Post-training intra-peritoneal (i.p.) infusion of harmane (3 and 5mg/kg) decreased memory consolidation. Furthermore, post-training intra-CA1 administration of sub-threshold dose of bicuculline (0.001μg/mouse) restored, whereas muscimol (0.001μg/mouse) potentiated impairment of memory consolidation induced by harmane. The isobologram analysis revealed that there is an additive effect between harmane and muscimol on impairment of memory consolidation. Moreover, all above doses of drugs did not alter locomotor activity. These findings suggest that GABA A receptors of the CA1 area, at least partly, play a role in modulating the effect of harmane on memory consolidation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  19. A dream model: Reactivation and re-encoding mechanisms for sleep-dependent memory consolidation

    NARCIS (Netherlands)

    Kachergis, G.E.; Kleijn, R. de; Hommel, B.; Papafragou, A.; Grodner, D.; Mirman, D.; Trueswell, J.

    2016-01-01

    We humans spend almost a third of our lives asleep, and there is mounting evidence that sleep not only maintains, but actually improves many of our cognitive functions. Memory consolidation - the process of crystallizing and integrating memories into knowledge and skills - is particularly benefitted

  20. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason R Gerstner

    2011-01-01

    Full Text Available Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7 on sleep and long-term memory (LTM formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation "window" that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.

  1. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    Science.gov (United States)

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  2. Sleep, Dreams, and Memory Consolidation: The Role of the Stress Hormone Cortisol

    Science.gov (United States)

    Payne, Jessica D.; Nadel, Lynn

    2004-01-01

    We discuss the relationship between sleep, dreams, and memory, proposing that the content of dreams reflects aspects of memory consolidation taking place during the different stages of sleep. Although we acknowledge the likely involvement of various neuromodulators in these phenomena, we focus on the hormone cortisol, which is known to exert…

  3. Protein Synthesis Underlies Post-Retrieval Memory Consolidation to a Restricted Degree Only when Updated Information Is Obtained

    Science.gov (United States)

    Rodriguez-Ortiz, Carlos J.; De la Cruz, Vanesa; Gutierrez, Ranier; Bermudez-Rattoni, Federico

    2005-01-01

    Consolidation theory proposes that through the synthesis of new proteins recently acquired memories are strengthened over time into a stable long-term memory trace. However, evidence has accumulated suggesting that retrieved memory is susceptible to disruption, seeming to consolidate again (reconsolidate) to be retained in long-term storage. Here…

  4. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  5. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    Science.gov (United States)

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    Science.gov (United States)

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-11-01

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  7. Methylphenidate during early consolidation affects long-term associative memory retrieval depending on baseline catecholamines.

    Science.gov (United States)

    Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén

    2017-02-01

    Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.

  8. Modulation of the consolidation and reconsolidation of fear memory by three different serotonin receptors in hippocampus.

    Science.gov (United States)

    Schmidt, S D; Furini, C R G; Zinn, C G; Cavalcante, L E; Ferreira, F F; Behling, J A K; Myskiw, J C; Izquierdo, I

    2017-07-01

    The process of memory formation is complex and highly dynamic. During learning, the newly acquired information is found in a fragile and labile state. Through a process known as consolidation, which requires specific mechanisms such as protein synthesis, the memory trace is stored and stabilized. It is known that when a consolidated memory is recalled, it again becomes labile and sensitive to disruption. To be maintained, this memory must undergo an additional process of restabilization called reconsolidation, which requires another phase of protein synthesis. Memory consolidation has been studied for more than a century, while the molecular mechanisms underlying the memory reconsolidation are starting to be elucidated. For this, is essential compare the participation of important neurotransmitters and its receptors in both processes in brain regions that play a central role in the fear response learning. With focus on serotonin (5-HT), a well characterized neurotransmitter that has been strongly implicated in learning and memory, we investigated, in the CA1 region of the dorsal hippocampus, whether the latest discovered serotonergic receptors, 5-HT 5A , 5-HT 6 and 5-HT 7 , are involved in the consolidation and reconsolidation of contextual fear conditioning (CFC) memory. For this, male rats with cannulae implanted in the CA1 region received immediately after the training or reactivation session, or 3h post-reactivation of the CFC, infusions of agonists or antagonists of the 5-HT 5A , 5-HT 6 and 5-HT 7 receptors. After 24h, animals were subjected to a 3-min retention test. The results indicated that in the CA1 region of the hippocampus the 5-HT 5A , 5-HT 6 and 5-HT 7 serotonin receptors participate in the reconsolidation of the CFC memory 3h post-reactivation. Additionally, the results suggest that the 5-HT 6 and 5-HT 7 receptors also participate in the consolidation of the CFC memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    Science.gov (United States)

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    Science.gov (United States)

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Posttraining administration of pentylenetetrazol dissociates gabapentin effects on memory consolidation from that on memory retrieval process in mice.

    Science.gov (United States)

    Blake, Mariano G; Boccia, Mariano M; Acosta, Gabriela B; Baratti, Carlos María

    2004-09-23

    Gabapentin (GBP), an anticonvulsant drug, 10 mg/kg, i.p., but not 100 mg/kg, i.p., enhanced retention of an inhibitory avoidance task when given 20 min after training, as indicated by retention performance 48 h later. The immediate post-training administration of pentylenetetrazol (PTZ, 45 mg/kg, i.p.) impaired retention performance. The amnesic effects of the convulsant drug PTZ were not influenced by GBP at any level of doses. However, GBP 100 mg/kg, but not 10 mg/kg, delayed the latency to first clonic body seizures and decreased the duration of convulsion induced by PTZ. The enhancing effect of GBP on retention was not prevented by the opiate receptor antagonist, naltrexone (0.01 mg/kg, i.p.), which completely prevented the impairment of retention caused by PTZ. Further, naltrexone did not modify the convulsions induced by PTZ. In mice pretreated with naltrexone and that received PTZ, the administration of GBP again, enhanced retention performance during the retention test. Since previous results indicate that the amnesic action of PTZ are due to an effect on memory retrieval, the present results provide additional pharmacological evidence suggesting that GBP influenced memory consolidation and not memory retrieval of an inhibitory avoidance task in mice.

  12. The role of sleep in cognitive processing: focusing on memory consolidation.

    Science.gov (United States)

    Chambers, Alexis M

    2017-05-01

    Research indicates that sleep promotes various cognitive functions, such as decision-making, language, categorization, and memory. Of these, most work has focused on the influence of sleep on memory, with ample work showing that sleep enhances memory consolidation, a process that stores new memories in the brain over time. Recent psychological and neurophysiological research has vastly increased understanding of this process. Such work not only suggests that consolidation relies on plasticity-related mechanisms that reactivate and stabilize memory representations, but also that this process may be experimentally manipulated by methods that target which memory traces are reactivated during sleep. Furthermore, aside from memory storage capabilities, memory consolidation also appears to reorganize and integrate memories with preexisting knowledge, which may facilitate the discovery of underlying rules and associations that benefit other cognitive functioning, including problem solving and creativity. WIREs Cogn Sci 2017, 8:e1433. doi: 10.1002/wcs.1433 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  13. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation.

    Science.gov (United States)

    Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2017-11-29

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  14. Reward retroactively enhances memory consolidation for related items

    OpenAIRE

    Patil, Anuya; Murty, Vishnu P.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.; Davachi, Lila

    2017-01-01

    Reward motivation has been shown to modulate episodic memory processes in order to support future adaptive behavior. However, for a memory system to be truly adaptive, it should enhance memory for rewarded events as well as for neutral events that may seem inconsequential at the time of encoding but can gain importance later. Here, we investigated the influence of reward motivation on retroactive memory enhancement selectively for conceptually related information. We found behavioral evidence...

  15. The Role of Short-term Consolidation in Memory Persistence

    OpenAIRE

    Timothy J. Ricker

    2015-01-01

    Short-term memory, often described as working memory, is one of the most fundamental information processing systems of the human brain. Short-term memory function is necessary for language, spatial navigation, problem solving, and many other daily activities. Given its importance to cognitive function, understanding the architecture of short-term memory is of crucial importance to understanding human behavior. Recent work from several laboratories investigating the entry of information into s...

  16. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval.

    Science.gov (United States)

    Cambiaghi, Marco; Renna, Annamaria; Milano, Luisella; Sacchetti, Benedetto

    2017-01-01

    Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.

  17. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    Science.gov (United States)

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  18. Reward Retroactively Enhances Memory Consolidation for Related Items

    Science.gov (United States)

    Patil, Anuya; Murty, Vishnu P.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.; Davachi, Lila

    2017-01-01

    Reward motivation has been shown to modulate episodic memory processes in order to support future adaptive behavior. However, for a memory system to be truly adaptive, it should enhance memory for rewarded events as well as for neutral events that may seem inconsequential at the time of encoding but can gain importance later. Here, we investigated…

  19. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    Science.gov (United States)

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  20. The role of sleep and sleep deprivation in consolidating fear memories.

    Science.gov (United States)

    Menz, M M; Rihm, J S; Salari, N; Born, J; Kalisch, R; Pape, H C; Marshall, L; Büchel, C

    2013-07-15

    Sleep, in particular REM sleep, has been shown to improve the consolidation of emotional memories. Here, we investigated the role of sleep and sleep deprivation on the consolidation of fear memories and underlying neuronal mechanisms. We employed a Pavlovian fear conditioning paradigm either followed by a night of polysomnographically monitored sleep, or wakefulness in forty healthy participants. Recall of learned fear was better after sleep, as indicated by stronger explicitly perceived anxiety and autonomous nervous responses. These effects were positively correlated with the preceding time spent in REM sleep and paralleled by activation of the basolateral amygdala. These findings suggest REM sleep-associated consolidation of fear memory in the human amygdala. In view of the critical participation of fear learning mechanisms in the etiology of anxiety and post-traumatic stress disorder, deprivation of REM sleep after exposure to distressing events is an interesting target for further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    Science.gov (United States)

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  2. Procedural Memory Consolidation in the Performance of Brief Keyboard Sequences

    Science.gov (United States)

    Duke, Robert A.; Davis, Carla M.

    2006-01-01

    Using two sequential key press sequences, we tested the extent to which subjects' performance on a digital piano keyboard changed between the end of training and retest on subsequent days. We found consistent, significant improvements attributable to sleep-based consolidation effects, indicating that learning continued after the cessation of…

  3. Post-encoding emotional arousal enhances consolidation of item memory, but not reality-monitoring source memory.

    Science.gov (United States)

    Wang, Bo; Sun, Bukuan

    2017-03-01

    The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.

  4. Stress enhances the consolidation of extinction memory in a predictive learning task

    Directory of Open Access Journals (Sweden)

    Tanja eHamacher-Dang

    2013-08-01

    Full Text Available Extinction is not always permanent, as indicated by several types of recovery effects, such as the renewal effect, which may occur after a context change and points towards the importance of contextual cues. Strengthening the retrieval of extinction memory is a crucial aim of extinction-based psychotherapeutic treatments of anxiety disorders to prevent relapse. Stress is known to modulate learning and memory, with mostly enhancing effects on memory consolidation. However, whether such a consolidation-enhancing effect of acute stress can also be found for extinction memory has not yet been examined in humans. In this study, we investigated the effect of stress after extinction learning on the retrieval of extinction memory in a predictive learning renewal paradigm. Participants took the part of being the doctor of a fictitious patient and learned to predict whether certain food stimuli were associated with ‘stomach trouble’ in two different restaurants (contexts. On the first day, critical stimuli were associated with stomach trouble in context A (acquisition phase. On the second day, these associations were extinguished in context B. Directly after extinction, participants were either exposed to a stressor (socially evaluated cold pressor test; n = 22 or a control condition (n = 24. On the third day, we tested retrieval of critical associations in contexts A and B. Participants exposed to stress after extinction exhibited a reduced recovery of responding at test in context B, suggesting that stress may context-dependently enhance the consolidation of extinction memory. Furthermore, the increase in cortisol in response to the stressor was negatively correlated with the recovery of responding in context A. Our findings suggest that in parallel to the known effects of stress on the consolidation of episodic memory, stress also enhances the consolidation of extinction memory, which might be relevant for potential applications in extinction

  5. System Consolidation of Spatial Memories in Mice: Effects of Enriched Environment

    Directory of Open Access Journals (Sweden)

    Joyce Bonaccorsi

    2013-01-01

    Full Text Available Environmental enrichment (EE is known to enhance learning and memory. Declarative memories are thought to undergo a first rapid and local consolidation process, followed by a prolonged process of system consolidation, which consist in a time-dependent gradual reorganization of brain regions supporting remote memory storage and crucial for the formation of enduring memories. At present, it is not known whether EE can affect the process of declarative memory system consolidation. We characterized the time course of hippocampal and cortical activation following recall of progressively more remote spatial memories. Wild-type mice either exposed to EE for 40 days or left in standard environment were subjected to spatial learning in the Morris water maze and to the probe test 1, 10, 20, 30, and 50 days after learning. Following the probe test, regional expression of the inducible immediate early gene c-Fos was mapped by immunohistochemistry, as an indicator of neuronal activity. We found that activation of the medial prefrontal cortex (mPFC, suggested to have a privileged role in processing remote spatial memories, was evident at shorter time intervals after learning in EE mice; in addition, EE induced the progressive activation of a distributed cortical network not activated in non-EE mice. This suggests that EE not only accelerates the process of mPFC recruitment but also recruits additional cortical areas into the network supporting remote spatial memories.

  6. Sleep-dependent consolidation patterns reveal insights into episodic memory structure.

    Science.gov (United States)

    Oyanedel, Carlos N; Sawangjit, Anuck; Born, Jan; Inostroza, Marion

    2018-05-18

    Episodic memory formation is considered a genuinely hippocampal function. Its study in rodents has relied on two different task paradigms, i.e. the so called "what-where-when" (WW-When) task and "what-where-which" (WW-Which) task. The WW-When task aims to assess the memory for an episode as an event bound into its context defined by spatial and distinct temporal information, the WW-Which task lacks the temporal component and introduces, instead, an "occasion setter" marking the broader contextual configuration in which the event occurred. Whether both tasks measure episodic memory in an equivalent manner in terms of recollection has been controversially discussed. Here, we compared in two groups of rats the consolidating effects of sleep on episodic-like memory between both task paradigms. Sampling and test phases were separated by a 90-min morning retention interval which did or did not allow for spontaneous sleep. Results show that sleep is crucial for the consolidation of the memory on both tasks. However, consolidating effects of sleep were stronger for the WW-Which than WW-When task. Comparing performance during the post-sleep test phase revealed that WW-When memory only gradually emerged during the 3-min test period whereas WW-Which memory was readily expressed already from the first minute onward. Separate analysis of the temporal and spatial components of WW-When performance showed that the delayed episodic memory on this task originated from the temporal component which also did not emerge until the third minute of the test phase, whereas the spatial component already showed up in the first minute. In conclusion, sleep differentially affects consolidation on the two episodic-like memory tasks, with the delayed expression of WW-When memory after sleep resulting from preferential coverage of temporal aspects by this task. Copyright © 2018. Published by Elsevier Inc.

  7. Timely sleep facilitates declarative memory consolidation in infants

    OpenAIRE

    Seehagen, Sabine; Konrad, Carolin; Herbert, Jane S.; Schneider, Silvia

    2015-01-01

    The potential benefits of infant sleep for memory processing are largely unexplored. Here we show evidence that having an extended nap (≥30 min) within 4 h of learning helps 6- and 12-month-old infants to retain their memories for new behaviors across a 4- and 24-h delay. These results suggest that infants rely on frequent naps for the formation of long-term memories.

  8. Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity.

    Science.gov (United States)

    Kutlu, Munir Gunes; Garrett, Brendan; Gadiwalla, Sana; Tumolo, Jessica M; Gould, Thomas J

    2017-11-01

    Previous research has shown that acute nicotine, an agonist of nAChRs, impaired fear extinction. However, the effects of acute nicotine on consolidation of contextual fear extinction memories and associated cell signaling cascades are unknown. Therefore, we examined the effects of acute nicotine injections before (pre-extinction) and after (post-extinction) contextual fear extinction on behavior and the phosphorylation of dorsal and ventral hippocampal ERK1/2 and JNK1 and protein levels on the 1st and 3rd day of extinction. Our results showed that acute nicotine administered prior to extinction sessions downregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but not dorsal hippocampus, and JNK1 in both dorsal and ventral hippocampus on the 3rd extinction day. These effects were absent on the 1st day of extinction. We also showed that acute nicotine administered immediately and 30 min, but not 6 h, following extinction impaired contextual fear extinction suggesting that acute nicotine disrupts consolidation of contextual fear extinction memories. Finally, acute nicotine injections immediately after extinction sessions upregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but did not affect JNK1. These results show that acute nicotine impairs contextual fear extinction potentially by altering molecular processes responsible for the consolidation of extinction memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment.

    Science.gov (United States)

    Maldonado, Noelia Martina; Martijena, Irene Delia; Molina, Víctor Alejandro

    2011-11-20

    It is well known that an emotionally arousing experience usually results in a robust and persistent memory trace. The present study explored the potential mechanisms involved in the influence of stress on the consolidation of a contextual fear memory in animals subjected to a weak fear training protocol, and whether pretreatment with intra-basolateral amygdala or systemic administration of midazolam (MDZ) prevents the potential stress-induced influence on fear memory formation. A previous restraint session facilitated fear retention, this effect was not due to a sensitized effect of restraint on the footshock experience. MDZ, both systemically or intra-basolateral amygdala infusion prior to the restraint, attenuated the stress-induced promoting influence on fear memory formation. In addition, stress exposure activated the ERK1/2 pathway in basolateral amygdala (BLA) after the weak training procedure but not after the immediate footshock protocol. Similar to our behavioral findings, MDZ attenuated stress-induced elevation of phospho-ERK2 (p-ERK2) in BLA following the acquisition session. Given that the activation of ERK1/2 pathway is essential for associative learning, we propose that stress-induced facilitation of p-ERK2 in BLA is an important mechanism for the promoting influence of stress on the consolidation of contextual fear memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.

  11. Molecular mechanisms underlying memory consolidation of taste information in the cortex.

    Science.gov (United States)

    Gal-Ben-Ari, Shunit; Rosenblum, Kobi

    2011-01-01

    The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste-memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.

  12. Molecular mechanisms underlying memory consolidation of taste information in the cortex

    Directory of Open Access Journals (Sweden)

    Shunit eGal-Ben-Ari

    2012-01-01

    Full Text Available The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste memory consolidation in the gustatory cortex. Specifically, the role of neurotransmitters, meuromodulators, immediate early genes, and translation regulation are addressed.

  13. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation.

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-05-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation.

  14. Sleep directly following learning benefits consolidation of spatial associative memory

    NARCIS (Netherlands)

    Talamini, L.M.; Nieuwenhuis, I.L.C.; Takashima, A.

    2008-01-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face–location associations is

  15. Sleep directly following learning benefits consolidation of spatial associative memory

    NARCIS (Netherlands)

    Talamini, L.M.; Nieuwenhuis, I.L.C.; Takashima, A.; Jensen, O.

    2008-01-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is

  16. The relationship between masking and short-term consolidation during recall from visual working memory.

    Science.gov (United States)

    Ricker, Timothy J; Sandry, Joshua

    2018-04-10

    The presentation of a similar but irrelevant stimulus immediately following presentation of a memory item is called masking. Masking is known to reduce performance on working memory tests. This is the type of memory used to hold information in mind for brief periods of time for use in ongoing cognition. Two approaches to understanding masking effects have been proposed in different literatures. Working memory researchers often assume that the reduction in working memory performance after masking is because masking interferes with a transient sensory representation that is needed to complete consolidation into a working memory state. Researchers focused on the attentional blink, a finding that attention cannot be directed to new stimuli during working memory consolidation, have an alternative theory. Attentional blink researchers assume that masking slows the short-term consolidation process, thereby extending the length of the attentional blink. In two experiments, we contrast these two approaches to explaining masking effects and investigate the validity of both hypotheses. Some aspects of both approaches are validated, but neither theoretical perspective alone sufficiently explains the entire pattern of results. © 2018 New York Academy of Sciences.

  17. Analysis of memory consolidation and evocation in rats by proton induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Jobim, P.F.C., E-mail: pjobim@uol.com.br [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Av. Paulo Gama 90050-170, Porto Alegre (Brazil); University Hospital Research Center (HCPA), Federal University of Rio Grande do Sul, 90035-003, Rua Ramiro Barcelos, Porto Alegre (Brazil); Santos, C.E.I. dos [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil); Maurmann, N.; Reolon, G.K. [Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Av. Paulo Gama 90050-170, Porto Alegre (Brazil); University Hospital Research Center (HCPA), Federal University of Rio Grande do Sul, 90035-003, Rua Ramiro Barcelos, Porto Alegre (Brazil); Debastiani, R. [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil); Pedroso, T.R.; Carvalho, L.M. [Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Av. Paulo Gama 90050-170, Porto Alegre (Brazil); University Hospital Research Center (HCPA), Federal University of Rio Grande do Sul, 90035-003, Rua Ramiro Barcelos, Porto Alegre (Brazil); Dias, J.F. [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil)

    2014-08-01

    It is well known that trace elements such as Mg, Ca, Fe, Cu and Zn have a key role in synapse plasticity and learning. Learning process is conventionally divided in three distinct and complementary stages: memory acquisition, consolidation and evocation. Consolidation is the stabilization of the synaptic trace formed by acquisition, while evocation is the recall of this trace. Ion-based techniques capable of providing information concerning the elemental composition of organic tissues may be helpful to improve our understanding on memory consolidation and evocation processes. In particular, the Particle-Induced X-ray Emission (PIXE) technique can be used to analyze different biological tissues with good accuracy. In this work we explore the versatility of PIXE to measure the elemental concentrations in rat brain tissues in order to establish any possible correlation between them and the memory consolidation and evocation processes. To this end, six groups of middle-age male Wistar rats were trained and tested in a step-down Inhibitory Avoidance conditioning. After the behavior tests, the animals were decapitated in accordance with the legal procedures and their brains were removed and dissected for the PIXE analyses. The results demonstrated that there are differences in the elemental concentration among the groups and such variations may be associated with their availability to the learning processes (by memory consolidation and evocation). Moreover, the control groups circumvent the possibility that a non-specific event involved in learning tasks cause such variations. Our results suggest that PIXE may be a useful tool to investigate memory consolidation and evocation in animal models.

  18. Analysis of memory consolidation and evocation in rats by proton induced X-ray emission

    International Nuclear Information System (INIS)

    Jobim, P.F.C.; Santos, C.E.I. dos; Maurmann, N.; Reolon, G.K.; Debastiani, R.; Pedroso, T.R.; Carvalho, L.M.; Dias, J.F.

    2014-01-01

    It is well known that trace elements such as Mg, Ca, Fe, Cu and Zn have a key role in synapse plasticity and learning. Learning process is conventionally divided in three distinct and complementary stages: memory acquisition, consolidation and evocation. Consolidation is the stabilization of the synaptic trace formed by acquisition, while evocation is the recall of this trace. Ion-based techniques capable of providing information concerning the elemental composition of organic tissues may be helpful to improve our understanding on memory consolidation and evocation processes. In particular, the Particle-Induced X-ray Emission (PIXE) technique can be used to analyze different biological tissues with good accuracy. In this work we explore the versatility of PIXE to measure the elemental concentrations in rat brain tissues in order to establish any possible correlation between them and the memory consolidation and evocation processes. To this end, six groups of middle-age male Wistar rats were trained and tested in a step-down Inhibitory Avoidance conditioning. After the behavior tests, the animals were decapitated in accordance with the legal procedures and their brains were removed and dissected for the PIXE analyses. The results demonstrated that there are differences in the elemental concentration among the groups and such variations may be associated with their availability to the learning processes (by memory consolidation and evocation). Moreover, the control groups circumvent the possibility that a non-specific event involved in learning tasks cause such variations. Our results suggest that PIXE may be a useful tool to investigate memory consolidation and evocation in animal models

  19. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms.

    Science.gov (United States)

    Blake, M G; Krawczyk, M C; Baratti, C M; Boccia, M M

    2014-01-01

    Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    Science.gov (United States)

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Blocking Dopaminergic Signaling Soon after Learning Impairs Memory Consolidation in Guinea Pigs.

    Directory of Open Access Journals (Sweden)

    Kiera-Nicole Lee

    Full Text Available Formation of episodic memories (i.e. remembered experiences requires a process called consolidation which involves communication between the neocortex and hippocampus. However, the neuromodulatory mechanisms underlying this neocortico-hippocampal communication are poorly understood. Here, we examined the involvement of dopamine D1 receptors (D1R and D2 receptors (D2R mediated signaling on memory consolidation using the Novel Object Recognition (NOR test. We conducted the tests in male Hartley guinea pigs and cognitive behaviors were assessed in customized Phenotyper home cages utilizing Ethovision XT software from Noldus enabled for the 3-point detection system (nose, center of the body, and rear. We found that acute intraperitoneal injections of either 0.25 mg/kg SCH23390 to block D1Rs or 1.0 mg/kg sulpiride to block D2Rs soon after acquisition (which involved familiarization to two similar objects attenuated subsequent discrimination for novel objects when tested after 5-hours in the NOR test. By contrast guinea pigs treated with saline showed robust discrimination for novel objects indicating normal operational processes undergirding memory consolidation. The data suggests that involvement of dopaminergic signaling is a key post-acquisition factor in modulating memory consolidation in guinea pigs.

