Fluorescein isothiocyanate: Molecular characterization by theoretical calculations
Energy Technology Data Exchange (ETDEWEB)
Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No 69, Lleida E-25001 (Spain); Jacquemin, Denis [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: denis.jacquemin@fundp.ac.be; Perpete, Eric A. [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium); Aleman, Carlos [Departament d' Enginyeria Quimica, E. T. S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu
2008-12-10
Quantum mechanical calculations have been used to investigate the conformation, molecular geometry, basicity and spectroscopic properties of fluorescein isothiocyanate in both the gas-phase and aqueous solution. Specifically, calculations have been performed considering the neutral, monoanionic and dianionic forms of this important fluorescent compound. Results reveal that for the neutral form multiple conformational states are possible, all them with significant contributions, and the stability of the different conformers is similar in the gas-phase and aqueous solution. Calculation of the excitation energies revealed that spectroscopic properties are very sensitive to the relaxation effect in solution. A good agreement has been reached obtained between the experimental and theoretical values derived from time-dependent density functional theory methods for the neutral form, whereas for charged species the calculations fail to accurately reproduce the measured trends.
Theoretical Calculations of Atomic Data for Spectroscopy
Bautista, Manuel A.
2000-01-01
Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.
Theoretical calculations of positron lifetimes for metal oxides
International Nuclear Information System (INIS)
Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu
2004-01-01
Our recent positron lifetime measurements for metal oxides suggest that positron lifetimes of bulk state in metal oxides are shorter than previously reported values. We have performed theoretical calculations of positron lifetimes for bulk and vacancy states in MgO and ZnO using first-principles electronic structure calculations and discuss the validity of positron lifetime calculations for insulators. By comparing the calculated positron lifetimes to the experimental values, it wa found that the semiconductor model well reproduces the experimental positron lifetime. The longer positron lifetime previously reported can be considered to arise from not only the bulk but also from the vacancy induced by impurities. In the case of cation vacancy, the calculated positron lifetime based on semiconductor model is shorter than the experimental value, which suggests that the inward relaxation occurs around the cation vacancy trapping the positron. (author)
Theoretical calculation of G-value
International Nuclear Information System (INIS)
Sato, Shin
1979-01-01
The slowing down spectra of secondary electrons seem to be the most important concept in the case of considering the initial process of radiation chemistry. This paper is described on the consideration for it and the approximation method used. G-value can be determined by the result of integration of the product of the whole slowing down spectrum and the total production cross section of a product to be determined over electron energy. After the relation of G-value to electron beam irradiation and γ-ray decomposition are described, the calculated and experimental values are compared, unexpected agreement is obtained. The reason why the plausible G-values were obtained to such extent by rough calculation is not known. From these G-values, the production of O 3 from O 2 , the radiolysis of NO, the chemical ionization of excited acetylene and others were estimated. The most interesting object in radiation chemistry is the condensing phase. A simple but important problem in radiation chemistry is the definition of the ionization in condensing phase. That is, it is of problem that what distance electrons have to come away from their original molecule to regard as the ionization. The considerations on the size of spur produced in water by γ-irradiation, the distribution of ion pairs in a spur, and Jesse effect are also made. (Wakatsuki, Y.)
Theoretical calculation possibilities of the computer code HAMMER
International Nuclear Information System (INIS)
Onusic Junior, J.
1978-06-01
With the aim to know the theoretical calculation possibilities of the computer code HAMMER, developed at Savanah River Laboratory, a analysis of the crytical cells assembly of the kind utilized in PWR reactors is made. (L.F.S.) [pt
Dye incorporation in polyphosphate gels: synthesis and theoretical calculations
Directory of Open Access Journals (Sweden)
Jordan Del Nero
2003-06-01
Full Text Available In this work we described theoretical calculations on the electronic structure and optical properties of the dyes crystal violet and malachite green based in semiempirical methods (Parametric Method 3 and Intermediate Neglect of Differential Overlap / Spectroscopic - Configuration Interaction and the synthesis of a new hybrid material based upon the incorporation of these dyes in an aluminum polyphosphate gel network. The samples are nearly transparent, free-standing thick films. The optical properties of the entrapped dyes are sensitive to chemical changes within the matrix caused either by gel aging or external stimulli such as exposition to acidic and basic vapors that can percolate within the matrix. Our theoretical modeling is in good agreement with the experimental results for the dyes.
Theoretical calculations on layered perovskites: implications for photocatalysis
Directory of Open Access Journals (Sweden)
Xiang Liu
2014-12-01
Full Text Available The application of first-principles calculations to the study of layered perovskites is reviewed here, with an emphasis on properties relevant to the use of these materials in photocatalysis. First, the accuracies of the theoretical methods in common use for the study of layered perovskites are compared. The main body of the article then reviews studies of the bulk atomic and electronic structures of pure and doped perovskites; first-principles thermodynamics studies; studies of surfaces and studies of adsorption on surfaces.
Review on theoretical calculation of the magnetite solubility
International Nuclear Information System (INIS)
Kim, Myongjin; Kim, Hongpyo
2013-01-01
FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study
Theoretical calculation of solid particles deposition from the air
Directory of Open Access Journals (Sweden)
Bobro Milan
2002-03-01
Full Text Available This paper presents the calculation of harmful substance deposition (air pollution from the point source (Slanèo, et al., 2001 using equation (1. The point source shall be understood as e.g. chimneys of factory, heat plant, incinerator, boiler plant, local heating plant, etc.The theoretical calculation of concentration (1, or deposition (8 is based on the study of transfer and dispersion of pollution in air (Slanèo, et al., 2000a. The movement of pollution in air consists of a movement of the air itself and a relative movement of pollution particles and air, while the movement of harmful substance in the smoke trail is under the influence of turbulent diffusion, convection and gravitation. Molecular diffusion is not important in this process. When calculating concentrations (1 and deposition (8 of air pollution on a particular place near the source, it is assumed that the air speed is constant, the direction of wind does not change with the height and the source of air pollution is time-constant. The change in the wind speed with the height depends on the stability class of atmosphere (temperature gradient (Slanèo, et al., 2000a and it is calculated using equation (10.The theoretical calculation of concentration and or deposition of harmful substance from the point source (1 and (8 shall be applied if the harmful substance particles, which leave the source, have the same density (composition, shape (spherical and size.The experimental observations of dust deposition showed the significance of 0.1-20 µm particles. The application of equation (1 to calculate the concentration is conditioned, in addition to the recognition of source parameters and meteorological conditions, by the recognition of the particle sedimentation speed, which changes with the size of particle radius (2.For a practical calculation of deposition it is therefore necessary to know the differential distribution function f(r of particle radii, which can be made on the basis
Measurements and theoretical calculations of diffused radiation and atmosphere lucidity
International Nuclear Information System (INIS)
Pelece, I.; Iljins, U.; Ziemelis, I.
2009-01-01
Align with other environment friendly renewable energy sources solar energy is widely used in the world. Also in Latvia solar collectors are used. However, in Latvia because of its geographical and climatic conditions there are some specific features in comparison with traditional solar energy using countries. These features lead to the necessity to pay more attention to diffused irradiance. Another factor affecting the received irradiance of any surface is lucidity of atmosphere. This factor has not been studied in Latvia yet. This article deals with evaluation of diffused irradiance, and also of lucidity of atmosphere. The diffused irradiance can be measured directly or as a difference between the global irradiance and the beam one. The lucidity of atmosphere can be calculated from the measurements of both global and beam irradiance, if the height of the sun is known. Therefore, measurements of both global and beam irradiance have been carried out, and the diffused irradiance calculated as a difference between the global irradiance and the beam one. For measuring of the global irradiance the dome solarimeter has been used. For measuring of the direct irradiance tracking to sun pirheliometer has been used. The measurements were performed in Riga from October 2008 till March 2009. The measurements were executed automatically after every 5 minutes. The obtained results have been analyzed taking into account also the data on nebulosity from the State agency Latvian Environment, Geology and Meteorology Agency. Also efforts to calculate theoretically the diffused irradiance from the height of the sun and the data of the nebulosity have been done. These calculated values have been compared with the measured ones. Good accordance is obtained. (author)
Sneck, Sami; Saarnio, Reetta; Isola, Arja; Boigu, Risto
2016-01-01
Medication administration is an important task of registered nurses. According to previous studies, nurses lack theoretical knowledge and drug calculation skills and knowledge-based mistakes do occur in clinical practice. Finnish health care organizations started to develop a systematic verification processes for medication competence at the end of the last decade. No studies have yet been made of nurses' theoretical knowledge and drug calculation skills according to these online exams. The aim of this study was to describe the medication competence of Finnish nurses according to theoretical and drug calculation exams. A descriptive correlation design was adopted. Participants and settings All nurses who participated in the online exam in three Finnish hospitals between 1.1.2009 and 31.05.2014 were selected to the study (n=2479). Quantitative methods like Pearson's chi-squared tests, analysis of variance (ANOVA) with post hoc Tukey tests and Pearson's correlation coefficient were used to test the existence of relationships between dependent and independent variables. The majority of nurses mastered the theoretical knowledge needed in medication administration, but 5% of the nurses struggled with passing the drug calculation exam. Theoretical knowledge and drug calculation skills were better in acute care units than in the other units and younger nurses achieved better results in both exams than their older colleagues. The differences found in this study were statistically significant, but not high. Nevertheless, even the tiniest deficiency in theoretical knowledge and drug calculation skills should be focused on. It is important to identify the nurses who struggle in the exams and to plan targeted educational interventions for supporting them. The next step is to study if verification of medication competence has an effect on patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
About possibilities using of theoretical calculation methods in radioecology
International Nuclear Information System (INIS)
Demoukhamedova, S.D.; Aliev, D.I.; Alieva, I.N.
2002-01-01
Full text: Increasing the radiation level into environment is accompanied by accumulation of radioactive compounds into organism and/or their migration into biosphere. Radiotoxins are accumulated into irradiated plants and animals in result of violation of exchanging processes. The are play an important role at the pathogenesis of irradiation. To date, there is well known that even small quantity of the pesticides capable intensified the radiation effect. To understand the mechanism of radiation effect on physiologically active compounds and their complexes, the knowledge of such molecules three-dimensional organization and electron structure is essential. This work is devoted to study the pesticides of carbamate range, i.e. 'sevin' and its derivatives the physiological activity of which has been connected with cholinesterase degradation. Spatial organization and conformational possibilities of the pesticides has been studied using a method of the theoretical conformational analysis on the base of computational program worked out in laboratory of Molecular Biophysics at the Baku State University. Quantum-chemical methods CNDO/2, AM1 and PM3 and complex programs 'LEV' were used in studies of electronic structures of 'sevin' and number of its analogues. Charge distribution on the atoms, optimization of geometrical electrooptic parameters, as well as molecular electrostatic potentials, electron density and nuclear forces were calculated. Visual maps and surface of valence electron density distribution in the given plane and surface of electron-nuclear forces distribution projection were constructed. The geometrical and energetic characteristics, charges on the atoms of investigated pesticides, as well as the maps and relief of the valence electron density distribution on the atoms have been received. According to calculation results, the changing of charge distribution in naphthalene ring is observed. The conclusion was made that the carbonyl group is essential for
Progress in theoretical calculation of transactinium isotope nuclear data
International Nuclear Information System (INIS)
Salvy, J.
1984-05-01
Considerable progress has been made in effective use of nuclear theory for evaluation purposes. During the past few years, a number of basic improvements have developed in nuclear models commonly used for data evaluation. Actinide data evaluation can also use such improvements, but in the actinide region a further complication arises from the presence of fission competition. Nevertheless, systematic prescriptions for calculating even predicting neutron cross sections within an extended actinide region are available. Many efforts in several laboratorie are currently devoted to improving nuclear codes to be used for evaluation purposes. However at the present time numerous basic parameters associated with the neutron-induced fission process as well as neutron and gamma-ray competition have to be predetermined as input. Systematic studies of the behaviour of these parameters have been initiated with the aim of finding general trends hopefully useful for extrapolation in cases where direct information is lacking. Such trends can emerge from suitable examination of a large number of coherent experimental data, coherent theoretical results, or a combination these. This seems at the present time to be the most promising means for improving the actinide data evaluation. The aim of this paper is only to review briefly some of the main improvements either achieved or under way. The concern will be theoretical aspects useful for evaluating actinide data in the restricted incident neutron energy range from 10 KeV to 20 MeV. It is intended to focus on examples of systematics and on some improvements expected from microscopic methods under development
Theoretical Calculation and Validation of the Water Vapor Continuum Absorption
Ma, Qiancheng; Tipping, Richard H.
1998-01-01
The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning
Evaluation of covariance in theoretical calculation of nuclear data
International Nuclear Information System (INIS)
Kikuchi, Yasuyuki
1981-01-01
Covariances of the cross sections are discussed on the statistical model calculations. Two categories of covariance are discussed: One is caused by the model approximation and the other by the errors in the model parameters. As an example, the covariances are calculated for 100 Ru. (author)
Field-theoretic calculation of kinetic helicity flux
Indian Academy of Sciences (India)
Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...
Theoretical calculation of saturated absorption for multilevel atoms
International Nuclear Information System (INIS)
O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.
1998-01-01
We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.
Theoretical model for calculation of molecular stopping power
International Nuclear Information System (INIS)
Xu, Y.J.
1984-01-01
A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field
fp shell spectroscopy: numerical calculations and theoretical aspects
International Nuclear Information System (INIS)
Pasquini, E.A.
1976-01-01
The fp shell spectroscopy is reviewed and the fsup(n) model is introduced. It is shown that the two-body Hamiltonian monopolar terms play a very important part in the behavior of these spectra, and that realistic interactions do not reproduce them. The detailed study of the following nuclei was undertaken: 47 Ca, 48 Ca, 49 Ca, 56 Ni, 48 Sc, 50 Sc, 50 Ti, 46 Ti, 50 Cr, 47 V and 49 Cr. It is shown that very precise values of the few parameters defining the monopolar contributions could be extracted from the comparison between calculations and experimental data. The study of the binding energies of all the nuclei from 40 Ca to 56 Ni shows that it is necessary to introduce three-body forces. The results also reveal the effect of nondiagonal multipoles which are well reproduced by realistic interactions. A better understanding of the electromagnetic behavior of the fsup(n) nuclei of their conjugaison properties and of the relation between 42 Sc and 48 Sc was obtained. Several calculations of two-body transfer amplitudes were proposed [fr
International Nuclear Information System (INIS)
Yang Jun; Gao Fa-Ming; Liu Yong-Shan
2017-01-01
The hardness, electronic, and elastic properties of 5d transition metal diborides with ReB 2 structure are studied theoretically by using the first principles calculations. The calculated results are in good agreement with the previous experimental and theoretical results. Empirical formulas for estimating the hardness and partial number of effective free electrons for each bond in multibond compounds with metallicity are presented. Based on the formulas, IrB 2 has the largest hardness of 21.8 GPa, followed by OsB 2 (21.0 GPa) and ReB 2 (19.7 GPa), indicating that they are good candidates as hard materials. (paper)
Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison with Previous Calculations
International Nuclear Information System (INIS)
Adler, S.L.; Schubert, C.
1996-01-01
We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production threshold, using the world line path integral variant of the Bern-Kosower formalism. Numerical comparison (using programs that we have made available for public access on the Internet) shows that the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, and to the recent recalculation by Baier, Milstein, and Shaisultanov. copyright 1996 The American Physical Society
The theoretical tensile strength of fcc crystals predicted from shear strength calculations
International Nuclear Information System (INIS)
Cerny, M; Pokluda, J
2009-01-01
This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.
Review of theoretical calculations of hydrogen storage in carbon-based materials
Energy Technology Data Exchange (ETDEWEB)
Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)
2001-02-01
In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-06-15
Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.
Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations
Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay
2017-04-01
Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic
International Nuclear Information System (INIS)
Bandi, F.; Khan, A.; Phillips, C.R.
1987-01-01
Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol
International Nuclear Information System (INIS)
Aleksakov, A.N.; Emel'yanov, I.Ya.; Nikolaev, E.V.; Panin, V.M.; Podlazov, L.N.; Rogova, V.D.
1987-01-01
Methods of engineering synthesis of the systems for nuclear reactor local automated power regulation and radial-azimuthal energy distribution stabilization operating according to lateral ionization chamber signals are described. Results of calculational-theoretical investigations into the system efficiency and peculiarities of its reaction to some perturbations typical of the RBMK type reactors are considered
Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír
2012-05-21
In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.
Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii
Directory of Open Access Journals (Sweden)
Raka Biswas
2002-02-01
Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4ÃÂ€r2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother MeyerÃ¢Â€Â™s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.
International Nuclear Information System (INIS)
Kokoouline, V.; Richardson, W.
2014-01-01
Uncertainties in theoretical calculations may include: • Systematic uncertainty: Due to applicability limits of the chosen model. • Random: Within a model, uncertainties of model parameters result in uncertainties of final results (such as cross sections). • If uncertainties of experimental and theoretical data are known, for the purpose of data evaluation (to produce recommended data), one should combine two data sets to produce the best guess data with the smallest possible uncertainty. In many situations, it is possible to assess the accuracy of theoretical calculations because theoretical models usually rely on parameters that are uncertain, but not completely random, i.e. the uncertainties of the parameters of the models are approximately known. If there are one or several such parameters with corresponding uncertainties, even if some or all parameters are correlated, the above approach gives a conceptually simple way to calculate uncertainties of final cross sections (uncertainty propagation). Numerically, the statistical approach to the uncertainty propagation could be computationally expensive. However, in situations, where uncertainties are considered to be as important as the actual cross sections (for data validation or benchmark calculations, for example), such a numerical effort is justified. Having data from different sources (say, from theory and experiment), a systematic statistical approach allows one to compare the data and produce “unbiased” evaluated data with improved uncertainties, if uncertainties of initial data from different sources are available. Without uncertainties, the data evaluation/validation becomes impossible. This is the reason why theoreticians should assess the accuracy of their calculations in one way or another. A statistical and systematic approach, similar to the described above, is preferable.
Energy Technology Data Exchange (ETDEWEB)
Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.
2017-08-01
Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.
New theoretical development for the calculating of physical properties of D2O
International Nuclear Information System (INIS)
Moreira, Osvaldo
2011-01-01
In this work we have developed a new method for calculating the physical properties of heavy water, D 2 O, using the Helmholtz free energy state function, A = U − T S, exclusively for this molecule. The state function has been calculated as ā = ā 0 +ā 1 (specific dimensionless values), where ā 0 is related to the properties of heavy water in gaseous state and ā 1 describes the liquid state. The canonical variables of the state function are absolute temperature and volume. To calculate the physical properties defining absolute pressure and temperature, here a variable change method was developed, based on the solution of a differential equation (function ζ) using numerical algorithms (scaling and Newton-Raphson). Physical quantities calculated are: density ϱ(specific volume υ), specific enthalpy h and entropy s. The results obtained agree completely with the values calculated by the National Institute of Standards and Technology (NIST). In this report it has also proposed an adjustment function to calculate the saturation absolute temperature of heavy water as a function of the pressure: T s (p) = exp[a·b(p)], where a is a vector of constant coefficients and b a vector function of pressure, using theoretical values and extending the wording proposed by the Oak Ridge National Laboratory. The new setting has an error less than 0.03%. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang
2017-05-01
Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.
Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits
International Nuclear Information System (INIS)
Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.
2000-01-01
Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays
International Nuclear Information System (INIS)
Quintana, E.E.; Tossi, M.H.; Telleria, D.M.
1990-01-01
Collective doses produced during the normal working of the Atucha I Nuclear Power Plant are calculated using annual atmospheric factors. This work studies the behaviour of the dilution factors in different periods of the year in order to fit the calculated dose model applying factors from seasonal, monthly or weekly periods. The Radiation Protection Group of the C.N.E.A. have carried out continuous environmental monitoring in the surroundings of the Atucha I Nuclear Power Plant. These studies include the measurement of air tritium concentration, radionuclide that is found principally as tritiated water vapour. This isotope, normally released by the nuclear power plant was used as a tracer to assess the atmospheric dilution factors. Factors were calculated by two methods: an experimental one, based on environmental measurements of the tritium concentration in the surroundings of the nuclear power plant and another one by applying a theoretical model based on information from the micrometeorological tower located in the mentioned place. To carry out the environmental monitoring, four monitoring stations in the surroundings of the power plant were chosen. Three of them are approximately one kilometer from the plant and the fourth is 7.5 km away, near the city of Lima. To condense and collect the atmospheric water vapour, an overcooling system was used. The measurement was performed by liquid scintillation counting, previous alkaline electrolytical enrichment of the samples. The theoretical model uses hourly values of direction and wind intensity, as well as the atmospheric dispersive properties. Values obtained during the period 1976 to 1988 allowed, applying statistical tests, to validate the theoretical model and to observe seasonal variation of the dilution factors throughout the same year and between different years. Finally, results and graphics are presented showing that the behaviour of the dilution factors in different periods of the year. It is recommended to
International Nuclear Information System (INIS)
Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki
2010-01-01
Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca 2+ in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.
Graph theoretical calculation of systems reliability with semi-Markov processes
International Nuclear Information System (INIS)
Widmer, U.
1984-06-01
The determination of the state probabilities and related quantities of a system characterized by an SMP (or a homogeneous MP) can be performed by means of graph-theoretical methods. The calculation procedures for semi-Markov processes based on signal flow graphs are reviewed. Some methods from electrotechnics are adapted in order to obtain a representation of the state probabilities by means of trees. From this some formulas are derived for the asymptotic state probabilities and for the mean life-time in reliability considerations. (Auth.)
International Nuclear Information System (INIS)
Takayama, T.; Sekine, T.; Kudo, H.
2003-01-01
Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)
Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue
2018-01-01
Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.
Directory of Open Access Journals (Sweden)
Sysіuk Svitlana V.
2017-05-01
Full Text Available The article is aimed at highlighting features of the provision of the fee-based services by library institutions, identifying problems related to the legal and regulatory framework for their calculation, and the methods to implement this. The objective of the study is to develop recommendations to improve the calculation of the fee-based library services. The theoretical foundations have been systematized, the need to develop a Provision for the procedure of the fee-based services by library institutions has been substantiated. Such a Provision would protect library institution from errors in fixing the fee for a paid service and would be an informational source of its explicability. The appropriateness of applying the market pricing law based on demand and supply has been substantiated. The development and improvement of accounting and calculation, taking into consideration both industry-specific and market-based conditions, would optimize the costs and revenues generated by the provision of the fee-based services. In addition, the complex combination of calculation leverages with development of the system of internal accounting together with use of its methodology – provides another equally efficient way of improving the efficiency of library institutions’ activity.
Sob, M.; Sormann, H.; Kuriplach, J.
Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is
Energy Technology Data Exchange (ETDEWEB)
Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)
2016-10-01
4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.
Directory of Open Access Journals (Sweden)
Ying Liu
2018-01-01
Full Text Available Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss’s and Stokes’s theorems have been related to Green’s theorem in a novel way.
Habegger, Maria L; Motta, Philip J; Huber, Daniel R; Dean, Mason N
2012-12-01
Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73-285cm total length). Theoretical bite force ranged from 36 to 2128N at the most anterior bite point, and 170 to 5914N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible
Energy Technology Data Exchange (ETDEWEB)
Pinto, Rui M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, Antonio A.; Costa, Maria L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)
2011-03-18
Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 {sup o}C, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: {yields} Electronic structure of 5ATZ studied by photoelectron spectroscopy. {yields} Gas-phase 5-ATZ exists mainly as the 2H-tautomer. {yields} Thermal decomposition of 5ATZ gives N{sub 2}, NH{sub 2}CN, HN{sub 3} and HCN, at 245 {sup o}C. {yields} HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 {+-} 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N{sub 2}, HN{sub 3} and NH{sub 2}CN as the primary products, and HCN from the decomposition of a intermediate CH{sub 3}N{sub 3} compound. The reaction barriers for the formation of HN{sub 3} and N{sub 2} from 2H-5ATZ are predicted to be {approx}228 and {approx}150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH{sub 3}N{sub 3} carbene intermediate is also investigated.
Theoretical calculation and evaluation of complete neutron data for natural niobium
International Nuclear Information System (INIS)
Ma Gonggui; Zou Yiming; Wang Shiming
1990-07-01
An evaluation of a complete neutron nuclear data for natural niobium has been finished on the data measured by experiments up to 1989 and theoretical calculations with program MUP2 and AUJP. The purpose of present work is to build CENDL-2 databank (Chinese Evaluation Nuclear Data Library, second version) which replaces the CENDL-1 (first version of CENDL). The neutron energy for niobium is in the range of 10 -5 eV to 20 MeV. Data of cross section include total, elastic, nonelastic, total elastic, inelastic cross section to 13 discrete levels, inelastic continuum, (n,2n), (n,3n), (n,n ' α) + (n,αn ' ), (n,n ' p) + (n,pn ' ), (n,n ' d) + (n,dn ' ), (n,p), (n,d), (n,t), (n,α) and capture cross sections. Data for MT 251,252 and 253 as well as angular distributions and energy spectra of secondary neutrons are also given
Cohen, S. C.
1979-01-01
A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
International Nuclear Information System (INIS)
Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes
2014-01-01
A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it
Energy Technology Data Exchange (ETDEWEB)
Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)
2012-07-01
The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)
International Nuclear Information System (INIS)
Caldeira, A.D.
1987-05-01
The theoretical and adjusted Watt spectrum representations for 235 U are used as weighting functions to calculate K eff and θ f 28 /θ f 25 for the benchmark Godiva. The results obtained show that the values of K eff and θ f 28 /θ f 25 are not affected by spectrum form change. (author) [pt
Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys
International Nuclear Information System (INIS)
Aqra, Fathi; Ayyad, Ahmed
2011-01-01
Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.
Theoretical calculation of shakeup intensities using Xa--SW wave functions
International Nuclear Information System (INIS)
Tse, J.S.; Loubriel, G.
1981-01-01
The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment
Directory of Open Access Journals (Sweden)
Selkina A. V.
2016-05-01
Full Text Available the article analyzes the problems arising while organizing the workflow in printing companies. We suggest to address these problems by means of implementing computer-based accounting systems. Online and offline calculators used by printing enterprises for accounting are discussed. The author outlined the functional and specified requirements to such software. They were considered in the calculation module of accounting polygraphic wire used for block bonding. The software allows to increase the calculation process speed, to reduce the amount of errors in calculation and to decrease the labour intensity of the accounting process.
Burr, D. M.; Emery, J. P.; Lorenz, R. D.
2005-01-01
The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.
International Nuclear Information System (INIS)
Shuen Wei Li.
1991-08-01
The crystal-field and spin-orbit matrix for d 1 or d 9 configuration with D 2 symmetry has been derived. By diagonalizing the matrix, the energy level of C 2+ u in Cs 2 CuCl 4 and its eigenfunctions have been obtained with the aid of the approximate SCF d-orbit. Furthermore, by suing the eigenfunctions, the EPR g-factors and the magnetic susceptibilities at different temperatures have been calculated. The calculated results are in good agreement with the experimental findings. The calculation only needs two adjustable parameters and can give more theoretical results than those of previous work which introduced 11 adjustable parameters. (author). 16 refs, 3 tabs
Theoretical calculations of oxygen relaxation in YBa2Cu3O6+x ceramics
Mi, Y.; Schaller, R.; Sathish, S.; Benoit, W.
1991-12-01
A two-dimensional theoretical model of stress-induced point-defect relaxation in a layered structure is presented, with a detailed discussion of the special case of YBa2Cu3O6+x. The experimental results of oxygen relaxation in YBa2Cu3O6+x can be explained qualitatively by this model.
THEORETICAL AND PRACTICAL CONSIDERATIONS REGARDING THE COST CALCULATION USING DIRECT COSTING
Directory of Open Access Journals (Sweden)
Cristina Aurora, Bunea-Bontaş
2012-01-01
Full Text Available The definition of the cost of production as applied to inventories refers to the acquisition and production cost, and its determination involves many considerations. This article emphasizes a comparative approach of the calculation of production cost under direct costing and absorption costing, and examines the impact of using these calculation systems on the financial performance of the companies presented in the income statement.
Theoretical calculation of rapid x-ray transients and radius expansion
International Nuclear Information System (INIS)
Starrfield, S.; Sparks, W.; Truran, J.; Kenyon, S.
1984-01-01
We present the results of a calculation of a thermonuclear runaway on a 10 km neutron star which produced a precursor, radius expansion, and after the envelope had begun to shrink, a seconds x-ray burst about 2500 second later. Although such an event has not yet been observed, decreasing the initial envelope mass should bring the calculations into better agreement with the observations
International Nuclear Information System (INIS)
Moccia, R.
1991-01-01
Some of the available theoretical methods to compute the two-photon ionisation cross-section of many-electron systems are reviewed. In particular the problems concerning the computation of (i) reliable approximations for the transition matrix elements and the excitation energies; and (ii) accurate results pertaining to the electronic continuum by the use of L 2 basis functions are considered. (author). 29 refs., 6 figs., 1 tab
International Nuclear Information System (INIS)
Shirakawa, Toshihiko; Hatanaka, Koichiro
2001-11-01
In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)
Dorofeeva, Olga V.; Suchkova, Taisiya A.
2018-04-01
The gas-phase enthalpies of formation of four molecules with high flexibility, which leads to the existence of a large number of low-energy conformers, were calculated with the G4 method to see whether the lowest energy conformer is sufficient to achieve high accuracy in the computed values. The calculated values were in good agreement with the experiment, whereas adding the correction for conformer distribution makes the agreement worse. The reason for this effect is a large anharmonicity of low-frequency torsional motions, which is ignored in the calculation of ZPVE and thermal enthalpy. It was shown that the approximate correction for anharmonicity estimated using a free rotor model is of very similar magnitude compared with the conformer correction but has the opposite sign, and thus almost fully compensates for it. Therefore, the common practice of adding only the conformer correction is not without problems.
Theoretical calculations of electron-impact and radiative processes in atoms
International Nuclear Information System (INIS)
Pindzola, M.S.
1975-01-01
Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated
Ahmed, Arif; Lim, Dongwon; Choi, Cheol Ho; Kim, Sunghwan
2017-06-30
The theoretical enthalpy calculated from the overall protonation reaction (electron transfer plus hydrogen transfer) in positive-mode (+) atmospheric-pressure photoionization (APPI) was compared with experimental results for 49 aromatic compounds. A linear relationship was observed between the calculated ΔH and the relative abundance of the protonated peak. The parameter gives reasonable predictions for all the aromatic hydrocarbon compounds used in this study. A parameter is devised by combining experimental MS data and high-level theoretical calculations. A (+) APPI Q Exactive Orbitrap mass spectrometer was used to obtain MS data for each solution. B3LYP exchange-correlation functions with the standard 6-311+G(df,2p) basis set was used to perform density functional theory (DFT) calculations. All the molecules with ΔH toluene clusters produced protonated ions, regardless of the desolvation temperature. For molecules with ΔH >0, molecular ions were more abundant at typical APPI desolvation temperatures (300°C), while the protonated ions became comparable or dominant at higher temperatures (400°C). The toluene cluster size was an important factor when predicting the ionization behavior of aromatic hydrocarbon ions in (+) APPI. The data used in this study clearly show that the theoretically calculated reaction enthalpy (ΔH) of protonation with toluene dimers can be used to predict the protonation behavior of aromatic compounds. When compounds have a negative ΔH value, the types of ions generated for aromatic compounds could be very well predicted based on the ΔH value. The ΔH can explain overall protonation behavior of compounds with ΔH values >0. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Kim, Yong Seong; Jang, Yun Hee; Cho, Hyun; Hwang, Sun Gu
2010-01-01
The relative stabilities of the tautomers of SeG were calculated. In the aqueous phase, amino-seleno form was the major tautomer of neutral SeG with a minor contribution from the other amino-seleno form. The presence of the selenolic form was negligible from the calculations. The microscopic and macroscopic pKa values in the aqueous phase were calculated from this scheme. The calculated pKa value was in good agreement with the experimental data. These results demonstrated that this method could predict and explain the acid-base properties of SeG and could be used to understand the behavior of the species. A number of analogues of nucleic acid bases have been the target of extensive studies because of their importance in many biological studies. The oxygen of both purine and pyrimidine bases is substituted with sulfur or selenium to produce an important class of analogues. 6-Selenoguanine (SeG) has a significant activity against L5178Y lymphoma cells. However, the detailed mechanism of the antiplastic action is not known yet. Information on the acid dissociation constants and the tautomerism of the molecules is required to provide a molecular level understanding of biological processes. Proton-transfer in the nucleic acid pairs and the presence of the tautomeric equilibrium play an important role in the mispair formation during the DNA replication
DEFF Research Database (Denmark)
Ruud, K.; Helgaker, T.; Jørgensen, Poul
1994-01-01
We report a systematic investigation of the magnetizability of a series of small molecules. The use of London atomic orbitals ensures gauge invariance and a fast basis set convergence. Good agreement is obtained with experimental magnetizabilities, both isotropic and anisotropic. The calculations...
International Nuclear Information System (INIS)
Alharbi, A.A.; Azzam, A.
2012-01-01
A theoretical study of the nuclear-reaction cross sections for proton-induced reactions on 63 Cu and 65 Cu was performed in the proton energy range from threshold values up to 50 MeV. The produced nuclei were different isotopes of Zn, Cu, Ni, Co and Mn, some of which have important applications. The reaction cross-section calculations were performed using the ALICE-IPPE code, which depends on the pre-equilibrium compound nucleus model. This code is suitable for the studied energy and isotopic mass ranges. Approximately 14 excitation functions for the different reactions have been constructed from the calculated cross-section values. The excitation function curves for the proton reactions with natural copper targets have been constructed from those for enriched targets using the natural abundance of the copper isotopes. Comparisons between the calculated excitation functions with those previously experimentally measured are given whenever the experimental values were available. Some statistical parameters were introduced to control the quality of the fitting between both the experimental and the theoretical calculated cross-section values. - Highlights: ► We performed reaction cross section calculations using ALICE-IPPE code. ► We constructed 14 excitation functions for nat Cu(p,xn)Zn,Cu,Ni,Co,Mn reactions. ► The available experimental data were fitted to the performed ALICE-IPPE calculations. ► Statistical parameters were introduced to control the quality of the fitting. ► The code failed to fit the experimental data for reactions with large nucleon emissions.
Energy Technology Data Exchange (ETDEWEB)
Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T. [Research Center, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohanaku, Osaka (Japan)
1998-04-01
Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using {sup 1}H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained {beta}-lactam rings in good agreement with the crystallographic data. {sup 1}H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T.
1998-01-01
Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using 1 H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained β-lactam rings in good agreement with the crystallographic data. 1 H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Gao Junfang; Madison, D H; Peacher, J L
2006-01-01
We have recently proposed the orientation averaged molecular orbital (OAMO) approximation for calculating fully differential cross sections (FDCS) for electron-impact ionization of molecules averaged over all molecular orientations. Orientation averaged FDCS were calculated for electron-impact ionization of nitrogen molecules using the distorted wave impulse approximation (DWIA) and the molecular three-body distorted wave (M3DW) approximation. In this paper, we use the same methods to examine the FDCS for ionization of hydrogen molecules. It is found that the DWIA yields reasonable results for high-energy incident electrons. While the DWIA breaks down for low-energy electrons, the M3DW gives reasonable results down to incident-electron energies around 35 eV
A theoretical study of blue phosphorene nanoribbons based on first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2014-08-21
Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.
Monte Carlo simulation for theoretical calculations of damage and sputtering processes
International Nuclear Information System (INIS)
Yamamura, Yasunori
1984-01-01
The radiation damage accompanying ion irradiation and the various problems caused with it should be determined in principle by resolving Boltzmann's equations. However, in reality, those for a semi-infinite system cannot be generally resolved. Moreover, the effect of crystals, oblique incidence and so on make the situation more difficult. The analysis of the complicated phenomena of the collision in solids and the problems of radiation damage and sputtering accompanying them is possible in most cases only by computer simulation. At present, the methods of simulating the atomic collision phenomena in solids are roughly classified into molecular dynamics method and Monte Carlo method. In the molecular dynamics, Newton's equations are numerically calculated time-dependently as they are, and it has large merits that many body effect and nonlinear effect can be taken in consideration, but much computing time is required. The features and problems of the Monte Carlo simulation and nonlinear Monte Carlo simulation are described. The comparison of the Monte Carlo simulation codes calculating on the basis of two-body collision approximation, MARLOWE, TRIM and ACAT, was carried out through the calculation of the backscattering spectra of light ions. (Kako, I.)
International Nuclear Information System (INIS)
Schuerrer, F.
1980-01-01
For characterizing heterogene configurations of pebble-bed reactors the fine structure of the flux distribution as well as the determination of the macroscopic neutronphysical quantities are of interest. When calculating system parameters of Wigner-Seitz-cells the usual codes for neutron spectra calculation always neglect the modulation of the neutron flux by the influence of neighbouring spheres. To judge the error arising from that procedure it is necessary to determinate the flux distribution in the surrounding of a spherical fuel element. In the present paper an approximation method to calculate the flux distribution in the two-sphere model is developed. This method is based on the exactly solvable problem of the flux determination of a point source of neutrons in an infinite medium, which contains a spherical perturbation zone eccentric to the point source. An iteration method allows by superposing secondary fields and alternately satisfying the conditions of continuity on the surface of each of the two fuel elements to advance to continually improving approximations. (orig.) 891 RW/orig. 892 CKA [de
International Nuclear Information System (INIS)
Kolev, N.A.
1981-07-01
A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)
Graph theoretical models for calculating the reliablility of power plants. Pt. 4
International Nuclear Information System (INIS)
Vetterkind, D.W.
1978-01-01
With the aid of mathematical formalisms from the theory of stochastical networks, approximation equations are derived for the expectation value as well as for the scattering of period-related availability of series systems consisting of deteriorating and/or non-deteriorating components. In this context, successive operating times of deteriorating components are described by the time-dependent Poisson process while successive operating times of non-deteriorating components are described by the time-independent Poisson process. In addition provision is made in the model to include in the calculation an existing trend of the expectation value of components successive failure times. (orig./RW) [de
Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Chen, Tao; Zhang, Huo; Qin, Binyi; Wu, Yifang
2018-03-01
The characteristic absorption spectra of two structural isomers of dimethylurea(DMU) in 0.6-1.8 THz region have been measured using terahertz time-domain spectroscopy (THZ-TDS) at room temperature. Significant differences have been found between their terahertz spectra and implied that the THZ-TDS is an effective means of identifying structural isomers. To simulate their spectra, calculations on single molecule and cluster of 1,1-DMU and 1,3-DMU were performed, and we found that the cluster calculations using DFT-D3 method are better to predict the experimental spectra. Using the normal mode as displacements in redundant internal coordinates and the GaussView program, most observed THz vibrational modes are assigned to bending and rocking modes related to the intermolecular hydrogen bonding interactions, and twisting mode of ethyl groups. The different spectral features of two isomers mainly arise from different intermolecular hydrogen bonds resulting from different atom arrangements in molecules and different molecule arrangements in crystals. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular hydrogen bonding interactions in 1,1-DMU and 1,3-DMU crystals are visualized. Therefore, we can confirm that THz-TDS can be used as an effective means for the recognition of structural isomers and detection of intermolecular hydrogen bonding interactions in these crystals.
Boggio-Pasqua, Martial; Garavelli, Marco
2015-06-11
This study presents a computational investigation of the initial step of the dimethyldihydropyrene (DHP) to cyclophanediene (CPD) photoinduced ring-opening reaction using time-dependent density functional theory (TD-DFT). In particular, the photochemical path corresponding to the formation of the CPD precursor (CPD*) on the zwitterionic state is scrutinized. The TD-DFT approach was first validated on the parent compound against accurate ab initio calculations. It confirms that CPD* formation is efficiently quenched in this system by an easily accessible S2/S1 conical intersection located in the vicinity of the CPD* minimum and leading to a locally excited state minimum responsible for DHP luminescence. Increased ring-opening quantum yields were observed in benzo[e]-fused-DHP (DHP-1), isobutenyl-DHP (DHP-2), and naphthoyl-DHP (DHP-3). The calculations show that CPD* formation is much more favorable in these systems, either due to an inversion of electronic states in DHP-1, suppressing the formation of the locally excited state, or due to efficient stabilization of CPD* on the S1 potential energy surface in DHP-2 and DHP-3. Both effects can be combined in a rationally designed benzo[e]-fused-naphthoyl-DHP (DHP-4) for which we anticipate an unprecedented efficiency.
International Nuclear Information System (INIS)
Pan, Wenxiao; Zhang, Dongju; Zhan, Jinhua
2011-01-01
Highlights: → We study the inclusion mechanism of TCDD with β-CD by theoretical methods. → Clearly, the formation of inclusion complex is an energetically driven process. → The inclusion complex can be detected by IR and Raman techniques. → The results imply that β-CD may be used as a host molecule to enrich TCDD molecules. - Abstract: The rapid enrichment and detection of trace polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are currently challenging issues in the field of environmental science. In this paper, by performing quantum chemistry (QM) calculations and molecular dynamics (MD) simulations, we studied the inclusion complexation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a representative PCDD molecule, with β-cyclodextrin (β-CD), one of the widely used compounds in supramolecular chemistry. The calculated results reveal that the stable inclusion complex can be formed in both the gas phase and solvent, which proposes that β-CD may serve as a potential substrate enriching TCDD. The calculated vibrational spectra indicate that the infrared (IR) and Raman spectroscopy may be suitable for the detection of β-CD-modified TCDD. The present theoretical results may be informative to environmental scientists who are devoting themselves to developing effective methods for detection and treatment of POPs.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N., E-mail: nahum@ufpa.b [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica
2010-07-01
The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)
Ab initio theoretical calculations of the electronic excitation energies of small water clusters.
Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro
2011-12-14
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.
Theoretical calculation on a compound formed by methyl alcohol and simmondsin
Directory of Open Access Journals (Sweden)
İzzet KARA
2016-12-01
Full Text Available Etheric oil results from the esterification reactions of oil acids with alcohols. In these reactions, one molecule water (H2O is composed of H× protons from oil acids and OH- groups which separated from alcohol. Etheric oil is commonly used in food industry, perfume industry and medicine. From this perspective, we need to know physical properties of etheric oil as well as chemical properties. In this study, the highest occupied molecular orbital (HOMO energies, the lowest unoccupied molecular orbital (LUMO energies, the electronic properties (total energy, electronegativity, chemical hardness and softness, NBO analysis and thermodynamic parameters of a compound formed by methyl alcohol and simmondsin have been performed by using Gaussian 09W program. The structural and spectroscopic data of the molecule in the ground state have been calculated by using density functional method (DFT/B3LYP with the 6-31++G(d,p basis set.
International Nuclear Information System (INIS)
Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N.; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G.
2010-01-01
The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)
Energy Technology Data Exchange (ETDEWEB)
Mierau, Anna; Weiland, Thomas [Technische Universitaet Darmstadt (DE). Institut fuer Theorie Elektromagnetischer Felder (TEMF); Schnizer, Pierre; Fischer, Egbert [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Akishin, Pavel [JINR, Dubna (Russian Federation)
2010-07-01
The heavy ion synchrotron SIS100, the core component of the Facility of Antiproton and Ion Research will accelerate high current ion beams of up to U{sup 27+}. For operating such a machine the static and transient magnetic field quality must be fully understood. This is also necessary to keep the beam losses well below acceptable limits and to prepare a sound strategy for high resolution magnetic measurements and data analysis. Challenging preconditions to perform such work are to find a proper description for the non. Cartesian symmetry of the magnets, most important for curved dipoles with elliptical apertures. We describe the parameterisation methods using elliptic and toroidal multipoles and summarise comparing the calculated to the measured field quality.
Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours
Energy Technology Data Exchange (ETDEWEB)
Buckle, E.R. [Division of Metallurgy, School of Materials, The University, Mappin Street, Sheffield S1 3JD (United Kingdom); Bowsher, B.R. [Chemistry Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1988-10-15
A theoretical approach to modelling aerosol nucleation from the vapour phase has been developed by Buckle. In this theory, the condensing vapour species are assumed to be transported from an evaporating source across a one-dimensional stagnant boundary layer into an unreactive vapour-free atmosphere. A slip-flow model for interfacial energy and mass flow is combined with this stagnant boundary layer model to yield a set of parameters that uniquely characterise the evaporative flow process (i.e. pressure, source and sink temperatures, sink concentration, and the flux density of heat or mass from the source). To obtain the initial conditions for nucleation the vapour saturation ratio p/p deg is plotted against temperature and compared with the minimum saturation ratio defined by homogeneous nucleation theory. The co-education be represented by a nucleation threshold (or F) diagram. The mass and energy equations of the flow are solved by introducing the Becker-Doering formula for the nucleation rate, and the Stefan diffusion model for particle growth. This gives the rise and fall of supersaturation and the evolution of the particle size distribution along the flow coordinate. In the present studies, the applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. The model has been used to predict the onset of nucleation and the particle size distribution for single vapour species. Preliminary studies have demonstrated that conditions exist whereby both heterogeneous and homogeneous nucleation can occur simultaneously. This process could account for experimental observations of chemically-different aerosols being formed under severe reactor accident conditions. (author)
International Nuclear Information System (INIS)
Weber, P.A.; Thomas, J.E.; Skinner, W.M.; Smart, R.St.C.
2004-01-01
The acid neutralisation capacity (ANC) of a rock sample containing significant amounts of Fe carbonates, as conducted to determine net acid production potential (NAPP), can be a difficult parameter to determine. Various ANC tests are available to determine the ANC of carbonates. This work does not attempt to create another ANC test protocol; rather, it provides a refinement for existing tests. Results showed that a significant lag period may be needed (up to 432 h) after standard Sobek-type ANC tests for the complete hydrolysis of Fe associated with the ANC testing of siderite. This lag occurred even with standard industry modifications that include the addition of 2 drops of H 2 O 2 at pH 4.5 during the back-titration. In this work the authors used a modification to the Sobek ANC test (the Modified Sobek ANC test) that included filtering and the addition of H 2 O 2 at pH 4.5. This test was further modified by the continuance of this H 2 O 2 addition (the H 2 O 2 ANC test) until there was no subsequent pH drop (which is due to Fe hydrolysis reactions), thereupon the back titration was continued to pH 7.0. Results indicated that the ANC for siderite (after 0 h) using the H 2 O 2 ANC test was similar to the ANC determined after 432 h lag by the Modified Sobek ANC test. This modification reduces the uncertainty related to static-test results for samples containing Fe carbonates. The test is simple to use, has industry application, and provides a better indication of the NAPP. The Modified Sobek ANC results for calcite and dolomite and the H 2 O 2 ANC test for siderite were in good agreement with the mineralogical carbonate ANC (ANC carb ). ANC carb was determined by calculation based on electron probe micro-analysis. Although lower than both the ANC carb and the ANC determined by titration, the chemical ANC calculated from the ions present in the ANC digestion liquor also provided a good indication of the overall acid neutralisation capacity of the sample
International Nuclear Information System (INIS)
Shi, Lei
2016-01-01
Uranium dioxide (UO_2) is the most widely used nuclear fuel in existing nuclear reactors around the world. While in service for energy supply, UO_2 is submitted to the neutron flux and undergoes nuclear fission chain reactions, which create large number of fission products and point defects. The study of the behavior of the fission products and point defects is important to understand the fuel properties under irradiation. We conduct electronic structure calculations based on the density functional theory (DFT) to model this radiation damage at the atomic scale. The DFT+U method is used to describe the strong correlation of the 4f electrons of cerium and 5f electrons of uranium in the materials studied (UO_2, CeO_2 and (U, Ce)O_2). (U, Ce)O_2 is studied because it is considered as a low radioactive model material of mixed actinide oxides such as the MOX fuel (U, Pu)O_2 used in light water reactors and fast neutron reactors. Cerium dioxide (CeO_2) is studied to provide reference data of (U, Ce)O_2. We perform a DFT+U study of point defects and gaseous fission products (Xe and Kr) in CeO_2 and compare our results to the existing ones of UO_2. We study the bulk properties as well as the behavior of defects for (U, Ce)O_2, and compare our results to the ones of (U, Pu)O_2. Furthermore, for the study of defects in UO_2, methodological improvements are explored considering the spin-orbit coupling effect and the finite-size effect of the simulation supercell. (author) [fr
Chashmniam, Saeed; Tafazzoli, Mohsen
2017-11-01
Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.
Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations
Energy Technology Data Exchange (ETDEWEB)
Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)
2015-09-15
Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.
International Nuclear Information System (INIS)
Rodriguez, V.D.
2003-01-01
We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections
Directory of Open Access Journals (Sweden)
Panthip Tue-ngeun
2013-01-01
Full Text Available Computational approaches have been used to evaluate and define important residues for protein-protein interactions, especially antigen-antibody complexes. In our previous study, pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants has indicated the key specific residues in the complementary determining regions (CDRs of scFv anti-p17. In this present investigation in order to determine whether a specific side chain group of residue in CDRs plays an important role in bioactivity, computational alanine scanning has been applied. Molecular dynamics simulations were done with several complexes of original scFv anti-p17 and scFv anti-p17mutants with HIV-1 p17 epitope variants with a production run up to 10 ns. With the combination of pairwise decomposition residue interaction and alanine scanning calculations, the point mutation has been initially selected at the position MET100 to improve the residue binding affinity. The calculated docking interaction energy between a single mutation from methionine to either arginine or glycine has shown the improved binding affinity, contributed from the electrostatic interaction with the negative favorably interaction energy, compared to the wild type. Theoretical calculations agreed well with the results from the peptide ELISA results.
Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.
2017-10-01
A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.
International Nuclear Information System (INIS)
Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A.; Garcia, F.; Goncalves, M.
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V MAS /WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, τ c is presented for all possible cases of spontaneous nuclear break-up such that -7.30 10 τ c [S] 10 (τ/τ c ) > -17.0, where τ is the total half-life of the parent nucleus. (author)
International Nuclear Information System (INIS)
Ren, F.Z.; Liu, P.; Jia, S.G.; Tian, B.H.; Su, J.H.
2006-01-01
Electroplating was employed to fabricate the Ni film on the Ti substrate. Adhesion strength of Ni film on Ti substrate was determined using the three-point bend technique that was proposed in standard mechanics test. The experimental results demonstrate that the interface fracture energies obviously increase with the roughness of Ti substrates, and are independence with the thickness of Ni films. Moreover, the adhesion strength of Ni film on Ti substrate was also measured by peel test, and was evaluated by Miedema model of experiential electron theory. The intrinsic interface fracture energy measured by three-point bend test is reasonable agreement with that obtained by theoretical calculation of Miedema model, and is roughly comparable to that by peel test
Kommers, Petrus A.M.; Smyrnova-Trybulska, Eugenia; Morze, Natalia; Issa, Tomayess; Issa, Theodora
2015-01-01
This paper, prepared by an international team of authors focuses on the conceptual aspects: analyses law, ethical, human, technical, social factors of ICT development, e-learning and intercultural development in different countries, setting out the previous and new theoretical model and preliminary
International Nuclear Information System (INIS)
Forughi, Sh.; Hamidi, S.; Khalafi, H.; Sheibani, Sh.; Shahidi, A.
2013-01-01
Highlights: ► Production of 153 Sm isotope by neutron activation in a nuclear reactor was studied. ► Optimal parameters for weight and irradiation time were found. ► This study led to an empirical correction factor (kf). ► Kf enhanced the production procedure of the 153 Sm radioisotope. ► The results led to nearly 60% decrease in the amount of material used in the production process. - Abstract: The feasibility of producing 2000–3000 mCi 153 Sm by irradiation of 152 Sm in 5 MW TRR was studied via TRR core simulation. In this study the cross-section of 152 Sm (n,γ) 153 Sm reaction from ENDF/B library was used. The effective activation cross section for production of 153 Sm is obtained using the neutron spectra in different irradiation channel of the core. The activity of the simulated samples is calculated using the obtained fluxes and cross sections. Then samples were prepared and irradiated under different conditions and fluxes. The final production’s specific activity was measured by the standard dose calibrator ISOMED 1010. By comparison of the theoretical calculations and actual measurements, an empirical correction factor (K f ) was obtained, which is helpful in production procedure of the 153 Sm radioisotope. The optimal weight of the samples and irradiation time was studied according to the flux calculations based on the location of the sample and saturated activity calculation. In order to test the proposed conditions, samples were prepared and were irradiated under the proposed conditions. According to the compared results with the initial irradiation condition, the new proposed sample which weighed 4 mg of Sm 2 O 3 is acceptable for the labeling, therefore this study led to nearly 60% decrease in the amount of material used in the production process
Puzach, S. V.; Suleykin, E. V.; Akperov, R. G.; Nguyen, T. D.
2017-11-01
A new experimental-theoretical approach to the toxic gases concentrations assessment in case of fire indoors is offered. The analytical formulas for calculation of CO average volume density are received. These formulas do not contain the geometrical sizes of the room and surfaces dimensions of combustible materials and, therefore, are valid under conditions of as a small-scale fire as a large-scale fire. A small-scale experimental installation for modeling fire thermal and gas dynamics in the closed or open thermodynamic system has been designed. The results of the experiments on determining dependencies of CO average volume density from average volume temperature and oxygen average volume density as well as dependencies of specific coefficients of CO emission and specific mass rates of the combustible material gasification from the time of tests during the burning of wood, transformer oil and PVC cables shield are presented. The results of numerical experiments on CO density calculation in small and large scale rooms using the proposed analytical solutions, integral, zone and field models for calculation of fire thermal and gas dynamics are presented. The comparison with the experimental data obtained by the authors and given in the literature has been performed. It is shown that CO density calculation in the full-scale room at the incipient stage of the fire can be carried out taking into account only the experimental dependences of CO from temperature or O2 density, that have been obtained from small-scale experiments. Therefore the solution of the equation of carbon monoxide mass conservation law is not necessary.
Kajiya, Daisuke; Saitow, Ken-ichi
2013-08-07
Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of
A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations
Energy Technology Data Exchange (ETDEWEB)
Ilyas, Bahaa M., E-mail: bahaastring@gmail.com [Department of Physics, University Of Dohuk (Iraq); Elias, Badal H. [Laboratory of Theoretical Physics, Department of Physics, Faculty of Sciences, University of Dohuk (Iraq)
2017-04-01
The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl{sub 3} and CsCdCl{sub 3} unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl{sub 3} and CsPbCl{sub 3} is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl{sub 3} is Γ–R indirect band gap insulator, while CsPbCl{sub 3} is an insulator with a direct band gap Γ–Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl{sub 3}, and Cd-p states and Cs-p states for the CsCdCl{sub 3} in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0–20 GPa and 0–40 GPa for the CsCdCl{sub 3} and CsPbCl{sub 3} respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame’s constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl{sub 3} (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For
Engelbrecht, J. A. A.
2018-04-01
Theoretical models used for the determination of the refractive index of InXGa1-XAs are reviewed and compared. Attention is drawn to some problems experienced with some of the models. Models also extended to the mid-infrared region of the electromagnetic spectrum. Theoretical results in the mid-infrared region are then compared to previously published experimental results.
International Nuclear Information System (INIS)
Dorofeeva, Olga V.; Ryzhova, Oxana N.