  3. Noradrenergic Action in Prefrontal Cortex in the Late Stage of Memory Consolidation

    Science.gov (United States)

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively motivated foraging task based on olfactory…

  4. Noradrenergic action in prefrontal cortex in the late stage of memory consolidation

    NARCIS (Netherlands)

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively

  5. Involvement of the insular cortex in regulating glucocorticoid effects on memory consolidation of inhibitory avoidance training

    NARCIS (Netherlands)

    Fornari, Raquel V.; Wichmann, Romy; Atucha, Erika; Desprez, Tifany; Eggens-Meijer, Ellie; Roozendaal, Benno

    2012-01-01

    Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC) to be part of this network, the present findings indicate that the

  6. The role of sleep in declarative memory consolidation--direct evidence by intracranial EEG.

    Science.gov (United States)

    Axmacher, Nikolai; Haupt, Sven; Fernández, Guillén; Elger, Christian E; Fell, Juergen

    2008-03-01

    Two step theories of memory formation assume that an initial learning phase is followed by a consolidation stage. Memory consolidation has been suggested to occur predominantly during sleep. Very recent findings, however, suggest that important steps in memory consolidation occur also during waking state but may become saturated after some time awake. Sleep, in this model, specifically favors restoration of synaptic plasticity and accelerated memory consolidation while asleep and briefly afterwards. To distinguish between these different views, we recorded intracranial electroencephalograms from the hippocampus and rhinal cortex of human subjects while they retrieved information acquired either before or after a "nap" in the afternoon or on a control day without nap. Reaction times, hippocampal event-related potentials, and oscillatory gamma activity indicated a temporal gradient of hippocampal involvement in information retrieval on the control day, suggesting hippocampal-neocortical information transfer during waking state. On the day with nap, retrieval of recent items that were encoded briefly after the nap did not involve the hippocampus to a higher degree than retrieval of items encoded before the nap. These results suggest that sleep facilitates rapid processing through the hippocampus but is not necessary for information transfer into the neocortex per se.

  7. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation

    NARCIS (Netherlands)

    Atsak, P.; Hauer, D.; Campolongo, P.; Schelling, G.; Fornari, R.V.; Roozendaal, B.

    2015-01-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory

  8. Effects of Model Performances on Music Skill Acquisition and Overnight Memory Consolidation

    Science.gov (United States)

    Cash, Carla D.; Allen, Sarah E.; Simmons, Amy L.; Duke, Robert A.

    2014-01-01

    This study was designed to investigate the extent to which the presentation of an auditory model prior to learning a novel melody affects performance during active practice and the overnight consolidation of procedural memory. During evening training sessions, 32 nonpianist musicians practiced a 13-note keyboard melody with their left…

  9. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    NARCIS (Netherlands)

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the

  10. Activation of MAPK Is Necessary for Long-Term Memory Consolidation Following Food-Reward Conditioning

    Science.gov (United States)

    Ribeiro, Maria J.; Schofield, Michael G.; Kemenes, Ildiko; O'Shea, Michael; Kemenes, Gyorgy; Benjamin, Paul R.

    2005-01-01

    Although an important role for the mitogen-activated protein kinase (MAPK) has been established for memory consolidation in a variety of learning paradigms, it is not known if this pathway is also involved in appetitive classical conditioning. We address this question by using a single-trial food-reward conditioning paradigm in the freshwater…

  11. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    Science.gov (United States)

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  12. ONTOLOGIES REPRESENTATION AND MANAGEMENT, AS A SEMANTIC TOOL FOR ORGANIZATIONAL MEMORY CONSOLIDATION

    Directory of Open Access Journals (Sweden)

    Mangiuc Dragos Marian

    2009-05-01

    Full Text Available The present paper is a component of an exploratory research project focused on discovering new ways to build, organize and consolidate organizational memory for an economic entity by means of the new a€śSemantic Weba€ť technologies and also encloses some

  13. Sleep modulates the neural substrates of both spatial and contextual memory consolidation.

    Directory of Open Access Journals (Sweden)

    Géraldine Rauchs

    Full Text Available It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post

  14. Reduced susceptibility to interference in the consolidation of motor memory before adolescence.

    Directory of Open Access Journals (Sweden)

    Shoshi Dorfberger

    2007-02-01

    Full Text Available Are children superior to adults in consolidating procedural memory? This notion has been tied to "critical," early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a the rate of learning during a training session, b the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains, and c the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones.

  15. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Nishida M

    2016-01-01

    Full Text Available Masaki Nishida,1 Yusaku Nakashima,2 Toru Nishikawa11Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, 2Medical Technology Research Laboratory, Research and Development Division, Medical Business Unit, Sony Corporation, Tokyo, JapanIntroduction: Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process.Methods: Healthy control participants (n=17 and patients medicated for major depressive disorder (n=11 were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement. Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs. Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz and slow-frequency spindle activity (10.5–12.5 Hz.Result: Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups.Conclusion: Because the changes in slow

  16. Hearing something emotional influences memory for what was just seen: How arousal amplifies effects of competition in memory consolidation.

    Science.gov (United States)

    Ponzio, Allison; Mather, Mara

    2014-12-01

    Enhanced memory for emotional items often comes at the cost of memory for the background scenes. Because emotional foreground items both induce arousal and attract attention, it is not clear whether the emotion effects are simply the result of shifts in visual attention during encoding or whether arousal has effects beyond simple attention capture. In the current study, participants viewed a series of scenes that each either had a foreground object or did not have one, and then, after each image, heard either an emotionally arousing negative sound or a neutral sound. After a 24-hr delay, they returned for a memory test for the objects and scenes. Postencoding arousal decreased recognition memory of scenes shown behind superimposed objects but not memory of scenes shown alone. These findings support the hypothesis that arousal amplifies the effects of competition between mental representations, influencing memory consolidation of currently active representations.

  17. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    Science.gov (United States)

    Dewar, Michaela; Alber, Jessica; Cowan, Nelson; Della Sala, Sergio

    2014-01-01

    People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  18. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    Directory of Open Access Journals (Sweden)

    Michaela Dewar

    Full Text Available People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  19. Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning.

    Science.gov (United States)

    Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe

    2015-04-01

    That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks

    Science.gov (United States)

    Sami, Saber; Robertson, Edwin M.

    2014-01-01

    Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period. PMID:24623776

  1. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Melissa S Monsey

    Full Text Available Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM is enhanced, while short-term memory (STM is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.

  2. Comparable Rest-related Promotion of Spatial Memory Consolidation in Younger and Older Adults

    Science.gov (United States)

    Craig, Michael; Wolbers, Thomas; Harris, Mathew A.; Hauff, Patrick; Della Sala, Sergio; Dewar, Michaela

    2017-01-01

    Flexible spatial navigation depends on cognitive mapping, a function that declines with increasing age. In young adults, a brief period of post-navigation rest promotes the consolidation/integration of spatial memories into accurate cognitive maps. We examined (1) whether rest promotes spatial memory consolidation/integration in older adults and (2) whether the magnitude of the rest benefit changes with increasing age. Young and older adults learned a route through a virtual environment, followed by a 10min delay comprising either wakeful rest or a perceptual task, and a subsequent cognitive mapping task, requiring the pointing to landmarks from different locations. Pointing accuracy was lower in the older than younger adults. However, there was a comparable rest-related enhancement in pointing accuracy in the two age groups. Together our findings suggest that (i) the age-related decline in cognitive mapping cannot be explained by increased consolidation interference in older adults, and (ii) as we grow older rest continues to support the consolidation/integration of spatial memories. PMID:27689512

  3. The Influence of Sleep on the Consolidation of Positive Emotional Memories: Preliminary Evidence

    Directory of Open Access Journals (Sweden)

    Alexis M. Chambers

    2014-05-01

    Full Text Available Studies have not only shown that a period of sleep following learning offers greater benefits to later memory than a period of wakefulness, but also that sleep actively promotes those components of memories that are emotionally salient. However, sleep's role in emotional memory consolidation has largely been investigated with memories that are specifically negative in content, such as memory for negative images or texts, leaving open the question of whether sleep influences positive memories in a similar manner. The current study investigated the emotional memory trade-off effect for positive versus neutral information. Scenes in which a positive or neutral object was placed on a neutral background were encoded prior to a period of polysomnographically-monitored nocturnal sleep or daytime wakefulness. Recognition memory was tested for the objects and backgrounds separately following the delay using the Remember/Know paradigm. Compared to wake participants, those who slept during the delay had increased recollection memory performance for positive objects, but not the neutral components of the studied scenes. Further, familiarity of positive objects was negatively correlated with REM latency. These results provide preliminary evidence that sleep contributes to the selective processing of positive memories, and point toward a role for REM sleep in positive memory formation.

  4. Divided attention improves delayed, but not immediate retrieval of a consolidated memory.

    Directory of Open Access Journals (Sweden)

    Yoav Kessler

    Full Text Available A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval process. Based on this logic, several studies examined the effects of DA during retrieval (Test 1 on a future memory test (Test 2. These studies yielded inconsistent results. The present study examined the role of memory consolidation in accounting for the after-effect of DA during retrieval. Initial learning required a classification of visual stimuli, and hence involved incidental learning. Test 1 was administered 24 hours after initial learning, and therefore required retrieval of consolidated information. Test 2 was administered either immediately following Test 1 or after a 24-hour delay. Our results show that the effect of DA on Test 2 depended on this delay. DA during Test 1 did not affect performance on Test 2 when it was administered immediately, but improved performance when Test 2 was given 24-hours later. The results are consistent with other findings showing long-term benefits of retrieval difficulty. Implications for theories of reconsolidation in human episodic memory are discussed.

  5. Divided attention improves delayed, but not immediate retrieval of a consolidated memory.

    Science.gov (United States)

    Kessler, Yoav; Vandermorris, Susan; Gopie, Nigel; Daros, Alexander; Winocur, Gordon; Moscovitch, Morris

    2014-01-01

    A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA) during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval process. Based on this logic, several studies examined the effects of DA during retrieval (Test 1) on a future memory test (Test 2). These studies yielded inconsistent results. The present study examined the role of memory consolidation in accounting for the after-effect of DA during retrieval. Initial learning required a classification of visual stimuli, and hence involved incidental learning. Test 1 was administered 24 hours after initial learning, and therefore required retrieval of consolidated information. Test 2 was administered either immediately following Test 1 or after a 24-hour delay. Our results show that the effect of DA on Test 2 depended on this delay. DA during Test 1 did not affect performance on Test 2 when it was administered immediately, but improved performance when Test 2 was given 24-hours later. The results are consistent with other findings showing long-term benefits of retrieval difficulty. Implications for theories of reconsolidation in human episodic memory are discussed.

  6. Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers.

    Science.gov (United States)

    Linssen, A M W; Vuurman, E F P M; Sambeth, A; Riedel, W J

    2012-06-01

    Methylphenidate inhibits the reuptake of dopamine and noradrenaline and is used to treat children with attention deficit hyperactivity disorder (ADHD). Besides reducing behavioral symptoms, it improves their cognitive function. There are also observations of methylphenidate-induced cognition enhancement in healthy adults, although studies in this area are relatively sparse. We assessed the possible memory-enhancing properties of methylphenidate. In the current study, the possible enhancing effects of three doses of methylphenidate on declarative and working memory, attention, response inhibition and planning were investigated in healthy volunteers. In a double blind placebo-controlled crossover study, 19 healthy young male volunteers were tested after a single dose of placebo or 10, 20 or 40 mg of methylphenidate. Cognitive performance testing included a word learning test as a measure of declarative memory, a spatial working memory test, a set-shifting test, a stop signal test and a computerized version of the Tower of London planning test. Declarative memory consolidation was significantly improved relative to placebo after 20 and 40 mg of methylphenidate. Methylphenidate also improved set shifting and stopped signal task performance but did not affect spatial working memory or planning. To the best of our knowledge, this is the first study reporting enhanced declarative memory consolidation after methylphenidate in a dose-related fashion over a dose range that is presumed to reflect a wide range of dopamine reuptake inhibition.

  7. The effect of exogenous cortisol during sleep on the behavioral and neural correlates of emotional memory consolidation in humans.

    Science.gov (United States)

    van Marle, Hein J F; Hermans, Erno J; Qin, Shaozheng; Overeem, Sebastiaan; Fernández, Guillén

    2013-09-01

    A host of animal work demonstrates that the retention benefit for emotionally aversive over neutral memories is regulated by glucocorticoid action during memory consolidation. Particularly, glucocorticoids may affect systems-level processes that promote the gradual reorganization of emotional memory traces. These effects remain largely uninvestigated in humans. Therefore, in this functional magnetic resonance imaging study we administered hydrocortisone during a polysomnographically monitored night of sleep directly after healthy volunteers studied negative and neutral pictures in a double-blind, placebo-controlled, between-subjects design. The following evening memory consolidation was probed during a recognition memory test in the MR scanner by assessing the difference in brain activity associated with memory for the consolidated items studied before sleep and new, unconsolidated items studied shortly before test (remote vs. recent memory paradigm). Hydrocortisone administration resulted in elevated cortisol levels throughout the experimental night with no group difference at recent encoding or test. Behaviorally, we showed that cortisol enhanced the difference between emotional and neutral consolidated memory, effectively prioritizing emotional memory consolidation. On a neural level, we found that cortisol reduced amygdala reactivity related to the retrieval of these same consolidated, negative items. These findings show that cortisol administration during first post-encoding sleep had a twofold effect on the first 24h of emotional memory consolidation. While cortisol prioritized recognition memory for emotional items, it reduced reactivation of the neural circuitry underlying emotional responsiveness during retrieval. These findings fit recent theories on emotional depotentiation following consolidation during sleep, although future research should establish the sleep-dependence of this effect. Moreover, our data may shed light on mechanisms underlying

  8. Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout.

    Science.gov (United States)

    Cui, Zhenzhong; Lindl, Kathryn A; Mei, Bing; Zhang, Shuqing; Tsien, Joe Z

    2005-08-01

    We employed an inducible, reversible and region-specific gene knockout technique to investigate the requirements for cortical NMDA receptors (NMDAR) during the various stages (acquisition, consolidation and storage, and retrieval) of nondeclarative, hippocampal-independent memory in mice using a conditioned taste aversion memory paradigm. Here we show that temporary knockout of the cortical NMDAR during either the learning or postlearning consolidation stage, but not during the retrieval stage, causes severe performance deficits in the 1-month taste memory retention tests. More importantly, we found that the consolidation and storage of the long-term nondeclarative taste memories requires cortical NMDAR reactivation. Thus, the dynamic engagement of the NMDAR during the postlearning stage leads us to postulate that NMDAR reactivation-mediated synaptic re-entry reinforcement is crucial for overcoming the destabilizing effects intrinsic to synaptic protein turnover and for achieving consolidation and storage of nondeclarative memories in the brain.

  9. Off-line concomitant release of dopamine and glutamate involvement in taste memory consolidation.

    Science.gov (United States)

    Guzmán-Ramos, Kioko; Osorio-Gómez, Daniel; Moreno-Castilla, Perla; Bermúdez-Rattoni, Federico

    2010-07-01

    It has been postulated that memory consolidation process requires post-learning molecular changes that will support long-term experiences. In the present study, we assessed with in vivo microdialysis and capillary electrophoresis whether such changes involve the release of neurotransmitters at post-acquisition stages. Using conditioned taste aversion paradigm we observed spontaneous off-line (i.e. in absence of stimulation) dopamine and glutamate reactivation within the insular cortex about 45 min after the stimuli association. These increments did not appear in control groups that were unable to acquire the task, and it seems to be dependent on amygdala activity since its reversible inactivation by tetrodotoxin impaired cortical off-line release of both neurotransmitters and memory consolidation. In addition, blockade of dopaminergic D1 and/or NMDA receptors before the off-line activity impaired long- but not short-term memory. These results suggest that off-line extracellular increments of glutamate and dopamine have a significant functional role in consolidation of taste memory.

  10. Neurocognitive Mechanisms of Prejudice Formation: The Role of Time-Dependent Memory Consolidation.

    Science.gov (United States)

    Enge, Luke R; Lupo, Amber K; Zárate, Michael A

    2015-07-01

    Prejudice is generally thought to derive from learned, emotion-laden experiences. The mechanisms underlying the formation of prejudice over time, however, remain unknown. In the present research, we proposed and tested hypotheses regarding prejudice formation derived from research on memory consolidation and social perception. We hypothesized that time-dependent memory consolidation would produce better implicit memory for negative out-group information and positive in-group information, compared with negative in-group information and positive out-group information. Fifty undergraduates learned positive and negative information about racial in-group (Latino) and out-group (African American) targets. Participants returned after both a short time delay (2-6 hr after the learning session) and a long time delay (48 hr after the learning session) to complete a lexical decision task. Results demonstrated that participants responded to information consistent with an in-group bias faster after a long time delay than after a short time delay. Our findings have important implications for the study of social perception and memory consolidation. © The Author(s) 2015.

  11. The effect of psilocin on memory acquisition, retrieval and consolidation in rat.

    Directory of Open Access Journals (Sweden)

    Lukas eRambousek

    2014-05-01

    Full Text Available The involvement of the serotonin system in the pathophysiology of schizophrenia has been elucidated by experiments with hallucinogens. Application of a hallucinogen to humans leads to changes in perception, cognition, emotions and induction of psychotic-like symptoms that resemble symptoms of schizophrenia. In rodent studies, their acute administration affects sensorimotor gating, locomotor activity, social behavior and cognition including working memory, the phenotypes are considered as an animal model of schizophrenia. The complexity and singularity of human cognition raises questions about the validity of animal models utilizing agonists of 5-HT2A receptors. The present study thus investigated the effect of psilocin on memory acquisition, reinforced retrieval and memory consolidation in rats. Psilocin is a main metabolite of psilocybin acting as an agonist at 5-HT2A receptors with a contribution of 5-HT2C and 5-HT1A receptors. First, we tested the effect of psilocin on the acquisition of a Carousel maze, a spatial task requiring navigation using distal cues, attention and cognitive coordination. Psilocin significantly impaired the acquisition of the Carousel Maze at both doses (1 and 4 mg/kg. The higher dose of psilocin blocked the learning processes even in an additional session when the rats received only saline. Next, we examined the effect of psilocin on reinforced retrieval and consolidation in the Morris water maze (MWM. The dose of 4 mg/kg disrupted reinforced retrieval in the Morris water maze. However, the application of a lower dose was without any significant effect. Finally, neither the low nor high dose of psilocin injected post-training caused a deficit in memory consolidation in the MWM. Taken together, the psilocin dose dependently impaired the acquisition of the Carousel maze and reinforced retrieval in MWM; however, it had no effect on memory consolidation.

  12. Post-training amphetamine administration enhances memory consolidation in appetitive Pavlovian conditioning: Implications for drug addiction.

    Science.gov (United States)

    Simon, Nicholas W; Setlow, Barry

    2006-11-01

    It has been suggested that some of the addictive potential of psychostimulant drugs of abuse such as amphetamine may result from their ability to enhance memory for drug-related experiences through actions on memory consolidation. This experiment examined whether amphetamine can specifically enhance consolidation of memory for a Pavlovian association between a neutral conditioned stimulus (CS-a light) and a rewarding unconditioned stimulus (US-food), as Pavlovian conditioning of this sort plays a major role in drug addiction. Male Long-Evans rats were given six training sessions consisting of 8 CS presentations followed by delivery of the food into a recessed food cup. After the 1st, 3rd, and 5th session, rats received subcutaneous injections of amphetamine (1.0 or 2.0 mg/kg) or saline vehicle immediately following training. Conditioned responding was assessed using the percentage of time rats spent in the food cup during the CS relative to a pre-CS baseline period. Both amphetamine-treated groups showed significantly more selective conditioned responding than saline controls. In a control experiment, there were no differences among groups given saline, 1.0 or 2.0 mg/kg amphetamine 2 h post-training, suggesting that immediate post-training amphetamine enhanced performance specifically through actions on memory consolidation rather than through non-mnemonic processes. This procedure modeled Pavlovian learning involved in drug addiction, in which the emotional valence of a drug reward is transferred to neutral drug-predictive stimuli such as drug paraphernalia. These data suggest that amphetamine may contribute to its addictive potential through actions specifically on memory consolidation.

  13. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats.

    Science.gov (United States)

    Yu, Dafu; Zhou, Heng; Zou, Lin; Jiang, Yong; Wu, Xiaoqun; Jiang, Lizhu; Zhou, Qixin; Yang, Yuexiong; Xu, Lin; Mao, Rongrong

    2017-01-01

    Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT 4 ) administration increased the level of free triiodothyronine (FT 3 ) and free tetraiodothyroxine (FT 4 ) not only in serum but also in hippocampus. In addition, a single systemic LT 4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT 4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT 4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT 4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT 4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT 4 did not affect rats' locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders.

  14. Real-world-time simulation of memory consolidation in a large-scale cerebellar model

    Directory of Open Access Journals (Sweden)

    Masato eGosui

    2016-03-01

    Full Text Available We report development of a large-scale spiking network model of thecerebellum composed of more than 1 million neurons. The model isimplemented on graphics processing units (GPUs, which are dedicatedhardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation ofcerebellar activity for 1 sec completes within 1 sec in thereal-world time, with temporal resolution of 1 msec.This allows us to carry out a very long-term computer simulationof cerebellar activity in a practical time with millisecond temporalresolution. Using the model, we carry out computer simulationof long-term gain adaptation of optokinetic response (OKR eye movementsfor 5 days aimed to study the neural mechanisms of posttraining memoryconsolidation. The simulation results are consistent with animal experimentsand our theory of posttraining memory consolidation. These resultssuggest that realtime computing provides a useful means to studya very slow neural process such as memory consolidation in the brain.

  15. A cortical–hippocampal–cortical loop of information processing during memory consolidation

    Science.gov (United States)

    Rothschild, Gideon; Eban, Elad; Frank, Loren M

    2018-01-01

    Hippocampal replay during sharp-wave ripple events (SWRs) is thought to drive memory consolidation in hippocampal and cortical circuits. Changes in neocortical activity can precede SWR events, but whether and how these changes influence the content of replay remains unknown. Here we show that during sleep there is a rapid cortical–hippocampal–cortical loop of information flow around the times of SWRs. We recorded neural activity in auditory cortex (AC) and hippocampus of rats as they learned a sound-guided task and during sleep. We found that patterned activation in AC precedes and predicts the subsequent content of hippocampal activity during SWRs, while hippocampal patterns during SWRs predict subsequent AC activity. Delivering sounds during sleep biased AC activity patterns, and sound-biased AC patterns predicted subsequent hippocampal activity. These findings suggest that activation of specific cortical representations during sleep influences the identity of the memories that are consolidated into long-term stores. PMID:27941790

  16. Memantine facilitates memory consolidation and reconsolidation in the day-old chick.

    Science.gov (United States)

    Samartgis, Jodi R; Schachte, Leslie; Hazi, Agnes; Crowe, Simon F

    2012-05-01

    Memantine is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist that has been approved for the treatment of the cognitive deficits noted in Alzheimer's disease. While there is a body of research that supports memantine's facilitative action upon memory compromise, this series of studies aimed to investigate the effects of this drug in healthy animals with intact memory functioning. A 0.1 mM dose of memantine injected immediately after a weakly aversive training event (i.e. 20% v/v methyl anthranilate) was found to enhance passive avoidance learning for this event in day-old chicks up to 24 h following training. The same dose of memantine was also observed to enhance memory for the training event when it was administered in conjunction with a reminder trial. These results suggest that memantine is capable of facilitating both memory consolidation as well as memory reconsolidation. It was concluded that memantine's mechanism may involve the short-term or intermediate memory phases of the Gibbs and Ng model of memory, and that the current findings represent enhancement of intact memory, rather than amelioration of memory compromise. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  17. Selective post-training time window for memory consolidation interference of cannabidiol into the prefrontal cortex: Reduced dopaminergic modulation and immediate gene expression in limbic circuits.