2009-01-01
The standard molar enthalpies of formation of urea, glycine, and L-alanine in the gaseous phase at 298.15 K were calculated by the high-level Gaussian-3X method. The agreement with the available experimental data is very good for urea and glycine and, thus, supports the high accuracy of calculated values. A significant discrepancy between theoretical and experimental enthalpy of formation values for L-alanine provides a reason to reconsider the experimental data previously used to derive the standard molar enthalpy of formation of L-alanine in the gaseous phase at 298.15 K. To obtain a more reliable value of enthalpy of sublimation at 298.15 K, the heat capacity values of gaseous L-alanine were calculated by standard statistical thermodynamics formulae using molecular parameters determined from B3LYP/cc-pVTZ calculations. With the obtained value of C p,m 0 (L-alanine, g, 298.15 K) = 112.6 ± 4.0 J . K -1 . mol -1 the original published experimental values of enthalpy of sublimation of L-alanine were readjusted to the reference temperature: Δ cr g H m (L-alanine, 298.15 K) = 135.2 ± 2.0 kJ . mol -1 . This value, together with the experimental enthalpy of formation of solid L-alanine, Δ f H m 0 (L-alanine, cr, 298.15 K) = -560.0 ± 1.0 kJ . mol -1 [S.N. Ngauv, R. Sabbah, M. Laffitte, Thermochim. Acta 20 (1977) 371-380; I. Contineanu, D.I. Marchidan, Rev. Roum. Chim. 29 (1984) 43-48], gives a new value for the enthalpy of formation of L-alanine in the gaseous phase, Δ f H m 0 (L-alanine, g, 298.15 K) = -424.8 ± 2.0 kJ . mol -1 , which is in good agreement with our theoretical G3X result, -427.6 ± 4.0 kJ . mol -1 . The same procedure for glycine allowed us to improve the literature value of the enthalpy of formation for this compound, Δ f H m 0 (glycine, g, 298.15 K) = -393.7 ± 1.5 kJ . mol -1 . As a result a set of self-consistent thermochemical data for glycine and L-alanine is proposed
Directory of Open Access Journals (Sweden)
Yujie Huang
2015-01-01
Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.
Wei, Guangfei; Li, Xiongyao; Wang, Shijie
2015-02-01
Terrestrial radiation is another possible source of heat in lunar thermal environment at its nearside besides the solar illumination. On the basis of Clouds and the Earth's Radiant Energy System (CERES) data products, the effect of terrestrial radiation on the brightness temperature (TBe) of the lunar nearside has been theoretically calculated. It shows that the mafic lunar mare with high TBe is more sensitive to terrestrial radiation than the feldspathic highland with low TBe value. According to the synchronous rotation of the Moon, we extract TBe on lunar nearside using the microwave radiometer data from the first Chinese lunar probe Chang'E-1 (CE-1). Consistently, the average TBe at Mare Serenitatis is about 1.2 K while the highland around the Geber crater (19.4°S, 13.9°E) is relatively small at ∼0.4 K. Our results indicate that there is no significant effect of terrestrial radiation on TBe at the lunar nearside. However, to extract TBe accurately, effects of heat flow, rock abundance and subsurface rock fragments which are more significant should be considered in the future work.
International Nuclear Information System (INIS)
Sturm, Robert; Hofmann, Werner
2009-01-01
In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Instituto Superior de Ciencias e Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V{sub MAS}/WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, {tau}{sub c} is presented for all possible cases of spontaneous nuclear break-up such that -7.30 <{approx_equal} log{sub 10} {tau}{sub c} [S] <{approx_equal} 27.50 and log {sub 10}({tau}/{tau}{sub c}) > -17.0, where {tau} is the total half-life of the parent nucleus. (author)
Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.
2018-05-01
This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.
Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Miao, Yuanhao; Han, Genquan; Wang, Bin
2018-06-01
In this paper, a novel fully-depleted Ge1-xSnx n-Tunneling FET (FD Ge1-xSnx nTFET) with field plate is investigated theoretically based on the experiment previously published. The energy band structures of Ge1-xSnx are calculated by EMP and the band-to-band tunneling (BTBT) parameters of Ge1-xSnx are calculated by Kane's model. The electrical characteristics of FD Ge1-xSnx nTFET and FD Ge1-xSnx nTFET with field plate (FD-FP Ge1-xSnx nTFET) having various Sn compositions are investigated and simulated with quantum confinement model. The results indicated that the GIDL effect is serious in FD Ge1-xSnx nTFET. By employing the field plate structure, the GIDL effect of FD-FP Ge1-xSnx nTFET is suppressed and the off-state current Ioff is decreased more than 2 orders of magnitude having Sn compositions from 0 to 0.06 compared with FD Ge1-xSnx nTFET. The impact of the difference of work function between field plate metal and channel Φfps is also studied. With the optimized Φfps = 0.0 eV, the on-state current Ion = 4.6 × 10-5 A/μm, the off-state current Ioff = 1.6 × 10-13 A/μm and the maximum on/off ration Ion/Ioff = 2.9 × 108 are achieved.
Energy Technology Data Exchange (ETDEWEB)
Weissglas, P [The Swedish State Power Board, Stockholm (Sweden)
1960-11-15
The purpose of the present study was to evaluate theoretically the effect of coolant boiling and subsequent void formation in a pressurized D{sub 2}O moderated and cooled reactor. The fuel rods were arranged in a cluster geometry and clad in Zr-2. The coolant was separated from the moderator by a Zr-2 shroud. In this geometry the following problems have been given special attention: l) calculation of the effective resonance integral, 2) thermal disadvantage factors, 3) fast fission effects, 4) leakage effects, 5) changes in epithermal absorption. No account has up to now been taken of the variation of these effects with position in the reactor and burnup. Some comparisons of the theoretical methods and measurements have been attempted. It is concluded that at the present time it is not possible to calculate the void coefficient with any accuracy but it may be possible to give an upper limit from theoretical consideration.
International Nuclear Information System (INIS)
Luo Mingkun; Wang Fei; Huang Wei; Zhang Wenqi; Zhao Shan; Lu Lianghong
2001-01-01
A kind of approximate theoretical calculating formula of the vertical U-bend tube natural-circuit steam generator is deduced by using an approximate method, the results of this formula is compared with the heat exchanging areas of the real vertical U-bend tube natural-circuit steam generators, the absolute errors of them are below 8%
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2004-01-01
Although Russian roulette is applied very often in Monte Carlo calculations, not much literature exists on its quantitative influence on the variance and efficiency of a Monte Carlo calculation. Elaborating on the work of Lux and Koblinger using moment equations, new relevant equations are derived to calculate the variance of a Monte Carlo simulation using Russian roulette. To demonstrate its practical application the theory is applied to a simplified transport model resulting in explicit analytical expressions for the variance of a Monte Carlo calculation and for the expected number of collisions per history. From these expressions numerical results are shown and compared with actual Monte Carlo calculations, showing an excellent agreement. By considering the number of collisions in a Monte Carlo calculation as a measure of the CPU time, also the efficiency of the Russian roulette can be studied. It opens the way for further investigations, including optimization of Russian roulette parameters. (authors)
Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.
2017-10-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.
Czech Academy of Sciences Publication Activity Database
Lesslie, M.; Lawler, J. T.; Dang, A.; Korn, J. A.; Bím, Daniel; Steinmetz, V.; Maitre, P.; Tureček, F.; Ryzhov, V.
2017-01-01
Roč. 18, č. 10 (2017), s. 1293-1301 ISSN 1439-4235 Institutional support: RVO:61388963 Keywords : ion-molecule reactions * IRMPD spectroscopy * nucleobases * radical ions * UVPD spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016
Directory of Open Access Journals (Sweden)
Ali Hussein Ni'ma
2017-03-01
Full Text Available In this study, two important ionospheric factors have been calculated, the collision frequency of electron and Deby length for a height range from 80 Km to a height approaching the maximum height of the F2 region of the ionosphere above the Earth's surface. Both above factors have been calculated for two different levels of solar activity and for two seasons (winter and summer. Also, six months were adopted for every level of solar activity and season. The estimation of collision frequency of electron is depends on the contribution of neutral constituents and ions. Three neutral atmospheric gases have been adopted to calculate the collision frequency, Molecular and atomic oxygen O2 and O respectively and molecular nitrogen N2, as well as the singly charged ions were taken into account in calculation.
Czech Academy of Sciences Publication Activity Database
Otero Areán, C.; Nachtigallová, Dana; Nachtigall, Petr; Garrone, E.; Rodríguez Delgado, M.
2007-01-01
Roč. 9, č. 12 (2007), s. 1421-1437 ISSN 1463-9076 R&D Projects: GA MŠk LC512; GA ČR GA203/06/0324 Grant - others:UIB(ES) MAT2006-05350 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.343, year: 2007
Czech Academy of Sciences Publication Activity Database
Garrone, E.; Bulánek, R.; Frolich, K.; Areán, C. O.; Delgado, M. R.; Palomino, G. T.; Nachtigallová, Dana; Nachtigall, Petr
2006-01-01
Roč. 110, č. 45 (2006), s. 22542-22550 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/06/0324 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational dynamics * IR spectroscopy * periodic DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006
International Nuclear Information System (INIS)
Hellmann, Robert
2009-01-01
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun
2014-12-15
Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.
Choi, Garam; Lee, Won Bo
Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.
Energy Technology Data Exchange (ETDEWEB)
Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)
1982-06-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.
International Nuclear Information System (INIS)
Kashiwagi, H.
1982-01-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)
International Nuclear Information System (INIS)
Fazary, Ahmed E.; Alshihri, Ayed S.; Alfaifi, Mohammad Y.; Saleh, Kamel A.; Elbehairi, Serag Eldin I.; Fawy, Khaled F.; Abd-Rabboh, Hisham S.M.
2016-01-01
Highlights: • The experimental thermodynamic equilibrium and stability constants of vanadium and platinum complexes involving naringin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined. • The theoretical calculations of the free energy changes associated with the ligand protonation, and metal ion–ligand complex formation equilibria using density function theory calculations, providing a complete picture of the microscopic equilibria of the studied complex systems. - Abstract: The Experimental thermodynamic equilibrium (pK_a values) and stability (log β) constants of vanadium and platinum binary and mixed ligand complexes involving naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined at 310.15 K in 0.16 mol·dm"−"3 KCl aqueous solutions using pH-potentiometric technique and by means of two estimation models (HYPERQUAD 2008 and Bjerrum–Calvin). The theoretical calculations of overall protonation and stability constants of the metal complex species in solution were predicted as the free energy change associated with the ligand protonation, and metal ion–ligand complex formation equilibria (species solvation/de-solvation) using ab initio and density function theory (DFT) calculations. The usage of the experimental potentiometry technique and theoretical predictions provides a complete picture of the microscopic equilibria of the studied systems (vanadium/platinum–naringenin–phenolic acid). Specifically, this theoretically DFT predications would be useful to determine the most real protonation constants of the studied bioligands in which the binding sites changes due to the ligand protonation/deprotonation equilibria. Also, the complexing capacities of vanadium and platinum towards naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid in solutions were evaluated and discussed. From the
Directory of Open Access Journals (Sweden)
Gümüs Hacer Pir
2015-06-01
Full Text Available Quantum chemical calculations have been performed to study the molecular geometry, 1H and 13C NMR chemical shifts, conformational, natural bond orbital (NBO and nonlinear optical (NLO properties of the 2-chloro-5-(2-hydroxyethyl-4- methoxy-6-methylpyrimidine molecule in the ground state using DFT and HF methods with 6-311++G(d,p basis set. The optimized geometric parameters and 1H and 13C NMR chemical shifts have been compared with the experimental values of the title molecule. The results of the calculations show excellent agreement between the experimental and calculated frequencies at B3LYP/6-311++G(d,p level. In order to provide a full understanding of the properties of the title molecule in the context of molecular orbital picture, the highest occupied molecular energy level (EHOMO, the lowest unoccupied molecular energy level (ELUMO, the energy difference (DE between EHOMO and ELUMO, electronegativity (χ, hardness (η and softness (S have been calculated using B3LYP/6-311++G(d,p and HF/6-311++G(d,p levels. The calculated HOMO and LUMO energies show that the charge transfer occurs within the title molecule.
Theoretical calculation of n + {sup 59}Co reaction in energy region up to 100 MeV
Energy Technology Data Exchange (ETDEWEB)
Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)
1996-06-01
A set of neutron optical potential parameters for {sup 59}Co in energy region of 2{approx}100 MeV was obtained based on concerned experimental data. Various cross sections of n + {sup 59}Co reactions were calculated and predicted. The calculated results show that the activation products {sup 58,57}Co, {sup 59}Fe and {sup 56}Mn are main neutron monitor reaction products for n + {sup 59}Co reaction in energy range up to 100 MeV. {sup 54}Mn production reaction can be a promising neutron monitor reaction in the energy region from 30 to 100 MeV. (6 figs.).
Bakker schut, T.C.; Bakker Schut, Tom C.; Hesselink, Gerlo; Hesselink, Gerlo; de Grooth, B.G.; Greve, Jan
1991-01-01
We have developed a computer program based on the geometrical optics approach proposed by Roosen to calculate the forces on dielectric spheres in focused laser beams. We have explicitly taken into account the polarization of the laser light and thd divergence of the laser beam. The model can be used
Liang, Y H; Chen, F E
2007-08-01
Theoretical investigations of the interaction between dapivirine and the HIV-1 RT binding site have been performed by the ONIOM2 (B3LYP/6-31G (d,p): PM3) and B3LYP/6-31G (d,p) methods. The results derived from this study indicate that this inhibitor dapivirine forms two hydrogen bonds with Lys101 and exhibits strong π-π stacking or H…π interaction with Tyr181 and Tyr188. These interactions play a vital role in stabilizing the NNIBP/dapivirine complex. Additionally, the predicted binding energy of the BBF optimized structure for this complex system is -18.20 kcal/mol.
Cheng, Liang; Zhang, Yidong; Ji, Ming; Cui, Mantang; Zhang, Kai; Zhang, Minglei
2015-01-01
Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structur...
Energy Technology Data Exchange (ETDEWEB)
Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp
2017-07-15
The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.
Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu
2017-07-01
The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.
Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara
2017-06-01
Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.
Directory of Open Access Journals (Sweden)
Alicja Talaczyńska
2015-01-01
Full Text Available FT-IR and Raman scattering spectra of cefuroxime axetil were proposed for identification studies of its crystalline and amorphous forms. An analysis of experimental spectra was supported by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p as a basis set. The geometric structure of a cefuroxime axetil molecule, HOMO and LUMO orbitals, and molecular electrostatic potential were also determined by using DFT (density functional theory. The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of drug subjected to degradation were discussed.
Theoretical investigations on the α-LiAlO{sub 2} properties via first-principles calculation
Energy Technology Data Exchange (ETDEWEB)
Ma, Sheng-Gui [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Gao, Tao, E-mail: gaotao@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 (China); Li, Shi-Chang; Ma, Xi-Jun; Shen, Yan-Hong [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Lu, Tie-Cheng, E-mail: lutiecheng@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China)
2016-12-15
Highlights: • Our calculation indicates that the α-LiAlO{sub 2} is an indirect band gap insulator of 6.319 eV. • The mechanical properties of α-LiAlO{sub 2} are predicted. • The complete phonon frequencies of α-LiAlO{sub 2} at gamma point for the infrared and Raman modes are assigned which to distinguish the α-LiAlO{sub 2} and γ-LiAlO{sub 2} in ITER and in MCFC. - Abstract: The physical properties including the structural, electronic, mechanical, lattice dynamical and thermodynamic properties of α-LiAlO{sub 2} are investigated using first-principles calculation. It is found that α-LiAlO{sub 2} is an insulator with an indirect gap of 6.319 eV according to band structure and density of states. The elastic constants are obtained and the results indicate that α-LiAlO{sub 2} is mechanically stable. The mechanical properties including bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (υ) are predicted with the value of 147.0 GPa, 105.2 GPa, 254.8 GPa and 0.211, respectively. The phonon dispersion curves and the phonon density of states are also calculated. The calculated phonon frequencies for the Raman-active and the infrared-active modes considering the LO-TO splitting are assigned. The two Raman active frequencies are 407.0 cm{sup −1} of E{sub g} mode and 628.8 cm{sup −1} of A{sub 1g} mode, and show satisfactory agreement with experiment. The thermodynamic functions such as ΔF, ΔE, C{sub V} and S is predicted by using the phonon density of states. These results provide valuable information for further insight into the properties of α-LiAlO{sub 2} in atomic scales, which is strategically important in ITER and in molten carbonate fuel cells (MCFC).
International Nuclear Information System (INIS)
Bitter, M.; Gu, M.F.; Vainshtein, L.A.; Beiersdorfer, P.; Bertschinger, G.; Marchuk, O.; Bell, R.; LeBlanc, B.; Hill, K.W.; Johnson, D.; Roquemore, L.
2003-01-01
Dielectronic satellite spectra of helium-like argon, recorded with a high-resolution X-ray crystal spectrometer at the National Spherical Torus Experiment, were found to be inconsistent with existing predictions resulting in unacceptable values for the power balance and suggesting the unlikely existence of non-Maxwellian electron energy distributions. These problems were resolved with calculations from a new atomic code. It is now possible to perform reliable electron temperature measurements and to eliminate the uncertainties associated with determinations of non-Maxwellian distributions
Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan
2013-08-22
Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.
International Nuclear Information System (INIS)
Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.
2016-01-01
The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni 7 Zr 2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni 7 Zr 2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni 7 Zr 2 alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni 7 Zr 2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s −1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s −1
International Nuclear Information System (INIS)
Anderson, L.D.
1976-01-01
The U L/sub α1/ x-ray emission intensity ratios (I/sub lambda/sub L//I sub lambda/sub L/, sub 100 percent/sub UO 2 /) in various matrices were calculated using the fundamental parameters formula of Criss and Birks and mass absorption coefficients calculated from a formula developed by Dewey. The use of the intensity ratio made it unnecessary to know the fluorescence yield for the U L/sub III/ level, the probability of emission of the U L/sub α1/ line, and the jump ratios for the three absorption edges of uranium. Also, since an intensity ratio was used, the results are independent of the x-ray tube current and the spectral distribution of the x-ray tube. A method is presented to calculate the intensity ratios for x-ray tube voltages other than the value (45 kV) used in the calculations. The theoretical results are calculated and compared with the experimental results obtained for 141 matrices. Difficulties due to oxidation of some of the metal powders used in the sample preparation, to small concentrations of uranium, and to an excessively large number of elements present in some of the samples resulted in the invalidation of the experimental results for 91 of the matrices. For the remaining 50 matrices, the theoretical and experimental values agreed to within +-5 percent relative error for 36 matrices; to within +-5 percent to +- 10 percent for 7 matrices; to within +-10 percent to +-20 percent for 6 matrices; and was greater than +-20 percent for 1 matrix
Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw
2017-04-30
The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Liang Cheng
2015-01-01
Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.
Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R
2000-08-18
Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.
Neto, Brenno A D; Viana, Barbara F L; Rodrigues, Thyago S; Lalli, Priscila M; Eberlin, Marcos N; da Silva, Wender A; de Oliveira, Heibbe C B; Gatto, Claudia C
2013-08-28
We describe the synthesis of novel mononuclear and dinuclear copper complexes and an investigation of their behaviour in solution using mass spectrometry (ESI-MS and ESI-MS/MS) and in the solid state using X-ray crystallography. The complexes were synthesized from two widely used diacetylpryridine (dap) ligands, i.e. 2,6-diacetylpyridinebis(benzoic acid hydrazone) and 2,6-diacetylpyridinebis(2-aminobenzoic acid hydrazone). Theoretical calculations (DFT) were used to predict the complex geometries of these new structures, their equilibrium in solution and energies associated with the transformations.
International Nuclear Information System (INIS)
Yang, W.-Q.; Liu, H.-G.; Liu, G.-K.; Lin, Y.; Gao, M.; Zhao, X.-Y.; Zheng, W.-C.; Chen, Y.; Xu, J.; Li, L.-Z.
2012-01-01
Eu 3+ -doped strontium molybdate red phosphors (Sr 1−x MoO 4 :Eu x (x = 0.01–0.2)) for white light-emitting diodes (LED) were synthesized by the solid-state reaction method. The fluorescent intensities of the as-prepared phosphors were remarkably improved. The excitation and emission spectra demonstrate that these phosphors can be effectively excited by the near-UV light (395 nm) and blue light (466 nm). Their emitted red light peaks are located at 613 nm, and the highest quantum yield value (η) of the as-grown red phosphor, which is 95.85%, is much higher than that of commercial red phosphor (77.53%). These red phosphors plus commercial yellow powers (1:10) were successfully packaged with the GaN-based blue chips on a piranha frame by epoxy resins. The encapsulated white LED lamps show high performance of the CIE chromaticity coordinates and color temperatures. Moreover, to explain the fluorescent spectra of these phosphors, a complete 3003 × 3003 energy matrix was successfully built by an effective operator Hamiltonian including free ion and crystal field interactions. For the first time, the fluorescent spectra for Eu 3+ ion at the tetragonal (S 4 ) Sr 2+ site of SrMoO 4 crystal were calculated from a complete diagonalization (of energy matrix) method. The fitting values are close to the experimental results.
Liang, Xu; Mack, John; Zheng, Li-Min; Shen, Zhen; Kobayashi, Nagao
2014-03-17
The synthesis and properties of phosphorus(V) 5,10,15-tris(4-methoxycarbonylphenyl)corrole (1) have been investigated, and its potential utility for bioimaging applications in living cells has been explored. As would normally be anticipated for corrole complexes, the intensity of the Q(0,0) bands of 1 is greater than those of comparable phosphorus(V) tetraphenylporphyrins, but the ΦF values (0.25 for 1) are found to be comparable. A detailed analysis of the electronic structure of the complex was carried out by comparing electronic absorption and MCD spectral data to the results of TD-DFT calculations. The meso-aryl substituents, which enhance the lipophilicity of 1 and hence result in its localization in intracellular membranes during HeLa cell experiments, are predicted to result in a narrowing of the HOMO-LUMO gap and hence a red shift of the Q(0,0) bands toward the optical window in biological tissues.
Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng
2016-05-01
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
Directory of Open Access Journals (Sweden)
De-Xin Kong
2018-03-01
Full Text Available Detection of triphenylmethane dyes (TDs, especially the widely used malachite green (MG and crystal violet (CV, plays an important role in safety control of aquatic products. There are two chromatic forms of TDs: oxidized or reduced. Usually, only one form can be detected by reported ELISA antibodies. In this article, molecular shape superimposing and quantum mechanics calculation were employed to elucidate the differences between MG, CV, and their reduced chromatic forms (leucomalachite green, LMG and leucocrystal violet, LCV. A potential hapten was rationally designed and synthesized. Polyclonal antibodies were raised through immunizing New Zealand white rabbits and BALB/C mice. We tested the cross-reactivity ratios between the hapten and TDs. The cross-reactivity ratios were correlated with the difference in surface electrostatic potential. The determination coefficients (r2 of the correlations are 0.901 and 0.813 for the rabbit and mouse antibody, respectively. According to this linear model, the significant difference in the atomic charge seemed to make it impossible to find a hapten that can produce antibodies with good cross-reactivities with both reduced and oxidized TDs.
Marchewka, M. K.; Drozd, M.; Janczak, J.
2011-08-01
The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.
International Nuclear Information System (INIS)
Corcuera, Roberto.
1975-12-01
The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr
International Nuclear Information System (INIS)
Kalyakin, S.G.; Kukharchuk, O.F.; Sorokin, A.P.
2012-01-01
The collection includes abstracts of reports of scientific and technical conference Thermophysics-2012 which has taken place on October 24-26, 2012 in Obninsk. In abstracts the following questions are considered: experimental and calculating and theoretical studies of thermal hydraulics of liquid-metal cooled fast reactors to justify their characteristics and safety; physico-chemical processes in the systems with liquid-metal coolants (LMC); physico-chemical characteristics and thermophysical properties of LMC; development of models, computational methods and calculational codes for simulating processes of of hydrodynamics, heat and mass transfer, including impurities mass transfer in the systems with LMC; methods and means for control of composition and condition of LMC in fast reactor circuits on impurities and purification from them; apparatuses, equipment and technological processes at the work with LMC taking into account the ecology, including fast reactors decommissioning; measuring techniques, sensors and devices for experimental studies of heat and mass transfer in the systems with LMC [ru
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoyan; Zhang, Zhongju [Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao (China); Zhang, Luo; Wang, Xin [Ocean University of China, Institute of Material Science and Engineering, Qingdao (China)
2016-05-15
The morphologies of the materials have strong effects on their performance in particular applications. In our experiment, we synthesized LaPO{sub 4} successfully by the typical hydrothermal method in acidic conditions. The morphologies, preferred orientation and crystal facets are characterized by scanning electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Combining the experimental findings, the surface energies of two major surfaces, (110) and (031) planes, were calculated using density functional theory methods. The theoretical calculations on the slabs surface energies were performed to simulate the shape of nanoparticles by the Wulff construction. The experimental results indicate that LaPO{sub 4} prepared in this work shows rodlike structure. The equilibrium shape of clava with large length-diameter ratio is achieved. With increasing hydrogen ion concentration in solutions, the morphologies present as sticks and their length-diameter ratios tend bigger, which is consistent with experimental results to a great extent. (orig.)
Zhang, Xueli; Gong, Xuedong
2014-08-04
Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar
2016-12-01
A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these
International Nuclear Information System (INIS)
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-01-01
The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-10-14
The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P
2013-11-21
Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences
International Nuclear Information System (INIS)
Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.
1994-01-01
Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)
1994-01-01
Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).
Directory of Open Access Journals (Sweden)
Alcântara Antônio Flávio de Carvalho
2004-01-01
Full Text Available The NMR conformational study of 4',7-di-hydroxy-8-prenylflavan 1 was carried out in acetone-d6, DMSO-d6 and CDCl3 which enabled the proposition of three conformations, namely 1a, 1b and 1c, differing in the position of the prenyl group. Geometry optimizations performed using AM1 method showed that 1a (deltaHf = -86.2 kcal/mol is as stable as 1b (deltaHf = -85.1 kcal/mol and 1c (deltaHf = -85.4 kcal/mol. When the solvent was included, the calculations showed that the solute-solvent interactions could be explained either in the light of the electronic intermolecular delocalization or the electrostatic character between solute and solvent. Theoretical calculations (HF/6-31G*, deltaFT/BLYP/6-31G*, and deltaFT/B3LYP/6-31G* showed that the combination of these types of interactions present in each solute-solvent system, dependent on the chemical properties of the solvent, lead to different spatial arrangements of the prenyl group, which in turn determined the conformation of 1.
Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki
2009-03-01
Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2017-09-07
A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.
Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung
2005-01-30
The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase
Energy Technology Data Exchange (ETDEWEB)
Garten, C.T. Jr.; Lomax, R.D.
1987-06-01
This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.
Chernin, Artur D.
1994-08-01
In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.
Cai, Wenting; Morales-Martínez, Roser; Zhang, Xingxing; Najera, Daniel; Romero, Elkin L; Metta-Magaña, Alejandro; Rodríguez-Fortea, Antonio; Fortier, Skye; Chen, Ning; Poblet, Josep M; Echegoyen, Luis
2017-08-01
Charge transfer is a general phenomenon observed for all endohedral mono-metallofullerenes. Since the detection of the first endohedral metallofullerene (EMF), La@C 82 , in 1991, it has always been observed that the oxidation state of a given encapsulated metal is always the same, regardless of the cage size. No crystallographic data exist for any early actinide endohedrals and little is known about the oxidation states for the few compounds that have been reported. Here we report the X-ray structures of three uranium metallofullerenes, U@ D 3h -C 74 , U@ C 2 (5)-C 82 and U@ C 2v (9)-C 82 , and provide theoretical evidence for cage isomer dependent charge transfer states for U. Results from DFT calculations show that U@ D 3h -C 74 and U@ C 2 (5)-C 82 have tetravalent electronic configurations corresponding to U 4+ @ D 3h -C 74 4- and U 4+ @ C 2 (5)-C 82 4- . Surprisingly, the isomeric U@ C 2v (9)-C 82 has a trivalent electronic configuration corresponding to U 3+ @ C 2v (9)-C 82 3- . These are the first X-ray crystallographic structures of uranium EMFs and this is first observation of metal oxidation state dependence on carbon cage isomerism for mono-EMFs.
Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen
2017-08-01
In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.
van Stee, Leo L P; Brinkman, Udo A Th
2011-10-28
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Yang, M; Zhu, X R; Mohan, R; Dong, L; Virshup, G; Clayton, J
2010-01-01
We discovered an empirical relationship between the logarithm of mean excitation energy (ln I m ) and the effective atomic number (EAN) of human tissues, which allows for computing patient-specific proton stopping power ratios (SPRs) using dual-energy CT (DECT) imaging. The accuracy of the DECT method was evaluated for 'standard' human tissues as well as their variance. The DECT method was compared to the existing standard clinical practice-a procedure introduced by Schneider et al at the Paul Scherrer Institute (the stoichiometric calibration method). In this simulation study, SPRs were derived from calculated CT numbers of known material compositions, rather than from measurement. For standard human tissues, both methods achieved good accuracy with the root-mean-square (RMS) error well below 1%. For human tissues with small perturbations from standard human tissue compositions, the DECT method was shown to be less sensitive than the stoichiometric calibration method. The RMS error remained below 1% for most cases using the DECT method, which implies that the DECT method might be more suitable for measuring patient-specific tissue compositions to improve the accuracy of treatment planning for charged particle therapy. In this study, the effects of CT imaging artifacts due to the beam hardening effect, scatter, noise, patient movement, etc were not analyzed. The true potential of the DECT method achieved in theoretical conditions may not be fully achievable in clinical settings. Further research and development may be needed to take advantage of the DECT method to characterize individual human tissues.
International Nuclear Information System (INIS)
Cao, Jun
2015-01-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π * transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π * excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S 1 ( 1 ππ * ) and S 2 ( 1 n N π * ) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles
Energy Technology Data Exchange (ETDEWEB)
Cao, Jun, E-mail: caojunbnu@mail.bnu.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Sciences, Guizhou Normal College, Guiyang, Guizhou 550018, China and Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
Cao, Jun
2015-06-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π* transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π* excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S1(1ππ*) and S2(1nNπ*) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
International Nuclear Information System (INIS)
Garten, C.T. Jr.; Lomax, R.D.
1987-06-01
This report describes data obtained during a preliminary characterization of 90 Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate 90 Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of 90 Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi 90 Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi 90 Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with 90 Sr bone concentrations of <30 pCi/g in a 45-kg buck
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen
2007-04-01
The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.
DEFF Research Database (Denmark)
Jensen Hansen, Inger Marie; Asmussen Andreasen, Rikke; Antonsen, Steen
Background/Purpose: The threshold for reporting of C-reactive protein (CRP) differs from laboratory to laboratory. Moreover, CRP values are affected by the intra individual biological variability.[1] With respect to disease activity score in 28 joints (DAS28) and Rheumatoid Arthritis (RA), precise...... threshold for reporting CRP is important due to the direct effects of CRP on calculating DAS28, patient classification and subsequent treatment decisions[2] Methods: This study consists of two sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 with regard...... to the biological variation and reporting limit for CRP and a cross sectional study of all RA patients from our department (n=876) applying our theoretical results. In the second section, we calculate DAS28 twice with actual CRP and CRP=9, the latter to elucidate the positive consequences of changing the lower...
Czech Academy of Sciences Publication Activity Database
Šebera, Jakub; Burda, J.; Straka, Michal; Ono, A.; Kojima, C.; Tanaka, Y.; Sychrovský, Vladimír
2013-01-01
Roč. 19, č. 30 (2013), s. 9884-9894 ISSN 0947-6539 R&D Projects: GA ČR GAP205/10/0228; GA MŠk(CZ) LH11033 Institutional support: RVO:61388963 Keywords : DNA structures * mercury * metalation * metal-DNA binding * nucleobases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013
International Nuclear Information System (INIS)
Lukaszek, W.; Kucypera, S.
1982-01-01
The basis of a semianalytic method for calculating attenuation of rays (neutron, gamma) in material medium is described. The method was applied in determining the neutrons' flux density in one dimensional Cartesian geometry of the reflector and the shield. (author)
Energy Technology Data Exchange (ETDEWEB)
Malenda, R. F.; Price, T. J.; Stevens, J.; Uppalapati, S. L.; Fragale, A.; Weiser, P. M.; Kuczala, A.; Hickman, A. P., E-mail: aph2@lehigh.edu [Department of Physics, Lehigh University, 16 Memorial Dr. East, Bethlehem, Pennsylvania 18015 (United States); Talbi, D. [Laboratoire Univers et Particules de Montpellier, UMR 5299, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier (France)
2015-06-14
We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.
International Nuclear Information System (INIS)
Lee, S.G.; Bak, J.G.; Jung, Y.S.; Bitter, M.; Hill, K.W.; Hoelzer, G.; Wehrhan, O.; Foerster, E.
2003-01-01
This paper describes a new method for the simultaneous measurement of the integrated reflectivity of a crystal for multiple orders of reflection at a predefined Bragg angle. The technique is demonstrated with a mica crystal for Bragg angles of 43 o , 47 o , and 50 o . The measured integrated reflectivity for Bragg reflections up to the 24th order is compared with new theoretical predictions, which are also presented in this paper
İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail
2013-10-01
In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.
International Nuclear Information System (INIS)
Yang, Mei; Wen-Chen, Zheng; Hong-Gang, Liu
2013-01-01
The spin-Hamiltonian parameters (g factors g i and hyperfine structure constants A i , were i=x, y and z) for Mo 5+ ion occupying the Ti(1) site with approximately rhombic symmetry in KTiOPO 4 crystal are calculated from the high-order perturbation formulas based on the two-mechanism model. In the model, not only the contribution due to the conventional crystal-field (CF) mechanism, but also those due to the charge-transfer (CT) mechanism are included. The six calculated spin-Hamiltonian parameters with four adjustable parameters are in reasonable agreement with the experimental values. The calculations show that for more accurate calculations of spin-Hamiltonian parameters of the high valence d n ions (e.g., Mo 5+ considered here) in crystals, the contribution from CT mechanism, which is ignored in the conventional crystal field theory, should be taken into account. The reasonable crystal field energy levels of Mo 5+ in KTiOPO 4 are also predicted from calculations
Laparoscopy After Previous Laparotomy
Directory of Open Access Journals (Sweden)
Zulfo Godinjak
2006-11-01
Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.
International Nuclear Information System (INIS)
Ning Lixin; Jiang Ying; Xia Shangda; Tanner, Peter A
2003-01-01
The 5f 3 → 5f 2 6d absorption spectrum of U 3+ in LiY F 4 has been well calculated using the model proposed by Reid for calculations of 4f N ↔ 4f N-1 5d spectra. The relevant formulae for the matrix element calculations which were omitted in this model are now described in detail, and the values of the direct and exchange coefficients associated with the f-d Coulomb interactions within the f 2 d configuration are derived and listed. The amount of reduction for the f-d Coulomb interaction parameters from the free-ion values is found to be ∼ 67% , which is much larger than the value of 26% for the isoelectronic Nd 3+ lanthanide ion in the same host
International Nuclear Information System (INIS)
Koehler, W.E.; Schaefer, J.
1983-01-01
The temperature dependence of the effective Waldmann--Snider cross sections determining the Senftleben--Beenakker effects of viscosity and heat conductivity has been studied for pH 2 gas between 10 and 200 K. From ab initio nonspherical potentials of H 2 --H 2 , scattering matrices have been determined in close-coupling calculations. From these, the elements of the scattering amplitude matrix have been obtained and used as input quantities for the evaluation of the various Waldmann--Snider collision integrals. The results of these first ab initio numerical calculations of anisotropic transport coefficients show excellent agreement of calculated and measured effective cross sections, especially for the most recent improved version of the interaction potential. In addition, it has been shown that the polarization production cross sections are quite sensitive to the potential anisotropy
International Nuclear Information System (INIS)
Jaffey, A.H.; Gray, J.; Bentley, W.C.; Lerner, J.L.
1987-09-01
A precision built moveable endplate Geiger-Mueller counter was used to measure the absolute disintegration rate of a beta-emitting radioactive gas. A Geiger-Mueller counter used for measuring gaseous radioactivity has 85 Kr (beta energy, 0.67 MeV). The wall effect calculation is readily extendable to other beta energies
Brown et al. (2016) published a synthesis paper in which evidence was presented supporting a new value of the Earth’s geobiosphere baseline, 12.0E+24 seJ/y (solar equivalent joules per year) from which the emergy of all the Earth’s products and processes can be calcul...
Directory of Open Access Journals (Sweden)
Guangtao Zhang
2017-05-01
Full Text Available Inter-turn short circuit of field windings (ISCFW may cause the field current of a generator to increase, output reactive power to decrease, and unit vibration to intensify, seriously affecting its safe and stable operation. Full integration of mechanical and electrical characteristics can improve the sensitivity of online monitoring, and detect the early embryonic period fault of small turns. This paper studies the calculations and variations of unbalanced magnetic pull (UMP, of which the excitation source of rotor vibration is the basis and key to online fault monitoring. In grid load operation, ISCFW are first calculated with the multi-loop method, so as to obtain the numerical solutions of the stator and the rotor currents during the fault. Next, the air-gap magnetic field of the ISCFW is analyzed according to the actual composition modes of the motor loops in the fault, so as to obtain the analytic expressions of the air-gap magnetic motive force (MMF and magnetic density. The UMP of the rotor is obtained by solving the integral of the Maxwell stress. The correctness of the electric quantity calculation is verified by the ISCFW experiment, conducted in a one pair-pole non-salient pole model machine. On this basis, comparing the simulation analysis with the calculation results of the model in this paper not only verifies the accuracy of the electromagnetic force calculation, but also proves that the latter has the advantages of a short time consumption and high efficiency. Finally, the influencing factors and variation law of UMP are analyzed by means of an analytic model. This develops a base for the online monitoring of ISCFW with the integration of mechanical and electrical information.
Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin
2011-06-07
The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics
Czech Academy of Sciences Publication Activity Database
Dračínský, Martin; Jansa, Petr; Ahonen, K.; Buděšínský, Miloš
-, č. 8 (2011), s. 1544-1551 ISSN 1434-193X R&D Projects: GA AV ČR KJB400550903; GA MŠk 1M0508 Grant - others:AV ČR(CZ) M200380901 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR spectroscopy * tautomerism * nitrogen heterocycles * density functional calculations Subject RIV: CC - Organic Chemistry Impact factor: 3.329, year: 2011
Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.
2015-05-01
In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.
Zehe, Michael J.; Jaffe, Richard L.
2010-01-01
High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.
Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S
2015-05-15
In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Helmrot, E.; Alm Carlsson, G.
1996-01-01
Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING's theory. They were also found to be proportional to the collision kerma in silver bromide (K c,AgBr ) indicating proportionality between K c,AgBr and the mean absorbed dose in silver bromide. While GREENING's theory shows that the quotient of the mean absorbed dose in silver bromide and K c,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K c,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( c,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K c,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP)
Energy Technology Data Exchange (ETDEWEB)
Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)
1995-10-01
Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.
International Nuclear Information System (INIS)
Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid
2010-01-01
Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.
International Nuclear Information System (INIS)
Arwui, C. C.; Schandorf, C.; Nani, K.; Darko, E. O.; Deatanyah, P.
2010-01-01
A theoretical study was carried out to re-evaluate the integrity of the biological shielding of 137 Cs brachytherapy unit at the Korle Bu Teaching Hospital (Ghana), and the results were verified by measurement of the dose rates at selected locations. The primary objective was to determine the current state of protection and safety of staff and the general public. Shielding design of the brachytherapy unit at the hospital was based on postulated workload and occupancy factors of the facility. The facility has been in existence for 12 y and has accumulated operational workload data that differs from the postulated one. The results show that despite the variation in actual and postulated workloads, the dose rates were below the reference values 0.5 mSv h -1 for public areas and 7.5 μSv h -1 for controlled areas. These values were in the range of 0.10-0.12 μSv h -1 for public areas and of 0.50-2.10 μSv h -1 for controlled areas. (authors)
Energy Technology Data Exchange (ETDEWEB)
Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)
2016-01-21
The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.
International Nuclear Information System (INIS)
Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Xia; Zhang, Nan; Yan, Xingchen; Zuo, Jian
2014-01-01
A novel complex [Zn(phen)(o-AB) 2 ] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with a = 7.6397(6) A, b = 16.8761(18) A, c = 17.7713(19) A, α = 90 .deg., β = 98.9570(10) .deg., γ = 90 .deg., V = 2.2633(4) nm 3 , Z = 4, F(000) = 1064, S = 1.058, Dc = 1.520 g·cm -3 , R 1 = 0.0412, wR 2 = 0.0948, μ = 1.128 mm -1 . The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
Zhao, Sufang; Zhu, Jingyu; Xu, Lei; Jin, Jian
2017-06-01
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin-dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP-binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β-selective binding mechanisms and the rational design of selective GSK3β inhibitors. © 2016 John Wiley & Sons A/S.
Directory of Open Access Journals (Sweden)
Sanju Gupta
2016-07-01
thin heterogeneous composite electrodes. We attribute the superior performance to the open graphene topological network being beneficial to available ion diffusion sites and the faster transport kinetics having a larger accessible geometric surface area and synergistic integration with optimal nanostructured VO loading. Computational simulations via periodic density functional theory (DFT with and without V2O5 adatoms on graphene sheets are also performed. These calculations determine the total and partial electronic density of state (DOS in the vicinity of the Fermi level (i.e., higher electroactive sites, in turn complementing the experimental results toward surface/interfacial charge transfer on heterogeneous electrodes.
Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V
2007-07-19
The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.
Theoretical calculations for electron proton scattering
International Nuclear Information System (INIS)
Horst, M. van der
1990-01-01
Within an extension of the Higgs structure of the standard model the production of charged Higgs bosons at the ep collider HERA is possible. However it is found that the total production rates are very small. For example, if a mass of 15 GeV is assumed , at most 10 events can be observed at HERA. Therefore it will be clear that the actual performance of HERA must be monitored accurately. This thesis is concerned with the computation of the cross section of e - p → γe - p reaction which has been proposed to be a luminosity monitor for HERA. In ch. 3 the pro-cess is computed at lowest order. Ch. 4 presents the computation of radiative corrections to the process which consist of the virtual corrections and the corrections due to Bremsstrahlung photons. This amounts to computing the cross section of the process e - p → γγ e - p, and must be included to cancel infrared divergent terms in the virtual corrections in the usual way. In ch. 5 a concise expression for the trace of gamma matrices in four dimensions is presented. This expression can be useful in writing a matrix element (at tree level) in terms of contractions of two different tensors. The expression found can be useful in an algebraic manipulation programme. An example is given how the results can be used in a physical process. (H.W.).55 refs.; 11 figs
Theoretical Study of the Compound Parabolic Trough Solar Collector
Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen
2012-01-01
Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Research in theoretical nuclear physics
International Nuclear Information System (INIS)
Udagawa, T.
1993-11-01
This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework
Bajnóczi, Éva G; Németh, Zoltán; Vankó, György
2017-11-20
Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.
Calculation of magnetic hyperfine constants
International Nuclear Information System (INIS)
Bufaical, R.F.; Maffeo, B.; Brandi, H.S.
1975-01-01
The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used
Energy Technology Data Exchange (ETDEWEB)
Kudo, K [Japan Marine Science and Technology Center, Kanagawa (Japan)
1993-09-30
This paper describes an algorithm for calculating the equilibrium state of carbonate system in seawater. The photo-synthesis, respiration, and basic production ability of organic and inorganic carbon compounds by calcification of coral reef ecosystem and the change in carbonate system in seawater were discussed. The carbonate system in seawater can be estimated by determining two variables among the four variables, i.e., pH value, total carbonate, total alkalinity, and partial pressure of carbon dioxide (PCO2). The analysis program proved to give good agreement with the previously calculated results. In the inorganic production of carbonate in seawater, one mole of carbonate precipitation liberates approximately 0.6 mole of CO2 into the air, and the pH value shifts toward acid side. The experimental value (0.55) for production speed ratio of inorganic carbon to organic carbon in the seawater where the coral family is abundant brings about the increase of the organic carbon production, resulting in the decrease in PCO2 in seawater and the increase in pH value. It is assumed that it becomes of a sink of CO2 in the atmosphere. 23 refs., 3 figs., 7 tabs.
Joos, Georg
1986-01-01
Among the finest, most comprehensive treatments of theoretical physics ever written, this classic volume comprises a superb introduction to the main branches of the discipline and offers solid grounding for further research in a variety of fields. Students will find no better one-volume coverage of so many essential topics; moreover, since its first publication, the book has been substantially revised and updated with additional material on Bessel functions, spherical harmonics, superconductivity, elastomers, and other subjects.The first four chapters review mathematical topics needed by theo
International Nuclear Information System (INIS)
Laval, G.
1988-01-01
The 1988 progress report of the theoretical Physics Center (Ecole Polytechnique, France), is presented. The research activities are carried out in the fields of the supersymmetry theory, the dynamic systems theory, the statistical mechanics, the plasma physics and the random media. Substantial improvements are obtained on dynamical system investigations. In the field theory, the definition of the Gross-Neveu model is achieved. However the construction of the non-abelian gauge theories and the conformal theories are the main research activities. Concerning Astrophysics, a three-dimensional gravitational code is obtained. The activities of each team, and the list of the published papers, congress communications and thesis are given [fr
International Nuclear Information System (INIS)
Anon.
1980-01-01
The nuclear theory program deals with the properties of nuclei and with the reactions and interactions between nuclei and a variety of projectiles. The main areas of concentration are: heavy-ion direct reactions at nonrelativistic energies; nuclear shell theory and nuclear structure; nuclear matter and nuclear forces;intermediate-energy physics and pion-nucleus interactions; and high-energy collisions of heavy ions. Recent progress and plans for future work in these five main areas of concentration and a summary of other theoretical studies currently in progress or recently completed are presented
Improved theoretical model of InN optical properties
International Nuclear Information System (INIS)
Ferreira da Silva, A.; Chubaci, J.F.D.; Matsuoka, M.; Freitas, J.A. Jr.; Tischler, J.G.; Baldissera, G.; Persson, C.
2014-01-01
The optical properties of InN are investigated theoretically by employing the projector augmented wave (PAW) method within Green's function and the screened Coulomb interaction approximation (GW o ). The calculated results are compared to previously reported calculations which use local density approximation combined with the scissors-operator approximation. The results of the present calculation are compared with reported values of the InN bandgap and with low temperature near infrared luminescence measurements of InN films deposited by a modified Ion Beam Assisted Deposition technique. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Stöltzner, Michael
Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.
Theoretical high energy physics
International Nuclear Information System (INIS)
Lee, T.D.
1990-05-01
This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model
Vaisburd, D. I.; Kharitonova, S. V.
1997-11-01
present article gives the results of theoretical calculations of the spectra and other characteristics of intraband electron and interband hole luminescence which are compared with the experimental data.
Supercomputer requirements for theoretical chemistry
International Nuclear Information System (INIS)
Walker, R.B.; Hay, P.J.; Galbraith, H.W.
1980-01-01
Many problems important to the theoretical chemist would, if implemented in their full complexity, strain the capabilities of today's most powerful computers. Several such problems are now being implemented on the CRAY-1 computer at Los Alamos. Examples of these problems are taken from the fields of molecular electronic structure calculations, quantum reactive scattering calculations, and quantum optics. 12 figures
Previously unknown species of Aspergillus.
Gautier, M; Normand, A-C; Ranque, S
2016-08-01
The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. Copyright © 2016 European Society of Clinical Microbiology and
Theoretical Physics 1. Theoretical Mechanics
International Nuclear Information System (INIS)
Dreizler, Reiner M.; Luedde, Cora S.
2010-01-01
After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)
Theoretical Physics 1. Theoretical Mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreizler, Reiner M.; Luedde, Cora S. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2010-07-01
After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)
Theoretical Study of the Compound Parabolic Trough Solar Collector
Directory of Open Access Journals (Sweden)
Dr. Subhi S. Mahammed
2012-06-01
Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Theoretical Mechanics Theoretical Physics 1
Dreizler, Reiner M
2011-01-01
After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. - A collection of 74 problems with detailed step-by-step guidance towards the solutions. - A col...
Czech Academy of Sciences Publication Activity Database
Rulíšek, Lubomír; Havlas, Zdeněk
2000-01-01
Roč. 122, č. 42 (2000), s. 10428-10439 ISSN 0002-7863 R&D Projects: GA ČR GA203/98/0650; GA AV ČR IAA4055801 Institutional research plan: CEZ:AV0Z4055905 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.025, year: 2000
The role of ab initio electronic structure calculations in studies of the strength of materials
International Nuclear Information System (INIS)
Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.
2004-01-01
In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed
Theoretical solid state physics
Haug, Albert
2013-01-01
Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i
Energy Technology Data Exchange (ETDEWEB)
Hellmann, Robert
2009-06-16
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
Parametrisation of linear accelerator electron beam for computerised dosimetry calculations
International Nuclear Information System (INIS)
Millan, P.E.; Millan, S.; Hernandez, A.; Andreo, P.
1979-01-01
A previously published age-diffusion model has been adapted to obtain parameters for the Saggittaire linear accelerator electron beams. The calculations are shown and the results discussed. A comparison is presented between measured and predicted percentage depth doses for electron beams at various energies between 10 and 32 MeV. Theoretical isodose curves are compared, for an energy of 10 MeV, with experimental curves. The parameters obtained are used for computer electron isodose curve calculation in a program called FIJOE adapted from a previously published program. This program makes it possible to correct for irregular body contours, but not for internal inhomogeneities. (UK)
Exchange coupling interactions in a Fe6 complex: A theoretical study using density functional theory
International Nuclear Information System (INIS)
Cauchy, Thomas; Ruiz, Eliseo; Alvarez, Santiago
2006-01-01
Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in an Fe 6 complex. The calculated exchange coupling constants are consistent with an S=5 ground state and agree well with those reported previously for other Fe III polynuclear complexes. Ferromagnetic interactions may appear through exchange pathways formed by two bridging hydroxo or oxo ligands
International Nuclear Information System (INIS)
Nguyen Khoa Hien; Nguyen Thi Ai Nhung; Duong Tuan Quang; Ho Quoc Dai; Nguyen Tien Trung
2015-01-01
A new dansyl-diethylenetriamine-thiourea conjugate (DT) for detection of Hg 2+ ions in aqueous solution has been theoretically designed and compared to our previously published results. The synthetic path, the optimized geometric structure and the characteristics of the DT were found by the theoretical calculations at the B3LYP/LanL2DZ level. Accordingly, the DT can react with Hg 2+ ion to form a product with quenched fluorescence. It is remarkable that the experimental results are in an excellent agreement with the theoretically evaluated data. (author)
Electrochemistry of chlorogenic acid: experimental and theoretical studies
Energy Technology Data Exchange (ETDEWEB)
Namazian, Mansoor [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)]. E-mail: namazian@yazduni.ac.ir; Zare, Hamid R. [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)
2005-08-10
Cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as well as quantum chemical methods, are used for electrochemical study of chlorogenic acid, as an important biological molecule. The standard formal potential, diffusion coefficient, and heterogeneous electron transfer rate constant of chlorogenic acid in aqueous solution are investigated. Acidic dissociation constant of chlorogenic acid is also obtained. Quantum mechanical calculations on oxidation of chlorogenic acid in aqueous solution, using density functional theory are presented. The change of Gibbs free energy and entropy of oxidation of chlorogenic acid are calculated using thermochemistry calculations. The calculations in aqueous solution are carried out with the use of polarizable continuum solvation method. Theoretical standard electrode potential of chlorogenic acid is achieved to be 0.580 V versus standard calomel electrode (SCE) which is in agreement with the experimental value of 0.617 V obtained experimentally in this work. The difference is consistent with the values we previously reported for other quinone derivatives.
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
International Nuclear Information System (INIS)
Rossi, F.N.
1986-10-01
The adiabatic potential lines are first obtained through the use of a pseudo-potential, depending on the electronic orbital moment. A perturbative method is then used to generate the potential surfaces, according to the potential lines. A quantum calculation in the thermal energy domain is realized, for the cross-sections concerning the structure transitions of the Rubidium, induced by the collision with hydrogen or deuterium molecules. This allowed the interpretation of the experimentally observed isotopic effect [fr
Theoretical Approaches to Lignin Chemistry
Shevchenko, Sergey M.
1994-01-01
A critical review is presented of the applications of theoretical methods to the studies of the structure and chemical reactivity of lignin, including simulation of macromolecular properties, conformational calculations, quantum chemical analyses of electronic structure, spectra and chemical reactivity. Modern concepts of spatial organization and chemical reactivity of lignins are discussed.
International Nuclear Information System (INIS)
Wu Kong-Ping; Zhou Meng-Ran; Huang You-Rui; Gu Shu-Lin; Ye Jian-Dong; Zhu Shun-Ming; Zhang Rong; Zheng You-Dou; Tang Kun
2013-01-01
The structural, energetic, and electronic properties of lattice highly mismatched ZnY 1−x O x (Y = S, Se, Te) ternary alloys with dilute O concentrations are calculated from first principles within the density functional theory. We demonstrate the formation of an isolated intermediate electronic band structure through diluted O-substitute in zinc-blende ZnY (Y = S, Se, Te) at octahedral sites in a semiconductor by the calculations of density of states (DOS), leading to a significant absorption below the band gap of the parent semiconductor and an enhancement of the optical absorption in the whole energy range of the solar spectrum. It is found that the intermediate band states should be described as a result of the coupling between impurity O 2p states with the conduction band states. Moreover, the intermediate bands (IBs) in ZnTeO show high stabilization with the change of O concentration resulting from the largest electronegativity difference between O and Te compared with in the other ZnSO and ZnSeO. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue
2016-04-01
In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.
Energy Technology Data Exchange (ETDEWEB)
Hermanne, A.; Adam Rebeles, R. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussel 1090 (Belgium); Tárkányi, F.; Takács, S. [Institute of Nuclear Research, Hungarian Academy of Science, 4026 Debrecen (Hungary)
2015-08-01
Thin {sup nat}Cr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of {sup 52g}Fe, {sup 49,51cum}Cr, {sup 52cum,54,56cum}Mn and {sup 48cum}V in Cr and {sup 61}Cu,{sup 68}Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the {sup nat}Cu(α,x){sup 67,66}Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for {sup 52g}Fe with achievable yields and contamination rates was made.
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2015-03-21
The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.
Model calculation for energy loss in ion-surface collisions
International Nuclear Information System (INIS)
Miraglia, J.E.; Gravielle, M.S.
2003-01-01
The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces
Hansen, Inger M J; Emamifar, Amir; Andreasen, Rikke A; Antonsen, Steen
2017-01-01
Disease Activity Score in 28 joints (DAS28) is commonly used to evaluate disease activity of rheumatoid arthritis (RA) and is a guide to treatment decision.The aim of this study was to evaluate the impact of lower reporting limit for C-reactive protein (CRP), with respect to intraindividual biological variability, on the calculation of DAS28 and subsequent patient classification.This study consists of 2 sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 taking intraindividual biological variation and lower reporting limit for CRP into account and a cross-sectional study of RA patients applying our theoretical results. Therefore, we calculated DAS28 twice, with the actual CRP values and CRP = 9 mg/L, the latter to elucidate the positive effects of reducing the lower reporting limit of CRP from <10 to <3 mg/L.Lower-reporting limit of <10 mg/L leads to overestimate DAS28. However, reducing lower reporting limit for CRP to <3 mg/L results in optimizing DAS28 calculation. Further lowering of reporting limit for CRP to <3 mg/L does not increase the precision of DAS28 owing to the relatively large intraindividual biological variation.Five hundred twelve patients were included. There was a significant difference between recalculated and patients DAS28 (P < 0.001). One hundred nine patients had DAS28 deviation (compatible to remission to low: 66, low to moderate: 39. and moderate to high: 4).Owing to significant impact of intraindividual biologic variation on DAS28 and patient classification, special attention should be paid to calculate DAS28 when CRP values are within normal range. Furthermore, we conclude that results of different studies evaluating DAS28 and treatment response are not comparable if the reporting limits of CRP are unknown.