    Science.gov (United States)

    Rossignoli, Matheus Teixeira; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Do Val da Silva, Raquel Araujo; Bueno-Junior, Lezio Soares; Kandratavicius, Ludmyla; Peixoto-Santos, José Eduardo; Crippa, José Alexandre; Cecilio Hallak, Jaime Eduardo; Zuardi, Antonio Waldo; Szawka, Raphael Escorsim; Anselmo-Franci, Janete; Leite, João Pereira; Romcy-Pereira, Rodrigo Neves

    2017-05-14

    The prefrontal cortex (PFC), amygdala and hippocampus display a coordinated activity during acquisition of associative fear memories. Evidence indicates that PFC engagement in aversive memory formation does not progress linearly as previously thought. Instead, it seems to be recruited at specific time windows after memory acquisition, which has implications for the treatment of post-traumatic stress disorders. Cannabidiol (CBD), the major non-psychotomimetic phytocannabinoid of the Cannabis sativa plant, is known to modulate contextual fear memory acquisition in rodents. However, it is still not clear how CBD interferes with PFC-dependent processes during post-training memory consolidation. Here, we tested whether intra-PFC infusions of CBD immediately after or 5h following contextual fear conditioning was able to interfere with memory consolidation. Neurochemical and cellular correlates of the CBD treatment were evaluated by the quantification of extracellular levels of dopamine (DA), serotonin, and their metabolites in the PFC and by measuring the cellular expression of activity-dependent transcription factors in cortical and limbic regions. Our results indicate that bilateral intra-PFC CBD infusion impaired contextual fear memory consolidation when applied 5h after conditioning, but had no effect when applied immediately after it. This effect was associated with a reduction in DA turnover in the PFC following retrieval 5days after training. We also observed that post-conditioning infusion of CBD reduced c-fos and zif-268 protein expression in the hippocampus, PFC, and thalamus. Our findings support that CBD interferes with contextual fear memory consolidation by reducing PFC influence on cortico-limbic circuits. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Enhanced Noradrenergic Activity Potentiates Fear Memory Consolidation and Reconsolidation by Differentially Recruiting alpha1- and beta-Adrenergic Receptors

    Science.gov (United States)

    Gazarini, Lucas; Stern, Cristina A. Jark; Carobrez, Antonio P.; Bertoglio, Leandro J.

    2013-01-01

    Consolidation and reconsolidation are phases of memory stabilization that diverge slightly. Noradrenaline is known to influence both processes, but the relative contribution of alpha1- and beta-adrenoceptors is unclear. The present study sought to investigate this matter by comparing their recruitment to consolidate and/or reconsolidate a…

  19. Alternative conceptions of memory consolidation and the role of the hippocampus at the systems level in rodents.

    Science.gov (United States)

    Sutherland, R J; Lehmann, H

    2011-06-01

    We discuss very recent experiments with rodents addressing the idea that long-term memories initially depending on the hippocampus, over a prolonged period, become independent of it. No unambiguous recent evidence exists to substantiate that this occurs. Most experiments find that recent and remote memories are equally affected by hippocampus damage. Nearly all experiments that report spared remote memories suffer from two problems: retrieval could be based upon substantial regions of spared hippocampus and recent memory is tested at intervals that are of the same order of magnitude as cellular consolidation. Accordingly, we point the way beyond systems consolidation theories, both the Standard Model of Consolidation and the Multiple Trace Theory, and propose a simpler multiple storage site hypothesis. On this view, with event reiterations, different memory representations are independently established in multiple networks. Many detailed memories always depend on the hippocampus; the others may be established and maintained independently. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Relaxing music counters heightened consolidation of emotional memory.

    Science.gov (United States)

    Rickard, Nikki S; Wong, Wendy Wing; Velik, Lauren

    2012-02-01

    Emotional events tend to be retained more strongly than other everyday occurrences, a phenomenon partially regulated by the neuromodulatory effects of arousal. Two experiments demonstrated the use of relaxing music as a means of reducing arousal levels, thereby challenging heightened long-term recall of an emotional story. In Experiment 1, participants (N=84) viewed a slideshow, during which they listened to either an emotional or neutral narration, and were exposed to relaxing or no music. Retention was tested 1 week later via a forced choice recognition test. Retention for both the emotional content (Phase 2 of the story) and material presented immediately after the emotional content (Phase 3) was enhanced, when compared with retention for the neutral story. Relaxing music prevented the enhancement for material presented after the emotional content (Phase 3). Experiment 2 (N=159) provided further support to the neuromodulatory effect of music by post-event presentation of both relaxing music and non-relaxing auditory stimuli (arousing music/background sound). Free recall of the story was assessed immediately afterwards and 1 week later. Relaxing music significantly reduced recall of the emotional story (Phase 2). The findings provide further insight into the capacity of relaxing music to attenuate the strength of emotional memory, offering support for the therapeutic use of music for such purposes. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories.

    Science.gov (United States)

    Straube, Benjamin

    2012-07-24

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies.

  2. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia; Suzuki, Akinobu; Magistretti, Pierre J.; Lengacher, Sylvain; Pollonini, Gabriella; Steinman, Michael Q.; Alberini, Cristina M.

    2016-01-01

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  3. Kinase activity in the olfactory bulb is required for odor memory consolidation.

    Science.gov (United States)

    Tong, Michelle T; Kim, Tae-Young P; Cleland, Thomas A

    2018-05-01

    Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)-a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor-reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information. © 2018 Tong et al.; Published by Cold Spring Harbor Laboratory Press.

  4. A role for nitric oxide-driven retrograde signaling in the consolidation of a fear memory

    Directory of Open Access Journals (Sweden)

    Kathie A Overeem

    2010-02-01

    Full Text Available In both invertebrate and vertebrate models of synaptic plasticity, signaling via the putative “retrograde messenger” nitric oxide (NO has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. However, while in vitro models of synaptic plasticity have consistently implicated NO signaling in linking postsynaptic induction mechanisms with accompanying presynaptic changes, a convincing role of such “retrograde signaling” in mammalian memory formation has remained elusive. Using auditory Pavlovian fear conditioning, we show that synaptic plasticity and NO signaling in the lateral nucleus of the amygdala (LA regulate the expression of the ERK-driven immediate early gene early growth response gene I (EGR-1 in regions of the auditory thalamus that are presynaptic to the LA. Further, antisense knockdown of EGR-1 in the auditory thalamus impairs both fear memory consolidation and the training-induced elevation of two presynaptically localized proteins in the LA. These findings indicate that synaptic plasticity and NO signaling in the LA during auditory fear conditioning promote alterations in ERK-driven gene expression in auditory thalamic neurons that are required for both fear memory consolidation as well as presynaptic correlates of fear memory formation in the LA, and provide general support for a role of NO as a “retrograde signal” in mammalian memory formation.

  5. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia

    2016-07-12

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  6. The effects of non-contingent extrinsic and intrinsic rewards on memory consolidation.

    Science.gov (United States)

    Nielson, Kristy A; Bryant, Ted

    2005-07-01

    Emotional and arousing treatments given shortly after learning enhance delayed memory retrieval in animal and human studies. Positive affect and reward induced prior to a variety of cognitive tasks enhance performance, but their ability to affect memory consolidation has not been investigated before. Therefore, we investigated the effects of a small, non-contingent, intrinsic or extrinsic reward on delayed memory retrieval. Participants (n=108) studied and recalled a list of 30 affectively neutral, imageable nouns. Experimental groups were then given either an intrinsic reward (e.g., praise) or an extrinsic reward (e.g., US 1 dollar). After a one-week delay, participants' retrieval performance for the word list was significantly better in the extrinsic reward groups, whether the reward was expected or not, than in controls. Those who received the intrinsic reward performed somewhat better than controls, but the difference was not significant. Thus, at least some forms of arousal and reward, even when semantically unrelated to the learned material, can effectively modulate memory consolidation. These types of treatments might be useful for the development of new memory intervention strategies.

  7. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.

    Science.gov (United States)

    Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina

    2017-03-01

    Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  8. Effects of stress and corticosterone in two post-training periods, on spatial memory consolidation in adult male Wistar rats.

    Directory of Open Access Journals (Sweden)

    Jeimmy Marcela Cerón

    2015-04-01

    Full Text Available Memory consolidation is the process of gradual stabilization of long-term memory after learning (Alberini & Taubenfeld, 2008. This process involves the activation of intracellular signaling cascades that lead to the reorganization of synaptic proteins. Activation of these signaling pathways can regulate gene expression and protein synthesis (Brivanlou & Darnell, 2002. It is considered that the new proteins synthesized after learning are responsible for the changes in the neural architecture associated with memory consolidation (Mileusnic, 2004. In this sense, it has been shown that consolidation may be interrupted by inhibiting protein synthesis, leading to forgetfulness of the experience (Meeter & Murre, 2004. Although the dominant hypothesis is that memory consolidation requires a single molecular cascade, it has been suggested that multiple sets of synaptic modifications are required to reinforce changes after memory acquisition (Wittenber & Tsien, 2002. Consistently, recent studies have shown that protein synthesis associated with memory consolidation occurs in at least two post-training periods: immediately and 3-6 hours after training (Igaz et al., 2002; Bekinschtein et al., 2007. These memory consolidation periods share some molecular phenomena; however, each period is also associated with events that are different from the other (Igaz et al., 2002. To date, there is a substantial amount of evidence showing that stressful events may facilitate neuronal function and cognition. The term "stress" usually refers to a nonspecific response of the body to stimuli that threaten the physiological/psychological homeostasis (Selye, 1976; Chrousos et al., 1988. The stress response is associated with the activation of two physiological systems: the hypothalamic-pituitary-adrenal (HPA axis and the sympathetic adrenomedullary (SAM. Glucocorticoids (cortisol in humans and corticosterone in rodents are steroid hormones secreted by the adrenal glands as a

  9. Memory consolidation from seconds to weeks: A three-stage neural network model with autonomous reinstatement dynamics

    Directory of Open Access Journals (Sweden)

    Florian eFiebig

    2014-07-01

    Full Text Available Declarative long-term memories are not created at an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories on different brain regions - called systems consolidation - can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia following hippocampal lesions, points to a gradual transfer of memory from hippocampus to neocortical long-term memory. Spontaneous reactivations of hippocampal memories, as observed in place cell reactivations during slow-wave-sleep, are supposed to drive neocortical reinstatements and facilitate this process.We propose a functional neural network implementation of these ideas and furthermore suggest an extended three-stage framework that also includes the prefrontal cortex and bridges the temporal chasm between working memory percepts on the scale of seconds and consolidated long-term memory on the scale of weeks or months.We show that our three-stage model can autonomously produce the necessary stochastic reactivation dynamics for successful episodic memory consolidation. The resulting learning system is shown to exhibit classical memory effects seen in experimental studies, such as retrograde and anterograde amnesia after simulated hippocampal lesioning; furthermore the model reproduces peculiar biological findings on memory modulation, such as retrograde facilitation of memory after suppressed acquisition of new long-term memories - similar to the effects of benzodiazepines on memory.

  10. Time course of scopolamine effect on memory consolidation and forgetting in rats.

    Science.gov (United States)

    Popović, Miroljub; Giménez de Béjar, Verónica; Popović, Natalija; Caballero-Bleda, María

    2015-02-01

    The effect of scopolamine on the consolidation and forgetting of emotional memory has not been completely elucidated yet. The aim of the present study was to investigate the time course of scopolamine effect on consolidation and forgetting of passive avoidance response. In a first experiment of the present study, we tested the effect of scopolamine (1mg/kg, i.p., immediately after acquisition), on 24h and 48h retention performance of the step-through passive avoidance task, in adult male Wistar rats. On the 24h retested trial, the latency of the passive avoidance response was significantly lower, while on the 48h retested trial it was significantly higher in scopolamine than in the saline-treated group. In a second experiment, we assessed the 24h time course of scopolamine (1mg/kg) effect on memory consolidation in passive avoidance task. We found that scopolamine administration only within the first six and half hours after acquisition improved memory consolidation in 48h retention performance. Finally, a third experiment was performed on the saline- and scopolamine-treated rats (given immediately after acquisition) that on the 48h retention test did not step through into the dark compartment during the cut-off time. These animals were retested weekly for up to first three months, and after that, every three months until the end of experiment (i.e., 15 months after acquisition). The passive avoidance response in the saline treated group lasted up to 6 weeks after acquisition, while in the scopolamine treated group 50% of animals conserved the initial level of passive avoidance response until the experiment end point. In conclusion, the present data suggest that (1) improving or impairment effect of scopolamine given in post-training periods depends on delay of retention trial, (2) memory consolidation process could be modify by scopolamine within first six and half hours after training and (3) scopolamine could delay forgetting of emotional memory. Copyright

  11. Procedural and declarative memory performance, and the memory consolidation function of sleep, in recent and abstinent Ecstasy/MDMA users

    Science.gov (United States)

    Blagrove, Mark; Seddon, Jennifer; George, Sophie; Parrott, Andrew C.; Stickgold, Robert; Walker, Matthew; Jones, Katy; Morgan, Michael J.

    2013-01-01

    This study assessed the effects of ecstasy/MDMA on declarative memory (Rivermead Behavioral Memory task - RBMT), on procedural learning (Finger Tapping Task - FTT), and on the memory consolidation function of sleep for these two tasks. Testing occurred in 2 afternoon testing sessions, 24 hours apart so that a full period of sleep was allowed between them. Groups were: Non-drug taking Controls (n=24); Recent Ecstasy/MDMA users, who had taken ecstasy and/or MDMA 2–3 days before the first testing session (n=25), and Abstinent Ecstasy/MDMA users, who had not taken ecstasy/MDMA for at least 8 days before the first session (n=17). The recent ecstasy/MDMA users performed significantly worse than controls on the RBMT (mean recall 76.1% of control group recall), but did not differ from controls on FTT performance. Correspondingly there was a significant regression between the continuous variable of recency of ecstasy/MDMA use and RBMT performance. However, there was an interaction between ecstasy/MDMA use and subsequent other drug use. Controls had similar RBMT scores to recent ecstasy/MDMA users who did not take other drugs 48 – 24 hours before testing, but scored significantly better than recent ecstasy/MDMA users who took various other drugs (mainly cannabis) 48 – 24 hours before testing. For both tasks the control, recent ecstasy/MDMA and abstinent ecstasy/MDMA users did not differ in their change of performance across 24 hours; there was thus no evidence that ecstasy/MDMA impairs the memory consolidation function of sleep for either declarative or procedural memory. For participants in the two ecstasy/MDMA groups greater lifetime consumption of ecstasy tablets was associated with significantly more deficits in procedural memory. Furthermore, greater lifetime consumption of ecstasy tablets and of cocaine, were also associated with significantly more deficits in declarative memory. PMID:20615932

  12. What drives sleep-dependent memory consolidation: greater gain or less loss?

    Science.gov (United States)

    Fenn, Kimberly M; Hambrick, David Z

    2013-06-01

    When memory is tested after a delay, performance is typically better if the retention interval includes sleep. However, it is unclear what accounts for this well-established effect. It is possible that sleep enhances the retrieval of information, but it is also possible that sleep protects against memory loss that normally occurs during waking activity. We developed a new research approach to investigate these possibilities. Participants learned a list of paired-associate items and were tested on the items after a 12-h interval that included waking or sleep. We analyzed the number of items gained versus the number of items lost across time. The sleep condition showed more items gained and fewer items lost than did the wake condition. Furthermore, the difference between the conditions (favoring sleep) in lost items was greater than the difference in gain, suggesting that loss prevention may primarily account for the effect of sleep on declarative memory consolidation. This finding may serve as an empirical constraint on theories of memory consolidation.

  13. Effects of stress related acute exercise on consolidation of implicit motor memory

    Directory of Open Access Journals (Sweden)

    Farhad Ghadiri

    2012-12-01

    Full Text Available Introduction: Extensive evidence documents arousal modulation of declarative memory in humans. However, little is known about the arousal modulation of implicit motor memory. The purpose of this study was to examine the effects of a post-acquisition acute exercise stress on implicit motor memory consolidation.Materials and Methods: Forty healthy subjects were randomly divided into stress (10 men and 10 woman and non- stress (10 men and 10 woman groups. Experiment consisted of two phases of acquisition and retention. Serial Color matching (SCM task was used for this study. In acquisition period, all groups practiced the task for six blocks of 150 trials. Following, the stress group performed exercise on a treadmill until the moment of exhaustion while the non stress group did rest. In retention, all groups practiced the SCM task in one block. During the experiment the trends of saliva cortisol changes were measured.Results: Acute exercise stress leads to a significant increase in salivary cortisol level. While the non-stress group did not show enhancement of SCRT learning across the 24 hours delay interval, the stress group showed substantial enhancement across the same time (P<0.05.Conclusion: Our findings indicate that acute stress after acquisition can facilitate the implicit motor memory consolidation.

  14. Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory

    DEFF Research Database (Denmark)

    Ostadan, Fatemeh; Centeno, Carla; Daloze, Jean-Felix

    2016-01-01

    A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural...... exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory....... memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory...

  15. The temporal locus of the interaction between working memory consolidation and the attentional blink.

    Science.gov (United States)

    Akyürek, Elkan G; Leszczyński, Marcin; Schubö, Anna

    2010-11-01

    An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3 component was shown to be affected by both working memory load and the lag between the target stimuli, consistent with current models of temporal attention and a functional explanation of the P3 in terms of memory consolidation. P3 amplitude was reduced for short target lags and high memory loads. The P2 component was affected by lag only, and not memory load. Importantly, the N2pc component was modulated also by both lag and memory load. The results showed that early attentional processing (as marked by the N2pc) was suppressed by increased involvement of working memory, a phenomenon not well predicted by many current theories of temporal attention. Copyright © 2010 Society for Psychophysiological Research.

  16. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    Science.gov (United States)

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  17. Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats.

    Science.gov (United States)

    Chen, Lin; Tian, Shaowen; Ke, Jie

    2014-03-20

    There is increasing evidence that sleep plays a critical role in memory consolidation. However, there are comparatively few studies that have assessed the relationship between sleep and memory reconsolidation. In the present study, we explored the effects of rapid eye movement sleep deprivation (RSD) on the consolidation (experiment 1) and reconsolidation (experiment 2) of novel object recognition memory in rats. In experiment 1 behavioral procedure involved two training phases: sample and test. Rats were subjected to 6h RSD starting either immediately after sample (exposed to 2 objects) or 6h later. In experiment 2 behavioral procedure involved three training phases: sample, reactivation and test. Rats were subjected to 6h RSD starting either immediately after reactivation (exposed to the same 2 sample objects to reactivate the memory trace) or 6h later. Results from experiment 1 showed that post-sample RSD from 0 to 6h but not 6 to 12h disrupted novel object recognition memory consolidation. However, we found that post-reactivation RSD whether from 0 to 6h or 6 to 12h had no effect on novel object recognition memory reconsolidation in experiment 2. The results indicated that RSD selectively disrupted consolidation of novel object recognition memory, suggesting a dissociation effect of RSD on consolidation and reconsolidation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Background matters: Minor vibratory stimulation during motor skill acquisition selectively reduces off-line memory consolidation.

    Science.gov (United States)

    Korman, Maria; Herling, Zohar; Levy, Ishay; Egbarieh, Nebal; Engel-Yeger, Batya; Karni, Avi

    2017-04-01

    Although a ubiquitous situation, it is not clear how effective is a learning experience when task-irrelevant, sensory noise occurs in the background. Here, young adults were trained on the finger opposition sequence task, in a well-established training and testing protocol affording measures for online as well as off-line learning. During the training session, one group experienced a minor background vibratory stimulation to the trunk by the means of vibrating cushion, while the second group experienced recorded sound vibrations. A control group was trained with no extra sensory stimulation. Sensory stimulation during training had no effect on the online within-session gains, but dampened the expression of the off-line, consolidation phase, gains in the two sensory stimulation groups. These results suggest that background sensory stimulation can selectively modify off-line, procedural memory consolidation processes, despite well-preserved on-line learning. Classical studies have shown that neural plasticity in sensory systems is modulated by motor input. The current results extend this notion and suggest that some types of task-irrelevant sensory stimulation, concurrent with motor training, may constitute a 'gating' factor - modulating the triggering of long-term procedural memory consolidation processes. Thus, vibratory stimulation may be considered as a behavioral counterpart of pharmacological interventions that do not interfere with short term neural plasticity but block long-term plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  20. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Janna eMantua

    2015-06-01

    Full Text Available Individuals with a history of traumatic brain injury (TBI often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations. Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-hrs later, following an interval awake or with overnight sleep. Young adult participants (18-22 yrs were assigned to one of four experimental groups: TBI Sleep (n=14, TBI Wake (n=12, non-TBI Sleep (n=15, non-TBI Wake (n=15. Each TBI participant was >1 yr post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-hr intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  1. Effect of positive emotion on consolidation of memory for faces: the modulation of facial valence and facial gender.

    Science.gov (United States)

    Wang, Bo

    2013-01-01

    Studies have shown that emotion elicited after learning enhances memory consolidation. However, no prior studies have used facial photos as stimuli. This study examined the effect of post-learning positive emotion on consolidation of memory for faces. During the learning participants viewed neutral, positive, or negative faces. Then they were assigned to a condition in which they either watched a 9-minute positive video clip, or a 9-minute neutral video. Then 30 minutes after the learning participants took a surprise memory test, in which they made "remember", "know", and "new" judgements. The findings are: (1) Positive emotion enhanced consolidation of recognition for negative male faces, but impaired consolidation of recognition for negative female faces; (2) For males, recognition for negative faces was equivalent to that for positive faces; for females, recognition for negative faces was better than that for positive faces. Our study provides the important evidence that effect of post-learning emotion on memory consolidation can extend to facial stimuli and such an effect can be modulated by facial valence and facial gender. The findings may shed light on establishing models concerning the influence of emotion on memory consolidation.

  2. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

    Directory of Open Access Journals (Sweden)

    Richard Thomas

    2016-01-01

    Full Text Available High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs, healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output exercise bout at 20 min (EX90, 1 h (EX90+1, 2 h (EX90+2 after acquisition or rested (CON. Retention tests were performed at 1 d (R1 and 7 d (R7. At R1 changes in performance scores after acquisition were greater for EX90 than CON (p<0.001 and EX90+2 (p=0.001. At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p<0.001, p=0.008, and p=0.008, resp.. Changes for EX90 at R7 were greater than EX90+2 (p=0.049. Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation.

  3. Posterior parietal cortex is critical for the encoding, consolidation, and retrieval of a memory that guides attention for learning.

    Science.gov (United States)

    Schiffino, Felipe L; Zhou, Vivian; Holland, Peter C

    2014-02-01

    Within most contemporary learning theories, reinforcement prediction error, the difference between the obtained and expected reinforcer value, critically influences associative learning. In some theories, this prediction error determines the momentary effectiveness of the reinforcer itself, such that the same physical event produces more learning when its presentation is surprising than when it is expected. In other theories, prediction error enhances attention to potential cues for that reinforcer by adjusting cue-specific associability parameters, biasing the processing of those stimuli so that they more readily enter into new associations in the future. A unique feature of these latter theories is that such alterations in stimulus associability must be represented in memory in an enduring fashion. Indeed, considerable data indicate that altered associability may be expressed days after its induction. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event, and to the subsequent expression of that altered associability in more rapid learning. Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    Science.gov (United States)

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  5. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    Science.gov (United States)

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals…

  6. NF-κB Transcription Factor Role in Consolidation and Reconsolidation of Persistent Memories

    Directory of Open Access Journals (Sweden)

    Verónica ede la Fuente

    2015-09-01

    Full Text Available Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the NF-κB family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.

  7. Impairment of fear memory consolidation in maternally stressed male mouse offspring: evidence for nongenomic glucocorticoid action on the amygdala.

    Science.gov (United States)

    Lee, Eun Jeong; Son, Gi Hoon; Chung, Sooyoung; Lee, Sukwon; Kim, Jeongyeon; Choi, Sukwoo; Kim, Kyungjin

    2011-05-11

    The environment in early life elicits profound effects on fetal brain development that can extend into adulthood. However, the long-lasting impact of maternal stress on emotional learning remains largely unknown. Here, we focus on amygdala-related learning processes in maternally stressed mice. In these mice, fear memory consolidation and certain related signaling cascades were significantly impaired, though innate fear, fear memory acquisition, and synaptic NMDA receptor expression in the amygdala were unaltered. In accordance with these findings, maintenance of long-term potentiation (LTP) at amygdala synapses, but not its induction, was significantly impaired in the maternally stressed animals. Interestingly, amygdala glucocorticoid receptor expression was reduced in the maternally stressed mice, and administration of glucocorticoids (GCs) immediately after fear conditioning and LTP induction restored memory consolidation and LTP maintenance, respectively, suggesting that a weakening of GC signaling was responsible for the observed impairment. Furthermore, microinfusion of a membrane-impermeable form of GC (BSA-conjugated GC) into the amygdala mimicked the restorative effects of GC, indicating that a nongenomic activity of GC mediates the restorative effect. Together, these findings suggest that prenatal stress induces long-term dysregulation of nongenomic GC action in the amygdala of adult offspring, resulting in the impairment of fear memory consolidation. Since modulation of amygdala activity is known to alter the consolidation of emotionally influenced memories allocated in other brain regions, the nongenomic action of GC on the amygdala shown herein may also participate in the amygdala-dependent modulation of memory consolidation.

  8. Sleep Promotes Consolidation of Emotional Memory in Healthy Children but Not in Children with Attention-Deficit Hyperactivity Disorder

    Science.gov (United States)

    Prehn-Kristensen, Alexander; Munz, Manuel; Molzow, Ina; Wilhelm, Ines; Wiesner, Christian D.; Baving, Lioba

    2013-01-01

    Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD) is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline) and delayed (target) retrieval session. The emotional memory bias was baseline–corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake). We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta) during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD. PMID:23734235

  9. Sleep promotes consolidation of emotional memory in healthy children but not in children with attention-deficit hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Alexander Prehn-Kristensen

    Full Text Available Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline and delayed (target retrieval session. The emotional memory bias was baseline-corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake. We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD.