Theoretical physics 3 electrodynamics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...
Theoretical physics 5 thermodynamics
Nolting, Wolfgang
2017-01-01
This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...
Calculation of ex-core detector responses
Energy Technology Data Exchange (ETDEWEB)
Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)
2005-07-01
The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)
Fredricks, Jennifer A.; Simpkins, Sandra D.
2013-01-01
The goal of this volume is to show how organized activities provide an ideal setting for developing a deeper understanding of peer relations, as well as offering a context for a more positive study of peers. The chapters in this volume focus on youth 10 to 18 years of age. In this introductory chapter we first describe the reasons why organized…
Energy Technology Data Exchange (ETDEWEB)
Zunger, Alex [University of Colorado Boulder; Kazmerski, Lawrence [University of Colorado Boulder; Dalpian, Gustavo [University of Colorado Boulder
2018-03-14
The material class of hybrid organic-inorganic perovskites (AMX3) has risen rapidly from a virtually unknown material in photovoltaic applications a short 8-years ago into 20-23% efficient thin-film solar cell devices. As promising as this class of materials is, however, there are limitations associated with its poor long-term stability, non-optimal band gap, and the presence of toxic Pb atom on the metalloid site. An Edisonian laboratory exploration (i.e., growth + characterization) via trial-and-error processes of all other candidate materials, is unpractical. Our approach uses high speed computational design and discovery to screen the ‘best of class” candidates based upon optimal functionalities.
Jiang, Li-Yan; He, Shan; Jiang, Ke-Zhi; Sun, Cui-Rong; Pan, Yuan-Jiang
2010-08-25
Resveratrol and its oligomers, abundantly present in wine grapes, are believed to be effective phytoalexins for the phenomenon "French paradox" partially by virtue of their powerful antiradical properties. EPR spin-trapping technique was utilized, demonstrating all polyphenols were selective (1)O2 quenchers but not effective (•)OH and O2(•¯) scavengers. On the basis of the HPLC-ESI-MS(2) analysis for the simulated reactions of polyphenols with (1)O2, the molecular weights of the resulting photochemical products were 14 or 28 Da higher than those of their substrates. No fragment C2H2O (42 Da), which was rather distinctive of the resorcinol rings in these cases, had been observed, whereas their MS/MS spectra displayed characteristic neutral fragments including carbon monoxide (CO, 28 Da) and 2-hydroxy[1,4]benzoquinone (C6H4O3, 124 Da). Finally, PM3 semiempirical calculations and HR-FTICR-MS experiments were performed, supporting the assertion that their quenching mechanism involved physical and chemical pathways. Chemical quenching underwent an endoperoxide intermediate form to generate quinones.
International Nuclear Information System (INIS)
Gottlieb, S.A.
1990-05-01
My research in lattice gauge theory during the past year is described. Several projects were completed dealing with QCD simulations including dynamical fermions. Under the DOE Grand Challenge program, a large scale calculation of the QCD spectrum with two light flavors of dynamical staggered quarks was carried out. This calculation is one of the most significant efforts to data to take into account the effects of dynamical fermions. Smaller lattice spacing and lighter quark masses were used than in previous attempts. QCD thermodynamics was studied on the ST-100 array processor and on an ETA supercomputer at the John von Neumann Supercomputer Center. On the ST-100, a study with two flavors of dynamical staggered quarks with am q = 0.025 and 0.0125 was carried out on a 12 3 x 8 lattice. These results give a rough estimate of the crossover couplings where we see the restoration of chiral symmetry. A study of QCD with dynamical Wilson fermions was carried out with N t = 4 to try to bring the study of QCD with dynamical Wilson fermions to the level that has been attained with staggered fermions over the past two years. We have calculated screening lengths to elucidate the properties of the high temperature phase. In the pure gluon theory, claims that the finite temperature deconfinement transition is second order, rather than first order, were investigated using a finite size scaling analysis. Our results support a first order transition. Finally, work was done to port computer code to new environments involving parallelism in order to pursue more ambitious calculations on more powerful hardware than the ST-100 and ETA10 used for the calculations reported here
TAD- THEORETICAL AERODYNAMICS PROGRAM
Barrowman, J.
1994-01-01
This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
International Nuclear Information System (INIS)
Scholtyssek, W.
1995-01-01
In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)
Calculation of the viscosity of nuclear waste glass systems
International Nuclear Information System (INIS)
Shah, R.; Behrman, E.C.; Oksoy, D.
1990-01-01
Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt
Energy Technology Data Exchange (ETDEWEB)
Cohen, Andrew [Boston Univ., MA (United States); Schmaltz, Martin [Boston Univ., MA (United States); Katz, Emmanuel [Boston Univ., MA (United States); Rebbi, Claudio [Boston Univ., MA (United States); Glashow, Sheldon [Boston Univ., MA (United States); Brower, Richard [Boston Univ., MA (United States); Pi, So-Young [Boston Univ., MA (United States)
2016-09-30
This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of
International Nuclear Information System (INIS)
Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel; Rebbi, Claudio; Glashow, Sheldon; Brower, Richard; Pi, So-Young
2016-01-01
This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of
Feng, X. J.; Zhang, J. T.; Lin, H.; Gillis, K. A.; Mehl, J. B.; Moldover, M. R.; Zhang, K.; Duan, Y. N.
2017-10-01
We report a new determination of the Boltzmann constant k B using a cylindrical acoustic gas thermometer. We determined the length of the copper cavity from measurements of its microwave resonance frequencies. This contrasts with our previous work (Zhang et al 2011 Int. J. Thermophys. 32 1297, Lin et al 2013 Metrologia 50 417, Feng et al 2015 Metrologia 52 S343) that determined the length of a different cavity using two-color optical interferometry. In this new study, the half-widths of the acoustic resonances are closer to their theoretical values than in our previous work. Despite significant changes in resonator design and the way in which the cylinder length is determined, the value of k B is substantially unchanged. We combined this result with our four previous results to calculate a global weighted mean of our k B determinations. The calculation follows CODATA’s method (Mohr and Taylor 2000 Rev. Mod. Phys. 72 351) for obtaining the weighted mean value of k B that accounts for the correlations among the measured quantities in this work and in our four previous determinations of k B. The weighted mean {{\\boldsymbol{\\hat{k}}}{B}} is 1.380 6484(28) × 10-23 J K-1 with the relative standard uncertainty of 2.0 × 10-6. The corresponding value of the universal gas constant is 8.314 459(17) J K-1 mol-1 with the relative standard uncertainty of 2.0 × 10-6.
Theoretical study of defect properties in metals
International Nuclear Information System (INIS)
Sindzingre, P.
1987-01-01
Several characteristic properties (formation and migration enthalpies and volumes, dipole tensors, effects on shear elastic constants) of several point defects (vacancy, divacancy, interstitial, di-interstitial) in different metals: f.c.c. metals (Al, Cu, Ag, Au), h.c.p. metals (Be, Mg, Zn, Cd, Na, Co, Ti, Zr), b.c.c. metals (Li, Na, K, Rb, Cs) have been calculated. The calculated properties are evaluated from static computations performed with pair potentials derived from pseudo-potential theory (for simple or noble metals) or deduced empirically. Results are compared with available experimental data with previous theoretical works. The first part of this work where we have studied point defects properties in f.c.c. metals lead us to suggest a more convincing interpretation of X-ray scattering and elastic relation measurements concerning interstitials in Al and Cu, and a new interpretation for X-ray scattering measurements concerning di-interstitials in Al. In the second part, devoted to h.c.p. metals we are brought to propose for each studied metal the interstitial configurations which yield the best agreement with experimental results. The third part, devoted to the study of point defects in alkalin b.c.c. metals lead us to interpret self-diffusion in these metals with the assumption of a simultaneous contribution of monovacancies, divacancies and interstitials [fr
Calculation of the superconducting transition temperature in niobium
International Nuclear Information System (INIS)
Perlov, C.M.
1982-01-01
The author presents calculations of the superconducting transition temperature, T/sub c/, the electron-phonon coupling constant, lambda, and the spectral function, α 2 f(ω), for niobium. The author's calculations are based on an empirical pseudopotential method (EPM) band structure. Phonon linewidths are also given for longitudinal and transverse branches along different directions. The necessary electron-phonon matrix elements are evaluated using only the rigid-ion approximation by applying Green's theorem. The calculated value of T/sub c/ is 8.4 K which differs from the measured value by only 9%; the calculated lambda is 1.02. The spectral function and linewidths are compared to experimental and previous theoretical results
Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture)
Energy Technology Data Exchange (ETDEWEB)
Liu, Ping (BNL Chemistry Dept)
2010-12-15
Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being developed at Brookhaven Lab may be used to speed us along our roads and highways as they play a major role in solving the world’s energy challenges. During the lecture, Liu will discuss how theorists and experimentalists at BNL are working together to formulate and test new catalysts that could be used in real-life applications, such as hydrogen-fuel cells that may one day power our cars and trucks.
Theoretical calculation of sawtooth wave buncher with high voltage
International Nuclear Information System (INIS)
Sun Liepeng; Xu Zhe; Shi Aimin; Feng Yong; Jin Peng; Lan Tao; Gao Yihai; Zhao Hongwei
2010-01-01
The method which builds a buncher with non-resonant cavity through the direct production of sawtooth wave has already been applied commonly to accelerator technologies all over the world. Recently, with the rapid development of electronic and mechanical manufacture technology during the last few decades, it leads to develop a sawtooth buncher easily, furthermore, it can improve match efficiency and operation stability in HIRFL at IMP. It has been concluded that the design can be applied to more sophisticated specification according to this method and the measurement of building higher voltage buncher is feasible. At last, we complement critical points involved implementation of this project and makes it work efficiently because of the highest demand and more rigorous installation limitation of this new buncher throughout the world. (authors)
Theoretical calculations of valence states in Fe-Mo compounds
International Nuclear Information System (INIS)
Estrada, F; Navarro, O; Noverola, H; Suárez, J R; Avignon, M
2014-01-01
The half-metallic ferromagnetic double perovskite compound Sr 2 FeMoO 6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr 2 Fe 1+x Mo 1−x O 6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism
International Nuclear Information System (INIS)
Li, D.
1980-01-01
Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru
Detection limit calculations for different total reflection techniques
International Nuclear Information System (INIS)
Sanchez, H.J.
2000-01-01
In this work, theoretical calculations of detection limits for different total-reflection techniques are presented.. Calculations include grazing incidence (TXRF) and gracing exit (GEXRF) conditions. These calculations are compared with detection limits obtained for conventional x-ray fluorescence (XRF). In order to compute detection limits the Shiraiwa and Fujino's model to calculate x-ray fluorescence intensities was used. This model made certain assumptions and approximations to achieve the calculations, specially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows to analyze the different sources of background and the influence of the excitation geometry, which contribute to the understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing exit is carried out. Here a good agreement with the theoretical predictions of the reversibility principle is found, showing that detection limits are similar for both techniques. (author)
Preoperative screening: value of previous tests.
Macpherson, D S; Snow, R; Lofgren, R P
1990-12-15
To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.
Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.
2012-02-01
Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.
Automatic electromagnetic valve for previous vacuum
International Nuclear Information System (INIS)
Granados, C. E.; Martin, F.
1959-01-01
A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
International Nuclear Information System (INIS)
Petersen, K.E.
1986-03-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Theoretical Provision of Tax Transformation
Directory of Open Access Journals (Sweden)
Feofanova Iryna V.
2016-05-01
Full Text Available The article is aimed at defining the questions, giving answers to which is necessary for scientific substantiation of the tax transformation in Ukraine. The article analyzes the structural-logical relationships of the theories, providing substantiation of tax systems and transformation of them. Various views on the level of both the tax burden and the distribution of the tax burden between big and small business have been systematized. The issues that require theoretical substantiation when choosing a model of tax system have been identified. It is determined that shares of both indirect and direct taxes and their rates can be substantiated by calculations on the basis of statistical data. The results of the presented research can be used to develop the algorithm for theoretical substantiation of tax transformation
Theoretical solid state physics
International Nuclear Information System (INIS)
Anon.
1977-01-01
Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics
DEFF Research Database (Denmark)
Petersen, Kurt Erling
1986-01-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...
Theoretical investigation of the secondary ionization in krypton and xenon
International Nuclear Information System (INIS)
Saffo, M.E.
1986-01-01
A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs
International Nuclear Information System (INIS)
This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr
Qualitative methods in theoretical physics
Maslov, Dmitrii
2018-01-01
This book comprises a set of tools which allow researchers and students to arrive at a qualitatively correct answer without undertaking lengthy calculations. In general, Qualitative Methods in Theoretical Physics is about combining approximate mathematical methods with fundamental principles of physics: conservation laws and symmetries. Readers will learn how to simplify problems, how to estimate results, and how to apply symmetry arguments and conduct dimensional analysis. A comprehensive problem set is included. The book will appeal to a wide range of students and researchers.
Theoretical studies of combustion dynamics
Energy Technology Data Exchange (ETDEWEB)
Bowman, J.M. [Emory Univ., Atlanta, GA (United States)
1993-12-01
The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.
77 FR 70176 - Previous Participation Certification
2012-11-23
... participants' previous participation in government programs and ensure that the past record is acceptable prior... information is designed to be 100 percent automated and digital submission of all data and certifications is... government programs and ensure that the past record is acceptable prior to granting approval to participate...
On the Tengiz petroleum deposit previous study
International Nuclear Information System (INIS)
Nysangaliev, A.N.; Kuspangaliev, T.K.
1997-01-01
Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)
Subsequent pregnancy outcome after previous foetal death
Nijkamp, J. W.; Korteweg, F. J.; Holm, J. P.; Timmer, A.; Erwich, J. J. H. M.; van Pampus, M. G.
Objective: A history of foetal death is a risk factor for complications and foetal death in subsequent pregnancies as most previous risk factors remain present and an underlying cause of death may recur. The purpose of this study was to evaluate subsequent pregnancy outcome after foetal death and to
Directory of Open Access Journals (Sweden)
Sabria Aued-Pimentel
2008-01-01
Full Text Available The difference between the actual ECN 42 triacylglyceride content in vegetable oils, obtained by HPLC analysis, and the theoretical value calculated from the fatty acid composition was applied to detect the addition of seed oils with high contents of linoleic acid to olive oils commercialized in Brazil. The results indicate that samples analyzed were probably adulterated with low commercial value seed oils, rich in linoleic acid, like soybean, sunflower or corn.
Statistical theory for calculating energy spectra of β-delayed neutrons
International Nuclear Information System (INIS)
Kawano, Toshihiko; Moeller, Peter; Wilson, William B.
2008-01-01
Theoretical β-delayed neutron spectra are calculated based on the Quasi-particle Random Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after β-decay to the granddaughter residual are more accurately calculated than previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra reasonably agree with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors. (authors)
Poirier, Bill; Salam, A
2004-07-22
In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.
International Nuclear Information System (INIS)
Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.
1991-12-01
The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled
Subsequent childbirth after a previous traumatic birth.
Beck, Cheryl Tatano; Watson, Sue
2010-01-01
Nine percent of new mothers in the United States who participated in the Listening to Mothers II Postpartum Survey screened positive for meeting the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for posttraumatic stress disorder after childbirth. Women who have had a traumatic birth experience report fewer subsequent children and a longer length of time before their second baby. Childbirth-related posttraumatic stress disorder impacts couples' physical relationship, communication, conflict, emotions, and bonding with their children. The purpose of this study was to describe the meaning of women's experiences of a subsequent childbirth after a previous traumatic birth. Phenomenology was the research design used. An international sample of 35 women participated in this Internet study. Women were asked, "Please describe in as much detail as you can remember your subsequent pregnancy, labor, and delivery following your previous traumatic birth." Colaizzi's phenomenological data analysis approach was used to analyze the stories of the 35 women. Data analysis yielded four themes: (a) riding the turbulent wave of panic during pregnancy; (b) strategizing: attempts to reclaim their body and complete the journey to motherhood; (c) bringing reverence to the birthing process and empowering women; and (d) still elusive: the longed-for healing birth experience. Subsequent childbirth after a previous birth trauma has the potential to either heal or retraumatize women. During pregnancy, women need permission and encouragement to grieve their prior traumatic births to help remove the burden of their invisible pain.
Blatt, John M
1979-01-01
A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to
Opacity calculations for laser plasma applications
International Nuclear Information System (INIS)
Magee, N.H. Jr.
1986-01-01
The Los Alamos LTE light element detailed configuration opacity code (LEDCOP) has been revised to provide more accurate absorption coefficients and group means for modern radiation-hydrodynamic codes. The new group means will be especially useful for computing the transport of thermal radiation from laser deposition. The principal improvement is the inclusion of a complete set of accurate and internally consistent LS term energies and oscillator strengths in both the EOS and absorption coefficients. Selected energies and oscillator strengths were calculated from a Hartree-Fock code, then fitted by a quantum defect method. This allowed transitions at all wavelengths to be treated consistently and accurately instead of being limited to wavelength regions covered by experimental observations or isolated theoretical calculations. A second improvement is the use of more accurate photoionization cross sections for excited as well as ground state configurations. These cross sections are now more consistent with the bound-bound oscillator strengths, leading to a smooth transition across the continuum limit. Results will be presented showing the agreement of the LS term energies and oscillator strengths with observed values. The new absorption coefficients will be compared with previous calculations. 5 refs., 9 figs., 1 tab
DEFF Research Database (Denmark)
2002-01-01
The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...
Summary on Theoretical Aspects
Soffer, Jacques
2010-01-01
During the five days of this conference a very dense scientific program has enlighted our research fields, with the presentation of large number of interesting lectures. I will try to summarize the theoretical aspects of some of these new results.
International Nuclear Information System (INIS)
Anon.
The studies in 1977 are reviewed. In theoretical nuclear physics: nuclear structure, nuclear reactions, intermediate energy physics; in elementary particle physics: field theory, strong interactions dynamics, nucleon-nucleon interactions, new particles, current algebra, symmetries and quarks are studied [fr
International Nuclear Information System (INIS)
Anon.
1980-01-01
Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr
African Journals Online (AJOL)
NICO
L-rhamnose and L-fucose: A Theoretical Approach ... L-ramnose and L-fucose, by means of the Monte Carlo conformational search method. The energy of the conformers ..... which indicates an increased probability for the occurrence of.
Green's function approach to calculate spin injection in quantum dot
International Nuclear Information System (INIS)
Tan, S.G.; Jalil, M.B.A.; Liew, Thomas; Teo, K.L.
2006-01-01
We present a theoretical model to study spin injection (η) through a quantum dot system sandwiched by two ferromagnetic contacts. The effect of contact magnetization on η was studied using Green's function descriptions of the density of states. Green's function models have the advantages that coherent effects of temperature, electron occupation in the QD, and lead perturbation on the state wave function and hence the current can be formally included in the calculations. In addition, self-consistent treatment of current with applied electrochemical potential or lead conductivity, a necessary step which has not been considered in previous works, has also been implemented in our model
Nuclear calculation methods for light water moderated reactors
International Nuclear Information System (INIS)
Hicks, D.
1961-02-01
This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)
A field theoretic model for static friction
Mahyaeh, I.; Rouhani, S.
2013-01-01
We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...
A large-scale R-matrix calculation for electron-impact excitation of the Ne2 +, O-like ion
McLaughlin , B M; Lee , Teck-Ghee; Ludlow , J A; Landi , E; Loch , S D; Pindzola , M S; Ballance , C P
2011-01-01
Abstract The five J? levels within a np2 or np4 ground state complex provide an excellent testing ground for the comparison of theoretical line ratios with astrophysically observed values, in addition to providing valuable electron temperature and density diagnostics. The low temperature nature of the line ratios ensure that the theoretically derived values are sensitive to the underlying atomic structure and electron-impact excitation rates. Previous R- matrix calculations for the O-like ...
Books average previous decade of economic misery.
Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
Books Average Previous Decade of Economic Misery
Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159
Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).
Theoretical and experimental study of fenofibrate and simvastatin
Nicolás Vázquez, Inés; Rodríguez-Núñez, Jesús Rubén; Peña-Caballero, Vicente; Ruvalcaba, Rene Miranda; Aceves-Hernandez, Juan Manuel
2017-12-01
Fenofibrate, an oral fibrate lipid lowering agent, and simvastatin, which reduces plasma levels of low-density lipoprotein cholesterol, are active pharmaceutical ingredients (APIs), currently in the market. We characterized these APIs by thermal analysis and conducted X-ray powder diffraction techniques. Studies should be carried out in the formulation stage before the final composition of a polypill may be established. Thus, it was found in thermochemical studies that both compounds present no chemical interactions in an equimolar mixture of solid samples at room temperature. Theoretical studies were employed to determine possible interactions between fenofibrate and simvastatin. A very weak intramolecular hydrogen bond is formed between the hydroxyl group (O5H5) of the simvastatin with chlorine and carbonyl group (C11O4, C1O2) of the fenofibrate molecule. These weak energy hydrogen bonds have no effect on the chemical stability of the compounds studied. The results were obtained using Density Functional Theory methods; particularly the BPE1BPE and B3LYP functional and 6-31++G** basis set. The values of energy show good approximation when are compared with similar calculations previously reported. Infrared spectra of monomers and dimers were obtained via theoretical calculations.
MCNP HPGe detector benchmark with previously validated Cyltran model.
Hau, I D; Russ, W R; Bronson, F
2009-05-01
An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.
Theoretical aspects of the optical model
International Nuclear Information System (INIS)
Mahaux, C.
1980-01-01
We first recall the definition of the optical-model potential for nucleons and the physical interpretation of the main related quantities. We then survey the recent theoretical progress towards a reliable calculation of this potential. The present limitations of the theory and some prospects for future developments are outlined. (author)
Energy Technology Data Exchange (ETDEWEB)
Piñera, Ibrahin, E-mail: ipinera@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Cruz, Carlos M.; Leyva, Antonio; Abreu, Yamiel; Cabal, Ana E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Espen, Piet Van; Remortel, Nick Van [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)
2014-11-15
Highlights: • We present a calculation procedure for dpa cross section in solids under irradiation. • Improvement about 10–90% for the gamma irradiation induced dpa cross section. • Improvement about 5–50% for the electron irradiation induced dpa cross section. • More precise results (20–70%) for thin samples irradiated with electrons. - Abstract: Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10–90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5–50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20–70%) with respect to the previous studies.
International Nuclear Information System (INIS)
Toledo Piza, A.F.R. de.
1987-01-01
The Random Phase Approximation (RPA) treatment of nuclear small amplitude vibrations including particle-hole continua is handled in terms of previously developed techniques to treat single-particle resonances in a reaction theoretical framework. A hierarchy of interpretable approximations is derived and a simple working approximation is proposed which involves a numerical effort no larger than that involved in standard, discrete RPA calculations. (Author) [pt
Underestimation of Severity of Previous Whiplash Injuries
Naqui, SZH; Lovell, SJ; Lovell, ME
2008-01-01
INTRODUCTION We noted a report that more significant symptoms may be expressed after second whiplash injuries by a suggested cumulative effect, including degeneration. We wondered if patients were underestimating the severity of their earlier injury. PATIENTS AND METHODS We studied recent medicolegal reports, to assess subjects with a second whiplash injury. They had been asked whether their earlier injury was worse, the same or lesser in severity. RESULTS From the study cohort, 101 patients (87%) felt that they had fully recovered from their first injury and 15 (13%) had not. Seventy-six subjects considered their first injury of lesser severity, 24 worse and 16 the same. Of the 24 that felt the violence of their first accident was worse, only 8 had worse symptoms, and 16 felt their symptoms were mainly the same or less than their symptoms from their second injury. Statistical analysis of the data revealed that the proportion of those claiming a difference who said the previous injury was lesser was 76% (95% CI 66–84%). The observed proportion with a lesser injury was considerably higher than the 50% anticipated. CONCLUSIONS We feel that subjects may underestimate the severity of an earlier injury and associated symptoms. Reasons for this may include secondary gain rather than any proposed cumulative effect. PMID:18201501
[Electronic cigarettes - effects on health. Previous reports].
Napierała, Marta; Kulza, Maksymilian; Wachowiak, Anna; Jabłecka, Katarzyna; Florek, Ewa
2014-01-01
Currently very popular in the market of tobacco products have gained electronic cigarettes (ang. E-cigarettes). These products are considered to be potentially less harmful in compared to traditional tobacco products. However, current reports indicate that the statements of the producers regarding to the composition of the e- liquids not always are sufficient, and consumers often do not have reliable information on the quality of the product used by them. This paper contain a review of previous reports on the composition of e-cigarettes and their impact on health. Most of the observed health effects was related to symptoms of the respiratory tract, mouth, throat, neurological complications and sensory organs. Particularly hazardous effects of the e-cigarettes were: pneumonia, congestive heart failure, confusion, convulsions, hypotension, aspiration pneumonia, face second-degree burns, blindness, chest pain and rapid heartbeat. In the literature there is no information relating to passive exposure by the aerosols released during e-cigarette smoking. Furthermore, the information regarding to the use of these products in the long term are not also available.
Towards A Theoretical Biology: Reminiscences
Indian Academy of Sciences (India)
engaged in since the start of my career at the University of Chicago. Theoretical biology was ... research on theoretical problems in biology. Waddington, an ... aimed at stimulating the development of such a theoretical biology. The role the ...
Annular tautomerism: experimental observations and quantum mechanics calculations
Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.
2010-06-01
The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.
Directory of Open Access Journals (Sweden)
Dagiuklas Tasos
2011-01-01
Full Text Available This paper presents a Wireless Information-Theoretic Security (WITS scheme, which has been recently introduced as a robust physical layer-based security solution, especially for infrastructureless networks. An autonomic network of moving users was implemented via 802.11n nodes of an ad hoc network for an outdoor topology with obstacles. Obstructed-Line-of-Sight (OLOS and Non-Line-of-Sight (NLOS propagation scenarios were examined. Low-speed user movement was considered, so that Doppler spread could be discarded. A transmitter and a legitimate receiver exchanged information in the presence of a moving eavesdropper. Average Signal-to-Noise Ratio (SNR values were acquired for both the main and the wiretap channel, and the Probability of Nonzero Secrecy Capacity was calculated based on theoretical formula. Experimental results validate theoretical findings stressing the importance of user location and mobility schemes on the robustness of Wireless Information-Theoretic Security and call for further theoretical analysis.
Friction and wear calculation methods
Kragelsky, I V; Kombalov, V S
1981-01-01
Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a
INFANTILISM: THEORETICAL CONSTRUCT AND OPERATIONALIZATION
Directory of Open Access Journals (Sweden)
Yelena V. Sabelnikova
2016-01-01
Full Text Available The aim of the presented research is to define and operationalize theoretically the concept of infantilism and its construct. The content of theoretical construct «infantilism» is analyzed. Methods. The methods of theoretical research involve analysis and synthesis. The age and content criteria are analysed in the context of childhood and adulthood. The traits which can be interpreted as adult infantile traits are described. Results. The characteristics of adult infantilism in modern world taking into account the increasing of information flows and socio-economic changes are defined. The definition of the concept «infantilism» including its main features is given. Infantilism is defined as the personal organization including features and models of the previous age period not adequate for the real age stage with emphasis on immaturity of the emotional and volitional sphere. Scientific novelty. The main psychological characteristics of adulthood are described as the reflection, requirement to work and professional activity, existence of professional self-determination, possession of labor skills, need for selfrealization, maturity of the emotional and volitional sphere. As objective adulthood characteristics are considered the following: transition to economic and territorial independence of a parental family, and also development of new social roles, such as a worker, spouse, and parent. Two options of a possible operationalization of concept are allocated: objective (existence / absence in real human life of objective criteria of adulthood and subjective (the self-report on subjective feeling of existence / lack of psychological characteristics of adulthood. Practical significance consists in a construct operationalization of «infantilism» which at the moment has so many interpretations. That operationalization is necessary for the further analysis and carrying out various researches.