  10. Estradiol-Induced Object Recognition Memory Consolidation Is Dependent on Activation of mTOR Signaling in the Dorsal Hippocampus

    Science.gov (United States)

    Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…

  11. Sleep promotes consolidation of emotional memory in healthy children but not in children with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Prehn-Kristensen, Alexander; Munz, Manuel; Molzow, Ina; Wilhelm, Ines; Wiesner, Christian D; Baving, Lioba

    2013-01-01

    Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD) is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline) and delayed (target) retrieval session. The emotional memory bias was baseline-corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake). We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta) during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD.

  12. Interaction between episodic and semantic memory networks in the acquisition and consolidation of novel spoken words.

    Science.gov (United States)

    Takashima, Atsuko; Bakker, Iske; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2017-04-01

    When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and again after a delay of one week. Words learned with meanings were remembered better than those learned without meanings. Both episodic (hippocampus-dependent) and semantic (dependent on distributed neocortical areas) memory systems were utilised during recognition of the novel words. The extent to which the two systems were involved changed as a function of time and the amount of associated information, with more involvement of both systems for the meaningful words than for the form-only words after the one-week delay. These results suggest that the reason the meaningful words were remembered better is that their retrieval can benefit more from these two complementary memory systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    Science.gov (United States)

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  14. Evaluation Effects of Verapamil as a Calcium Channel Blocker on Acquisition, Consolidation and Retrieval of Memory in Mice

    Directory of Open Access Journals (Sweden)

    Nooshin Masoudian

    2015-04-01

    Full Text Available Many factors are involved in learning and memory processes including brain nuclei, neurotransmitter systems, and the activity of ion channels. Studies showed inconsistent effects of calcium channel blockers on learning process, especially memory consolidation; however, little is known about their effect on memory acquisition and retrieval. Accordingly, the present study aimed to determine the effects of verapamil calcium channel antagonist as a representative of the phenylalkylamine group on different stages of memory and learning processes including acquisition, consolidation and retrieval in mice. In this experimental study, 150 male albino mice with a mean weight of 30 g were used. The mice were trained in a passive avoidance-learning task (1 mA shock for 2 seconds for evaluation of memory acquisition and consolidation and 3 seconds for evaluation of memory retrieval. The effect of verapamil (1, 2.5, 5, 10, and 20 mg/kg on memory consolidation and the most effective dose of consolidation phase on memory acquisition and retrieval was assessed. For the evaluation of memory consolidation, the animals received the drug intraperitoneally immediately after training, while for evaluation of memory acquisition and retrieval, the drug was injected one hour before training. Memory retrieval test was performed 48 hours after training (the length of time it took the animal to enter the dark part of the device. The results showed that verapamil injection exerted no effect on memory acquisition and consolidation; nevertheless, it was capable to disrupt memory retrieval in 10 and 20 mg doses. These results indicate that as a phenylalkylamine calcium channel antagonist, high doses of verapamil can impair memory. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso

  15. Fact retrieval and memory consolidation for a movement sequence: bidirectional effects of 'unrelated' cognitive tasks on procedural memory.

    Directory of Open Access Journals (Sweden)

    Rachel Tibi

    Full Text Available The generation of long-term memory for motor skills can be modulated by subsequent motor experiences that interfere with the consolidation process. Recent studies suggest that even a non-motor task may adversely affect some aspects of motor sequence memory. Here we show that motor sequence memory can be either enhanced or reduced, by different cognitive tasks. Participants were trained in performing finger movement sequences. Fully explicit instructions about the target sequence were given before practice. The buildup of procedural knowledge was tested at three time-points: immediately before training (T1, after practice (T2, and 24 hours later (T3. Each participant performed the task on two separate occasions; training on a different movement sequence on each occasion. In one condition, interference, participants performed a non-motor task immediately after T2. Half the participants solved simple math problems and half performed a simple semantic judgment task. In the baseline condition there was no additional task. All participants improved significantly between T1 and T2 (within-session gains. In addition, in the baseline condition, performance significantly improved between T2 and T3 (delayed 'off-line' gains. Solving math problems significantly enhanced these delayed gains in motor performance, whereas performing semantic decisions significantly reduced delayed gains compared to baseline. Thus, procedural motor memory consolidation can be either enhanced or inhibited by subsequent cognitive experiences. These effects do not require explicit or implicit new learning. The retrieval of unrelated, non-motor, well established knowledge can modulate procedural memory.

  16. Strengthening a consolidated memory: the key role of the reconsolidation process.

    Science.gov (United States)

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2014-01-01

    The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dissociation of explicit and implicit long-term memory consolidation in semantic dementia: a case study.

    Science.gov (United States)

    Tu, S; Mioshi, E; Savage, S; Hodges, J R; Hornberger, M

    2013-08-01

    We report a case study of a semantic dementia patient, whose episodic memory consolidation was tested over a 2-month period. The results reveal that despite early retention of information, the patient lost all explicit information of the newly learnt material after 2 weeks. By contrast, he retained implicit word information even after a 4-week delay. These findings highlight the critical time window of 2-4 weeks in which newly learnt information should be re-encoded in rehabilitations studies. The results also indicate that learnt information can be still accessed with implicit retrieval strategies when explicit retrieval fails.

  18. Consolidation and reconsolidation are impaired by oral propranolol administered before but not after memory (re)activation in humans.

    Science.gov (United States)

    Thomas, Émilie; Saumier, Daniel; Pitman, Roger K; Tremblay, Jacques; Brunet, Alain

    2017-07-01

    Propranolol administered immediately after learning or after recall has been found to impair memory consolidation or reconsolidation (respectively) in animals, but less reliably so in humans. Since reconsolidation impairment has been proposed as a treatment for mental disorders that have at their core an emotional memory, it is desirable to understand how to reliably reduce the strength of pathogenic memories in humans. We postulated that since humans (unlike experimental animals) typically receive propranolol orally, this introduces a delay before this drug can exert its memory impairment effects, which may render it less effective. As a means to test this, in two double-blind placebo-controlled experiments, we examined the capacity of propranolol to impair consolidation and reconsolidation as a function of timing of ingestion in healthy subjects. In Experiment 1, (n=36), propranolol administered immediately after learning or recall failed to impair the consolidation or reconsolidation of the memory of a standardized slideshow with an accompanying emotional story. In Experiment 2 (n=50), propranolol given 60-75min before learning or recall successfully impaired memory consolidation and reconsolidation. These results suggest that it is possible to achieve reliable memory impairment in humans if propranolol is given before learning or before recall, but not after. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. "The seven sins" of the Hebbian synapse: can the hypothesis of synaptic plasticity explain long-term memory consolidation?

    Science.gov (United States)

    Arshavsky, Yuri I

    2006-10-01

    Memorizing new facts and events means that entering information produces specific physical changes within the brain. According to the commonly accepted view, traces of memory are stored through the structural modifications of synaptic connections, which result in changes of synaptic efficiency and, therefore, in formations of new patterns of neural activity (the hypothesis of synaptic plasticity). Most of the current knowledge on learning and initial stages of memory consolidation ("synaptic consolidation") is based on this hypothesis. However, the hypothesis of synaptic plasticity faces a number of conceptual and experimental difficulties when it deals with potentially permanent consolidation of declarative memory ("system consolidation"). These difficulties are rooted in the major intrinsic self-contradiction of the hypothesis: stable declarative memory is unlikely to be based on such a non-stable foundation as synaptic plasticity. Memory that can last throughout an entire lifespan should be "etched in stone." The only "stone-like" molecules within living cells are DNA molecules. Therefore, I advocate an alternative, genomic hypothesis of memory, which suggests that acquired information is persistently stored within individual neurons through modifications of DNA, and that these modifications serve as the carriers of elementary memory traces.

  20. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    OpenAIRE

    Ricker, Timothy J.; Cowan, Nelson

    2013-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals necessarily result in more forgetting. An obstacle to directly comparing conflicting reports is a divergence in methodology across studies. Studies tha...

  1. Evaluation Effects of Verapamil as a Calcium Channel Blocker on Acquisition, Consolidation and Retrieval of Memory in Mice

    OpenAIRE

    Nooshin Masoudian; Nahid Masoudian; Ali Rashidy Pour; Abbas Ali Vafaiee; Sasan Andalib; Golnaz Vaseghi

    2015-01-01

    Many factors are involved in learning and memory processes including brain nuclei, neurotransmitter systems, and the activity of ion channels. Studies showed inconsistent effects of calcium channel blockers on learning process, especially memory consolidation; however, little is known about their effect on memory acquisition and retrieval. Accordingly, the present study aimed to determine the effects of verapamil calcium channel antagonist as a representative of the phenylalkylamine group on ...

  2. Memantine prevents memory consolidation failure induced by soluble beta amyloid in rats

    Directory of Open Access Journals (Sweden)

    Paolo eTucci

    2014-09-01

    Full Text Available It has been well documented that β-amyloid peptide accumulation and aggregation in the brain plays a crucial role in the pathophysiology of Alzheimer’s disease (AD. However, a new orientation of the amyloid cascade hypothesis has evidenced that soluble forms of the peptide (sAβ are involved in Aβ-induced cognitive impairment and cause rapid disruption of the synaptic mechanisms underlying memory. The primary aim of this study was to elucidate the effects of sAβ, acutely injected intracerebrally (i.c.v., 4 µM, on the short term and long term memory of young adult male rats, by using the novel object recognition task. Glutamatergic receptors have been proposed as mediating the effect of Aβ on synaptic plasticity and memory. Thus, we also investigated the effects of sAβ on prefrontal cortex (PFC glutamate release and the specific contribution of N-methyl-D-aspartate (NMDA receptor modulation to the effects of sAβ administration on the cognitive parameters evaluated. We found that a single i.c.v. injection of sAβ 2h before testing did not alter the ability of rats to differentiate between a familiar and a novel object, in a short term memory test, while it was able to negatively affect consolidation/retrieval of long term memory. Moreover, a significant increase of glutamate levels was found in PFC of rats treated with the peptide 2 h earlier. Interestingly, memory deficit induced by sAβ was reversed by a NMDA-receptor antagonist, memantine (5 mg/kg i.p, administered immediately after the familiarization trial (T1. On the contrary, memantine administered 30 min before T1 trial, was not able to rescue long term memory impairment. Taken together, our results suggest that an acute i.c.v. injection of sAβ peptide interferes with the consolidation/retrieval of long term memory. Moreover, such sAβ-induced effect indicates the involvement of glutamatergic system, proposing that NMDA receptor inhibition might prevent or lead to the recovery of

  3. Modulating influences of memory strength and sensitivity of the retrieval test on the detectability of the sleep consolidation effect.

    Science.gov (United States)

    Schoch, Sarah F; Cordi, Maren J; Rasch, Björn

    2017-11-01

    Emotionality can increase recall probability of memories as emotional information is highly relevant for future adaptive behavior. It has been proposed that memory processes acting during sleep selectively promote the consolidation of emotional memories, so that neutral memories no longer profit from sleep consolidation after learning. This appears as a selective effect of sleep for emotional memories. However, other factors contribute to the appearance of a consolidation benefit and influence this interpretation. Here we show that the strength of the memory trace before sleep and the sensitivity of the retrieval test after sleep are critical factors contributing to the detection of the benefit of sleep on memory for emotional and neutral stimuli. 228 subjects learned emotional and neutral pictures and completed a free recall after a 12-h retention interval of either sleep or wakefulness. We manipulated memory strength by including an immediate retrieval test before the retention interval in half of the participants. In addition, we varied the sensitivity of the retrieval test by including an interference learning task before retrieval testing in half of the participants. We show that a "selective" benefit of sleep for emotional memories only occurs in the condition with high memory strength. Furthermore, this "selective" benefit disappeared when we controlled for the memory strength before the retention interval and used a highly sensitive retrieval test. Our results indicate that although sleep benefits are more robust for emotional memories, neutral memories similarly profit from sleep after learning when more sensitive indicators are used. We conclude that whether sleep benefits on memory appear depends on several factors, including emotion, memory strength and sensitivity of the retrieval test. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation.

    Directory of Open Access Journals (Sweden)

    June C Lo

    Full Text Available Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1 and a 2-hour interval involving either daytime napping or wakefulness (experiment 2. Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen's d=0.71 and 0.68 than for related ones (Cohen's d=0.58 and 0.15. While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting.

  5. Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation.

    Science.gov (United States)

    Lo, June C; Dijk, Derk-Jan; Groeger, John A

    2014-01-01

    Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1) and a 2-hour interval involving either daytime napping or wakefulness (experiment 2). Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen's d=0.71 and 0.68) than for related ones (Cohen's d=0.58 and 0.15). While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting.

  6. Acute exercise and motor memory consolidation: Does exercise type play a role?

    DEFF Research Database (Denmark)

    Thomas, Richard; Flindtgaard, Mads; Skriver, Kasper Christen

    2017-01-01

    d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off...... following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill......-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed....

  7. Individual Differences in Working Memory Capacity Predict Sleep-Dependent Memory Consolidation

    Science.gov (United States)

    Fenn, Kimberly M.; Hambrick, David Z.

    2012-01-01

    Decades of research have established that "online" cognitive processes, which operate during conscious encoding and retrieval of information, contribute substantially to individual differences in memory. Furthermore, it is widely accepted that "offline" processes during sleep also contribute to memory performance. However, the question of whether…

  8. Sleep-related declarative memory consolidation and verbal replay during sleep talking in patients with REM sleep behavior disorder.

    Directory of Open Access Journals (Sweden)

    Ginevra Uguccioni

    Full Text Available OBJECTIVE: To determine if sleep talkers with REM sleep behavior disorder (RBD would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. METHODS: Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation. In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. RESULTS: Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words as in controls (+9±18%, p=0.3. The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index. Daytime consolidation (-9±19% was worse than night-time consolidation (+29±45%, p=0.03 in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally related to the text learned before sleep. CONCLUSION: Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself at the semantic level suggests a replay at a highly cognitive creative level.

  9. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories

    Science.gov (United States)

    2012-01-01

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies. PMID:22827854

  10. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata

    Science.gov (United States)

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata. Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  11. Anisomycin administered in the olfactory bulb and dorsal hippocampus impaired social recognition memory consolidation in different time-points.

    Science.gov (United States)

    Pena, R R; Pereira-Caixeta, A R; Moraes, M F D; Pereira, G S

    2014-10-01

    To identify an individual as familiar, rodents form a specific type of memory named social recognition memory. The olfactory bulb (OB) is an important structure for social recognition memory, while the hippocampus recruitment is still controversial. The present study was designed to elucidate the OB and the dorsal hippocampus contribution to the consolidation of social memory. For that purpose, we tested the effect of anisomycin (ANI), which one of the effects is the inhibition of protein synthesis, on the consolidation of social recognition memory. Swiss adult mice with cannulae implanted into the CA1 region of the dorsal hippocampus or into the OB were exposed to a juvenile during 5 min (training session; TR), and once again 1.5 h or 24 h later to test social short-term memory (S-STM) or social long-term memory (S-LTM), respectively. To study S-LTM consolidation, mice received intra-OB or intra-CA1 infusion of saline or ANI immediately, 3, 6 or 18 h after TR. ANI impaired S-LTM consolidation in the OB, when administered immediately or 6h after TR. In the dorsal hippocampus, ANI was amnesic only if administered 3 h after TR. Furthermore, the infusion of ANI in either OB or CA1, immediately after training, did not affect S-STM. Moreover, ANI administered into the OB did not alter the animal's performance in the buried food-finding task. Altogether, our results suggest the consolidation of S-LTM requires both OB and hippocampus participation, although in different time points. This study may help shedding light on the specific roles of the OB and dorsal hippocampus in social recognition memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    Science.gov (United States)

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-04

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  13. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory.

    Directory of Open Access Journals (Sweden)

    Melissa S Monsey

    Full Text Available Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs in the lateral nucleus of the amygdala (LA. Rats received chronic exposure to CORT (50 μg/ml in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM is not affected, while long-term memory (LTM is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.

  14. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory.

    Science.gov (United States)

    Monsey, Melissa S; Boyle, Lara M; Zhang, Melinda L; Nguyen, Caroline P; Kronman, Hope G; Ota, Kristie T; Duman, Ronald S; Taylor, Jane R; Schafe, Glenn E

    2014-01-01

    Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT) on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs) in the lateral nucleus of the amygdala (LA). Rats received chronic exposure to CORT (50 μg/ml) in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM) is not affected, while long-term memory (LTM) is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.

  15. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories.

    Science.gov (United States)

    Wiesner, Christian D; Pulst, Julika; Krause, Fanny; Elsner, Marike; Baving, Lioba; Pedersen, Anya; Prehn-Kristensen, Alexander; Göder, Robert

    2015-07-01

    Emotion boosts the consolidation of events in the declarative memory system. Rapid eye movement (REM) sleep is believed to foster the memory consolidation of emotional events. On the other hand, REM sleep is assumed to reduce the emotional tone of the memory. Here, we investigated the effect of selective REM-sleep deprivation, SWS deprivation, or wake on the affective evaluation and consolidation of emotional and neutral pictures. Prior to an 9-h retention interval, sixty-two healthy participants (23.5 ± 2.5 years, 32 female, 30 male) learned and rated their affect to 80 neutral and 80 emotionally negative pictures. Despite rigorous deprivation of REM sleep or SWS, the residual sleep fostered the consolidation of neutral and negative pictures. Furthermore, emotional arousal helped to memorize the pictures. The better consolidation of negative pictures compared to neutral ones was most pronounced in the SWS-deprived group where a normal amount of REM sleep was present. This emotional memory bias correlated with REM sleep only in the SWS-deprived group. Furthermore, emotional arousal to the pictures decreased over time, but neither sleep nor wake had any differential effect. Neither the comparison of the affective ratings (arousal, valence) during encoding and recognition, nor the affective ratings of the recognized targets and rejected distractors supported the hypothesis that REM sleep dampens the emotional reaction to remembered stimuli. The data suggest that REM sleep fosters the consolidation of emotional memories but has no effect on the affective evaluation of the remembered contents. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    Science.gov (United States)

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  17. Beyond a Mask and Against the Bottleneck: Retroactive Dual-Task Interference During Working Memory Consolidation of a Masked Visual Target

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Wyble, Brad

    While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result,

  18. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala.

    Science.gov (United States)

    Aubry, Antonio V; Serrano, Peter A; Burghardt, Nesha S

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  19. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation Within the Amygdala

    Directory of Open Access Journals (Sweden)

    Antonio Aubry

    2016-10-01

    Full Text Available Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR and norepinephrine release within the amygdala leads to the mobilization of AMPA receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  20. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2015-01-01

    Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging

  1. Propranolol's effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis.

    Science.gov (United States)

    Lonergan, Michelle H; Olivera-Figueroa, Lening A; Pitman, Roger K; Brunet, Alain

    2013-07-01

    Considering the pivotal role of negative emotional experiences in the development and persistence of mental disorders, interfering with the consolidation/reconsolidation of such experiences would open the door to a novel treatment approach in psychiatry. We conducted a meta-analysis on the experimental evidence regarding the capacity of the ß-blocker propranolol to block the consolidation/reconsolidation of emotional memories in healthy adults. Selected studies consisted of randomized, double-blind experiments assessing long-term memory for emotional material in healthy adults and involved at least 1 propranolol and 1 placebo condition. We searched PsycInfo, PubMed, Web of Science, Cochrane Central, PILOTS, Google Scholar and clinicaltrials.org for eligible studies from the period 1995-2012. Ten consolidation (n = 259) and 8 reconsolidation (n = 308) experiments met the inclusion criteria. We calculated effect sizes (Hedges g) using a random effects model. Compared with placebo, propranolol given before memory consolidation reduced subsequent recall for negatively valenced stories, pictures and word lists (Hedges g = 0.44, 95% confidence interval [CI] 0.14-0.74). Propranolol before reconsolidation also reduced subsequent recall for negatively valenced emotional words and the expression of cue-elicited fear responses (Hedges g = 0.56, 95% CI 0.13-1.00). Limitations include the moderate number of studies examining the influence of propranolol on emotional memory consolidation and reconsolidation in healthy adults and the fact that most samples consisted entirely of young adults, which may limit the ecological validity of results. Propranolol shows promise in reducing subsequent memory for new or recalled emotional material in healthy adults. However, future studies will need to investigate whether more powerful idiosyncratic emotional memories can also be weakened and whether this weakening can bring about long-lasting symptomatic relief in clinical populations

  2. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation.

    Science.gov (United States)

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-05-05

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation.

  3. Retro-Active Emotion: Do Negative Emotional Stimuli Disrupt Consolidation in Working Memory?

    Directory of Open Access Journals (Sweden)

    Güven Kandemir

    Full Text Available While many studies have shown that a task-irrelevant emotionally arousing stimulus can interfere with the processing of a shortly following target, it remains unclear whether an emotional stimulus can also retro-actively interrupt the ongoing processing of an earlier target. In two experiments, we examined whether the presentation of a negative emotionally arousing picture can disrupt working memory consolidation of a preceding visual target. In both experiments, the effects of negative emotional pictures were compared with the effects of neutral pictures. In Experiment 1, the pictures were entirely task-irrelevant whereas in Experiment 2 the pictures were associated with a 2-alternative forced choice task that required participants to respond to the color of a frame surrounding the pictures. The results showed that the appearance of the pictures did not interfere with target consolidation when the pictures were task-irrelevant, whereas such interference was observed when the pictures were associated with a 2-AFC task. Most importantly, however, the results showed no effects of whether the picture had neutral or emotional content. Implications for further research are discussed.

  4. Reducing involuntary memory by interfering consolidation of stressful auditory information: A pilot study.

    Science.gov (United States)

    Tabrizi, Fara; Jansson, Billy

    2016-03-01

    Intrusive emotional memories were induced by aversive auditory stimuli and modulated with cognitive tasks performed post-encoding (i.e., during consolidation). A between-subjects design was used with four conditions; three consolidation-interference tasks (a visuospatial and two verbal interference tasks) and a no-task control condition. Forty-one participants listened to a soundtrack depicting traumatic scenes (e.g., police brutality, torture and rape). Immediately after listening to the soundtrack, the subjects completed a randomly assigned task for 10 min. Intrusions from the soundtrack were reported in a diary during the following seven-day period. In line with a modality-specific approach to intrusion modulation, auditory intrusions were reduced by verbal tasks compared to both a no-task and a visuospatial interference task.. The study did not control for individual differences in imagery ability which may be a feature in intrusion development. The results provide an increased understanding of how intrusive mental images can be modulated which may have implications for preventive treatment.. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation

    Science.gov (United States)

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-01-01

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation. PMID:24639586

  6. Daytime sleep enhances consolidation of the spatial but not motoric representation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial and egocentric (motor representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.

  7. Episodic Memory in Alzheimer Disease, Frontotemporal Dementia, and Dementia With Lewy Bodies/Parkinson Disease Dementia: Disentangling Retrieval From Consolidation.

    Science.gov (United States)

    Economou, Alexandra; Routsis, Christopher; Papageorgiou, Sokratis G

    2016-01-01

    Differences in episodic memory performance in patients with Alzheimer disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB)/Parkinson disease with dementia (PDD) are inconsistent and task dependent. The inconsistencies may be attributed to the different tasks drawing on different memory processes. Few studies have examined episodic memory impairment in the above groups using memory tests that facilitate encoding, to distinguish memory deficits due to impairment of specific processes. We examined the memory performance of 106 AD patients, 51 FTD patients, 26 DLB/PDD patients, and 37 controls using the Five-Words Test, a 5-item memory test that facilitates encoding. The patient groups did not differ in modified Mini Mental State Examination scores. AD patients scored lowest on the Five-Words Test overall, and showed the greatest reduction from immediate total recall to delayed free recall relative to the other 2 groups, consistent with a predominantly consolidation deficit. DLB/PDD patients showed the largest improvement from delayed free to delayed total recall relative to the other 2 groups, consistent with a predominantly retrieval deficit. Deficits in both consolidation and retrieval underlie the memory impairment of the patients, to different extents, and contribute to the theoretical understanding of the nature of the memory impairment of the patient groups.

  8. Acute exercise and motor memory consolidation: The role of exercise intensity and timing

    DEFF Research Database (Denmark)

    Thomas, Richard; Korsgaard Johnsen, Line; Geertsen, Svend Sparre

    2015-01-01

    Background A single bout of high intensity cycling (~90% VO2peak) immediately after motor skill training enhances motor memory consolidation. It is unclear how different parameters of exercise may influence this process and the underlying mechanisms are poorly understood. We hypothesize......) accompanying skill learning and exercise. Methods Sixty able-bodied male subjects (20-35 years) were randomly assigned to one of five groups that practiced a visuomotor accuracy task. 20 min post motor skill learning (MSL), subjects in Experiment A performed either a single bout of aerobic exercise at 45% (EX...... and baseline motor performance. Delayed retention tests of motor skill were tested 24 hours (R24) & 7 days (R7) post acquisition. Transcranial magnetic stimulation (TMS) was applied to the primary motor cortex to obtain measures of CSE, intracortical inhibition (SICI) and facilitation (SICF) before and after...

  9. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.

    Science.gov (United States)

    Tononi, Giulio; Cirelli, Chiara

    2014-01-08

    Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Acute exercise and motor memory consolidation: Does exercise type play a role?

    Science.gov (United States)

    Thomas, R; Flindtgaard, M; Skriver, K; Geertsen, S S; Christiansen, L; Korsgaard Johnsen, L; Busk, D V P; Bojsen-Møller, E; Madsen, M J; Ritz, C; Roig, M; Lundbye-Jensen, J

    2017-11-01

    A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Science.gov (United States)

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Transforming Growth Factor ß Recruits Persistent MAPK Signaling to Regulate Long-Term Memory Consolidation in "Aplysia Californica"

    Science.gov (United States)

    Shobe, Justin; Philips, Gary T.; Carew, Thomas J.

    2016-01-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization of "Aplysia." Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal…

  13. Reduced Consolidation, Reinstatement, and Renewal of Conditioned Fear Memory by Repetitive Treatment of Radix Polygalae in Mice

    Directory of Open Access Journals (Sweden)

    Jung-Won Shin

    2017-05-01

    Full Text Available The therapeutic goal for the treatment of posttraumatic stress disorder (PTSD is to promote extinction and to prevent the relapse of fearful memories. Research has identified pharmacological treatments that may regulate the formation and extinction of fear memories, but not many reagents that block the relapse of extinguished fear are known. Radix Polygalae (RP is an Asian herb used for sedation, and its ingredients have anxiolytic and antidepressant properties. As various neurological effects have been identified, we tested whether RP affects the relapse of fear. Freezing in response to a conditioned context and cues was used to measure the effects of RP in mice. In cohort 1 (n = 30, consolidation, extinction, and reinstatement were tested during the course of 18 days of treatment. In cohort 2 (n = 30, consolidation, extinction, and renewal were tested during 10 days of treatment. The consolidation, extinction, reinstatement, and possibly the renewal of context-induced freezing were inhibited due to the administration of RP in animal subjects. However, the effects of RP on the freezing responses of subjects elicited by conditioned auditory cues were less obvious. Because it effectively suppresses the consolidation of fear memories, RP may be used for primary and secondary prevention of symptoms in PTSD patients. Additionally, because it effectively suppresses the reinstatement and renewal of fear memories, RP may be applied for the prevention of fear relapse in PTSD patients who have undergone exposure therapy.

  14. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Directory of Open Access Journals (Sweden)

    Florence Kermen

    Full Text Available BACKGROUND: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days, but not a massed (within day, learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. CONCLUSION/SIGNIFICANCE: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  15. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Science.gov (United States)

    Kermen, Florence; Sultan, Sébastien; Sacquet, Joëlle; Mandairon, Nathalie; Didier, Anne

    2010-08-13

    It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  16. Hippocampal memory consolidation during sleep: a comparison of mammals and birds.

    Science.gov (United States)

    Rattenborg, Niels C; Martinez-Gonzalez, Dolores; Roth, Timothy C; Pravosudov, Vladimir V

    2011-08-01

    The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7-14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only

  17. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis.

    Science.gov (United States)

    Languille, Solène; Davis, Sabrina; Richer, Paulette; Alcacer, Cristina; Laroche, Serge; Hars, Bernard

    2009-11-01

    The ability to form long-term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3-day-old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen-activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short-term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post-natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny.

  18. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment.

    Science.gov (United States)

    Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes

    2017-07-26

    Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.

  19. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory.

    Science.gov (United States)

    Mac Callum, Phillip E; Hebert, Mark; Adamec, Robert E; Blundell, Jacqueline

    2014-07-01

    The mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is known to be involved in various long lasting forms of synaptic and behavioural plasticity. However, information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during both consolidation and reconsolidation of long-term memory (LTM) remains scant. Male C57BL/6 mice were injected systemically with rapamycin at various time points following conditioning or retrieval in an auditory fear conditioning paradigm, and compared to vehicle (and/or anisomycin) controls for subsequent memory recall. Systemic blockade of mTOR with rapamycin immediately or 12h after training or reactivation impairs both consolidation and reconsolidation of an auditory fear memory. Further behavioural analysis revealed that the enduring effects of rapamycin on reconsolidation are dependent upon reactivation of the memory trace. Rapamycin, however, has no effect on short-term memory or the ability to retrieve an established fear memory. Collectively, our data suggest that biphasic mTOR signalling is essential for both consolidation and reconsolidation-like activities that contribute to the formation, re-stabilization, and persistence of long term auditory-fear memories, while not influencing other aspects of the memory trace. These findings also provide evidence for a cogent treatment model for reducing the emotional strength of established, traumatic memories analogous to those observed in acquired anxiety disorders such as posttraumatic stress disorder (PTSD) and specific phobias, through pharmacologic blockade of mTOR using systemic rapamycin following reactivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Dorsoventral and Proximodistal Hippocampal Processing Account for the Influences of Sleep and Context on Memory (Re)consolidation: A Connectionist Model.

    Science.gov (United States)

    Lines, Justin; Nation, Kelsey; Fellous, Jean-Marc

    2017-01-01

    The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations.

  1. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory.

    Directory of Open Access Journals (Sweden)

    Wiâm Ramadan

    Full Text Available The beneficial effect of sleep on memory has been well-established by extensive research on humans, but the neurophysiological mechanisms remain a matter of speculation. This study addresses the hypothesis that the fast oscillations known as ripples recorded in the CA1 region of the hippocampus during slow wave sleep (SWS may provide a physiological substrate for long term memory consolidation. We trained rats in a spatial discrimination task to retrieve palatable reward in three fixed locations. Hippocampal local field potentials and cortical EEG were recorded for 2 h after each daily training session. There was an increase in ripple density during SWS after early training sessions, in both trained rats and in rats randomly rewarded for exploring the maze. In rats learning the place -reward association, there was a striking further significant increase in ripple density correlated with subsequent improvements in behavioral performance as the rat learned the spatial discrimination aspect of the task. The results corroborate others showing an experience-dependent increase in ripple activity and associated ensemble replay after exploratory activity, but in addition, for the first time, reveal a clear further increase in ripple activity related to associative learning based on spatial discrimination.

  2. Pharmacological differences between memory consolidation of habituation to an open field and inhibitory avoidance learning

    Directory of Open Access Journals (Sweden)

    Vianna M.R.M.

    2001-01-01

    Full Text Available Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or the entorhinal cortex were submitted to either a one-trial inhibitory avoidance task, or to 5 min of habituation to an open field. Immediately after training, they received intrahippocampal or intraentorhinal 0.5-µl infusions of saline, of a vehicle (2% dimethylsulfoxide in saline, of the glutamatergic N-methyl-D-aspartate (NMDA receptor antagonist 2-amino-5-phosphono pentanoic acid (AP5, of the protein kinase A inhibitor Rp-cAMPs (0.5 µg/side, of the calcium-calmodulin protein kinase II inhibitor KN-62, of the dopaminergic D1 antagonist SCH23390, or of the mitogen-activated protein kinase kinase inhibitor PD098059. Animals were tested in each task 24 h after training. Intrahippocampal KN-62 was amnestic for habituation; none of the other treatments had any effect on the retention of this task. In contrast, all of them strongly affected memory of the avoidance task. Intrahippocampal Rp-cAMPs, KN-62 and AP5, and intraentorhinal Rp-cAMPs, KN-62, PD098059 and SCH23390 caused retrograde amnesia. In view of the known actions of the treatments used, the present findings point to important biochemical differences in memory consolidation processes of the two tasks.

  3. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation?

    Science.gov (United States)

    Censor, N

    2013-10-10

    In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Feature binding and attention in working memory: a resolution of previous contradictory findings.

    Science.gov (United States)

    Allen, Richard J; Hitch, Graham J; Mate, Judit; Baddeley, Alan D

    2012-01-01

    We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer Baddeley, ( 2000 ) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer Baddeley, Allen, & Hitch, ( 2011 ). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.

  5. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala.

    Science.gov (United States)

    Stehberg, Jimmy; Moraga-Amaro, Rodrigo; Salazar, Christian; Becerra, Alvaro; Echeverría, Cesar; Orellana, Juan A; Bultynck, Geert; Ponsaerts, Raf; Leybaert, Luc; Simon, Felipe; Sáez, Juan C; Retamal, Mauricio A

    2012-09-01

    Recent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.

  6. Visual Working Memory Supports the Inhibition of Previously Processed Information: Evidence from Preview Search

    Science.gov (United States)

    Al-Aidroos, Naseem; Emrich, Stephen M.; Ferber, Susanne; Pratt, Jay

    2012-01-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search.…

  7. Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: Consequences for the development of post-traumatic stress disorder.

    Science.gov (United States)

    Morena, Maria; Berardi, Andrea; Peloso, Andrea; Valeri, Daniela; Palmery, Maura; Trezza, Viviana; Schelling, Gustav; Campolongo, Patrizia

    2017-06-30

    Intensive Care Unit (ICU) or emergency care patients, exposed to traumatic events, are at increased risk for Post-Traumatic Stress Disorder (PTSD) development. Commonly used sedative/anesthetic agents can interfere with the mechanisms of memory formation, exacerbating or attenuating the memory for the traumatic event, and subsequently promote or reduce the risk of PTSD development. Here, we evaluated the effects of ketamine, dexmedetomidine and propofol on fear memory consolidation and subsequent cognitive and emotional alterations related to traumatic stress exposure. Immediately following an inhibitory avoidance training, rats were intraperitoneally injected with ketamine (100-125mg/kg), dexmedetomidine (0.3-0.4mg/kg) or their vehicle and tested for 48h memory retention. Furthermore, the effects of ketamine (125mg/kg), dexmedetomidine (0.4mg/kg), propofol (300mg/kg) or their vehicle on long-term memory and social interaction were evaluated two weeks after drug injection in a rat PTSD model. Ketamine anesthesia increased memory retention without altering the traumatic memory strength in the PTSD model. However, ketamine induced a long-term reduction of social behavior. Conversely, dexmedetomidine markedly impaired memory retention, without affecting long-lasting cognitive or emotional behaviors in the PTSD model. We have previously shown that propofol anesthesia enhanced 48h memory retention. Here, we found that propofol induced an enduring traumatic memory enhancement and anxiogenic effects in the PTSD model. These findings provide new evidence for clinical studies showing that the use of ketamine or propofol anesthesia in emergency care and ICU might be more likely to promote the development of PTSD, while dexmedetomidine might have prophylactic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Consolidation ou résistance à l'interférence ?Etude de la contribution des états de sommeil aux processus post-apprentissage de consolidation et de résistance à l'interférence lexicale et émotionnelle rétroactive./Consolidation or protection against interference? an investigation of sleep stages contribution in post-learning memory consolidation and protection against lexical and emotional retroactive interference processes.

    OpenAIRE

    Deliens, Gaétane

    2013-01-01

    Although a relative consensus exists about the contribution of post-learning sleep in the consolidation of novel information in long term memory, the definition of the respective contributions of sleep stages in memory consolidation processes remains a matter of debates. Scrima (1982) proposed the hypothesis that Slow Waves Sleep (SWS) contributes preventing retroactive interference on recently acquired information, whereas Rapid Eyes Movement sleep (REM) contributes consolidating this inform...

  9. Reflections of distraction in memory: transfer of previous distraction improves recall in younger and older adults.

    Science.gov (United States)

    Thomas, Ruthann C; Hasher, Lynn

    2012-01-01

    Three studies explored whether younger and older adults' free recall performance can benefit from prior exposure to distraction that becomes relevant in a memory task. Participants initially read stories that included distracting text. Later, they studied a list of words for free recall, with half of the list consisting of previously distracting words. When the memory task was indirect in its use of distraction (Study 1), only older adults showed transfer, with better recall of previously distracting compared with new words, which increased their recall to match that of younger adults. However, younger adults showed transfer when cued about the relevance of previous distraction both before studying the words (Study 2) and before recalling the words (Study 3) in the memory test. Results suggest that both younger and older adults encode distraction, but younger adults require explicit cueing to use their knowledge of distraction. In contrast, older adults transfer knowledge of distraction in both explicitly cued and indirect memory tasks. Results are discussed in terms of age differences in inhibition and source-constrained retrieval.

  10. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial.

    Science.gov (United States)

    Wamsley, Erin J; Shinn, Ann K; Tucker, Matthew A; Ono, Kim E; McKinley, Sophia K; Ely, Alice V; Goff, Donald C; Stickgold, Robert; Manoach, Dara S

    2013-09-01

    In schizophrenia there is a dramatic reduction of sleep spindles that predicts deficient sleep-dependent memory consolidation. Eszopiclone (Lunesta), a non-benzodiazepine hypnotic, acts on γ-aminobutyric acid (GABA) neurons in the thalamic reticular nucleus where spindles are generated. We investigated whether eszopiclone could increase spindles and thereby improve memory consolidation in schizophrenia. In a double-blind design, patients were randomly assigned to receive either placebo or 3 mg of eszopiclone. Patients completed Baseline and Treatment visits, each consisting of two consecutive nights of polysomnography. On the second night of each visit, patients were trained on the motor sequence task (MST) at bedtime and tested the following morning. Academic research center. Twenty-one chronic, medicated schizophrenia outpatients. We compared the effects of two nights of eszopiclone vs. placebo on stage 2 sleep spindles and overnight changes in MST performance. Eszopiclone increased the number and density of spindles over baseline levels significantly more than placebo, but did not significantly enhance overnight MST improvement. In the combined eszopiclone and placebo groups, spindle number and density predicted overnight MST improvement. Eszopiclone significantly increased sleep spindles, which correlated with overnight motor sequence task improvement. These findings provide partial support for the hypothesis that the spindle deficit in schizophrenia impairs sleep-dependent memory consolidation and may be ameliorated by eszopiclone. Larger samples may be needed to detect a significant effect on memory. Given the general role of sleep spindles in cognition, they offer a promising novel potential target for treating cognitive deficits in schizophrenia.

  11. Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats.

    Science.gov (United States)

    Park, Collin R; Zoladz, Phillip R; Conrad, Cheryl D; Fleshner, Monika; Diamond, David M

    2008-04-01

    We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women.

  12. Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity.

    Science.gov (United States)

    Gericke, G S

    2010-05-01

    Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the

  13. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica.

    Science.gov (United States)

    Shobe, Justin; Philips, Gary T; Carew, Thomas J

    2016-05-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization ofAplysia Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal (T-SW) reflex, a form of memory that requires both (i) extracellular signal-regulated kinase (ERK1/2; MAPK) activity within identified sensory neurons (SNs) that mediate the T-SW and (ii) the activation of transforming growth factor β (TGFβ) signaling. We now report that repeated tail shocks that induce intermediate-term (ITM) and LTM for sensitization, also induce a sustained post-training phase of MAPK activity in SNs (lasting at least 1 h). We identified two mechanistically distinct phases of post-training MAPK: (i) an immediate phase that does not require ongoing protein synthesis or TGFβ signaling, and (ii) a sustained phase that requires both protein synthesis and extracellular TGFβ signaling. We find that LTM consolidation requires sustained MAPK, and is disrupted by inhibitors of protein synthesis and TGFβ signaling during the consolidation window. These results provide strong evidence that TGFβ signaling sustains MAPK activity as an essential mechanistic step for LTM consolidation. © 2016 Shobe et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Task-set inertia and memory-consolidation bottleneck in dual tasks.

    Science.gov (United States)

    Koch, Iring; Rumiati, Raffaella I

    2006-11-01

    Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.

  15. [Changes in cortical power distribution produced by memory consolidation as a function of a typewriting skill].

    Science.gov (United States)

    Cunha, Marlo; Bastos, Victor Hugo; Veiga, Heloisa; Cagy, Maurício; McDowell, Kaleb; Furtado, Vernon; Piedade, Roberto; Ribeiro, Pedro

    2004-09-01

    The present study aimed to investigate alterations in EEG patterns in normal, right-handed individuals, during the process of learning a specific motor skill (typewriting). Recent studies have shown that the cerebral cortex is susceptible to several changes during a learning process and that alterations in the brain's electrical patterns take place as a result of the acquisition of a motor skill and memory consolidation. In this context, subjects' brain electrical activity was analyzed before and after the motor task. EEG data were collected by a Braintech 3000 and analyzed by Neurometrics. For the statistical analysis, the behavioral variables "time" and "number of errors" were assessed by a one-way ANOVA. For the neurophysiological variable "Absolute Power", a paired t-Test was performed for each pair of electrodes CZ-C3/CZ-C4, in the theta and alpha frequency bands. The main results demonstrated a change in performance, through both behavioral variables ("time" and "number of errors"). At the same time, no changes were observed for the neurophysiological variable ("Absolute Power") in the theta band. On the other hand, a significant increase was observed in the alpha band in central areas (CZ-C3/CZ-C4). These results suggest an adaptation of the sensory-motor cortex, as a consequence of the typewriting training.

  16. Stroop effects from newly learned color words: effects of memory consolidation and episodic context.

    Science.gov (United States)

    Geukes, Sebastian; Gaskell, M Gareth; Zwitserlood, Pienie

    2015-01-01

    The Stroop task is an excellent tool to test whether reading a word automatically activates its associated meaning, and it has been widely used in mono- and bilingual contexts. Despite of its ubiquity, the task has not yet been employed to test the automaticity of recently established word-concept links in novel-word-learning studies, under strict experimental control of learning and testing conditions. In three experiments, we thus paired novel words with native language (German) color words via lexical association and subsequently tested these words in a manual version of the Stroop task. Two crucial findings emerged: When novel word Stroop trials appeared intermixed among native-word trials, the novel-word Stroop effect was observed immediately after the learning phase. If no native color words were present in a Stroop block, the novel-word Stroop effect only emerged 24 h later. These results suggest that the automatic availability of a novel word's meaning depends either on supportive context from the learning episode and/or on sufficient time for memory consolidation. We discuss how these results can be reconciled with the complementary learning systems account of word learning.

  17. Stroop effects from newly learned color words: Effects of memory consolidation and episodic context

    Directory of Open Access Journals (Sweden)

    Sebastian eGeukes

    2015-03-01

    Full Text Available The Stroop task is an excellent tool to test whether reading a word automatically activates its associated meaning, and it has been widely used in mono- and bilingual contexts. Despite of its ubiquity, the task has not yet been employed to test the automaticity of recently established word-concept links in novel-word-learning studies, under strict experimental control of learning and testing conditions. In three experiments, we thus paired novel words with native language (German color words via lexical association and subsequently tested these words in a manual version of the Stroop task. Two crucial findings emerged: When novel word Stroop trials appeared intermixed among native-word trials, the novel-word Stroop effect was observed immediately after the learning phase. If no native color words were present in a Stroop block, the novel-word Stroop effect only emerged 24 hours later. These results suggest that the automatic availability of a novel word’s meaning depends either on supportive context from the learning episode and/or on sufficient time for memory consolidation. We discuss how these results can be reconciled with the complementary learning systems account of word learning.

  18. Stroop effects from newly learned color words: effects of memory consolidation and episodic context

    Science.gov (United States)

    Geukes, Sebastian; Gaskell, M. Gareth; Zwitserlood, Pienie

    2015-01-01

    The Stroop task is an excellent tool to test whether reading a word automatically activates its associated meaning, and it has been widely used in mono- and bilingual contexts. Despite of its ubiquity, the task has not yet been employed to test the automaticity of recently established word-concept links in novel-word-learning studies, under strict experimental control of learning and testing conditions. In three experiments, we thus paired novel words with native language (German) color words via lexical association and subsequently tested these words in a manual version of the Stroop task. Two crucial findings emerged: When novel word Stroop trials appeared intermixed among native-word trials, the novel-word Stroop effect was observed immediately after the learning phase. If no native color words were present in a Stroop block, the novel-word Stroop effect only emerged 24 h later. These results suggest that the automatic availability of a novel word's meaning depends either on supportive context from the learning episode and/or on sufficient time for memory consolidation. We discuss how these results can be reconciled with the complementary learning systems account of word learning. PMID:25814973

  19. Sleep deprivation affects fear memory consolidation: bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex.

    Science.gov (United States)

    Feng, Pan; Becker, Benjamin; Zheng, Yong; Feng, Tingyong

    2018-02-01

    Sleep plays an important role for successful fear memory consolidation. Growing evidence suggests that sleep disturbances might contribute to the development and the maintenance of posttraumatic stress disorder (PTSD), a disorders characterized by dysregulations in fear learning mechanisms, as well as exaggerated arousal and salience processing. Against this background, the present study examined the effects of sleep deprivation (SD) on the acquisition of fear and the subsequent neural consolidation. To this end, the present study assessed fear acquisition and associated changes in fMRI-based amygdala-functional connectivity following 24 h of SD. Relative to non-sleep deprived controls, SD subjects demonstrated increased fear ratings and skin conductance responses (SCR) during fear acquisition. During fear consolidation SD inhibited increased amygdala-ventromendial prefrontal cortex (vmPFC) connectivity and concomitantly increased changes in amygdala-insula connectivity. Importantly, whereas in controls fear indices during acquisition were negatively associated with amygdala-vmPFC connectivity during consolidation, fear indices were positively associated with amygdala-insula coupling following SD. Together the findings suggest that SD may interfere with vmPFC control of the amygdala and increase bottom-up arousal signaling in the amygdala-insula pathway during fear consolidation, which might mediate the negative impact of sleep disturbances on PSTD symptomatology.

  20. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways.

    Science.gov (United States)

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-03-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.

  1. Zinc supplementation in rats impairs hippocampal-dependent memory consolidation and dampens post-traumatic recollection of stressful event.

    Science.gov (United States)

    Contestabile, Antonio; Peña-Altamira, Emiliano; Virgili, Marco; Monti, Barbara

    2016-06-01

    Zinc is a trace element important for synaptic plasticity, learning and memory. Zinc deficiency, both during pregnancy and after birth, impairs cognitive performance and, in addition to memory deficits, also results in alterations of attention, activity, neuropsychological behavior and motor development. The effects of zinc supplementation on cognition, particularly in the adult, are less clear. We demonstrate here in adult rats, that 4 week-long zinc supplementation given by drinking water, and approximately doubling normal daily intake, strongly impairs consolidation of hippocampal-dependent memory, tested through contextual fear conditioning and inhibitory avoidance. Furthermore, the same treatment started after memory consolidation of training for the same behavioral tests, substantially dampens the recall of the stressful event occurred 4 weeks before. A molecular correlate of the amnesic effect of zinc supplementation is represented by a dysregulated function of GSK-3ß in the hippocampus, a kinase that participates in memory processes. The possible relevance of these data for humans, in particular regarding post-traumatic stress disorders, is discussed in view of future investigation. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  2. Species-relevant inescapable stress differently influences memory consolidation and retrieval of mice in a spatial radial arm maze.

    Science.gov (United States)

    Janitzky, K; Schwegler, H; Kröber, A; Roskoden, T; Yanagawa, Y; Linke, R

    2011-05-16

    Stress affects learning and there are both facilitating and impairing actions of stressors on memory processes. Here we investigated the influence of acute exposure to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), an ethological relevant stressor for rodents, on spatial memory formation and performance in a radial arm maze (RAM) task and studied TMT effects on corticosterone levels in GAD67-GFP knock-in mice and their wildtype littermates. Our results suggest that predator odor-exposure differently affects consolidation and retrieval of memory in a hippocampus-dependent spatial learning task in adult male mice, independently from their genotypes. Acute TMT-stress before retrieval facilitates performance, whereas repeated TMT-stress during consolidation exerts no influence. Additionally, we found genotype specific effects of TMT on corticosterone release. While TMT-stress tend to result in increased corticosterone release in wildtypes there was a significant decrease in transgenic mice. Taken together, these findings indicate that biologically significant predator odor-induced stress can have different actions on the strength of spatial memory formation depending on the timing with regard to memory phases. Furthermore, we suppose an impact of GABAergic mechanisms on HPA-stress axis activation to TMT resulting in absent peripheral corticosterone release of GAD67-GFP mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The effect of left frontal transcranial direct-current stimulation on propranolol-induced fear memory acquisition and consolidation deficits.

    Science.gov (United States)

    Nasehi, Mohammad; Khani-Abyaneh, Mozhgan; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-07-28

    Accumulating evidence supports the efficacy of transcranial direct current stimulation (tDCS) in modulating numerous cognitive functions. Despite the fact that tDCS has been used for the enhancement of memory and cognition, very few animal studies have addressed its impact on the modulation of fear memory. This study was designed to determine whether pre/post-training frontal tDCS application would alter fear memory acquisition and/or consolidation deficits induced by propranolol in NMRI mice. Results indicated that administration of β1-adrenoceptor blocker propranolol (0.1mg/kg) impaired fear memory retrieval. Pre/post-training application of anodal tDCS when propranolol was administered prior to training reversed contextual memory retrieval whereas only the anodal application prior to training could induce the same result in the auditory test. Meanwhile, anodal stimulation had no effect on fear memories by itself. Moreover, regardless of when cathode was applied and propranolol administered, their combination restored contextual memory retrieval, while only cathodal stimulation prior to training facilitated the contextual memory retrieval. Also, auditory memory retrieval was restored when cathodal stimulation and propranolol occurred prior to training but it was abolished when stimulation occurred after training and propranolol was administered prior to training. Collectively, our findings show that tDCS applied on the left frontal cortex of mice affects fear memory performance. This alteration seems to be task-dependent and varies depending on the nature and timing of the stimulation. In certain conditions, tDCS reverses the effect of propranolol. These results provide initial evidence to support the timely use of tDCS for the modulation of fear-related memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sequence specific motor performance gains after memory consolidation in children and adolescents.