Sibutramine characterization and solubility, a theoretical study
Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René
2013-04-01
Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.
Theoretical physics 8 statistical physics
Nolting, Wolfgang
2018-01-01
This textbook offers a clear and comprehensive introduction to statistical physics, one of the core components of advanced undergraduate physics courses. It follows on naturally from the previous volumes in this series, using methods of probability theory and statistics to solve physical problems. The first part of the book gives a detailed overview on classical statistical physics and introduces all mathematical tools needed. The second part of the book covers topics related to quantized states, gives a thorough introduction to quantum statistics, followed by a concise treatment of quantum gases. Ideally suited to undergraduate students with some grounding in quantum mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successf...
Theoretical physics 1 classical mechanics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to classical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction to the mathematical tools needed, to make this textbook self-contained for learning. The second part of the book introduces the mechanics of the free mass point and details conservation principles. The third part expands the previous to mechanics of many particle systems. Finally the mechanics of the rigid body is illustrated with rotational forces, inertia and gyroscope movement. Ideally suited to undergraduate students in their first year, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series...
A combined crossed molecular beams and theoretical study of the reaction CN + C2H4
Balucani, Nadia; Leonori, Francesca; Petrucci, Raffaele; Wang, Xingan; Casavecchia, Piergiorgio; Skouteris, Dimitrios; Albernaz, Alessandra F.; Gargano, Ricardo
2015-03-01
The CN + C2H4 reaction has been investigated experimentally, in crossed molecular beam (CMB) experiments at the collision energy of 33.4 kJ/mol, and theoretically, by electronic structure calculations of the relevant potential energy surface and Rice-Ramsperger-Kassel-Marcus (RRKM) estimates of the product branching ratio. Differently from previous CMB experiments at lower collision energies, but similarly to a high energy study, we have some indication that a second reaction channel is open at this collision energy, the characteristics of which are consistent with the channel leading to CH2CHNC + H. The RRKM estimates using M06L electronic structure calculations qualitatively support the experimental observation of C2H3NC formation at this and at the higher collision energy of 42.7 kJ/mol of previous experiments.
Research in theoretical physics
International Nuclear Information System (INIS)
Robson, D.; Williams, A.G.
1991-01-01
This report discusses: hamiltonian lattice gauge theory; relativistic potential model; chiral potential models; covariant dynamical chiral symmetry breaking models of hadronic structure; light-cone calculations and models; and strangeness in the nucleon. LSP
Compendium of theoretical physics
Wachter, Armin
2006-01-01
Mechanics, Electrodynamics, Quantum Mechanics, and Statistical Mechanics and Thermodynamics comprise the canonical undergraduate curriculum of theoretical physics. In Compendium of Theoretical Physics, Armin Wachter and Henning Hoeber offer a concise, rigorous and structured overview that will be invaluable for students preparing for their qualifying examinations, readers needing a supplement to standard textbooks, and research or industrial physicists seeking a bridge between extensive textbooks and formula books. The authors take an axiomatic-deductive approach to each topic, starting the discussion of each theory with its fundamental equations. By subsequently deriving the various physical relationships and laws in logical rather than chronological order, and by using a consistent presentation and notation throughout, they emphasize the connections between the individual theories. The reader’s understanding is then reinforced with exercises, solutions and topic summaries. Unique Features: Every topic is ...
Concluding theoretical remarks
International Nuclear Information System (INIS)
Ellis, J.
1986-01-01
My task in this talk is to review the happenings of this workshop from a theoretical perspective, and to emphasize lines for possible future research. My remarks are organized into a theoretical overview of the what, why, (mainly the hierarchy problem) how, (supersymmetry must be broken: softly or spontaneously, and if the latter, by means of a new U tilde(1) gauge group or through the chiral superfields) when (how heavy are supersymmetric partner particles in different types of theories) and where (can one find evidence for) supersymmetry. In the last part are discussed various ongoing and future searches for photinos γ tilde, gravitinos G tilde, the U vector boson, shiggses H tilde, squarks q tilde and sleptons l tilde, gluinos g tilde, winos W tilde and other gauginos, as well as hunts for indirect effects of supersymmetry, such as for example in baryon decay. Finally there is a little message of encouragement to our experimental colleagues, based on historical precedent. (orig.)
Friedrich, Harald
2017-01-01
This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...
Experimental and theoretical study of the energy loss of C and O in Zn
Energy Technology Data Exchange (ETDEWEB)
Cantero, E. D.; Lantschner, G. H.; Arista, N. R. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 San Carlos de Bariloche (Argentina); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Buenos Aires (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Behar, M.; Fadanelli, R. C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, Porto Alegre-RS (Brazil)
2011-07-15
We present a combined experimental-theoretical study of the energy loss of C and O ions in Zn in the energy range 50-1000 keV/amu. This contribution has a double purpose, experimental and theoretical. On the experimental side, we present stopping power measurements that fill a gap in the literature for these projectile-target combinations and cover an extended energy range, including the stopping maximum. On the theoretical side, we make a quantitative test on the applicability of various theoretical approaches to calculate the energy loss of heavy swift ions in solids. The description is performed using different models for valence and inner-shell electrons: a nonperturbative scattering calculation based on the transport cross section formalism to describe the Zn valence electron contribution, and two different models for the inner-shell contribution: the shellwise local plasma approximation (SLPA) and the convolution approximation for swift particles (CasP). The experimental results indicate that C is the limit for the applicability of the SLPA approach, which previously was successfully applied to projectiles from H to B. We find that this model clearly overestimates the stopping data for O ions. The origin of these discrepancies is related to the perturbative approximation involved in the SLPA. This shortcoming has been solved by using the nonperturbative CasP results to describe the inner-shell contribution, which yields a very good agreement with the experiments for both C and O ions.
Electron affinities: theoretical
International Nuclear Information System (INIS)
Kaufman, J.J.
1976-01-01
A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented
Silicene: Recent theoretical advances
Lew Yan Voon, L. C.; Zhu, Jiajie; Schwingenschlö gl, Udo
2016-01-01
Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.
Silicene: Recent theoretical advances
Lew Yan Voon, L. C.
2016-04-14
Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.
MARKETING MIX THEORETICAL ASPECTS
Margarita Išoraitė
2016-01-01
Aim of article is to analyze marketing mix theoretical aspects. The article discusses that marketing mix is one of the main objectives of the marketing mix elements for setting objectives and marketing budget measures. The importance of each element depends not only on the company and its activities, but also on the competition and time. All marketing elements are interrelated and should be seen in the whole of their actions. Some items may have greater importance than others; it depends main...
Robustness - theoretical framework
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.
2010-01-01
More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....
3. Theoretical Physics Division
International Nuclear Information System (INIS)
For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr
Theoretical developments in SUSY
International Nuclear Information System (INIS)
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical developments in SUSY
Energy Technology Data Exchange (ETDEWEB)
Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2009-01-15
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical Developments in SUSY
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.
Theoretical models of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1992-01-01
A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts
Numerical calculation of the Fresnel transform.
Kelly, Damien P
2014-04-01
In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.
Theoretical study of the properties of X-ray diffraction moiré fringes. I
International Nuclear Information System (INIS)
Yoshimura, Jun-ichi
2015-01-01
A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory, where the effect of the Pendellösung intensity oscillation on the moiré pattern is explained in detail. A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general
Update on Light-Ion Calculations
International Nuclear Information System (INIS)
Schultz, David R.
2013-01-01
During the time span of the CRP, calculations were (1) initiated extending previous work regarding elastic and transport cross sections relevant to light-species impurity-ion transport modeling, (2) completed for total and state-selective charge transfer (C 5+ , N 6+ , O 6+ , O 7+ + H; C 5+ , C 6+ , O 7+ , O 8+ + He; and C 6+ + H, H 2 ) for diagnostics such as charge exchange recombination spectroscopy, and (3) completed for excitation of atomic hydrogen by ion impact (H + , He 2+ , Be 4+ , C 6+ ) for diagnostics including beam emission spectroscopy and motional Stark effect spectroscopy. The first calculations undertaken were to continue work begun more than a decade ago providing plasma modelers with elastic total and differential cross sections, and related transport cross sections, used to model transport of hydrogen ions, atoms, and molecules as well as other species including intrinsic and extrinsic impurities. This body of work was reviewed in the course of reporting recent new calculations in a recent paper (P.S. Krstic and D.R. Schultz, Physics of Plasmas, 16, 053503 (2009)). After initial calculations for H + + O were completed, work was discontinued in light of other priorities. Charge transfer data for diagnostics provide important knowledge about the state of the plasma from the edge to the core and are therefore of significant interest to continually evaluate and improve. Further motivation for such calculations comes from recent and ongoing benchmark measurements of the total charge transfer cross section being made at Oak Ridge National Laboratory by C.C. Havener and collaborators. We have undertaken calculations using a variety of theoretical approaches, each applicable within a range of impact energies, that have led to the creation of a database of recommended state-selective and total cross sections composed of results from the various methods (MOCC, AOCC, CTMC, results from the literature) within their overlapping ranges of applicability
Sharrock, R; Gudjonsson, G H
1993-05-01
The main purpose of this study was to investigate the relationship between interrogative suggestibility and previous convictions among 108 defendants in criminal trials, using a path analysis technique. It was hypothesized that previous convictions, which may provide defendants with interrogative experiences, would correlate negatively with 'shift' as measured by the Gudjonsson Suggestibility Scale (Gudjonsson, 1984a), after intelligence and memory had been controlled for. The hypothesis was partially confirmed and the theoretical and practical implications of the findings are discussed.
Theoretical astrophysics an introduction
Bartelmann, Matthias
2013-01-01
A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it
International Nuclear Information System (INIS)
Barrett, R.C.
1979-01-01
Nowadays the 'experimental' charge densities are produced with convincing error estimates due to new methods and techniques. In addition the accuracy of those experiments means that r.m.s. radii are known within a few hundredths of a fermi. Because of that accuracy the theorists are left far behind. In order to show which theoretical possiblities exist at the moment we will discuss the single particle shell model and the Hartree-Fock or mean field approximation. Corrections to the mean field approximation are described. Finally, some examples and conclusions are presented. (KBE)
Information theoretic preattentive saliency
DEFF Research Database (Denmark)
Loog, Marco
2011-01-01
Employing an information theoretic operational definition of bottom-up attention from the field of computational visual perception a very general expression for saliency is provided. As opposed to many of the current approaches to determining a saliency map there is no need for an explicit data...... of which features, image information is described. We illustrate our result by determining a few specific saliency maps based on particular choices of features. One of them makes the link with the mapping underlying well-known Harris interest points, which is a result recently obtained in isolation...
Theoretical high energy physics
International Nuclear Information System (INIS)
Lee, T.D.
1991-01-01
This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe
Shivamoggi, Bhimsen K
1998-01-01
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses
Theoretical Optics An Introduction
Römer, Hartmann
2004-01-01
Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche
Study of some physical aspects previous to design of an exponential experiment
International Nuclear Information System (INIS)
Caro, R.; Francisco, J. L. de
1961-01-01
This report presents the theoretical study of some physical aspects previous to the design of an exponential facility. The are: Fast and slow flux distribution in the multiplicative medium and in the thermal column, slowing down in the thermal column, geometrical distribution and minimum needed intensity of sources access channels and perturbations produced by possible variations in its position and intensity. (Author) 4 refs
Calculating the Responses of Self-Powered Radiation Detectors.
Thornton, D. A.
Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual
International Nuclear Information System (INIS)
Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.
1998-01-01
Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)
Kenkre, V. M.; Scott, J. E.; Pease, E. A.; Hurd, A. J.
1998-05-01
A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study of a generally non-Markoffian, i.e., memory-possessing (nonlocal) propagation equation. Previous treatments are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be used to obtain desired features such as a prescribed stress distribution within the compact.
Theoretical study of the ionization of B2H5
International Nuclear Information System (INIS)
Curtiss, L.A.; Pople, J.A.
1989-01-01
Ab initio molecular orbital calculations at the G1 level of theory have been carried out on neutral B 2 H 5 radical, doubly bridged B 2 H + 5 cation, and the first triplet excited state of B 2 H + 5 . Singly bridged B 2 H 5 is 4.0 kcal/mol (without zero-point energies) more stable than doubly bridged B 2 H 5 . Based on this work and previous theoretical work on triply bridged B 2 H + 5 , ionization potentials (vertical and adiabatic) are determined for B 2 H 5 . The adiabatic ionization potentials of the two B 2 H 5 structures are 6.94 eV (singly bridged) and 7.53 eV (doubly bridged). A very large difference is found between the vertical and adiabatic ionization potentials (3.37 eV) of the singly bridged B 2 H 5 structure. The first triplet state of B 2 H + 5 is found to be 4.55 eV higher in energy than the lowest energy B 2 H + 5 cation (triply bridged). The results of this theoretical study support the interpretation of Ruscic, Schwarz, and Berkowitz of their recent photoionization measurements on B 2 H 5
Configuration space Faddeev calculations
International Nuclear Information System (INIS)
Payne, G.L.; Klink, W.H.; Ployzou, W.N.
1991-01-01
The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research
Theoretical and Experimental Physics
Energy Technology Data Exchange (ETDEWEB)
Nelson, Ann E. [Univ. of Washington, Seattle, WA (United States); Ellis, Stephen D. [Univ. of Washington, Seattle, WA (United States); Karch, Andreas [Univ. of Washington, Seattle, WA (United States); Rosenberg, Leslie [Univ. of Washington, Seattle, WA (United States); Sharpe, Stephene R. [Univ. of Washington, Seattle, WA (United States); Wilkes, R. Jeffrey [Univ. of Washington, Seattle, WA (United States); Yaffe, Laurence G. [Univ. of Washington, Seattle, WA (United States)
2015-04-07
We report on progress towards finding axion dark matter, neutrino oscillation parameters, Use of the gravity/gauge correspondence to to calculations in strongly coupled systems, use of jet substructure to search for new physics, use of lattice QCD to compute weak matrix elements, constraints on dark matter interactions from neutron stars, exotic Higgs searches, and new dark matter models.
Dark matter: Theoretical perspectives
International Nuclear Information System (INIS)
Turner, M.S.
1993-01-01
The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs
Dark matter: Theoretical perspectives
International Nuclear Information System (INIS)
Turner, M.S.
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos
Theoretical physics. Quantum mechanics
International Nuclear Information System (INIS)
Rebhan, Eckhard
2008-01-01
From the first in two comprehensive volumes appeared Theoretical Physics of the author by this after Mechanics and Electrodynamics also Quantum mechanics appears as thinner single volume. First the illustrative approach via wave mechanics is reproduced. The more abstract Hilbert-space formulation introduces the author later by postulates, which are because of the preceding wave mechanics sufficiently plausible. All concepts of quantum mechanics, which contradict often to the intuitive understanding formed by macroscopic experiences, are extensively discussed and made by means of many examples as well as problems - in the largest part provided with solutions - understandable. To the interpretation of quantum mechanics an extensive special chapter is dedicated. this book arose from courses on theoretical physics, which the author has held at the Heinrich-Heine University in Duesseldorf, and was in numerous repetitions fitted to the requirement of the studyings. it is so designed that it is also after the study suited as reference book or for the renewing. All problems are very thoroughly and such extensively studied that each step is separately reproducible. About motivation and good understandability is cared much
Dark matter: Theoretical perspectives
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.
Dark matter: Theoretical perspectives
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.
Tesla coil theoretical model and experimental verification
Voitkans, Janis; Voitkans, Arnis
2014-01-01
Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...
Faas, S.; Snijders, Jaap; van Lenthe, J.H.; HernandezLaguna, A; Maruani, J; McWeeny, R; Wilson, S
2000-01-01
In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in
Chapter 2. Theoretical aspects of aluminium production
International Nuclear Information System (INIS)
Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.
2011-01-01
This article is devoted to theoretical aspects of aluminium production. Thus, the electrochemistry of electrolysis process, calculation of base industrial indicators of aluminium electrolytic cell, and processes occurring on anode and cathode were considered. Factors, which increase the current output and electrolytic cell productivity were studied. The side effects, including anode effect, sodium extraction on cathode, aluminium dissolution in the electrolyte, aluminium carbide formation, and influence of admixtures in the electrolyte were studied as well.
Weldon Spring dose calculations
International Nuclear Information System (INIS)
Dickson, H.W.; Hill, G.S.; Perdue, P.T.
1978-09-01
In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case
HIRFL-SSC trim coil currents calculation by conjugate gradients method
International Nuclear Information System (INIS)
Liu, W.
2005-01-01
For accelerating different kinds of ions to various energies, the HIRFL-SSC should form the corresponding isochronous magnetic field by its main coil and trim coils. Previously, there were errors in fitting the theoretical isochronous magnetic field in the small radius region, which led to some operation difficulties for ion acceleration in the inject region. After further investigation of the restrictive condition of the maximum current limitation, the trim coil currents for fitting the theoretical isochronous magnetic field were recalculated by the conjugate gradients method. Better results were obtained in the operation of HIRFL-SSC. This article introduces the procedure to calculate the trim coil currents. The calculation method of conjugate gradients is introduced and the fitting error is analysed. (author)
Energy Technology Data Exchange (ETDEWEB)
Lam, Marnix G.E.H. [Division of Interventional Radiology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiology and Nuclear Medicine, University Medical Center Utrecht (Netherlands); Abdelmaksoud, Mohamed H.K. [Division of Interventional Radiology, Stanford University School of Medicine, Stanford, California (United States); Chang, Daniel T.; Eclov, Neville C.; Chung, Melody P.; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Louie, John D. [Division of Interventional Radiology, Stanford University School of Medicine, Stanford, California (United States); Sze, Daniel Y., E-mail: dansze@stanford.edu [Division of Interventional Radiology, Stanford University School of Medicine, Stanford, California (United States)
2013-10-01
Purpose: Previous external beam radiation therapy (EBRT) is theoretically contraindicated for yttrium-90 ({sup 90}Y) radioembolization (RE) because the liver has a lifetime tolerance to radiation before becoming vulnerable to radiation-induced liver disease. We analyzed the safety of RE as salvage treatment in patients who had previously undergone EBRT. Methods and Materials: Between June 2004 and December 2010, a total of 31 patients who had previously undergone EBRT were treated with RE. Three-dimensional treatment planning with dose–volume histogram (DVH) analysis of the liver was used to calculate the EBRT liver dose. Liver-related toxicities including RE-induced liver disease (REILD) were reviewed and classified according to Common Terminology Criteria for Adverse Events version 4.02. Results: The mean EBRT and RE liver doses were 4.40 Gy (range, 0-23.13 Gy) and 57.9 Gy (range, 27.0-125.9 Gy), respectively. Patients who experienced hepatotoxicity (≥grade2; n=12) had higher EBRT mean liver doses (7.96 ± 8.55 Gy vs 1.62 ± 3.39 Gy; P=.037), the only independent predictor in multivariate analysis. DVH analysis showed that the fraction of liver exposed to ≥30 Gy (V30) was the strongest predictor of hepatotoxicity (10.14% ± 12.75% vs 0.84% ± 3.24%; P=.006). All patients with V30 >13% experienced hepatotoxicity. Fatal REILD (n=2) occurred at the 2 highest EBRT mean liver doses (20.9 Gy and 23.1 Gy) but also at the highest cumulative liver doses (91.8 Gy and 149 Gy). Conclusions: Prior exposure of the liver to EBRT may lead to increased liver toxicity after RE treatment, depending on fractional liver exposure and dose level. The V30 was the strongest predictor of toxicity. RE appears to be safe for the treatment of hepatic malignancies only in patients who have had limited hepatic exposure to prior EBRT.
Information theoretic quantification of diagnostic uncertainty.
Westover, M Brandon; Eiseman, Nathaniel A; Cash, Sydney S; Bianchi, Matt T
2012-01-01
Diagnostic test interpretation remains a challenge in clinical practice. Most physicians receive training in the use of Bayes' rule, which specifies how the sensitivity and specificity of a test for a given disease combine with the pre-test probability to quantify the change in disease probability incurred by a new test result. However, multiple studies demonstrate physicians' deficiencies in probabilistic reasoning, especially with unexpected test results. Information theory, a branch of probability theory dealing explicitly with the quantification of uncertainty, has been proposed as an alternative framework for diagnostic test interpretation, but is even less familiar to physicians. We have previously addressed one key challenge in the practical application of Bayes theorem: the handling of uncertainty in the critical first step of estimating the pre-test probability of disease. This essay aims to present the essential concepts of information theory to physicians in an accessible manner, and to extend previous work regarding uncertainty in pre-test probability estimation by placing this type of uncertainty within a principled information theoretic framework. We address several obstacles hindering physicians' application of information theoretic concepts to diagnostic test interpretation. These include issues of terminology (mathematical meanings of certain information theoretic terms differ from clinical or common parlance) as well as the underlying mathematical assumptions. Finally, we illustrate how, in information theoretic terms, one can understand the effect on diagnostic uncertainty of considering ranges instead of simple point estimates of pre-test probability.
Theoretical Molecular Biophysics
Scherer, Philipp
2010-01-01
"Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.
International Nuclear Information System (INIS)
Anon.
1985-01-01
The theoretical physics program in the Physics Division at ORNL involves research in both nuclear and atomic physics. In nuclear physics there is extensive activity in the fields of direct nuclear reactions with light- and heavy-ion projectiles, the structure of nuclei far from stability and at elevated temperatures, and the microscopic and macroscopic description of heavy-ion dynamics, including the behavior of nuclear molecules and supernuclei. New research efforts in relativistic nuclear collisions and in the study of quark-gluon plasma have continued to grow this year. The atomic theory program deals with a variety of ionization, multiple-vacancy production, and charge-exchange processes. Many of the problems are selected because of their relevance to the magnetic fusion energy program. In addition, there is a joint atomic-nuclear theory effort to study positron production during the collision of two high-Z numbers, i.e., U+U. A new Distinguished Scientist program, sponsored jointly by the University of Tennessee and ORNL, has been initiated. Among the first appointments is G.F. Bertsch in theoretical physics. As a result of this appointment, Bertsch and an associated group of four theorists split their time between UT and ORNL. In addition, the State of Tennessee has established a significant budget to support the visits of outstanding scientists to the Joint Institute for Heavy Ion Research at ORNL. This budget should permit a significant improvement in the visitor program at ORNL. Finally, the Laboratory awarded a Wigner post-doctoral Appointment to a theorist who will work in the theory group of the Physics Division
Optimal information transfer in enzymatic networks: A field theoretic formulation
Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.
2017-07-01
Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in
Volume-based geometric modeling for radiation transport calculations
International Nuclear Information System (INIS)
Li, Z.; Williamson, J.F.
1992-01-01
Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed
Cyclotron tubes - a theoretical study
Energy Technology Data Exchange (ETDEWEB)
Mourier, G
1980-12-01
The introduction presents a general discussion of electron cyclotron masers (ECM): resonance, relativistic effects, elementary quantum aspects, the classical relativistic bunching and the optimum value of the electric field. The practical structure - in particular that of the gyrotron - is specified only insofar as it is useful for understanding the following chapters. The main parameters are discussed. Section 2 develops a nonlinear adiabatic or orbital theory of electron motion which alleviates calculations considerably while keeping numerical errors low enough for many practical cases. Its results are compared to a rigorous integration in one case. Other cases show the importance of the electric field profile inside the resonant cavity. Section 3 is devoted to space charge phenomena, and, for the most part, to a linear theory with space charge. In its limited range of validity (low-energy electrons), the theory indicates a strong impact of space charge for low a.c. fields and exhibits a pure beam instability. Section 4 is devoted to circuit equations with emphasis on the special features of cavities consisting of a long waveguide near cutoff. The conclusion indicates some trends of gyrotron development and corresponding theoretical problems.
Ab-initio theoretical predictions of structural properties of semiconductors
International Nuclear Information System (INIS)
Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.
1983-01-01
Calculations of the total energies of Si, GaP and C together with related structural properties are presented. The results show good agreement with experimental values (differences of less than 6%). They also agree with other recent theoretical results. Calculations for Si and GaP have already been reported and are given here as a reference. (L.C.) [pt
Theoretical study of n-alkane adsorption on metal surfaces
DEFF Research Database (Denmark)
Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko
2004-01-01
The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...
Absorption coefficients of silicon: A theoretical treatment
Tsai, Chin-Yi
2018-05-01
A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
Theoretical Approaches to Coping
Directory of Open Access Journals (Sweden)
Sofia Zyga
2013-01-01
Full Text Available Introduction: Dealing with stress requires conscious effort, it cannot be perceived as equal to individual's spontaneous reactions. The intentional management of stress must not be confused withdefense mechanisms. Coping differs from adjustment in that the latter is more general, has a broader meaning and includes diverse ways of facing a difficulty.Aim: An exploration of the definition of the term "coping", the function of the coping process as well as its differentiation from other similar meanings through a literature review.Methodology: Three theoretical approaches of coping are introduced; the psychoanalytic approach; approaching by characteristics; and the Lazarus and Folkman interactive model.Results: The strategic methods of the coping approaches are described and the article ends with a review of the approaches including the functioning of the stress-coping process , the classificationtypes of coping strategies in stress-inducing situations and with a criticism of coping approaches.Conclusions: The comparison of coping in different situations is difficult, if not impossible. The coping process is a slow process, so an individual may select one method of coping under one set ofcircumstances and a different strategy at some other time. Such selection of strategies takes place as the situation changes.
Theoretical disagreement about law
Directory of Open Access Journals (Sweden)
Zdravković Miloš
2014-01-01
Full Text Available As the dominant direction of the study of legal phenomena, legal positivism has suffered criticisms above all from representatives of natural law. Nevertheless, the most complex criticism of legal positivism came from Ronald Dworkin. With the methodological criticism he formed in 'Law's Empire', Dworkin attacked the sole foundations of legal positivism and his main methodological assumptions. Quoting the first postulate of positivism, which understands the law as a fact, Dworkin claims that, if this comprehension is correct, there could be no dispute among jurists concerning the law, except if some of them make an empirical mistake while establishing facts. Since this is not the case, Dworkin proves that this is actually a theoretical disagreement which does not represent a disagreement about the law itself, but about its morality. On these grounds, he rejects the idea of law as a fact and claims that the law is an interpretive notion, which means that disagreements within jurisprudence are most frequently interpretative disagreements over criteria of legality, and not empirical disagreements over historic and social facts.
Parquet theory in nuclear structure calculations
International Nuclear Information System (INIS)
Bergli, Elise
2010-01-01
The thesis concerns a numerical implementation of the Parquet summation of diagrams within Green's functions theory applied to calculations of nuclear systems. The main motivation has been to investigate whether it is possible to develop this approach to a level comparable in accuracy and reliability to other ab initio nuclear structure methods. The Green's functions approach is theoretically well-established in many-body theory, but to our knowledge, no actual application to nuclear systems has been previously published. It has a number of desirable properties, foremost the gently scaling with system size compared to direct diagonalization and the closeness to experimentally accessible quantities. The main drawback is the numerical instabilities due to the pole structure of the one-particle propagator, leading to convergence difficulties. This issue is one of the main focal points of the work presented in this thesis, and strategies to improve the convergence properties are described and investigated. We have applied the method both to a simple model which can be solved by exact diagonalization and to the more realistic 4 He system. The results shows that our implementation is close to the exact solution in the simple model as long as the interaction strengths are small. As the number of particles increases, convergence is increasingly hard to obtain. In the 4 He case, we obtain results in the vicinity of the results from comparable approaches. The numerical in-stabilities in the current implementation still prevents the desired accuracy and stability necessary to achieve the current benchmark standards. (Author)
Molecular calculations with B functions
International Nuclear Information System (INIS)
Steinborn, E.O.; Homeier, H.H.H.; Ema, I.; Lopez, R.; Ramirez, G.