    Directory of Open Access Journals (Sweden)

    Shoshi Dorfberger

    Full Text Available Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.

  5. Sequence specific motor performance gains after memory consolidation in children and adolescents.

    Science.gov (United States)

    Dorfberger, Shoshi; Adi-Japha, Esther; Karni, Avi

    2012-01-01

    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.

  6. Consciousness across Sleep and Wake: Discontinuity and Continuity of Memory Experiences As a Reflection of Consolidation Processes

    Directory of Open Access Journals (Sweden)

    Caroline L. Horton

    2017-09-01

    Full Text Available The continuity hypothesis (1 posits that there is continuity, of some form, between waking and dreaming mentation. A recent body of work has provided convincing evidence for different aspects of continuity, for instance that some salient experiences from waking life seem to feature in dreams over others, with a particular role for emotional arousal as accompanying these experiences, both during waking and while asleep. However, discontinuities have been somewhat dismissed as being either a product of activation-synthesis, an error within the consciousness binding process during sleep, a methodological anomaly, or simply as yet unexplained. This paper presents an overview of discontinuity within dreaming and waking cognition, arguing that disruptions of consciousness are as common a feature of waking cognition as of dreaming cognition, and that processes of sleep-dependent memory consolidation of autobiographical experiences can in part account for some of the discontinuities of sleeping cognition in a functional way. By drawing upon evidence of the incorporation, fragmentation, and reorganization of memories within dreams, this paper proposes a model of discontinuity whereby the fragmentation of autobiographical and episodic memories during sleep, as part of the consolidation process, render salient aspects of those memories subsequently available for retrieval in isolation from their contextual features. As such discontinuity of consciousness in sleep is functional and normal.

  7. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory.

    Science.gov (United States)

    Santini, Emanuela; Huynh, Thu N; Klann, Eric

    2014-01-01

    The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation. New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation has enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation. © 2014 Elsevier Inc. All rights reserved.

  8. 空间距离对视觉工作记忆巩固的影响%Effects of spatial distance on visual working memory consolidation

    Institute of Scientific and Technical Information of China (English)

    李腾飞; 马楠; 胡中华; 刘强

    2017-01-01

    以往研究发现,个体对不同类型的视觉信息进行视觉工作记忆巩固的模式存在差异,如对于方向信息,一次只能有一个项目被巩固进入视觉工作记忆系统,而对于颜色信息,个体则可以一次巩固两个项目进入视觉工作记忆系统.但对于视觉信息的巩固模式是否会受其他因素的影响,目前仍然没有明确的定论.本研究将探讨视觉信息的巩固模式是否可能受到记忆项目空间距离因素的影响.研究采用变化觉察范式、序列-同时呈现操作及控制记忆项目呈现间距的方法,通过3个实验考察记忆项目之间的空间距离是否能够影响个体对颜色信息和方向信息的巩固模式.在三种空间距离水平上序列呈现或同时呈现两个记忆项目,实验结果一致发现记忆项目之间的空间距离会对视觉工作记忆巩固模式产生明显影响,个体在同时呈现条件下的正确率会随着空间距离的增大而降低.这些结果表明对同一类视觉信息进行巩固的过程中所存在的项目数量限制并不是固定的,个体可以采用序列模式或有限容量的并行模式对同一类信息进行巩固,巩固的模式可能与视觉空间注意的分配以及视觉信息所能获得的注意资源有关.%During past years,visual working memory (VWM) consolidation has been studied extensively.Consolidation of visual information into VWM is widely considered to occur with capacity limit.Previous studies have demonstrated that two colors could be consolidated in parallel and two oriented gratings could be consolidated only in serial.Some researchers provided a bandwidth hypothesis for these results:because of the difference between the informational demands for color and for oriented grating,two colors could be consolidated in parallel without exceeding the bandwidth limit,whereas two oriented gratings could only be consolidated in serial because of exceeding the bandwidth limit.But other

  9. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    Science.gov (United States)

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for

  10. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    Science.gov (United States)

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.

  11. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning

    NARCIS (Netherlands)

    Wichmann, Romy; Fornari, Raquel V.; Roozendaal, Benno

    It is well established that glucocorticoid hormones strengthen the consolidation of long-term memory of emotionally arousing experiences but have little effect on memory of low-arousing experiences. Although both positive and negative emotionally arousing events tend to be well remembered, studies

  12. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning

    NARCIS (Netherlands)

    Wichmann, R.; Fornari, R.V.; Roozendaal, B.

    2012-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of long-term memory of emotionally arousing experiences but have little effect on memory of low-arousing experiences. Although both positive and negative emotionally arousing events tend to be well remembered, studies

  13. Ripple-Triggered Stimulation of the Locus Coeruleus during Post-Learning Sleep Disrupts Ripple/Spindle Coupling and Impairs Memory Consolidation

    Science.gov (United States)

    Novitskaya, Yulia; Sara, Susan J.; Logothetis, Nikos K.; Eschenko, Oxana

    2016-01-01

    Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to…

  14. Decreased nocturnal growth hormone secretion and sleep fragmentation in combat-related posttraumatic stress disorder; potential predictors of impaired memory consolidation

    NARCIS (Netherlands)

    van Liempt, Saskia; Vermetten, Eric; Lentjes, Eef; Arends, Johan; Westenberg, Herman

    2011-01-01

    Background: Healthy sleep facilitates the consolidation of newly acquired memories. Although patients with posttraumatic stress disorder (PTSD) often complain of sleep disturbances and memory deficits, the interrelatedness of these symptoms is not well understood. Sleep may be disturbed in PTSD by

  15. Pheromone-Induced Olfactory Memory in Newborn Rabbits: Involvement of Consolidation and Reconsolidation Processes

    Science.gov (United States)

    Coureaud, Gerard; Languille, Solene; Schaal, Benoist; Hars, Bernard

    2009-01-01

    Mammary pheromone (MP)-induced odor memory is a new model of appetitive memory functioning early in a mammal, the newborn rabbit. Some properties of this associative memory are analyzed by the use of anisomycin as an amnesic agent. Long-term memory (LTM) was impaired by anisomycin delivered immediately, but not 4 h after either acquisition or…

  16. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation.

    Science.gov (United States)

    Fogel, Stuart M; Smith, Carlyle T

    2011-04-01

    Until recently, the electrophysiological mechanisms involved in strengthening new memories into a more permanent form during sleep have been largely unknown. The sleep spindle is an event in the electroencephalogram (EEG) characterizing Stage 2 sleep. Sleep spindles may reflect, at the electrophysiological level, an ideal mechanism for inducing long-term synaptic changes in the neocortex. Recent evidence suggests the spindle is highly correlated with tests of intellectual ability (e.g.; IQ tests) and may serve as a physiological index of intelligence. Further, spindles increase in number and duration in sleep following new learning and are correlated with performance improvements. Spindle density and sigma (14-16Hz) spectral power have been found to be positively correlated with performance following a daytime nap, and animal studies suggest the spindle is involved in a hippocampal-neocortical dialogue necessary for memory consolidation. The findings reviewed here collectively provide a compelling body of evidence that the function of the sleep spindle is related to intellectual ability and memory consolidation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis.

    Science.gov (United States)

    Gibbs, Marie E; Hutchinson, Dana S; Summers, Roger J

    2008-09-01

    Noradrenaline, acting via beta(2)- and beta(3)-adrenoceptors (AR), enhances memory formation in single trial-discriminated avoidance learning in day-old chicks by mechanisms involving changes in metabolism of glucose and/or glycogen. Earlier studies of memory consolidation in chicks implicated beta(3)- rather than beta(2)-ARs in enhancement of memory consolidation by glucose, but did not elucidate whether stimulation of glucose uptake or of glycolysis was responsible. This study examines the role of glucose transport in memory formation using central injection of the nonselective facilitative glucose transporter (GLUT) inhibitor cytochalasin B, the endothelial/astrocytic GLUT-1 inhibitor phloretin and the Na(+)/energy-dependent endothelial glucose transporter (SGLT) inhibitor phlorizin. Cytochalasin B inhibited memory when injected into the mesopallium (avian cortex) either close to or between 25 and 45 min after training, whereas phloretin and phlorizin only inhibited memory at 30 min. This suggested that astrocytic/endothelial (GLUT-1) transport is critical at the time of consolidation, whereas a different transporter, probably the neuronal glucose transporter (GLUT-3), is important at the time of training. Inhibition of glucose transport by cytochalasin B, phloretin, or phlorizin also interfered with beta(3)-AR-mediated memory enhancement 20 min posttraining, whereas inhibition of glycogenolysis interfered with beta(2)-AR agonist enhancement of memory. We conclude that in astrocytes (1) activities of both GLUT-1 and SGLT are essential for memory consolidation 30 min posttraining; (2) neuronal GLUT-3 is essential at the time of training; and (3) beta(2)- and beta(3)-ARs consolidate memory by different mechanisms; beta(3)-ARs stimulate central glucose transport, whereas beta(2)-ARs stimulate central glycogenolysis.

  18. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning.

    Science.gov (United States)

    Wichmann, Romy; Fornari, Raquel V; Roozendaal, Benno

    2012-09-01

    It is well established that glucocorticoid hormones strengthen the consolidation of long-term memory of emotionally arousing experiences but have little effect on memory of low-arousing experiences. Although both positive and negative emotionally arousing events tend to be well remembered, studies investigating the neural mechanism underlying glucocorticoid-induced memory enhancement focused primarily on negatively motivated training experiences. In the present study we show an involvement of glucocorticoids within the nucleus accumbens (NAc) in enhancing memory consolidation of both an appetitive and aversive form of taste learning. The specific glucocorticoid receptor (GR) agonist RU 28362 (1 or 3ng) administered bilaterally into the NAc shell, but not core, of male Sprague-Dawley rats immediately after an appetitive saccharin drinking experience dose-dependently enhanced 24-h retention of the safe taste, resulting in a facilitated attenuation of neophobia. Similarly, GR agonist infusions given into the NAc shell immediately after pairing of the saccharin taste with a malaise-inducing agent enhanced memory of this negative experience, resulting in an intensified conditioned aversion. Importantly, a suppression of noradrenergic activity within the NAc shell with the β-adrenoceptor antagonist propranolol blocked the facilitating effect of a concurrently administered GR agonist on memory consolidation in both the appetitive and aversive learning task. Thus, these findings indicate that GR activation interacts with the noradrenergic arousal system within the NAc to enhance memory consolidation of emotionally arousing training experiences regardless of valence. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  20. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the

  1. Timing matters: negative emotion elicited 5 min but not 30 min or 45 min after learning enhances consolidation of internal-monitoring source memory.

    Science.gov (United States)

    Wang, Bo; Bukuan, Sun

    2015-05-01

    Two experiments examined the time-dependent effects of negative emotion on consolidation of item and internal-monitoring source memory. In Experiment 1, participants (n=121) learned a list of words. They were asked to read aloud half of the words and to think about the remaining half. They were instructed to memorize each word and its associative cognitive operation ("reading" versus "thinking"). Immediately following learning they conducted free recall and then watched a 3-min either neutral or negative video clip when 5 min, 30 min or 45 min had elapsed after learning. Twenty-four hours later they returned to take surprise tests for item and source memory. Experiment 2 was similar to Experiment 1 except that participants, without conducting an immediate test of free recall, took tests of source memory for all encoded words both immediately and 24 h after learning. Experiment 1 showed that negative emotion enhanced consolidation of item memory (as measured by retention ratio of free recall) regardless of delay of emotion elicitation and that negative emotion enhanced consolidation of source memory when it was elicited at a 5 min delay but reduced consolidation of source memory when it was elicited at a 30 min delay; when elicited at a 45 min delay, negative emotion had little effect. Furthermore, Experiment 2 replicated the enhancement effect on source memory in the 5 min delay even when participants were tested on all the encoded words. The current study partially replicated prior studies on item memory and extends the literature by providing evidence for a time-dependent effect of negative emotion on consolidation of source memory based on internal monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Divided Attention Improves Delayed, but Not Immediate Retrieval of a Consolidated Memory

    OpenAIRE

    Kessler, Yoav; Vandermorris, Susan; Gopie, Nigel; Daros, Alexander; Winocur, Gordon; Moscovitch, Morris

    2014-01-01

    A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA) during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval p...

  3. The dynamic nature of systems consolidation: Stress during learning as a switch guiding the rate of the hippocampal dependency and memory quality.

    Science.gov (United States)

    Pedraza, Lizeth K; Sierra, Rodrigo O; Boos, Flávia Z; Haubrich, Josué; Quillfeldt, Jorge A; Alvares, Lucas de Oliveira

    2016-03-01

    Memory fades over time, becoming more schematic or abstract. The loss of contextual detail in memory may reflect a time-dependent change in the brain structures supporting memory. It has been well established that contextual fear memory relies on the hippocampus for expression shortly after learning, but it becomes hippocampus-independent at a later time point, a process called systems consolidation. This time-dependent process correlates with the loss of memory precision. Here, we investigated whether training intensity predicts the gradual decay of hippocampal dependency to retrieve memory, and the quality of the contextual memory representation over time. We have found that training intensity modulates the progressive decay of hippocampal dependency and memory precision. Strong training intensity accelerates systems consolidation and memory generalization in a remarkable timeframe match. The mechanisms underpinning such process are triggered by glucocorticoid and noradrenaline released during training. These results suggest that the stress levels during emotional learning act as a switch, determining the fate of memory quality. Moderate stress will create a detailed memory, whereas a highly stressful training will develop a generic gist-like memory. © 2015 Wiley Periodicals, Inc.

  4. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.

    Science.gov (United States)

    Sudhakaran, Indulekha P; Ramaswami, Mani

    2017-05-04

    Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs

  5. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors.

    Science.gov (United States)

    Hatakeyama, Dai; Okuta, Akiko; Otsuka, Emi; Lukowiak, Ken; Ito, Etsuro

    2013-05-01

    The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the application of human insulin receptor antibody, which recognizes the extracellular domain of human insulin receptor and acts as an antagonist even for MIP receptors. An injection of the human insulin receptor antibody into the abdominal cavity of trained snails blocks the consolidation process leading to LTM, even though the snails acquire taste aversion. Here, we examined whether or not taste-aversion training changes the mRNA expression level of MIP receptor in the snail brain and found that it does not. This result, taken together with previous findings, suggest that the MIPs' effect on synaptic function in the snail brain is attributable to a change in the MIP concentration, and not to a change in the mRNA expression level of MIP receptor, which is thought to reflect the number of MIP receptors.

  6. Motor Interference Does Not Impair the Memory Consolidation of Imagined Movements

    Science.gov (United States)

    Debarnot, Ursula; Maley, Laura; De Rossi, Danilo; Guillot, Aymeric

    2010-01-01

    The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2 h, half of the…

  7. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    Science.gov (United States)

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    Science.gov (United States)

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Beyond a mask and against the bottleneck: retroactive dual-task interference during working memory consolidation of a masked visual target.

    Science.gov (United States)

    Nieuwenstein, Mark; Wyble, Brad

    2014-06-01

    While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result, estimates of the time course of working memory consolidation differ more than an order of magnitude. Here, we contrasted these opposing views by examining if and for how long the processing of a masked display of visual stimuli can be disturbed by a trailing 2-alternative forced choice task (2-AFC; a color discrimination task or a visual or auditory parity judgment task). The results showed that the presence of the 2-AFC task produced a pronounced retroactive interference effect that dissipated across stimulus onset asynchronies of 250-1,000 ms, indicating that the processing elicited by the 2-AFC task interfered with the gradual consolidation of the earlier shown stimuli. Furthermore, this interference effect occurred regardless of whether the to-be-remembered stimuli comprised a string of letters or an unfamiliar complex visual shape, and it occurred regardless of whether these stimuli were masked. Conversely, the interference effect was reduced when the memory load for the 1st task was reduced, or when the 2nd task was a color detection task that did not require decision making. Taken together, these findings show that the formation of a durable and consciously accessible working memory trace for a briefly shown visual stimulus can be disturbed by a trailing 2-AFC task for up to several hundred milliseconds after the stimulus has been masked. By implication, the current findings challenge the common view that working memory consolidation involves an immutable central processing bottleneck, and they also make clear that consolidation does not stop when a stimulus is masked. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Prospective memory and its correlates and predictors in schizophrenia: an extension of previous findings.

    Science.gov (United States)

    Ungvari, Gabor S; Xiang, Yu-Tao; Tang, Wai-Kwong; Shum, David

    2008-09-01

    Prospective memory (PM) is the ability to remember to do something in the future without explicit prompts. Extending the number of subjects and the scope of our previously published study, this investigation examined the relationship between PM and socio-demographic and clinical factors, activities of daily living (ADL) and frontal lobe functions in patients with chronic schizophrenia. One hundred and ten Chinese schizophrenia patients, 60 from the previous study and 50 additional patients recruited for this study, and 110 matched healthy comparison subjects (HC) formed the study sample. Patients' clinical condition and activity of daily living were evaluated with the Brief Psychiatric Rating Scale (BPRS) and the Functional Needs Assessment (FNA). Time- and event-based PM tasks and three tests of prefrontal lobe functions (Design Fluency Test [DFT], Tower of London [TOL], Wisconsin Card Sorting Test [WCST]) were also administered. Patients' level of ADL and psychopathology were not associated with PM functions and only anticholinergic medications (ACM) showed a significant negative correlational relationship with PM tasks. Confirming the findings of the previous study, patients performed significantly more poorly on all two PM tasks than HC. Performance on time-based PM task significantly correlated with age, education level and DFT in HC and with age, DFT, TOL and WCST in patients. Patients' performance on the event-based PM correlated with DFT and one measure of WCST. In patients, TOL and age predicted the performance on time-based PM task; DFT and WCST predicted the event-based task. Involving a large sample of patients with matched controls, this study confirmed that PM is impaired in chronic schizophrenia. Deficient PM functions were related to prefrontal lobe dysfunction in both HC and patients but not to the patients' clinical condition, nor did they significantly affect ADL. ACMs determined certain aspects of PM.

  11. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate.

    Science.gov (United States)

    Terry, A V; Beck, W D; Warner, S; Vandenhuerk, L; Callahan, P M

    2012-01-01

    The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Role of kinin B1 and B2 receptors in memory consolidation during the aging process of mice.

    Science.gov (United States)

    Lemos, Mayra Tolentino Resk; Amaral, Fabio Agostini; Dong, Karis Ester; Bittencourt, Maria Fernanda Queiroz Prado; Caetano, Ariadiny Lima; Pesquero, João Bosco; Viel, Tania Araujo; Buck, Hudson Sousa

    2010-04-01

    Under physiological conditions, elderly people present memory deficit associated with neuronal loss. This pattern is also associated with Alzheimer's disease but, in this case, in a dramatically intensified level. Kinin receptors have been involved in neurodegeneration and increase of amyloid-beta concentration, associated with Alzheimer's disease (AD). Considering these findings, this work evaluated the role of kinin receptors in memory consolidation during the aging process. Male C57Bl/6 (wt), knock-out B1 (koB1) or B2 (koB2) mice (3, 6, 12 and 18-month-old - mo; n=10 per group) were submitted to an acquisition session, reinforcement to learning (24h later: test 1) and final test (7days later: test 2), in an active avoidance apparatus, to evaluate memory. Conditioned avoidance responses (CAR, % of 50 trials) were registered. In acquisition sessions, similar CAR were obtained among age matched animals from all strains. However, a significant decrease in CAR was observed throughout the aging process (3mo: 8.8+/-2.3%; 6mo: 4.1+/-0.6%; 12mo: 2.2+/-0.6%, 18mo: 3.6+/-0.6%, Pprocess. In test 1, as expected, memory retention increased significantly (Pmemory retention. In test 2, 3- and 6-month-old wt and koB1 mice of all ages showed a significant improvement in memory (Pmemory retention. We suggest that, during the aging process, the B1 receptor could be involved in neurodegeneration and memory loss. Nevertheless, the B2 receptor is apparently acting as a neuroprotective factor. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    OpenAIRE

    Cs?bi, Eszter; Benedek, P?lma; Janacsek, Karolina; Zavecz, Zs?fia; Katona, G?bor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-decl...

  14. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors.

    Science.gov (United States)

    Gianlorenço, A C L; Canto-de-Souza, A; Mattioli, R

    2013-12-17

    Studies have demonstrated the relationship between the histaminergic system and the cerebellum, and we intend to investigate the role of the cerebellar histaminergic system on memory consolidation. This study investigated the effect of intra-cerebellar microinjection of histamine on memory retention of inhibitory avoidance in mice, and the role of H1 and H2 receptors in it. The cerebellar vermis of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of histaminergic drugs: in the experiment 1, saline (SAL) or histamine (HA 0.54, 1.36, 2.72 or 4.07 nmol); experiment 2, SAL or 1.36 nmol HA 5 min after a pretreatment with 0.16 nmol chlorpheniramine (CPA) or SAL; and experiment 3, SAL or 1.36 nmol HA 5 min after a pretreatment with 2.85 nmol ranitidine (RA) or SAL. Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. In experiment 1, animals microinjected with 1.36 nmol HA showed a higher latency to cross to the dark compartment compared to controls and to 2.72 and 4.07 nmol HA groups. In experiment 2, the combined infusions revealed difference between control (SAL+SAL) and SAL+HA and CPA+HA; while in the experiment 3 the analysis indicated differences in retention latency between mice injected with SAL+SAL and SAL+HA. The groups that received the H2 antagonist RA did not show difference compared to control. These results indicate that 1.36 nmol HA enhances memory consolidation of inhibitory avoidance learning in mice and that the pretreatment with H2 antagonist RA was able to prevent this effect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Ganzfeld stimulation or sleep enhance long term motor memory consolidation compared to normal viewing in saccadic adaptation paradigm.

    Directory of Open Access Journals (Sweden)

    Caroline Voges

    Full Text Available Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation ("Ganzfeld"-stimulation or sleep can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials - interspersed by an extinction block - which were followed by a two-hour break with or without visual deprivation (VD. Using additional adaptation and extinction blocks short and long (4 weeks term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep, might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation.

  16. Inhibition of Protein Synthesis but Not ß-Adrenergic Receptors Blocks Reconsolidation of a Cocaine-Associated Cue Memory

    Science.gov (United States)

    Dunbar, Amber B.; Taylor, Jane R.

    2016-01-01

    Previously consolidated memories have the potential to enter a state of lability upon memory recall, during which time the memory can be altered before undergoing an additional consolidation-like process and being stored again as a long-term memory. Blocking reconsolidation of aberrant memories has been proposed as a potential treatment for…

  17. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition.

    Science.gov (United States)

    Blank, Martina; Petry, Fernanda S; Lichtenfels, Martina; Valiati, Fernanda E; Dornelles, Arethuza S; Roesler, Rafael

    2016-03-01

    Relatively little is known about the requirement of signaling initiated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in the early phases of memory consolidation, as well as about its possible functional interactions with epigenetic mechanisms. Here we show that blocking TrkB in the dorsal hippocampus after learning or retrieval impairs retention of memory for inhibitory avoidance (IA). More importantly, the impairing effect of TrkB antagonism on consolidation was completely prevented by the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB). Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or NaB before training, followed by an infusion of either vehicle (VEH) or the selective TrkB antagonist ANA-12 immediately after training. In a second experiment, the infusions were administered before and after retrieval. ANA-12 after either training or retrieval produced a significant impairment in a subsequent memory retention test. Pretraining administration of NaB prevented the effect of ANA-12, although NaB given before retrieval did not alter the impairment resulting from TrkB blockade. The results indicate that inhibition of BDNF/TrkB in the hippocampus can hinder consolidation and reconsolidation of IA memory. However, TrkB activity is not required for consolidation in the presence of NaB, suggesting that a dysfunction in BDNF/TrkB signaling can be fully compensated by HDAC inhibition to allow hippocampal memory formation.

  18. The association between subjective memory complaint and objective cognitive function in older people with previous major depression.

    Directory of Open Access Journals (Sweden)

    Chung-Shiang Chu

    Full Text Available The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%. Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale score<7. The results suggest subjective memory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples.

  19. Memory Consolidation within the Central Amygdala Is Not Necessary for Modulation of Cerebellar Learning

    Science.gov (United States)

    Steinmetz, Adam B.; Ng, Ka H.; Freeman, John H.

    2017-01-01

    Amygdala lesions impair, but do not prevent, acquisition of cerebellum-dependent eyeblink conditioning suggesting that the amygdala modulates cerebellar learning. Two-factor theories of eyeblink conditioning posit that a fast-developing memory within the amygdala facilitates slower-developing memory within the cerebellum. The current study tested…

  20. Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation

    Science.gov (United States)

    Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin

    2012-01-01

    Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…

  1. Visual working memory supports the inhibition of previously processed information: evidence from preview search.

    Science.gov (United States)

    Al-Aidroos, Naseem; Emrich, Stephen M; Ferber, Susanne; Pratt, Jay

    2012-06-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search. We evaluated this proposal by testing three predictions. First, Experiments 1 and 2 demonstrate that preview inhibition is more effective when the number of previewed distractors is below VWM capacity than above; an effect that can only be observed at small preview set sizes (Experiment 2A) and when observers are allowed to move their eyes freely (Experiment 2B). Second, Experiment 3 shows that, when quantified as the number of inhibited distractors, the magnitude of the preview effect is stable across different search difficulties. Third, Experiment 4 demonstrates that individual differences in preview inhibition are correlated with individual differences in VWM capacity. These findings provide converging evidence that VWM supports the inhibition of previewed distractors. More generally, these findings demonstrate how VWM contributes to the efficiency of human visual information processing--VWM prioritizes new information by inhibiting old information from being reselected for attention.

  2. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    Science.gov (United States)

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  3. The effect of food quality during growth on spatial memory consolidation in adult pigeons.

    Science.gov (United States)

    Scriba, M F; Gasparini, J; Jacquin, L; Mettke-Hofmann, C; Rattenborg, N C; Roulin, A

    2017-02-15

    Poor environmental conditions experienced during early development can have negative long-term consequences on fitness. Animals can compensate for negative developmental effects through phenotypic plasticity by diverting resources from non-vital to vital traits such as spatial memory to enhance foraging efficiency. We tested in young feral pigeons ( Columba livia ) how diets of different nutritional value during development affect the capacity to retrieve food hidden in a spatially complex environment, a process we refer to as 'spatial memory'. Parents were fed with either high- or low-quality food from egg laying until young fledged, after which all young pigeons received the same high-quality diet until memory performance was tested at 6 months of age. The pigeons were trained to learn a food location out of 18 possible locations in one session, and then their memory of this location was tested 24 h later. Birds reared with the low-quality diet made fewer errors in the memory test. These results demonstrate that food quality during development has long-lasting effects on memory, with a moderate nutritional deficit improving spatial memory performance in a foraging context. It might be that under poor feeding conditions resources are redirected from non-vital to vital traits, or pigeons raised with low-quality food might be better in using environmental cues such as the position of the sun to find where food was hidden. © 2017. Published by The Company of Biologists Ltd.

  4. Social Recognition Memory: The Effect of Other People's Responses for Previously Seen and Unseen Items

    Science.gov (United States)

    Wright, Daniel B.; Mathews, Sorcha A.; Skagerberg, Elin M.

    2005-01-01

    When people discuss their memories, what one person says can influence what another personal reports. In 3 studies, participants were shown sets of stimuli and then given recognition memory tests to measure the effect of one person's response on another's. The 1st study (n=24) used word recognition with participant-confederate pairs and found that…

  5. Dreaming of a Learning Task Is Associated with Enhanced Sleep-Dependent Memory Consolidation

    OpenAIRE

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph A.; Stickgold, Robert

    2010-01-01

    It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a...

  6. The association between subjective memory complaint and objective cognitive function in older people with previous major depression.

    Science.gov (United States)

    Chu, Chung-Shiang; Sun, I-Wen; Begum, Aysha; Liu, Shen-Ing; Chang, Ching-Jui; Chiu, Wei-Che; Chen, Chin-Hsin; Tang, Hwang-Shen; Yang, Chia-Li; Lin, Ying-Chin; Chiu, Chih-Chiang; Stewart, Robert

    2017-01-01

    The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%). Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale scorememory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples.

  7. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors.

    Science.gov (United States)

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients

    Directory of Open Access Journals (Sweden)

    C. Gallea

    2015-01-01

    Full Text Available Sensorimotor representations of movements are created in the sensorimotor network through repeated practice to support successful and effortless performance. Writer's cramp (WC is a disorder acquired through extensive practice of finger movements, and it is likely associated with the abnormal acquisition of sensorimotor representations. We investigated (i the activation and connectivity changes in the brain network supporting the acquisition of sensorimotor representations of finger sequences in patients with WC and (ii the link between these changes and consolidation of motor performance 24 h after the initial practice. Twenty-two patients with WC and 22 age-matched healthy volunteers practiced a complex sequence with the right (pathological hand during functional MRI recording. Speed and accuracy were measured immediately before and after practice (day 1 and 24 h after practice (day 2. The two groups reached equivalent motor performance on day 1 and day 2. During motor practice, patients with WC had (i reduced hippocampal activation and hippocampal–striatal functional connectivity; and (ii overactivation of premotor–striatal areas, whose connectivity correlated with motor performance after consolidation. These results suggest that patients with WC use alternative networks to reach equiperformance in the acquisition of new motor memories.

  9. REM-Enriched Naps Are Associated with Memory Consolidation for Sad Stories and Enhance Mood-Related Reactivity

    Directory of Open Access Journals (Sweden)

    Médhi Gilson

    2015-12-01

    Full Text Available Emerging evidence suggests that emotion and affect modulate the relation between sleep and cognition. In the present study, we investigated the role of rapid-eye movement (REM sleep in mood regulation and memory consolidation for sad stories. In a counterbalanced design, participants (n = 24 listened to either a neutral or a sad story during two sessions, spaced one week apart. After listening to the story, half of the participants had a short (45 min morning nap. The other half had a long (90 min morning nap, richer in REM and N2 sleep. Story recall, mood evolution and changes in emotional response to the re-exposure to the story were assessed after the nap. Although recall performance was similar for sad and neutral stories irrespective of nap duration, sleep measures were correlated with recall performance in the sad story condition only. After the long nap, REM sleep density positively correlated with retrieval performance, while re-exposure to the sad story led to diminished mood and increased skin conductance levels. Our results suggest that REM sleep may not only be associated with the consolidation of intrinsically sad material, but also enhances mood reactivity, at least on the short term.

  10. REM-Enriched Naps Are Associated with Memory Consolidation for Sad Stories and Enhance Mood-Related Reactivity.

    Science.gov (United States)

    Gilson, Médhi; Deliens, Gaétane; Leproult, Rachel; Bodart, Alice; Nonclercq, Antoine; Ercek, Rudy; Peigneux, Philippe

    2015-12-29

    Emerging evidence suggests that emotion and affect modulate the relation between sleep and cognition. In the present study, we investigated the role of rapid-eye movement (REM) sleep in mood regulation and memory consolidation for sad stories. In a counterbalanced design, participants (n = 24) listened to either a neutral or a sad story during two sessions, spaced one week apart. After listening to the story, half of the participants had a short (45 min) morning nap. The other half had a long (90 min) morning nap, richer in REM and N2 sleep. Story recall, mood evolution and changes in emotional response to the re-exposure to the story were assessed after the nap. Although recall performance was similar for sad and neutral stories irrespective of nap duration, sleep measures were correlated with recall performance in the sad story condition only. After the long nap, REM sleep density positively correlated with retrieval performance, while re-exposure to the sad story led to diminished mood and increased skin conductance levels. Our results suggest that REM sleep may not only be associated with the consolidation of intrinsically sad material, but also enhances mood reactivity, at least on the short term.

  11. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice

    International Nuclear Information System (INIS)

    Gianlorenço, A.C.L.; Serafim, K.R.; Canto-de-Souza, A.; Mattioli, R.

    2014-01-01

    This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM

  12. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gianlorenço, A.C.L.; Serafim, K.R. [Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Canto-de-Souza, A. [Laboratório de Psicologia da Aprendizagem, Departamento de Psicologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Laboratório de Psicologia da Aprendizagem, Departamento de Psicologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Instituto de Neurociências e Comportamento, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Instituto de Neurociências e Comportamento, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattioli, R. [Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-02-17

    This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.

  13. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice

    Directory of Open Access Journals (Sweden)

    A.C.L. Gianlorenco

    2014-02-01

    Full Text Available This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM. The cerebellar vermis of male mice (Swiss albino was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2. Immediately after exposure to the EPM (T1, animals received a microinjection of saline (SAL or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2 under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE and spent less time in the open arms (%OAT in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.

  14. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation.

    Science.gov (United States)

    Salgado-Puga, Karla; Prado-Alcalá, Roberto A; Peña-Ortega, Fernando

    2015-01-01

    Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.

  15. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation

    Directory of Open Access Journals (Sweden)

    Fustiñana Maria

    2010-09-01

    Full Text Available Abstract Background Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Results Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl, showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels Conclusions cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  16. Differential Effects of Inactivation of Discrete Regions of Medial Prefrontal Cortex on Memory Consolidation of Moderate and Intense Inhibitory Avoidance Training

    Directory of Open Access Journals (Sweden)

    María E. Torres-García

    2017-11-01

    Full Text Available It has been found that the medial prefrontal cortex (mPFC is involved in memory encoding of aversive events, such as inhibitory avoidance (IA training. Dissociable roles have been described for different mPFC subregions regarding various memory processes, wherein the anterior cingulate cortex (ACC, prelimbic cortex (PL, and infralimbic cortex (IL are involved in acquisition, retrieval, and extinction of aversive events, respectively. On the other hand, it has been demonstrated that intense training impedes the effects on memory of treatments that typically interfere with memory consolidation. The aim of this work was to determine if there are differential effects on memory induced by reversible inactivation of neural activity of ACC, PL, or IL produced by tetrodotoxin (TTX in rats trained in IA using moderate (1.0 mA and intense (3.0 mA foot-shocks. We found that inactivation of ACC has no effects on memory consolidation, regardless of intensity of training. PL inactivation impairs memory consolidation in the 1.0 mA group, while no effect on consolidation was produced in the 3.0 mA group. In the case of IL, a remarkable amnestic effect in LTM was observed in both training conditions. However, state-dependency can explain the amnestic effect of TTX found in the 3.0 mA IL group. In order to circumvent this effect, TTX was injected into IL immediately after training (thus avoiding state-dependency. The behavioral results are equivalent to those found after PL inactivation. Therefore, these findings provide evidence that PL and IL, but not ACC, mediate LTM of IA only in moderate training.

  17. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation.

    Science.gov (United States)

    Fustiñana, Maria Sol; Ariel, Pablo; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2010-09-01

    Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  18. The Effect of Acute Exercise on Consolidation and Retention of Motor Memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen

    with the perspective of exploring the arguments for applying exercise systematically in the educational system. In addition, since a team sport could be more motivating to school children compared to e.g. running, we investigated the effects of both hockey and running on motor memory. Seventy-seven pre......There is substantial evidence that a single bout of exercise can improve cognitive functions and retention of certain types of declarative memory. However, it is unclear if a similar effect can be demonstrated when coupling physical activity with the acquisition and retention of a motor skill....... Hence, the overall aim of the present thesis was to investigate the relationship between acute exercise and motor memory, with special interest in investigating if exercise performed after motor skill learning could improve skill retention. Study I was designed to assess if a single bout of exercise...

  19. The temporal locus of the interaction between working memory consolidation and the attentional blink

    NARCIS (Netherlands)

    Akyürek, E.G.; Leszczyński, Marcin; Schubö, Anna

    2010-01-01

    An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3

  20. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    Science.gov (United States)

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.

    Science.gov (United States)

    Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien

    2017-01-01

    Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Benefits of Targeted Memory Reactivation for Consolidation in Sleep are Contingent on Memory Accuracy and Direct Cue-Memory Associations.

    Science.gov (United States)

    Cairney, Scott A; Lindsay, Shane; Sobczak, Justyna M; Paller, Ken A; Gaskell, M Gareth

    2016-05-01

    To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations. © 2016 Associated Professional Sleep Societies, LLC.

  3. mTORC2 controls actin polymerization required for consolidation of long-term memory

    Science.gov (United States)

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-01-01

    A major goal of biomedical research has been the identification of molecular mechanisms that can enhance memory. Here we report a novel signaling pathway that regulates the conversion from short- to long-term memory. The mTOR complex 2 (mTORC2), which contains the key regulatory protein Rictor (Rapamycin-Insensitive Companion of mTOR), was discovered only recently, and little is known about its physiological role. We show that conditional deletion of rictor in the postnatal murine forebrain greatly reduces mTORC2 activity and selectively impairs both long-term memory (LTM) and the late (but not the early) phase of hippocampal long-term potentiation (LTP). Actin polymerization is reduced in the hippocampus of mTORC2-deficient mice and its restoration rescues both L-LTP and LTM. More importantly, a compound that selectively promotes mTORC2 activity converts early-LTP into late-LTP and enhances LTM. These findings indicate that mTORC2 could be a novel therapeutic target for the treatment of cognitive dysfunction. PMID:23455608

  4. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Role of 5-HT5A receptors in the consolidation of memory.

    Science.gov (United States)

    Gonzalez, Roberto; Chávez-Pascacio, Karla; Meneses, Alfredo

    2013-09-01

    5-HT5 receptor occurs in brain areas implicated in learning and memory. Hence, the effects (0.01-3.0 mg/kg) of SB-6995516 (a 5-HT5A receptor antagonist) in the associative learning task of autoshaping were studied. The results showed that post-training injection of SB-699551 decreased conditioned responses (CR) during short-term (STM; 1.5h; at 0.1mg/kg) and long-term memory (LTM; 24 h; at 3.0 mg/kg) relative to the vehicle animals. Moreover, considering that there are no selective 5-HT5A receptor agonists, next, diverse doses of the serotonin precursor l-tryptophan were studied during STM and LTM, showing that l-tryptophan (5-100mg/kg) facilitated performance, particularly at 50mg/kg. In interactions experiments, l-tryptophan (50 mg/kg) attenuated the impairment effect induced by SB-699551 (either 0.3 or 3.0 mg/kg). All together this evidence suggests that the blockade of 5-HT5A receptor appear to be able to impair STM and LTM (24 h), while its stimulation might facilitate it. Of course further investigation is necessary, meanly with selective 5-HT5A compounds are necessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat

    Czech Academy of Sciences Publication Activity Database

    Rambousek, Lukáš; Páleníček, T.; Valeš, Karel; Stuchlík, Aleš

    2014-01-01

    Roč. 8, May 16 (2014), s. 180 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MZd(CZ) NT13386; GA ČR(CZ) GA14-03627S; GA ČR(CZ) GA14-20613S Grant - others:GA MZd(CZ) NT13897; Univerzita Karlova(CZ) Prvouk P34; GA MV(CZ) VG20122015080; GA MV(CZ) VG20122015075; GA MŠk(CZ) ED2.1.00/03.0078 Institutional support: RVO:67985823 Keywords : serotonin receptors * learning * memory * rat Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  7. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior.

    Science.gov (United States)

    Lach, Gilliard; de Lima, Thereza Christina Monteiro

    2013-07-01

    Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors

    OpenAIRE

    Hatakeyama, Dai; Okuta, Akiko; Otsuka, Emi; Lukowiak, Ken; Ito, Etsuro

    2013-01-01

    The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the a...

  10. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation.

    Science.gov (United States)

    Roozendaal, Benno; Schelling, Gustav; McGaugh, James L

    2008-06-25

    Extensive evidence indicates that stress hormone effects on the consolidation of emotionally influenced memory involve noradrenergic activation of the basolateral complex of the amygdala (BLA). The present experiments examined whether corticotropin-releasing factor (CRF) modulates memory consolidation via an interaction with the beta-adrenoceptor-cAMP system in the BLA. In a first experiment, male Sprague Dawley rats received bilateral infusions of the CRF-binding protein ligand inhibitor CRF(6-33) into the BLA either alone or together with the CRF receptor antagonist alpha-helical CRF(9-41) immediately after inhibitory avoidance training. CRF(6-33) induced dose-dependent enhancement of 48 h retention latencies, which was blocked by coadministration of alpha-helical CRF(9-41), suggesting that CRF(6-33) enhances memory consolidation by displacing CRF from its binding protein, thereby increasing "free" endogenous CRF concentrations. In a second experiment, intra-BLA infusions of atenolol (beta-adrenoceptor antagonist) and Rp-cAMPS (cAMP inhibitor), but not prazosin (alpha(1)-adrenoceptor antagonist), blocked CRF(6-33)-induced retention enhancement. In a third experiment, the CRF receptor antagonist alpha-helical CRF(9-41) administered into the BLA immediately after training attenuated the dose-response effects of concurrent intra-BLA infusions of clenbuterol (beta-adrenoceptor agonist). In contrast, alpha-helical CRF(9-41) did not alter retention enhancement induced by posttraining intra-BLA infusions of either cirazoline (alpha(1)-adrenoceptor agonist) or 8-br-cAMP (cAMP analog). These findings suggest that CRF facilitates the memory-modulatory effects of noradrenergic stimulation in the BLA via an interaction with the beta-adrenoceptor-cAMP cascade, at a locus between the membrane-bound beta-adrenoceptor and the intracellular cAMP formation site. Moreover, consistent with evidence that glucocorticoids enhance memory consolidation via a similar interaction with the

  11. Sleep Enhances Explicit Recollection in Recognition Memory

    Science.gov (United States)

    Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan

    2005-01-01

    Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on a contextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of…

  12. Protein kinase C mediates memory consolidation of taste avoidance conditioning in Lymnaea stagnalis.

    Science.gov (United States)

    Takigami, Satoshi; Sunada, Hiroshi; Lukowiak, Ken; Kuzirian, Alan M; Alkon, Daniel L; Sakakibara, Manabu

    2014-05-01

    In Lymnaea stagnalis, in order to obtain a 10 min short-term memory (STM) of taste avoidance conditioning (TAC) at least 10 paired presentations of a conditioned stimulus (CS), sucrose, and an unconditioned stimulus (US), tactile stimulation to the animal's head, are required. Pre-exposure of snails to the protein kinase C (PKC) α and ε activator bryostatin (Bryo) facilitated STM formation in that only 5 paired CS-US trials were required. Typically 20 paired presentations of the CS-US are required for formation of STM and LTM. However, 20 paired presentations do not result in STM or LTM if snails are pre-incubated with a PKC inhibitor, Ro-32-0432. We also found that LTM lasting longer than 48 h was acquired with Bryo incubation for 45 min even after termination of the conditioning paradigm. These data suggest that activation of the α and ε isozymes of PKC is crucially involved in the formation of LTM and provide further support for a mechanism that has been conserved across the evolution of species ranging from invertebrate molluscs to higher mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Navigation and Comprehension of Digital Expository Texts: Hypertext Structure, Previous Domain Knowledge, and Working Memory Capacity

    Science.gov (United States)

    Burin, Debora I.; Barreyro, Juan P.; Saux, Gastón; Irrazábal, Natalia C.

    2015-01-01

    Introduction: In contemporary information societies, reading digital text has become pervasive. One of the most distinctive features of digital texts is their internal connections via hyperlinks, resulting in non-linear hypertexts. Hypertext structure and previous knowledge affect navigation and comprehension of digital expository texts. From the…

  14. Memory and food intake in sheep: Effects of previous exposure to ...

    African Journals Online (AJOL)

    Animal behaviour pattern was monitored once every 5 min, over an 8-h period, immediately after first confinement. Frequency of eating, idling, ruminating, or drinking were all found to be significantly greater (P<0.001) for previously exposed lambs. Intakes of OM, N, DOM, and leaf fraction in straw were also significantly ...

  15. The phenomenon of claimed memories of previous lives: possible interpretations and importance.

    Science.gov (United States)

    Stevenson, I

    2000-04-01

    Several disorders or abnormalities observed in medicine and psychology are not explicable (or not fully explicable) by genetics and environmental influences, either alone or together. These include phobias and philias observed in early infancy, unusual play in childhood, homosexuality, gender identity disorder, a child's idea of having parents other than its own, differences in temperament manifested soon after birth, unusual birthmarks and their correspondence with wounds on a deceased person, unusual birth defects, and differences (physical and behavioral) between monozygotic twins. The hypothesis of previous lives can contribute to the further understanding of these phenomena. Copyright 2000 Harcourt Publishers Ltd.

  16. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation.

    Science.gov (United States)

    Beheshti, Siamak; Aslani, Neda

    2018-02-01

    It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance. Copyright © 2017. Published by Elsevier Ltd.

  17. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  18. Immediate recall influences the effects of pre-encoding stress on emotional episodic long-term memory consolidation in healthy young men.

    Science.gov (United States)

    Wolf, Oliver T

    2012-05-01

    The stress-associated activation of the hypothalamus-pituitary-adrenal axis influences memory. Several studies have supported the notion that post-learning stress enhances memory consolidation, while pre-retrieval stress impairs retrieval. Findings regarding the effects of pre-encoding stress, in contrast, have been rather inconsistent. In the current two studies, the impact of an immediate retrieval task on these effects was explored. In the first study, 24 healthy young male participants were exposed to a psychosocial laboratory stressor (Trier Social Stress Test) or a control condition before viewing positive, negative, and neutral photographs, which were accompanied by a brief narrative. Immediate as well as delayed (24 h later) free recall was assessed. Stress was expected to enhance emotional long-term memory without affecting immediate recall performance. Stress caused a significant increase in salivary cortisol concentrations but had no significant effects on immediate or delayed retrieval performance, even though a trend toward poorer memory of the stress group was apparent. Based on these findings, the second experiment tested the hypothesis that the beneficial effects of stress on emotional long-term memory performance might be abolished by an immediate recall test. In the second study (n = 32), the same design was used, except for the omission of the immediate retrieval test. This time stressed participants recalled significantly more negative photographs compared to the control group. The present study indicates that an immediate retrieval attempt of material studied after stress exposure can prevent or even reverse the beneficial effects of pre-encoding stress on emotional long-term memory consolidation.

  19. A Role of Protein Degradation in Memory Consolidation after Initial Learning and Extinction Learning in the Honeybee ("Apis mellifera")

    Science.gov (United States)

    Felsenberg, Johannes; Dombrowski, Vincent; Eisenhardt, Dorothea

    2012-01-01

    Protein degradation is known to affect memory formation after extinction learning. We demonstrate here that an inhibitor of protein degradation, MG132, interferes with memory formation after extinction learning in a classical appetitive conditioning paradigm. In addition, we find an enhancement of memory formation when the same inhibitor is…

  20. Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions

    Science.gov (United States)

    Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…

  1. Consistency of Flashbulb Memories of September 11 over Long Delays: Implications for Consolidation and Wrong Time Slice Hypotheses

    Science.gov (United States)

    Kvavilashvili, Lia; Mirani, Jennifer; Schlagman, Simone; Foley, Kerry; Kornbrot, Diana E.

    2009-01-01

    The consistency of flashbulb memories over long delays provides a test of theories of memory for highly emotional events. This study used September 11, 2001 as the target event, with test-retest delays of 2 and 3 years. The nature and consistency of flashbulb memories were examined as a function of delay between the target event and an initial…

  2. A-C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions.

    Science.gov (United States)

    Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S

    2018-06-04

    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.

  3. Reversal of apomorphine locomotor sensitization by a single post-conditioning trial treatment with a low autoreceptor dose of apomorphine: a memory re-consolidation approach.

    Science.gov (United States)

    Carrera, Marinete Pinheiro; Carey, Robert J; Dias, Flávia Regina Cruz; de Matos, Liana Wermelinger

    2011-07-01

    Sensitization is a common feature of psychostimulants and sensitization effects are generally considered to be linked to the addictive properties of these drugs. We used a conventional paired/unpaired Pavlovian protocol to induce a context specific sensitization to the locomotor stimulant effect of a high dose of apomorphine (2.0mg/kg). Two days following a 5 session sensitization induction phase, a brief 5min non-drug test for conditioning was conducted. Only the paired groups exhibited locomotor stimulant conditioned response effects. Immediately following this brief test for conditioning, the paired and the unpaired groups received injections of 0.05mg/kg apomorphine, 2.0mg/kg apomorphine or vehicle designed to differentially impact memory re-consolidation of the conditioning. Two days later, all groups received a sensitization challenge test with 2.0mg/kg apomorphine. The 2.0mg/kg apomorphine post-trial treatment potentiated sensitization while the 0.05mg/kg eliminated sensitization. These effects were only observed in the paired groups. The activation of dopaminergic systems by the high dose of apomorphine strengthened the drug/environment association whereas the inhibition of dopamine activity by the low auto-receptor dose eliminated this association. The results point to the importance of conditioning to context specific sensitization and targeting memory re-consolidation of conditioning as a paradigm to modify sensitization. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Post-Acquisition Release of Glutamate and Norepinephrine in the Amygdala Is Involved in Taste-Aversion Memory Consolidation

    Science.gov (United States)

    Guzman-Ramos, Kioko; Osorio-Gomez, Daniel; Moreno-Castilla, Perla; Bermudez-Rattoni, Federico

    2012-01-01

    Amygdala activity mediates the acquisition and consolidation of emotional experiences; we have recently shown that post-acquisition reactivation of this structure is necessary for the long-term storage of conditioned taste aversion (CTA). However, the specific neurotransmitters involved in such reactivation are not known. The aim of the present…

  5. Inhibition of protein synthesis but not β-adrenergic receptors blocks reconsolidation of a cocaine-associated cue memory

    OpenAIRE

    Dunbar, Amber B.; Taylor, Jane R.

    2016-01-01

    Previously consolidated memories have the potential to enter a state of lability upon memory recall, during which time the memory can be altered before undergoing an additional consolidation-like process and being stored again as a long-term memory. Blocking reconsolidation of aberrant memories has been proposed as a potential treatment for psychiatric disorders including addiction. Here we investigated of the effect of systemically administering the protein synthesis inhibitor cycloheximide ...

  6. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia

    OpenAIRE

    Pearce, Kaycey; Cai, Diancai; Roberts, Adam C; Glanzman, David L

    2017-01-01

    eLife digest The formation of long-term memory depends on new proteins being made in the brain. These new proteins are used partly to build the new connections among neurons that essentially store the memory, and must be made within a critical period of time. Experiments on animals have found that new proteins must be made during or shortly after training to form a stable memory; if protein synthesis is blocked during this period, the memory will not be stabilized (a process also known as mem...