2000-01-01
A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules
Rodrigues, Gessenildo Pereira; Lucena, Juracy Régis; Ventura, Elizete; Andrade do Monte, Silmar; Reva, Igor; Fausto, Rui
2013-11-01
The molecular structure and infrared spectrum of the atmospheric pollutant 1,1,1-trifluoro-2-chloroethane (HCFC-133a; CF3CH2Cl) in the ground electronic state were characterized experimentally and theoretically. Excited state calculations (at the CASSCF, MR-CISD, and MR-CISD+Q levels) have also been performed in the range up to ˜9.8 eV. The theoretical calculations show the existence of one (staggered) conformer, which has been identified spectroscopically for the monomeric compound isolated in cryogenic (˜10 K) argon and xenon matrices. The observed infrared spectra of the matrix-isolated HCFC-133a were interpreted with the aid of MP2/aug-cc-pVTZ calculations and normal coordinate analysis, which allowed a detailed assignment of the observed spectra to be carried out, including identification of bands due to different isotopologues (35Cl and 37Cl containing molecules). The calculated energies of the several excited states along with the values of oscillator strengths and previous results obtained for CFCs and HCFCs suggest that the previously reported photolyses of the title compound at 147 and 123.6 nm [T. Ichimura, A. W. Kirk, and E. Tschuikow-Roux, J. Phys. Chem. 81, 1153 (1977)] are likely to be initiated in the n-4s and n-4p Rydberg states, respectively.
Theoretical study of EPR spectra in Cu2+ - and Mn2+ - doped CaCd(CH3COO)4.6H2O
International Nuclear Information System (INIS)
Zhou Yiyang; Zhao Minguang
1987-08-01
The EPR spectra of CaCd(CH 3 COO) 4 .6H 2 O doped with Cu 2+ and Mn 2+ have been studied theoretically. A comparison between the calculated results and the experimental data shows quantitatively that the Cu 2+ and Mn 2+ ions substitute for the Cd 2+ and Ca 2+ ions, respectively. This conclusion is consistent with the qualitative assumption given by previous authors. (author). 36 refs, 1 fig., 3 tabs
International Nuclear Information System (INIS)
Rost, E.; Shephard, J.R.
1992-08-01
This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the triangle-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to bar pp → bar Λ Λ reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field
Theoretical high energy physics
International Nuclear Information System (INIS)
Lee, T.D.
1993-01-01
Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes
Energy Technology Data Exchange (ETDEWEB)
Rost, E.; Shephard, J.R.
1992-08-01
This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.
Theoretical Division progress report
International Nuclear Information System (INIS)
Cooper, N.G.
1979-04-01
This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables
Theoretical and phenomological models
International Nuclear Information System (INIS)
Anon.
1984-01-01
In the previous lectures, a Z(N) model of the confinement-deconfinement phase transition was presented. Such a model satisfactorily accounts for the qualitative features of this transition and the effects of fermions when they are included. This model does lack a simple physical intuitive picture of the transition. There has been a recent development of such an intuitive physical picture by Feynman and Patel. This picture utilizes a flux-tube model of the confinement-deconfinement transition. Such a picture may not only be regarded as a concrete realization of strong coupling expansions on the lattice, but may also be viewed as a representation of the successful string model phenomenology of high energy physics
International Nuclear Information System (INIS)
Carossi, Jean-Claude
1969-02-01
A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented
Amusia, Miron Ya; Yarzhemsky, Victor
2012-01-01
The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomi...
Energy Technology Data Exchange (ETDEWEB)
Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Univ. Lille, UMR 8523–Physique des Lasers Atomes et Molécules, F-59000 Lille (France); CNRS, UMR 8523, F-59000 Lille (France); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Śmiałek, M. A. [Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Department of Physical Sciences, The Open University, Walton Hall, MK7 6AA Milton Keynes (United Kingdom); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Brunger, M. J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2016-07-21
We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3–10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to the 3sσ/σ{sup ∗}(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth’s atmosphere (0–50 km).
Accounting calculations problems with suppliers and contractors
Directory of Open Access Journals (Sweden)
Tikholaz I.A.
2016-12-01
Full Text Available in the article an order of accounting reflection of payments with suppliers and contractors are researched and ways of enhancement of accounting calculations process development with the purpose of management decisions optimization for their implementation are offered. Theoretical bases of intraeconomic control of settlings with suppliers and contractors are developed.
Cubic scaling GW: Towards fast quasiparticle calculations
Czech Academy of Sciences Publication Activity Database
Liu, P.; Kaltak, M.; Klimeš, Jiří; Kresse, G.
2016-01-01
Roč. 94, č. 16 (2016), s. 165109 ISSN 2469-9950 Institutional support: RVO:61388955 Keywords : MEAN-FIELD THEORY * ELECTRONIC-STRUCTURE CALCULATIONS * AUGMENTED- WAVE METHOD Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.836, year: 2016
Total energy calculations and bonding at interfaces
International Nuclear Information System (INIS)
Louie, S.G.
1984-08-01
Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs
Improved Spectral Calculations for Discrete Schrődinger Operators
Puelz, Charles
This work details an O(n2) algorithm for computing spectra of discrete Schrődinger operators with periodic potentials. Spectra of these objects enhance our understanding of fundamental aperiodic physical systems and contain rich theoretical structure of interest to the mathematical community. Previous work on the Harper model led to an O(n2) algorithm relying on properties not satisfied by other aperiodic operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal model, have instead used a problematic dynamical map approach or a sluggish O(n3) procedure for their calculations. The algorithm presented in this work, a blend of well-established eigenvalue/vector algorithms, provides researchers with a more robust computational tool of general utility. Application to the Fibonacci Hamiltonian in the sparsely studied intermediate coupling regime reveals structure in canonical coverings of the spectrum that will prove useful in motivating conjectures regarding band combinatorics and fractal dimensions.
Surface physics theoretical models and experimental methods
Mamonova, Marina V; Prudnikova, I A
2016-01-01
The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...
Theoretical aspects of fracture mechanics
Atkinson, C.; Craster, R. V.
1995-03-01
In this review we try to cover various topics in fracture mechanics in which mathematical analysis can be used both to aid numerical methods and cast light on key features of the stress field. The dominant singular near crack tip stress field can often be parametrized in terms of three parameters K(sub I), K(sub II) and K(sub III) designating three fracture modes each having an angular variation entirely specified for the stress tensor and displacement vector. These results and contact zone models for removing the interpenetration anomaly are described. Generalizations of the above results to viscoelastic media are described. For homogeneous media with constant Poisson's ratio the angular variation of singular crack tip stresses and displacements are shown to be the same for all time and the same inverse square root singularity as occurs in the elastic medium case is found (this being true for a time varying Poisson ratio too). Only the stress intensity factor varies through time dependence of loads and relaxation properties of the medium. For cracks against bimaterial interfaces both the stress singularity and angular form evolve with time as a function of the time dependent properties of the bimaterial. Similar behavior is identified for sharp notches in viscoelastic plates. The near crack tip behavior in material with non-linear stress strain laws is also identified and stress singularities classified in terms of the hardening exponent for power law hardening materials. Again for interface cracks the near crack tip behavior requires careful analysis and it is shown that more than one singular term may be present in the near crack tip stress field. A variety of theory and applications is presented for inhomogeneous elastic media, coupled thermoelasticity etc. Methods based on reciprocal theorems and dual functions which can also aid in getting awkward singular stress behavior from numerical solutions are also reviewed. Finally theoretical calculations of fiber
Calculating lattice thermal conductivity: a synopsis
Fugallo, Giorgia; Colombo, Luciano
2018-04-01
We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.
Repeat immigration: A previously unobserved source of heterogeneity?
Aradhya, Siddartha; Scott, Kirk; Smith, Christopher D
2017-07-01
Register data allow for nuanced analyses of heterogeneities between sub-groups which are not observable in other data sources. One heterogeneity for which register data is particularly useful is in identifying unique migration histories of immigrant populations, a group of interest across disciplines. Years since migration is a commonly used measure of integration in studies seeking to understand the outcomes of immigrants. This study constructs detailed migration histories to test whether misclassified migrations may mask important heterogeneities. In doing so, we identify a previously understudied group of migrants called repeat immigrants, and show that they differ systematically from permanent immigrants. In addition, we quantify the degree to which migration information is misreported in the registers. The analysis is carried out in two steps. First, we estimate income trajectories for repeat immigrants and permanent immigrants to understand the degree to which they differ. Second, we test data validity by cross-referencing migration information with changes in income to determine whether there are inconsistencies indicating misreporting. From the first part of the analysis, the results indicate that repeat immigrants systematically differ from permanent immigrants in terms of income trajectories. Furthermore, income trajectories differ based on the way in which years since migration is calculated. The second part of the analysis suggests that misreported migration events, while present, are negligible. Repeat immigrants differ in terms of income trajectories, and may differ in terms of other outcomes as well. Furthermore, this study underlines that Swedish registers provide a reliable data source to analyze groups which are unidentifiable in other data sources.
Calculating zeros: Non-equilibrium free energy calculations
International Nuclear Information System (INIS)
Oostenbrink, Chris; Gunsteren, Wilfred F. van
2006-01-01
Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations
The power of theoretical knowledge.
Alligood, Martha Raile
2011-10-01
Nursing theoretical knowledge has demonstrated powerful contributions to education, research, administration and professional practice for guiding nursing thought and action. That knowledge has shifted the primary focus of the nurse from nursing functions to the person. Theoretical views of the person raise new questions, create new approaches and instruments for nursing research, and expand nursing scholarship throughout the world.
Theoretical study of nuclear physics with strangeness at Nankai University
International Nuclear Information System (INIS)
Ning Pingzhi
2007-01-01
Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)
Theoretical considerations on multiparton interactions in QCD
International Nuclear Information System (INIS)
Diehl, Markus; Schaefer, Andreas
2011-02-01
We investigate several ingredients for a theory of multiple hard scattering in hadronhadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework. (orig.)
Modeling of alkynes: synthesis and theoretical properties
Directory of Open Access Journals (Sweden)
Renato Rosseto
2003-06-01
Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.
Theoretical considerations on multiparton interactions in QCD
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schaefer, Andreas [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik
2011-02-15
We investigate several ingredients for a theory of multiple hard scattering in hadronhadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework. (orig.)
Theoretical considerations on multiparton interactions in QCD
International Nuclear Information System (INIS)
Diehl, Markus; Schaefer, Andreas
2011-01-01
We investigate several ingredients for a theory of multiple hard scattering in hadron-hadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework.
Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism
Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.
2010-08-01
Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.
Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc
Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel
2012-12-01
We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.
Heterogeneous Calculation of {epsilon}
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Alf
1961-02-15
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.
Heterogeneous Calculation of ε
International Nuclear Information System (INIS)
Jonsson, Alf
1961-02-01
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer
Impact of previously disadvantaged land-users on sustainable ...
African Journals Online (AJOL)
Impact of previously disadvantaged land-users on sustainable agricultural ... about previously disadvantaged land users involved in communal farming systems ... of input, capital, marketing, information and land use planning, with effect on ...
Relativistic QRPA calculation of β-decay rates of r-process nuclei
International Nuclear Information System (INIS)
Marketin, T.; Paar, N.; Niksic, T.
2009-01-01
The rapid neutron-capture process (r-process) is responsible for the creation of many nuclei heavier than iron. To describe the r-process, precise data is needed on a large number of neutron-rich nuclei, most of which are not experimentally reachable. One crucial parameter in modeling the nucleosynthesis are the half-lives of the nuclei through which the r-process runs. Therefore, it is of great importance to develop a reliable predictive model which can be applied to the decay of exotic nuclei. A fully self-consistent calculation of β-decay rates is presented, based on a microscopic theoretical framework. Nuclear ground state is determined using the Relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-nucleon coupling constants. Momentum dependent terms are also included to improve the density of single-particle states around the Fermi level via an increase of the effective nucleon mass [1]. Transition rates are calculated within the proton-neutron relativistic quasiparticle RPA using the same interaction that was used in the RHB equations. In this way no additional parameters are introduced in the RPA calculation. Weak interaction rates are calculated using the current-current formalism previously employed in the study of other astrophysically significant weak processes [2,3], which systematically includes the contributions of forbidden transitions. This theoretical framework will be utilized to study the contributions of forbidden transitions to the total decay rate in several mass regions. We will compare the calculated half-lives for several isotopic chains with previous calculations and experimental data and discuss possible improvements to the model.(author)
22 CFR 40.91 - Certain aliens previously removed.
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certain aliens previously removed. 40.91... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Aliens Previously Removed § 40.91 Certain aliens previously removed. (a) 5-year bar. An alien who has been found inadmissible, whether as a result...
Energy Technology Data Exchange (ETDEWEB)
Honda, H; Wang, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Nozu, S [Okamaya Prefectural University, Okayama (Japan). Faculty of Computer Science and System Engineering
2000-10-25
A theoretical study has been made of film condensation in helically-grooved, horizontal microfin tubes. The annular flow regime and the stratified flow regime were considered. For the annular flow regime, a previously developed theoretical model was applied. For the stratified flow regime, the height of stratified condensate was estimated by a modified Taitel and Dukler model. For the upper part of the tube exposed to the vapor flow, numerical calculation of Laminar film condensation considering the combined effects of gravity and surface tension forces was conducted. The heat transfer coefficient at the lower part of the tube was estimated by an empirical equation for the internally finned tubes developed by Carnavos. The theoretical predictions of the circumferential average heat transfer coefficient by the two theoretical models were compared with available experimental data for four refrigerants and four tubes. Generally, the annular flow model gave a higher heat transfer coefficient than the stratified flow model in the high quality region, whereas the stratified flow model gave a higher heat transfer coefficient in the low quality region. For tubes with fin heights of 0.16 {approx} 0.24 mm, most of the experimental data agreed within {+-} 20% with the higher of the two theoretical predictions. (author)
Energy Technology Data Exchange (ETDEWEB)
Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)
2013-12-31
with the electric field only being about three times higher than in the ideal case. Moreover, the quasi-optical grill was significantly fewer structural elements that the multijunction grill. Nevertheless there has not been much interest from experimental fusion groups to implementing these structures. Hence we have returned to optimizing the multijunction grill so that the large number of coupling matrix elements can be efficiently evaluated using symmetry arguments. In overdense plasmas, the standard electromagnetic waves cannot propagate into the plasma center, but are reflected at the plasma edge. By optimizing mode conversion processes (in particular, the O-X-B wave propagation of Ordinary Mode converting to an Extraordinary mode which then converts into an electrostatic Bernstein wave) one can excite within the plasma an electrostatic Bernstein wave that does not suffer density cutoffs and is absorbed on the electron cyclotron harmonics. Finally we have started looking at other mesoscopic lattice algorithms that involve unitary collision and streaming steps. Because these algorithms are unitary they can be run on quantum computers when they become available – unlike their computational cousin of lattice Boltzmann which is a purely classical code. These quantum lattice gas algorithms have been tested successfully on exact analytic soliton collision solution. These calculations are hoped to be able to study Bose Einstein condensed atomic gases and their ground states in an optical lattice.
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
Calculation of groundwater travel time
International Nuclear Information System (INIS)
Arnett, R.C.; Sagar, B.; Baca, R.G.
1984-12-01
Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs
A theoretical interpretation of EPR and ENDOR
International Nuclear Information System (INIS)
Matos, M.O.M. de.
1975-08-01
To interpret the EPR and ENDOR results of the U 2 center in SrF 2 , two wavefunctions are proposed to describe the unpaired electron of the defect. Use is made of two different models in order to obtain the wavefunctions: the Heitler-London and that of molecular orbitals models. The Pauli repulsion (overlap of wavefunctions) is discussed as well as covalency mechanisms and their influence in the calculation of the hyperfine constants due to magnetic interaction of the unpaired electron and the magnetic nucleus of the cristal. A small amount of covalency between the ground state of the interstitial Hydrogen atom and the 2p shell of the F - ions of the first cristaline shell is introduced fenomenologically in the molecular orbitals model. Both methods are discussed by comparing the theoretical calculations of the hyperfine constants with the measured experimental values obtained with the EPR and ENDOR techniques. (Author) [pt
Determining root correspondence between previously and newly detected objects
Paglieroni, David W.; Beer, N Reginald
2014-06-17
A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.
Almost Free Modules Set-Theoretic Methods
Eklof, PC
1990-01-01
This is an extended treatment of the set-theoretic techniques which have transformed the study of abelian group and module theory over the last 15 years. Part of the book is new work which does not appear elsewhere in any form. In addition, a large body of material which has appeared previously (in scattered and sometimes inaccessible journal articles) has been extensively reworked and in many cases given new and improved proofs. The set theory required is carefully developed with algebraists in mind, and the independence results are derived from explicitly stated axioms. The book contains exe
Simple theoretical models for composite rotor blades
Valisetty, R. R.; Rehfield, L. W.
1984-01-01
The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.
Non-perturbative background field calculations
International Nuclear Information System (INIS)
Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc
Theoretical chemistry advances and perspectives
Eyring, Henry
1980-01-01
Theoretical Chemistry: Advances and Perspectives, Volume 5 covers articles concerning all aspects of theoretical chemistry. The book discusses the mean spherical approximation for simple electrolyte solutions; the representation of lattice sums as Mellin-transformed products of theta functions; and the evaluation of two-dimensional lattice sums by number theoretic means. The text also describes an application of contour integration; a lattice model of quantum fluid; as well as the computational aspects of chemical equilibrium in complex systems. Chemists and physicists will find the book usef
Liu, Lili
2014-06-01
Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.
Liu, Lili; Wang, Rui; Wu, Xiaozhi; Gan, Liyong; Wei, Qunyi
2014-01-01
Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.
Practical versus theoretical domestic energy consumption for space heating
International Nuclear Information System (INIS)
Audenaert, A.; Briffaerts, K.; Engels, L.
2011-01-01
Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.
Practical versus theoretical domestic energy consumption for space heating
Energy Technology Data Exchange (ETDEWEB)
Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)
2011-09-15
Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.
A combined crossed molecular beams and theoretical study of the reaction CN + C2H4
International Nuclear Information System (INIS)
Balucani, Nadia; Leonori, Francesca; Petrucci, Raffaele; Wang, Xingan; Casavecchia, Piergiorgio; Skouteris, Dimitrios; Albernaz, Alessandra F.; Gargano, Ricardo
2015-01-01
Highlights: • The CN + C 2 H 4 reaction was investigated in crossed beam experiments. • Electronic structure calculations of the potential energy surface were performed. • RRKM estimates qualitatively reproduce the experimental C 2 H 3 NC yield. - Abstract: The CN + C 2 H 4 reaction has been investigated experimentally, in crossed molecular beam (CMB) experiments at the collision energy of 33.4 kJ/mol, and theoretically, by electronic structure calculations of the relevant potential energy surface and Rice–Ramsperger–Kassel–Marcus (RRKM) estimates of the product branching ratio. Differently from previous CMB experiments at lower collision energies, but similarly to a high energy study, we have some indication that a second reaction channel is open at this collision energy, the characteristics of which are consistent with the channel leading to CH 2 CHNC + H. The RRKM estimates using M06L electronic structure calculations qualitatively support the experimental observation of C 2 H 3 NC formation at this and at the higher collision energy of 42.7 kJ/mol of previous experiments
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Nanoscale thermal transport: Theoretical method and application
Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2018-03-01
With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).
Theoretical and computational analyses of LNG evaporator
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Methodologies of Uncertainty Propagation Calculation
International Nuclear Information System (INIS)
Chojnacki, Eric
2002-01-01
After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory
Calculation of Rates of 4p–4d Transitions in Ar II
Directory of Open Access Journals (Sweden)
Alan Hibbert
2017-02-01
Full Text Available Recent experimental work by Belmonte et al. (2014 has given rates for some 4p–4d transitions that are significantly at variance with the previous experimental work of Rudko and Tang (1967 recommended in the NIST tabulations. To date, there are no theoretical rates with which to compare. In this work, we provide such theoretical data. We have undertaken a substantial and systematic configuration interaction calculation, with an extrapolation process applied to ab initio mixing coefficients, which gives energy differences in agreement with experiment. The length and velocity forms give values that are within 10%–15% of each other. Our results are in sufficiently close agreement with those of Belmonte et al. that we can confidently recommend that their results are much more accurate than the early results of Rudko and Tang, and should be adopted in place of the latter.
Theoretical tools for B physics
International Nuclear Information System (INIS)
Mannel, T.
2006-01-01
In this talk I try to give an overview over the theoretical tools used to compute observables in B physics. The main focus is the developments in the 1/m Expansion in semileptonic and nonleptonic decays. (author)
Theoretical approaches to elections defining
Natalya V. Lebedeva
2011-01-01
Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.
Theoretical approaches to elections defining
Directory of Open Access Journals (Sweden)
Natalya V. Lebedeva
2011-01-01
Full Text Available Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.
Theoretical Linguistics And Multilingualism Research
African Journals Online (AJOL)
KATEVG
This paper tries to construct a bridge between the concerns of theoretical ... released the legendary song with the singular bridge over forty years ago): .... Another set of cases concerns the frozen forms pass and fail, which occur without any.
Theoretical Principles of Distance Education.
Keegan, Desmond, Ed.
This book contains the following papers examining the didactic, academic, analytic, philosophical, and technological underpinnings of distance education: "Introduction"; "Quality and Access in Distance Education: Theoretical Considerations" (D. Randy Garrison); "Theory of Transactional Distance" (Michael G. Moore);…
Dissociation of the Phenylarsane Molecular Ion: A Theoretical Study
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun Young; Choe, Joong Chul [Dongguk University, Seoul (Korea, Republic of)
2010-09-15
The potential energy surfaces (PESs) for the primary and secondary dissociations of the phenylarsane molecular ion (1a) were determined from the quantum chemical calculations using the G3(MP2)//B3LYP method. Several pathways for the loss of H· were determined and occurred though rearrangements as well as through direct bond cleavages. The kinetic analysis based on the PES for the primary dissociation showed that the loss of H{sub 2} was more favored than the loss of H·, but the H· loss competed with the H{sub 2} loss at high energies. The bicyclic isomer, 7-arsa-norcaradiene radical cation, was formed through the 1,2 shift of an α-H of 1a and played an important role as an intermediate for the further rearrangements in the loss of H· and the losses of As· and AsH. The reaction pathways for the formation of the major products in the secondary dissociations of [M-H]{sup +} and [M-H{sub 2}]{sup +·} were examined. The theoretical prediction explained the previous experimental results for the dissociation at high energies but not the dissociation at low energies.
Theoretical predictions of the lateral spreading of implanted ions
International Nuclear Information System (INIS)
Ashworth, D.G.; Oven, R.
1986-01-01
The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)
Franchise Business Model: Theoretical Insights
Levickaitė, Rasa; Reimeris, Ramojus
2010-01-01
The article is based on literature review, theoretical insights, and deals with the topic of franchise business model. The objective of the paper is to analyse peculiarities of franchise business model and its developing conditions in Lithuania. The aim of the paper is to make an overview on franchise business model and its environment in Lithuanian business context. The overview is based on international and local theoretical insights. In terms of practical meaning, this article should be re...
Nonlinear problems in theoretical physics
International Nuclear Information System (INIS)
Ranada, A.F.
1979-01-01
This volume contains the lecture notes and review talks delivered at the 9th GIFT international seminar on theoretical physics on the general subject 'Nonlinear Problems in Theoretical Physics'. Mist contributions deal with recent developments in the theory of the spectral transformation and solitons, but there are also articles from the field of transport theory and plasma physics and an unconventional view of classical and quantum electrodynamics. All contributions to this volume will appear under their corresponding subject categories. (HJ)
International Nuclear Information System (INIS)
Cook, J.P.D.; Pascual, R.; Weigold, E.
1989-05-01
A detailed electron momentum spectrosocpy (EMS) and a manybody theoretical study of the complete valence region of N 2 was carried out. The 1500eV EMS momentum distributions show that they provide a sensitive test for orbital wavefunctions of SCF calculations, and of correlation effects. The outermost 3σ g orbital is more sharply peaked at the origin than predicted by the orbital wavefunction. The inner valence 2σ g orbital is severely split, with spectroscopic strength ranging from 34eV to over 60eV in binding energy. The results of the present extended basis 1p Green's function calculations, as well as those of several previous manybody calculations, are only in semiquantitative agreement with this. There is a 2σ u pole at 25eV with a pole strength of approximately 0.067 in agreement with the results of manybody calculations. There is significant 2σ u and or 1π u strength and little 2σ g strength in the region 26-34eV. Poles observed at 29 and 32eV, previously attributed to the 2σ g orbital, are shown to be largely 2σ u in character. The manybody calculations predict too much 2σ g strength in the region 26-34eV. 29 refs., 1 tab., 16 figs
Calculation of resonance integral for fuel cluster
International Nuclear Information System (INIS)
Remsak, S.
1969-01-01
The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO 2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV [sr
Methods for Melting Temperature Calculation
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Radar Signature Calculation Facility
Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...
Waste Package Lifting Calculation
International Nuclear Information System (INIS)
H. Marr
2000-01-01
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation
Numerical calculation of particle collection efficiency in an ...
Indian Academy of Sciences (India)
Theoretical and numerical research has been previously done on ESPs to predict the efficiency ... Lagrangian simulations of particle transport in wire–plate ESP were .... The collection efficiency can be defined as the ratio of the number of ...
Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates
Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.
2008-09-01
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.
Goerens, Christian; Fokwa, Boniface P. T.
2012-08-01
Polycrystalline samples and single crystals of the new complex boride Ti1+xRh2-x+yIr3-yB3 (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B4 fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) Å, b=14.995(2) Å and c=3.234(1) Å. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B4 fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior.
THE THEORETICAL FOUNDATIONS OF VIBRATION DAMPERS BY ROLLING FRICTION
Directory of Open Access Journals (Sweden)
L. M. Bondarenko
2015-06-01
Full Text Available Purpose. There are some unresolved issues in vibration damping – the lack of engineering calculations for the vibration dampers by rolling friction; the absence of evidence of their application appropriateness. Considering this fact, the authors suggest to prove that the dampers based on rolling friction, are similar in rate of oscillation damping by hydraulic shock absorbers. At the same time, they are easier for the hydraulic design, and easily amenable to manual adjustment, both in automatic and manual mode. Methodology. Fixed techniques of practice in order to determine amplitudes of the oscillations of a shock absorber led to a predetermined result and will apply this theory in the calculation of other vibration dampers. Findings. Analysis of the formulas and graphs leads to the following conclusions and recommendations: 1 the nature of the oscillation damping at vibration dampers by rolling friction is close to their decay in the viscous resistance; 2 when conducting the necessary experiments the shock absorber rolling can be recommended as alternatives to hydraulic ones. The research results of this task will help implement the new trend in reduction of dynamic loads in vehicles. Originality. With the help of theoretical curves to determine the coefficients of rolling friction the dependences for determining the amplitudes of the oscillations in the vertical movement of cargo were obtained. At the same time, the previously proposed analytical dependence for determining the coefficient of rolling friction contains only conventional mechanical constants of the contacting bodies and there geometrical dimensions. Practical value. Due to the existing well-known disadvantages of hydraulic shock absorbers it would be logical to apply shock absorbers that are technologically convenient in manufacturing and easy to adjust the damping rate. The proposed theory can be used in the design of shock absorbers rolling as an alternative to the hydraulic
Directory of Open Access Journals (Sweden)
Carlos Mario Ruiz
2011-06-01
Full Text Available Las propiedades elásticas de la familia de los minerales isoestructurales Cu3VSe4, Cu3NbSe4 y Cu3TaSe4 han sido calculadas por primera vez usandoel estado del arte en cálculos atomísticos de primeros-principios, utilizandola Teoría de los Funcionales de la Densidad y la Aproximación del Gradiente Generalizado para el funcional de la energía de intercambio-correlación. Laspropiedades elásticas calculadas son el módulo volumétrico (B, las constantes elásticas (c11, c12 y c44, el factor de anisotropía de Zener (A, el módulo de cizalladura isotrópico (G, el módulo de Young (Y, y la razón de Poisson(ν. A través de estas cantidades también hemos calculado otras propiedades termodinámicas tales como la velocidad promedio del sonido transversal (st y longitudinal (sl y la temperatura de Debye (ΘD. Los valores calculados de B, c11, c12 y c44, G, Y , y ν nos llevan a la conclusión que estos compuestosson compresibles, frágiles y quebradizos.The elastic properties of the family of isostructural minerals Cu3VSe4, Cu3NbSe4 and Cu3TaSe4 have been calculated for the first time using the state of the art in first-principles atomistic calculations, using Density Functional Theory and the Generalized Gradient Approximation for the exchangecorrelation energy functional. The elastic properties calculated are bulk modulus (B, the elastic constants (c11, c12 and c44, the Zener anisotropy factor (A, the isotropic shear modulus (G, the Young modulus (Y , and the Poisson ratio (. By means of these quantities we also computed other thermodynamic properties such as the average transversal (st and longitudinal (sl sound velocities and the Debye temperature (D. The calculated values of B, c11, c12 and c44, G, Y and lead us to the conclusion that these compounds are compressible, fragile and brittle.
International Nuclear Information System (INIS)
Yousefkhani, M. Baghban; Ghadamian, H.; Massoudi, A.; Aminy, M.
2017-01-01
Highlights: • Investigation of fuel utilization in PEMFC within transfer phenomenon approach. • The main defect of the theoretical calculation of U_F depends on Nernst equation. • U_F has a differential nature so it is employed to do theoretical calculation. - Abstract: In this study, fuel utilization (U_F) of a PEMFC have been investigated within transfer phenomenon approach. Description of the U_F and fuel consumption measurement is the main factor to obtain the U_F. The differences between the experimental study and theoretical calculations results in the previous research articles reveal the available theoretical equations should be studied more based on the fundamental affairs of the U_F. Hence, there is a substantial issue that the U_F description satisfies the principles, and then it can be validated by the experimental results. The results of this study indicate that the U_F and power grew by 1.1% and 1%, respectively, based on one degree increased temperature. In addition, for every 1 kPa pressure increment, U_F improved considerably by 0.25% and 0.173% in the 40 °C and 80 °C, respectively. Furthermore, in the constant temperature, the power improved by 22% based on one atmospheric growth of the pressure. Results of this research show that the U_F has a differential nature, therefore differential equations will be employed to do an accurate theoretical calculation. Accordingly, it seems that the main defect of the theoretical calculation depends on Nernst equation that can be modified by a differential nature coefficient.
49 CFR 173.23 - Previously authorized packaging.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Previously authorized packaging. 173.23 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.23 Previously authorized packaging. (a) When the regulations specify a packaging with a specification marking...
28 CFR 10.5 - Incorporation of papers previously filed.
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Incorporation of papers previously filed... CARRYING ON ACTIVITIES WITHIN THE UNITED STATES Registration Statement § 10.5 Incorporation of papers previously filed. Papers and documents already filed with the Attorney General pursuant to the said act and...
75 FR 76056 - FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT:
2010-12-07
... SECURITIES AND EXCHANGE COMMISSION Sunshine Act Meeting FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: STATUS: Closed meeting. PLACE: 100 F Street, NE., Washington, DC. DATE AND TIME OF PREVIOUSLY ANNOUNCED MEETING: Thursday, December 9, 2010 at 2 p.m. CHANGE IN THE MEETING: Time change. The closed...
No discrimination against previous mates in a sexually cannibalistic spider
Fromhage, Lutz; Schneider, Jutta M.
2005-09-01
In several animal species, females discriminate against previous mates in subsequent mating decisions, increasing the potential for multiple paternity. In spiders, female choice may take the form of selective sexual cannibalism, which has been shown to bias paternity in favor of particular males. If cannibalistic attacks function to restrict a male's paternity, females may have little interest to remate with males having survived such an attack. We therefore studied the possibility of female discrimination against previous mates in sexually cannibalistic Argiope bruennichi, where females almost always attack their mate at the onset of copulation. We compared mating latency and copulation duration of males having experienced a previous copulation either with the same or with a different female, but found no evidence for discrimination against previous mates. However, males copulated significantly shorter when inserting into a used, compared to a previously unused, genital pore of the female.
Implant breast reconstruction after salvage mastectomy in previously irradiated patients.
Persichetti, Paolo; Cagli, Barbara; Simone, Pierfranco; Cogliandro, Annalisa; Fortunato, Lucio; Altomare, Vittorio; Trodella, Lucio
2009-04-01
The most common surgical approach in case of local tumor recurrence after quadrantectomy and radiotherapy is salvage mastectomy. Breast reconstruction is the subsequent phase of the treatment and the plastic surgeon has to operate on previously irradiated and manipulated tissues. The medical literature highlights that breast reconstruction with tissue expanders is not a pursuable option, considering previous radiotherapy a contraindication. The purpose of this retrospective study is to evaluate the influence of previous radiotherapy on 2-stage breast reconstruction (tissue expander/implant). Only patients with analogous timing of radiation therapy and the same demolitive and reconstructive procedures were recruited. The results of this study prove that, after salvage mastectomy in previously irradiated patients, implant reconstruction is still possible. Further comparative studies are, of course, advisable to draw any conclusion on the possibility to perform implant reconstruction in previously irradiated patients.
International Nuclear Information System (INIS)
Trkov, A.; Ravnik, M.; Zeleznik, N.
1992-01-01
Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl
Uneconomical top calculation method
International Nuclear Information System (INIS)
De Noord, M.; Vanm Sambeek, E.J.W.
2003-08-01
The methodology used to calculate the financial gap of renewable electricity sources and technologies is described. This methodology is used for calculating the production subsidy levels (MEP subsidies) for new renewable electricity projects in 2004 and 2005 in the Netherlands [nl
Nuclear structure calculations for astrophysical applications
International Nuclear Information System (INIS)
Moeller, P.; Kratz, K.L.
1992-01-01
Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account
Non-perturbative background field calculations
Stephens, C. R.
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.
Department of Theoretical Physics - Overview
International Nuclear Information System (INIS)
Kwiecinski, J.
2002-01-01
Full text: Research activity of the Department of Theoretical Physics concerns theoretical high energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department successfully collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network which allows for the mobility of researchers. Several members of our Department have also participated in the research projects funded by the State Committee for Scientific Research. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute and at other academic institutions in Cracow. At present, eight students are working towards their Ph.D. degrees under the supervision of senior members of the Department. (author)
Department of Theoretical Physics - Overview
International Nuclear Information System (INIS)
Kwiecinski, J.
2000-01-01
Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research, yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five students are working for their Ph.D. or MSc degrees under supervision of the senior members from the Department. We continue our participation at the EC SOCRATES-ERASMUS educational programme which allows exchange of graduate students between our Department and the Department of Physics of the University of Durham in the UK. (author)
Department of Theoretical Physics - Overview
International Nuclear Information System (INIS)
Kwiecinski, J.
2001-01-01
Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet more formal problems are also considered. A detailed summary of the research projects and of the results obtained in various field is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network, which stimulates the mobility of researchers. Several members of our Department also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). Besides pure research, members of our Department are also involved in graduate and up graduate teaching activity at our Institute as well as at other academic institution in Cracow. At present nine students are working on their Ph.D. degrees under the supervision of senior members of the Department. (author)
Mathematica for Theoretical Physics Classical Mechanics and Nonlinear Dynamics
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by students and researchers alike. A...
Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes
Czech Academy of Sciences Publication Activity Database
Navrátil, Václav; Klusák, Vojtěch; Rulíšek, Lubomír
2013-01-01
Roč. 19, č. 49 (2013), s. 16634-16645 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * hydrolysis * metalloenzymes * peptides * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013
Theoretical lifetimes and fluorescence yields for multiply-ionized fluorine
International Nuclear Information System (INIS)
Tunnell, T.W.; Can, C.; Bhalla, C.P.
1978-01-01
Theoretical lifetimes and multiplet partial fluorescence yields for various fluorine ions with a single K-shell vacancy were calculated. For few-electron systems, the lifetimes and line fluorescence yields were computed in the intermediate coupling scheme with the inclusion of the effects arising from configuration interactions. 6 references
Energy Technology Data Exchange (ETDEWEB)
Goerens, Christian [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany)
2012-08-15
Polycrystalline samples and single crystals of the new complex boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B{sub 4} fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) A, b=14.995(2) A and c=3.234(1) A. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B{sub 4} fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior. - graphical abstract: The structure of Ti{sub 1.68(2)}Rh{sub 2.38(6)}Ir{sub 1.94(4)} B{sub 3}, a new structure type containing planar trans zigzag B{sub 4} units, is another example which illustrates the tendency of metal-rich borides to form B-B bonds with increasing boron content. Beside the B{sub 4} fragment it exhibits one-dimensional chains of titanium atoms and hold one-dimensional strings of face-sharing empty tetrahedral and square pyramidal clusters (see figure). Highlights
Ammonia synthesis from first principles calculations
DEFF Research Database (Denmark)
Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis
2005-01-01
. When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...
Energy Technology Data Exchange (ETDEWEB)
Guemou, M., E-mail: guemoumhamed7@gmail.com [Engineering Physics Laboratory, University Ibn Khaldoun of Tiaret, BP 78-Zaaroura, Tiaret 14000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Abdiche, A. [Applied Materials Laboratory, Research Center, University of Sidi Bel Abbes, 22000 Sidi Bel Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Al Douri, Y. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis (Malaysia); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)
2012-04-15
Density functional calculations are performed to study the structural, electronic and optical properties of technologically important B{sub x}Ga{sub 1-x}As ternary alloys. The calculations are based on the total-energy calculations within the full-potential augmented plane-wave (FP-LAPW) method. For exchange-correlation potential, local density approximation (LDA) and the generalized gradient approximation (GGA) have been used. The structural properties, including lattice constants, bulk modulus and their pressure derivatives, are in very good agreement with the available experimental and theoretical data. The electronic band structure, density of states for the binary compounds and their ternary alloys are given. The dielectric function and the refractive index are also calculated using different models. The obtained results compare very well with previous calculations and experimental measurements.
Distorted wave calculations for double electron transfer
International Nuclear Information System (INIS)
Martinez, A.E.; Rivarola, R.D.; Gayet, R.; Hanssen, J.
1992-01-01
The resonant double electron capture by alpha particles in helium targets is studied, at intermediate and high collision energies, using the Continuum Distorted Wave - Eikonal Initial State (CDW-EIS) model. Differential and total cross sections for capture into the He (1 s 2 ) final state are calculated in the framework of an Independent Electron Approximation (IEA). Theoretical results are compared with the experimental data available at present for capture into any final state of helium. (author)
TINTE. Nuclear calculation theory description report
Energy Technology Data Exchange (ETDEWEB)
Gerwin, H.; Scherer, W.; Lauer, A. [Forschungszentrum Juelich GmbH (DE). Institut fuer Energieforschung (IEF), Sicherheitsforschung und Reaktortechnik (IEF-6); Clifford, I. [Pebble Bed Modular Reactor (Pty) Ltd. (South Africa)
2010-01-15
The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the nuclear and the thermal transient behaviour of the primary circuit of the High-temperature Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in twodimensional axisymmetric geometry. This document contains a complete description of the theoretical basis of the TINTE nuclear calculation, including the equations solved, solution methods and the nuclear data used in the solution. (orig.)
Dose calculation for electrons
International Nuclear Information System (INIS)
Hirayama, Hideo
1995-01-01
The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)
Radiation damage calculations for compound materials
International Nuclear Information System (INIS)
Greenwood, L.R.
1990-01-01
This paper reports on the SPECOMP computer code, developed to calculate neutron-induced displacement damage cross sections for compound materials such as alloys, insulators, and ceramic tritium breeders for fusion reactors. These new calculations rely on recoil atom energy distributions previously computed with the DISCS computer code, the results of which are stored in SPECTER computer code master libraries. All reaction channels were considered in the DISCS calculations and the neutron cross sections were taken from ENDF/B-V. Compound damage calculations with SPECOMP thus do not need to perform any recoil atom calculations and consequently need no access to ENDF or other neutron data bases. The calculations proceed by determining secondary displacements for each combination of recoil atom and matrix atom using the Lindhard partition of the recoil energy to establish the damage energy
Theoretical behaviorism meets embodied cognition : Two theoretical analyses of behavior
Keijzer, F.A.
2005-01-01
This paper aims to do three things: First, to provide a review of John Staddon's book Adaptive dynamics: The theoretical analysis of behavior. Second, to compare Staddon's behaviorist view with current ideas on embodied cognition. Third, to use this comparison to explicate some outlines for a
Theoretical model of the SOS effect
Energy Technology Data Exchange (ETDEWEB)
Darznek, S A; Mesyats, G A; Rukin, S N; Tsiranov, S N [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics
1997-12-31
Physical principles underlying the operation of semiconductor opening switches (SOS) are highlighted. The SOS effect occurs at a current density of up to 60 kA/cm{sup 2} in silicon p{sup +}-p-n-n{sup +} structures filled with residual electron-hole plasma. Using a theoretical model developed for plasma dynamic calculations, the mechanism by which current passes through the structure at the stage of high conduction and the processes that take place at the stage of current interruption were analyzed. The dynamics of the processes taking place in the structure was calculated with allowance for both diffusive and drift mechanisms of carrier transport. In addition, two recombination types, viz. recombination via impurities and impact Auger recombination, were included in the model. The effect of the structure on the pumping-circuit current and voltage was also taken into account. The real distribution of the doped impurity in the structure and the avalanche mechanism of carrier multiplication were considered. The results of calculations of a typical SOS are presented. The dynamics of the electron-hole plasma is analyzed. It is shown that the SOS effect represents a qualitatively new mechanism of current interruption in semiconductor structures. (author). 4 figs., 7 refs.
Theoretical descriptions of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1991-01-01
Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity ν-bar p . This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and ν-bar p upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and ν-bar p with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. (author). 32 refs, 26 figs
International Nuclear Information System (INIS)
Govoni, Marco; Argonne National Lab., Argonne, IL; Galli, Giulia; Argonne National Lab., Argonne, IL
2015-01-01
We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons
Radioactive cloud dose calculations
International Nuclear Information System (INIS)
Healy, J.W.
1984-01-01
Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available
Vanegas, Juan M; Torres-Sánchez, Alejandro; Arroyo, Marino
2014-02-11
Local stress fields are routinely computed from molecular dynamics trajectories to understand the structure and mechanical properties of lipid bilayers. These calculations can be systematically understood with the Irving-Kirkwood-Noll theory. In identifying the stress tensor, a crucial step is the decomposition of the forces on the particles into pairwise contributions. However, such a decomposition is not unique in general, leading to an ambiguity in the definition of the stress tensor, particularly for multibody potentials. Furthermore, a theoretical treatment of constraints in local stress calculations has been lacking. Here, we present a new implementation of local stress calculations that systematically treats constraints and considers a privileged decomposition, the central force decomposition, that leads to a symmetric stress tensor by construction. We focus on biomembranes, although the methodology presented here is widely applicable. Our results show that some unphysical behavior obtained with previous implementations (e.g. nonconstant normal stress profiles along an isotropic bilayer in equilibrium) is a consequence of an improper treatment of constraints. Furthermore, other valid force decompositions produce significantly different stress profiles, particularly in the presence of dihedral potentials. Our methodology reveals the striking effect of unsaturations on the bilayer mechanics, missed by previous stress calculation implementations.
Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen
International Nuclear Information System (INIS)
Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.
1983-01-01
Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50
Theoretical mechanics for sixth forms
Plumpton, C
1971-01-01
Theoretical Mechanics for Sixth Forms, Second Edition is a 14-chapter book that begins by elucidating the nature of theoretical mechanics. The book then describes the statics of a particle in illustration of the techniques of handling vector quantities. Subsequent chapters focus on the principle of moments, parallel forces and centers of gravity; and the application of Newton's second law to the dynamics of a particle and the ideas of work and energy, impulse and momentum, and power. The concept of friction is also explained. This volume concludes with chapters concerning motion in a circle an
Mechanics lectures on theoretical physics
Sommerfeld, Arnold Johannes Wilhelm
1952-01-01
Mechanics: Lectures on Theoretical Physics, Volume I covers a general course on theoretical physics. The book discusses the mechanics of a particle; the mechanics of systems; the principle of virtual work; and d'alembert's principle. The text also describes oscillation problems; the kinematics, statics, and dynamics of a rigid body; the theory of relative motion; and the integral variational principles of mechanics. Lagrange's equations for generalized coordinates and the theory of Hamilton are also considered. Physicists, mathematicians, and students taking Physics courses will find the book
Theoretical Framework for Robustness Evaluation
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2011-01-01
This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...
Theoretical Consolidation of Acoustic Dissipation
Casiano, M. J.; Zoladz, T. F.
2012-01-01
In many engineering problems, the effects of dissipation can be extremely important. Dissipation can be represented by several parameters depending on the context and the models that are used. Some examples of dissipation-related parameters are damping ratio, viscosity, resistance, absorption coefficients, pressure drop, or damping rate. This Technical Memorandum (TM) describes the theoretical consolidation of the classic absorption coefficients with several other dissipation parameters including linearized resistance. The primary goal of this TM is to theoretically consolidate the linearized resistance with the absorption coefficient. As a secondary goal, other dissipation relationships are presented.
Personality disorders in previously detained adolescent females: a prospective study
Krabbendam, A.; Colins, O.F.; Doreleijers, T.A.H.; van der Molen, E.; Beekman, A.T.F.; Vermeiren, R.R.J.M.
2015-01-01
This longitudinal study investigated the predictive value of trauma and mental health problems for the development of antisocial personality disorder (ASPD) and borderline personality disorder (BPD) in previously detained women. The participants were 229 detained adolescent females who were assessed
Payload specialist Reinhard Furrer show evidence of previous blood sampling
1985-01-01
Payload specialist Reinhard Furrer shows evidence of previous blood sampling while Wubbo J. Ockels, Dutch payload specialist (only partially visible), extends his right arm after a sample has been taken. Both men show bruises on their arms.
Choice of contraception after previous operative delivery at a family ...
African Journals Online (AJOL)
Choice of contraception after previous operative delivery at a family planning clinic in Northern Nigeria. Amina Mohammed‑Durosinlorun, Joel Adze, Stephen Bature, Caleb Mohammed, Matthew Taingson, Amina Abubakar, Austin Ojabo, Lydia Airede ...
Previous utilization of service does not improve timely booking in ...
African Journals Online (AJOL)
Previous utilization of service does not improve timely booking in antenatal care: Cross sectional study ... Journal Home > Vol 24, No 3 (2010) > ... Results: Past experience on antenatal care service utilization did not come out as a predictor for ...
A previous hamstring injury affects kicking mechanics in soccer players.
Navandar, Archit; Veiga, Santiago; Torres, Gonzalo; Chorro, David; Navarro, Enrique
2018-01-10
Although the kicking skill is influenced by limb dominance and sex, how a previous hamstring injury affects kicking has not been studied in detail. Thus, the objective of this study was to evaluate the effect of sex and limb dominance on kicking in limbs with and without a previous hamstring injury. 45 professional players (males: n=19, previously injured players=4, age=21.16 ± 2.00 years; females: n=19, previously injured players=10, age=22.15 ± 4.50 years) performed 5 kicks each with their preferred and non-preferred limb at a target 7m away, which were recorded with a three-dimensional motion capture system. Kinematic and kinetic variables were extracted for the backswing, leg cocking, leg acceleration and follow through phases. A shorter backswing (20.20 ± 3.49% vs 25.64 ± 4.57%), and differences in knee flexion angle (58 ± 10o vs 72 ± 14o) and hip flexion velocity (8 ± 0rad/s vs 10 ± 2rad/s) were observed in previously injured, non-preferred limb kicks for females. A lower peak hip linear velocity (3.50 ± 0.84m/s vs 4.10 ± 0.45m/s) was observed in previously injured, preferred limb kicks of females. These differences occurred in the backswing and leg-cocking phases where the hamstring muscles were the most active. A variation in the functioning of the hamstring muscles and that of the gluteus maximus and iliopsoas in the case of a previous injury could account for the differences observed in the kicking pattern. Therefore, the effects of a previous hamstring injury must be considered while designing rehabilitation programs to re-educate kicking movement.
Theoretical study of a melting curve for tin
International Nuclear Information System (INIS)
Feng, Xi; Ling-Cang, Cai
2009-01-01
The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)
Handout on shielding calculation
International Nuclear Information System (INIS)
Heilbron Filho, P.F.L.
1991-01-01
In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)
Unit Cost Compendium Calculations
U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...
PHYSICOCHEMICAL PROPERTY CALCULATIONS
Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Intercavitary implants dosage calculation
International Nuclear Information System (INIS)
Rehder, B.P.
The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt
Casio Graphical Calculator Project.
Stott, Nick
2001-01-01
Shares experiences of a project aimed at developing and refining programs written on a Casio FX9750G graphing calculator. Describes in detail some programs used to develop mental strategies and problem solving skills. (MM)
Small portable speed calculator
Burch, J. L.; Billions, J. C.
1973-01-01
Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.
DEFF Research Database (Denmark)
Frederiksen, Morten
2014-01-01
Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust....... Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...
Hiatt, Arthur A.
1987-01-01
Ten activities that give learners in grades 5-8 a chance to explore mathematics with calculators are provided. The activity cards involve such topics as odd addends, magic squares, strange projects, and conjecturing rules. (MNS)
IRIS core criticality calculations
International Nuclear Information System (INIS)
Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.
2003-01-01
Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)
THEORETICAL FOUNDATIONS EFFICIENT MASS VALUATION
Directory of Open Access Journals (Sweden)
Koshel A.
2016-08-01
Full Text Available In the article the theoretical basis for determining the effectiveness of mass valuation of land in present-day conditions are described. The concept defenitsy effect and effectiveness as economic categories and their classification values for mass valuation of land are presented. The effectiveness of mass valuation of land in the settlements defines the structure of local budget and economic activities undertaken by local authorities on the basis of the results of the mass appraisal of real estate. Mass valuation is regular and it is characterized by high degree of standardization of procedures and a significant increase in the role of statistical methods for processing data related to the use of the most significant factors influencing the parameters of the object to its cost, as well as the need to determine the value of the objective laws change equivalent, which is only possible when using economic and mathematical methods and statistical analysis. Quality control results of mass valuation carried out principally in other ways, as obtained by applying statistical machine results can be checked as soon statistical methods. This shows the relevance of research topic and lack of elaboration for Ukraine problems of efficiency of mass land valuation. Scientific research conducted through the use of the dialectical method and techniques of abstraction, comparative analysis and synthesis, the article various models and methods of valuation of land for taxation purposes are analyzed. In addition, the group explored methods used, comparisons, and more. In economic theory and practice problems and determine the effect of efficiency aimed at profit is quite relevant. Economists consider cost-effectiveness, such as economic efficiency. In this case, the production can be attributed to the activities to conduct and organization of mass valuation of land. This pushes many different positions on criteria and indicators of economic efficiency, the
High-precision calculation of the strange nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
A practical approach for the calculation of the activation energy of the sintering
Directory of Open Access Journals (Sweden)
Pouchly Vaclav
2016-01-01
Full Text Available Newly developed software for calculation of activation energy (Qs in the following of sintering using the Wang and Raj model is presented. To demonstrate the practical potential of the software and to evaluate the behaviour of the Qs during the sintering process, alumina and cubic zirconia ceramic compacts were prepared from nanometric powders. The results obtained with both materials are in agreement with previously published data calculated by different approaches. In the interval of interest (relative densities from 60 % to almost 100 % of theoretical density, both materials show similar behaviour. Three distinct regions can be seen: the initial constant values of Qs 868 kJ/mol and 762 kJ/mol for alumina and cubic zirconia, respectively; a region containing linear drop of Qs and the final region of constant Qs values 625 kJ/mol and 645 kJ/mol for alumina and cubic zirconia, respectively.
Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters
International Nuclear Information System (INIS)
Souza, Fabio A. L. de; Jorge, Francisco E.
2013-01-01
A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)
Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters
Energy Technology Data Exchange (ETDEWEB)
Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)
2013-07-15
A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)
The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations
DEFF Research Database (Denmark)
Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi
2018-01-01
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction...... to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been...... calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site....
International Nuclear Information System (INIS)
Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi
2004-01-01
This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Source and replica calculations
International Nuclear Information System (INIS)
Whalen, P.P.
1994-01-01
The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem
Shielding calculations using FLUKA
International Nuclear Information System (INIS)
Yamaguchi, Chiri; Tesch, K.; Dinter, H.
1988-06-01
The dose equivalent on the surface of concrete shielding has been calculated using the Monte Carlo code FLUKA86 for incident proton energies from 10 to 800 GeV. The results have been compared with some simple equations. The value of the angular dependent parameter in Moyer's equation has been calculated from the locations where the values of the maximum dose equivalent occur. (author)
Krumrine, Jennifer Rebecca
This dissertation is concerned in part with the construction of accurate pairwise potentials, based on reliable ab initio potential energy surfaces (PES's), which are fully anisotropic in the sense that multiple PES's are accessible to systems with orientational electronic properties. We have carried out several investigations of B (2s 22p 2Po) with spherical ligands: (1)an investigation of the electronic spectrum of the BAr2 complex and (2)two related studies of the equilibrium properties and spectral simulation of B embedded in solid pH 2. Our investigations suggest that it cannot be assumed that nuclear motion in an open-shell system occurs on a single PES. The 2s2p2 2 D modeled theoretically; the excited potential energy surfaces of the five-fold degenerate B(2s2p2 2D) state within the ternary complex are computed using a pairwise-additive model. A collaborative path integral molecular dynamics investigation of the equilibrium properties of boron trapped in solid para-hydrogen (pH2) and a path integral Monte Carlo spectral simulation. Using fully anisotropic pair potentials, coupling of the electronic and nuclear degrees of freedom is observed, and is found to be an essential feature in understanding the behavior and determining the energy of the impure solid, especially in highly anisotropic matrices. We employ the variational Monte Carlo method to further study the behavior of ground state B embedded in solid pH2. When a boron atom exists in a substitutional site in a lattice, the anisotropic distortion of the local lattice plays a minimal role in the energetics. However, when a nearest neighbor vacancy is present along with the boron impurity, two phenomena are found to influence the behavior of the impure quantum solid: (1)orientation of the 2p orbital to minimize the energy of the impurity and (2)distortion of the local lattice structure to promote an energetically favorable nuclear configuration. This research was supported by the Joint Program for Atomic
Devil in the Details: A Critical Review of "Theoretical Loss".
Tom, Matthew A; Shaffer, Howard J
2016-09-01
In their review of Internet gambling studies, Auer and Griffiths (J Gambl Stud 30(4), 879-887, 2014) question the validity of using bet size as an indicator of gambling intensity. Instead, in that review and in a response (Auer and Griffiths, J Gambl Stud 31(3), 921-931, 2015) to a previous comment (Braverman et al., J Gambl Stud 31(2), 359-366, 2015), Auer and Griffiths suggested using "theoretical loss" as a preferable measure of gambling intensity. This comment extends and advances the discussion about measures of gambling intensity. In this paper, we describe previously identified problems that Auer and Griffiths need to address to sustain theoretical loss as a viable measure of gambling intensity and add details to the discussion that demonstrate difficulties associated with the use of theoretical loss with certain gambling games.
A novel lattice energy calculation technique for simple inorganic crystals
Energy Technology Data Exchange (ETDEWEB)
Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Banerjee, Priyabrata [Surface Engineering and Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209 (India)
2017-01-01
In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.