  7. Concurrent Chemoradiotherapy Followed by Consolidation Chemotherapy With Bi-Weekly Docetaxel and Carboplatin for Stage III Unresectable, Non-Small-Cell Lung Cancer: Clinical Application of a Protocol Used in a Previous Phase II Study

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Jun-Ichi, E-mail: junsaito@sannet.ne.jp [Division of Radiation Oncology, Saitama Cancer Center, Saitama (Japan); Saito, Yoshihiro; Kazumoto, Tomoko; Kudo, Shigehiro; Yoshida, Daisaku; Ichikawa, Akihiro [Division of Radiation Oncology, Saitama Cancer Center, Saitama (Japan); Sakai, Hiroshi; Kurimoto, Futoshi [Division of Respiratory Disease, Saitama Cancer Center, Saitama (Japan); Kato, Shingo [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Shibuya, Kei [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma (Japan)

    2012-04-01

    Purpose: To assess the clinical applicability of a protocol evaluated in a previously reported phase II study of concurrent chemoradiotherapy followed by consolidation chemotherapy with bi-weekly docetaxel and carboplatin in patients with stage III, unresectable, non-small-cell lung cancer (NSCLC). Methods and Materials: Between January 2000 and March 2006, 116 previously untreated patients with histologically proven, stage III NSCLC were treated with concurrent chemoradiotherapy. Radiation therapy was administered in 2-Gy daily fractions to a total dose of 60 Gy in combination with docetaxel, 30 mg/m{sup 2}, and carboplatin at an area under the curve value of 3 every 2 weeks during and after radiation therapy. Results: The median survival time for the entire group was 25.5 months. The actuarial 2-year and 5-year overall survival rates were 53% and 31%, respectively. The 3-year cause-specific survival rate was 60% in patients with stage IIIA disease, whereas it was 35% in patients with stage IIIB disease (p = 0.007). The actuarial 2-year and 5-year local control rates were 62% and 55%, respectively. Acute hematologic toxicities of Grade {>=}3 severity were observed in 20.7% of patients, while radiation pneumonitis and esophagitis of Grade {>=}3 severity were observed in 2.6% and 1.7% of patients, respectively. Conclusions: The feasibility of the protocol used in the previous phase II study was reconfirmed in this series, and excellent treatment results were achieved.

  8. Concurrent Chemoradiotherapy Followed by Consolidation Chemotherapy With Bi-Weekly Docetaxel and Carboplatin for Stage III Unresectable, Non-Small-Cell Lung Cancer: Clinical Application of a Protocol Used in a Previous Phase II Study

    International Nuclear Information System (INIS)

    Saitoh, Jun-Ichi; Saito, Yoshihiro; Kazumoto, Tomoko; Kudo, Shigehiro; Yoshida, Daisaku; Ichikawa, Akihiro; Sakai, Hiroshi; Kurimoto, Futoshi; Kato, Shingo; Shibuya, Kei

    2012-01-01

    Purpose: To assess the clinical applicability of a protocol evaluated in a previously reported phase II study of concurrent chemoradiotherapy followed by consolidation chemotherapy with bi-weekly docetaxel and carboplatin in patients with stage III, unresectable, non-small-cell lung cancer (NSCLC). Methods and Materials: Between January 2000 and March 2006, 116 previously untreated patients with histologically proven, stage III NSCLC were treated with concurrent chemoradiotherapy. Radiation therapy was administered in 2-Gy daily fractions to a total dose of 60 Gy in combination with docetaxel, 30 mg/m 2 , and carboplatin at an area under the curve value of 3 every 2 weeks during and after radiation therapy. Results: The median survival time for the entire group was 25.5 months. The actuarial 2-year and 5-year overall survival rates were 53% and 31%, respectively. The 3-year cause-specific survival rate was 60% in patients with stage IIIA disease, whereas it was 35% in patients with stage IIIB disease (p = 0.007). The actuarial 2-year and 5-year local control rates were 62% and 55%, respectively. Acute hematologic toxicities of Grade ≥3 severity were observed in 20.7% of patients, while radiation pneumonitis and esophagitis of Grade ≥3 severity were observed in 2.6% and 1.7% of patients, respectively. Conclusions: The feasibility of the protocol used in the previous phase II study was reconfirmed in this series, and excellent treatment results were achieved.

  9. When Delays Improve Memory: Stabilizing Memory in Children May Require Time

    OpenAIRE

    Darby, Kevin P.; Sloutsky, Vladimir M.

    2015-01-01

    Memory is critical for learning, cognition and cognitive development. Recent work has suggested that preschool-aged children are vulnerable to catastrophic levels of memory interference, in which new learning dramatically attenuates memory for previously acquired knowledge. Work reported here investigates the effects of consolidation on children’s memory by introducing a 48- hours-long delay between learning and testing. In Experiment 1, the delay improved children’s memory and eliminated int...

  10. More Effective Consolidation of Episodic Long-Term Memory in Children Than Adults-Unrelated to Sleep.

    Science.gov (United States)

    Wang, Jing-Yi; Weber, Frederik D; Zinke, Katharina; Inostroza, Marion; Born, Jan

    2017-06-08

    Abilities to encode and remember events in their spatiotemporal context (episodic memory) rely on brain regions that mature late during childhood and are supported by sleep. We compared the temporal dynamics of episodic memory formation and the role of sleep in this process between 62 children (8-12 years) and 57 adults (18-37 years). Subjects recalled "what-where-when" memories after a short 1-hr retention interval or after a long 10.5-hr interval containing either nocturnal sleep or daytime wakefulness. Although children showed diminished recall of episodes after 1 hr, possibly resulting from inferior encoding, unlike adults, they showed no further decrease in recall after 10.5 hr. In both age groups, episodic memory benefitted from sleep. However, children's more effective offline retention was unrelated to sleep. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  11. Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice.

    Science.gov (United States)

    Botton, Paulo Henrique; Costa, Marcelo S; Ardais, Ana Paula; Mioranzza, Sabrina; Souza, Diogo O; da Rocha, João Batista Teixeira; Porciúncula, Lisiane O

    2010-12-25

    Caffeine is a psychostimulant with positive effects on cognition. Recent studies have suggested the participation of the cholinergic system in the effects of caffeine on wakefulness. However, there are few studies assessing the contribution of cholinergic system in the cognitive enhancer properties of caffeine. In the present study, the effects of a dose and schedule of administration of caffeine that improved memory recognition were investigated on scopolamine-induced impairment of memory in adult mice. Inhibitory avoidance and novel object recognition tasks were used to assess learning and memory. Caffeine (10mg/kg, i.p.) was administered during 4 consecutive days, and the treatment was interrupted 24h before scopolamine administration (2mg/kg, i.p.). Scopolamine was administered prior to or immediately after training. Short-term and long-term memory was evaluated in both tasks. In the novel object recognition task, pre treatment with caffeine prevented the disruption of short- and long-term memory by scopolamine. In the inhibitory avoidance task, caffeine prevented short- but not long-term memory disruption by pre training administration of scopolamine. Caffeine prevented short- and long-term memory disruption by post training administration of scopolamine. Both treatments did not affect locomotor activity of the animals. These findings suggest that acute treatment with caffeine followed by its withdrawal may be effective against cholinergic-induced disruption of memory assessed in an aversive and non-aversive task. Finally, our results revealed that the cholinergic system is involved in the positive effects of caffeine on cognitive functions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  13. To Replay, Perchance to Consolidate.

    Directory of Open Access Journals (Sweden)

    Lisa Genzel

    2015-10-01

    Full Text Available After a memory is formed, it continues to be processed by the brain. These "off-line" processes consolidate the memory, leading to its enhancement and to changes in memory circuits. Potentially, these memory changes are driven by off-line replay of the pattern of neuronal activity present when the memory was being formed. A new study by Dhaksin Ramanathan and colleagues, published in PLOS Biology, demonstrates that replay occurs predominately after the acquisition of a new motor skill and that it is related to changes in memory performance and to the subsequent changes in memory circuits. Together, these observations reveal the importance of neuronal replay in the consolidation of novel motor skills.

  14. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  15. Localization of molecular correlates of memory consolidation to buccal ganglia mechanoafferent neurons after learning that food is inedible in Aplysia.

    Science.gov (United States)

    Levitan, David; Saada-Madar, Ravit; Teplinsky, Anastasiya; Susswein, Abraham J

    2012-10-15

    Training paradigms affecting Aplysia withdrawal reflexes cause changes in gene expression leading to long-term memory formation in primary mechanoafferents that initiate withdrawal. Similar mechanoafferents are also found in the buccal ganglia that control feeding behavior, raising the possibility that these mechanoafferents are a locus of memory formation after a training paradigm affecting feeding. Buccal ganglia mechanoafferent neurons expressed increases in mRNA expression for the transcription factor ApC/EBP, and for the growth factor sensorin-A, within the first 2 h after training with an inedible food. No increases in expression were detected in the rest of the buccal ganglia. Increased ApC/EBP expression was not elicited by food and feeding responses not causing long-term memory. Increased ApC/EBP expression was directly related to a measure of the efficacy of training in causing long-term memory, suggesting that ApC/EBP expression is necessary for the expression of aspects of long-term memory. In behaving animals, memory is expressed as a decrease in the likelihood to respond to food, and a decrease in the amplitude of protraction, the first phase of consummatory feeding behaviors. To determine how changes in the properties of mechanoafferents could cause learned changes in feeding behavior, synaptic contacts were mapped from the mechanoafferents to the B31/B32 neurons, which have a key role in initiating consummatory behaviors and also control protractions. Many mechanoafferents monosynaptically and polysynaptically connect with B31/B32. Monosynaptic connections were complex combinations of fast and slow excitation and/or inhibition. Changes in the response of B31/B32 to stimuli sensed by the mechanoafferent could underlie aspects of long-term memory expression.

  16. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  17. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus

    Science.gov (United States)

    Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.

    2012-01-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866

  18. Localization of Molecular Correlates of Memory Consolidation to Buccal Ganglia Mechanoafferent Neurons after Learning that Food Is Inedible in "Aplysia"

    Science.gov (United States)

    Levitan, David; Saada-Madar, Ravit; Teplinsky, Anastasiya; Susswein, Abraham J.

    2012-01-01

    Training paradigms affecting "Aplysia" withdrawal reflexes cause changes in gene expression leading to long-term memory formation in primary mechanoafferents that initiate withdrawal. Similar mechanoafferents are also found in the buccal ganglia that control feeding behavior, raising the possibility that these mechanoafferents are a locus of…

  19. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.

    Science.gov (United States)

    Soya, Shingo; Shoji, Hirotaka; Hasegawa, Emi; Hondo, Mari; Miyakawa, Tsuyoshi; Yanagisawa, Masashi; Mieda, Michihiro; Sakurai, Takeshi

    2013-09-04

    The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.

  20. A single standard for memory: the case for reconsolidation.

    Science.gov (United States)

    Nader, Karim; Hardt, Oliver

    2009-03-01

    Consolidated memories can re-enter states of transient instability following reactivation, from which they must again stabilize in order to persist, contradicting the previously dominant view that memory and its associated plasticity mechanisms progressively and irreversibly decline with time. We witness exciting times, as neuroscience begins embracing a position, long-held in cognitive psychology, that recognizes memory as a principally dynamic process. In light of remaining controversy, we here establish that the same operational definitions and types of evidence underpin the deduction of both reconsolidation and consolidation, thus validating the extrapolation that post-retrieval memory plasticity reflects processes akin to those that stabilized the memory following acquisition.

  1. Agents that affect cAMP levels or protein kinase A activity modulate memory consolidation when injected into rat hippocampus but not amygdala

    Directory of Open Access Journals (Sweden)

    L. Bevilaqua

    1997-08-01

    Full Text Available Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala, these animals received microinfusions of SKF38393 (7.5 µg/side, SCH23390 (0.5 µg/side, norepinephrine (0.3 µg/side, timolol (0.3 µg/side, 8-OH-DPAT (2.5 µg/side, NAN-190 (2.5 µg/side, forskolin (0.5 µg/side, KT5720 (0.5 µg/side or 8-Br-cAMP (1.25 µg/side. Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, ß, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.

  2. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions

    NARCIS (Netherlands)

    McReynolds, Jayme R.; Donowho, Kyle; Abdi, Amin; McGaugh, James L.; Roozendaal, Benno; McIntyre, Christa K.

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a

  3. The neurobiology of consolidations, or, how stable is the engram?

    Science.gov (United States)

    Dudai, Yadin

    2004-01-01

    Consolidation is the progressive postacquisition stabilization of long-term memory. The term is commonly used to refer to two types of processes: synaptic consolidation, which is accomplished within the first minutes to hours after learning and occurs in all memory systems studied so far; and system consolidation, which takes much longer, and in which memories that are initially dependent upon the hippocampus undergo reorganization and may become hippocampal-independent. The textbook account of consolidation is that for any item in memory, consolidation starts and ends just once. Recently, a heated debate has been revitalized on whether this is indeed the case, or, alternatively, whether memories become labile and must undergo some form of renewed consolidation every time they are activated. This debate focuses attention on fundamental issues concerning the nature of the memory trace, its maturation, persistence, retrievability, and modifiability.

  4. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  5. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  6. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Fisher, M.W.

    1986-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a Program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM Programs, e.g., Prototypical Consolidation Demonstration Program. The Program is being conducted at the Idaho National Engineering Laboratory (INEL) by the Operating Contractor, EGandG Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment will be used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SPSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation will be accomplished by individual, horizontal rod pulling. A computerized semi-automatic control system with operator involvement will be utilized to conduct consolidation operations. Special features have been incorporated in the design to allow crud collection and measurement of rod pulling forces. During consolidation operations, data will be taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software will complete in September of 1986. Following installation in the hot cell, consolidation operations will begin in January 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  7. When Delays Improve Memory: Stabilizing Memory in Children May Require Time.

    Science.gov (United States)

    Darby, Kevin P; Sloutsky, Vladimir M

    2015-12-01

    Memory is critical for learning, cognition, and cognitive development. Recent work has suggested that preschool-age children are vulnerable to catastrophic levels of memory interference, in which new learning dramatically attenuates memory for previously acquired knowledge. In the work reported here, we investigated the effects of consolidation on children's memory by introducing a 48-hr delay between learning and testing. In Experiment 1, the delay improved children's memory and eliminated interference. Results of Experiment 2 suggest that the benefit of this delay is limited to situations in which children are given enough information to form complex memory structures. These findings have important implications for understanding consolidation processes and memory development. © The Author(s) 2015.

  8. Consolidated financial statements

    OpenAIRE

    Blaha, Miroslav

    2010-01-01

    This work provides basic information about consolidation and consolidated financial statements. In the beginning there are definisions of the members of the group under discussion and their relationship. Hereafter concepts of consolidation, accounting methods and methods of consolidation are discussed. It also compares approach of different accounting systems to consolidation.

  9. Phenomenological Characteristics of Autobiographical Memories: Responsiveness to an Induced Negative Mood State in Those With and Without a Previous History of Depression.

    Science.gov (United States)

    Mitchell, Andrew E P

    2016-01-01

    In this study we investigated the relative accessibility of phenomenological characteristics in autobiographical memories of 104 students with and without a previous history of a depression. Participants recalled personal events that were elicited with cue words and then asked to rate these personal events for a number of phenomenological characteristics. The characteristics were typicality, rumination, valence, importance of others, expectancy, desirability, and personal importance. The effects of previous history of depression (without history or with previous history of depression) and self-reported mood (pre- and post-negative mood induction) on autobiographical recall was examined by employing a mixed factor design. Self-reported mood was measured as a manipulation check, before and after Mood Induction Procedure. Typicality, rumination and personal importance showed significant interaction effects in those with a history of depression. Ordinal regression supported the finding that those with a history of depression had a higher chance of typicality and personal importance than those without a history of depression. The results indicate that recall of autobiographical characteristics is in part dependent on induced negative mood state and on previous history of depression. The findings may prompt future research into targeted interventions that reduce individual tendencies for heightened cognitive reactivity in negative mood states for those with a history of depression.

  10. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    Science.gov (United States)

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of previous physical exercise to chronic stress on long-term aversive memory and oxidative stress in amygdala and hippocampus of rats.

    Science.gov (United States)

    Dos Santos, Tiago Marcon; Kolling, Janaína; Siebert, Cassiana; Biasibetti, Helena; Bertó, Carolina Gessinger; Grun, Lucas Kich; Dalmaz, Carla; Barbé-Tuana, Florencia María; Wyse, Angela T S

    2017-02-01

    Since stressful situations are considered risk factors for the development of depression and there are few studies evaluating prevention therapies for this disease, in the present study we evaluated the effect of previous physical exercise in animals subjected to chronic variable stress (CVS), an animal model of depression, on behavior tasks. We also investigated some parameters of oxidative stress and Na + , K + -ATPase activity, immunocontent and gene expression of alpha subunits in amygdala and hippocampus of rats. Young male rats were randomized into four study groups (control, exercised, stressed, exercised+stressed). The animals were subjected to controlled exercise treadmill for 20min,three times a week, for two months prior to submission to the CVS (40days). Results show that CVS impaired performance in inhibitory avoidance at 24h and 7days after training session. CVS induced oxidative stress, increasing reactive species, lipoperoxidation and protein damage, and decreasing the activity of antioxidant enzymes. The activity of Na + , K + -ATPase was decreased, but the immunocontents and gene expression of catalytic subunits were not altered. The previous physical exercise was able to improve performance in inhibitory avoidance at 24h after training; additionally, exercise prevented oxidative damage, but was unable to reverse completely the changes observed on the enzymatic activities. Our findings suggest that physical exercise during the developmental period may protect against aversive memory impairment and brain oxidative damage caused by chronic stress exposure later in life. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. Anisomycin Injection in Area CA3 of the Hippocampus Impairs Both Short-Term and Long-Term Memories of Contextual Fear

    Science.gov (United States)

    Remaud, Jessica; Ceccom, Johnatan; Carponcy, Julien; Dugué, Laura; Menchon, Gregory; Pech, Stéphane; Halley, Helene; Francés, Bernard; Dahan, Lionel

    2014-01-01

    Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal…

  13. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  14. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.

    Science.gov (United States)

    Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe

    2014-02-01

    Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.

  15. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    Science.gov (United States)

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  16. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  17. Memory consolidation of socially relevant stimuli during sleep in healthy children and children with attention-deficit/hyperactivity disorder and oppositional defiant disorder: What you can see in their eyes.

    Science.gov (United States)

    Prehn-Kristensen, Alexander; Molzow, Ina; Förster, Alexandra; Siebenhühner, Nadine; Gesch, Maxime; Wiesner, Christian D; Baving, Lioba

    2017-02-01

    Children with attention-deficit/hyperactivity disorder (ADHD) display deficits in sleep-dependent memory consolidation, and being comorbid with oppositional defiant disorder (ODD), results in deficits in face processing. The aim of the present study was to investigate the role of sleep in recognizing faces in children with ADHD+ODD. Sixteen healthy children and 16 children diagnosed with ADHD+ODD participated in a sleep and a wake condition. During encoding (sleep condition at 8p.m.; wake condition at 8a.m.) pictures of faces were rated according to their emotional content; the retrieval session (12h after encoding session) contained a recognition task including pupillometry. Pupillometry and behavioral data revealed that healthy children benefited from sleep compared to wake with respect to face picture recognition; in contrast recognition performance in patients with ADHD+ODD was not improved after sleep compared to wake. It is discussed whether in patients with ADHD+ODD social stimuli are preferentially consolidated during daytime. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    Science.gov (United States)

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Differential participation of temporal structures in the consolidation and reconsolidation of taste aversion extinction.

    Science.gov (United States)

    Garcia-Delatorre, Paola; Rodríguez-Ortiz, Carlos J; Balderas, Israela; Bermúdez-Rattoni, Federico

    2010-09-01

    The extinction process has been described as the decline in the frequency or intensity of the conditioned response following the withdrawal of reinforcement. Hence, experimental extinction does not reflect loss of the original memory, but rather reflects new learning, which in turn requires consolidation in order to be maintained in the long term. During extinction of conditioned taste aversion (CTA), a taste previously associated with aversive consequences acquires a safe status through continuous presentations of the flavor with no aversive consequence. In addition, reconsolidation has been defined as the labile state of a consolidated memory after its reactivation by the presentation of relevant information. In this study, we analyzed structures from the temporal lobe that could be involved in consolidation and reconsolidation of extinction of CTA by means of new protein synthesis. Our results showed that protein synthesis in the hippocampus (HC), the perirhinal cortex (PR) and the insular cortex (IC) of rats participate in extinction consolidation, whereas the basolateral amygdala plays no part in this phenomenon. Furthermore, we found that inhibition of protein synthesis in the IC in a third extinction trial had an effect on reconsolidation of extinction. The participation of the HC in taste memory has been described as a downmodulator for CTA consolidation, and has been related to a context-taste association. Altogether, these data suggest that extinction of aversive taste memories are subserved by the IC, HC and PR, and that extinction can undergo reconsolidation, a process depending only on the IC. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    Science.gov (United States)

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.

  1. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  2. Success Modulates Consolidation of a Visuomotor Adaptation Task

    Science.gov (United States)

    Trempe, Maxime; Sabourin, Maxime; Proteau, Luc

    2012-01-01

    Consolidation is a time-dependent process that is responsible for the storage of information in long-term memory. As such, it plays a crucial role in motor learning. Prior research suggests that some consolidation processes are triggered only when the learner experiences some success during practice. In the present study, we tested whether…

  3. Sleep-Dependent Consolidation of Statistical Learning

    Science.gov (United States)

    Durrant, Simon J.; Taylor, Charlotte; Cairney, Scott; Lewis, Penelope A.

    2011-01-01

    The importance of sleep for memory consolidation has been firmly established over the past decade. Recent work has extended this by suggesting that sleep is also critical for the integration of disparate fragments of information into a unified schema, and for the abstraction of underlying rules. The question of which aspects of sleep play a…

  4. The Demonstration of Short-Term Consolidation.

    Science.gov (United States)

    Jolicoeur, Pierre; Dell'Acqua, Roberto

    1998-01-01

    Results of seven experiments involving 112 college students or staff using a dual-task approach provide evidence that encoding information into short-term memory involves a distinct process termed short-term consolidation (STC). Results suggest that STC has limited capacity and that it requires central processing mechanisms. (SLD)

  5. The role of REM theta activity in emotional memory

    Directory of Open Access Journals (Sweden)

    Isabel Camilla Hutchison

    2015-10-01

    Full Text Available While NREM sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of REM sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity – which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex – is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale PGO waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and the gradual weakening of consolidated hippocampal memory traces observed in both wake and REM sleep. Hippocampal theta activity is also correlated with REM sleep acetylcholine levels – which are thought to reduce hippocampal afferent inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate recurrent activation within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  6. Distribution center consolidation games

    NARCIS (Netherlands)

    Klijn, F.; Slikker, M.

    2005-01-01

    We study a location-inventory model to analyze the impact of consolidation of distribution centers on facility and inventory costs. We introduce a cooperative game and show that when demand processes are i.i.d. the core is non-empty, i.e., consolidation allows for a stable division of the minimal

  7. The Sleep Elaboration-Awake Pruning (SEAP) theory of memory: long term memories grow in complexity during sleep and undergo selection while awake. Clinical, psychopharmacological and creative implications.

    Science.gov (United States)

    Charlton, Bruce G; Andras, Peter

    2009-07-01

    Long term memory (LTM) systems need to be adaptive such that they enhance an organism's reproductive fitness and self-reproducing in order to maintain their complexity of communications over time in the face of entropic loss of information. Traditional 'representation-consolidation' accounts conceptualize memory adaptiveness as due to memories being 'representations' of the environment, and the longevity of memories as due to 'consolidation' processes. The assumption is that memory representations are formed while an animal is awake and interacting with the environment, and these memories are consolidated mainly while the animal is asleep. So the traditional view of memory is 'instructionist' and assumes that information is transferred from the environment into the brain. By contrast, we see memories as arising endogenously within the brain's LTM system mainly during sleep, to create complex but probably maladaptive memories which are then simplified ('pruned') and selected during the awake period. When awake the LTM system is brought into a more intense interaction with past and present experience. Ours is therefore a 'selectionist' account of memory, and could be termed the Sleep Elaboration-Awake Pruning (or SEAP) theory. The SEAP theory explains the longevity of memories in the face of entropy by the tendency for memories to grow in complexity during sleep; and explains the adaptiveness of memory by selection for consistency with perceptions and previous memories during the awake state. Sleep is therefore that behavioural state during which most of the internal processing of the system of LTM occurs; and the reason sleep remains poorly understood is that its primary activity is the expansion of long term memories. By re-conceptualizing the relationship between memory, sleep and the environment; SEAP provides a radically new framework for memory research, with implications for the measurement of memory and the design of empirical investigations in clinical

  8. Memory

    OpenAIRE

    Wager, Nadia

    2017-01-01

    This chapter will explore a response to traumatic victimisation which has divided the opinions of psychologists at an exponential rate. We will be examining amnesia for memories of childhood sexual abuse and the potential to recover these memories in adulthood. Whilst this phenomenon is