One-Dimensional Creativity: A Marcusean Critique of Work and Play in the Video Game Industry
Directory of Open Access Journals (Sweden)
Ergin Bulut
2018-06-01
Full Text Available Creativity is at the heart of the video game industry. Industry professionals, especially those producing blockbuster games for the triple-A market, speak fondly of their creative labour practices, flexible work schedules, and playful workplaces. However, a cursory glance at major triple-A franchises reveals the persistence of sequel game production and a homogeneity in genres and narratives. Herbert Marcuse’s critique of one-dimensionality may help to account for this discrepancy between the workers’ creative aspirations and the dominant homogeneity in game aesthetics. What I call ‘one-dimensional creativity’ defines the essence of triple-A game production. In the name of extolling the pleasure principle at work, one-dimensional creativity eliminates the reality principle, but only superficially. One-dimensional creativity gives game developers the opportunity to express themselves, but it is still framed by a particular technological rationality that prioritises profits over experimental art. One-dimensional creativity negates potential forms of creativity that might emerge outside the industry’s hit-driven logics. Conceptually, ‘one-dimensional creativity’ renders visible the instrumentalisation of play and the conservative design principles of triple-A game production – a production that is heavily structured with technological performance, better graphics, interactivity, and speed. Multi-dimensional video game production and aesthetics, the opposite of one-dimensional creativity, is emerging from the DIY game production scene, which is more invested in game narratives and aesthetics outside the dominant logics of one-dimensionality in triple-A game production.
Directory of Open Access Journals (Sweden)
Gbemileke A. Ogunranti
2016-09-01
Full Text Available Purpose: The main objective of this study is to develop a model for solving the one dimensional cutting stock problem in the wood working industry, and develop a program for its implementation. Design/methodology/approach: This study adopts the pattern oriented approach in the formulation of the cutting stock model. A pattern generation algorithm was developed and coded using Visual basic.NET language. The cutting stock model developed is a Linear Programming (LP Model constrained by numerous feasible patterns. A LP solver was integrated with the pattern generation algorithm program to develop a one - dimensional cutting stock model application named GB Cutting Stock Program. Findings and Originality/value: Applying the model to a real life optimization problem significantly reduces material waste (off-cuts and minimizes the total stock used. The result yielded about 30.7% cost savings for company-I when the total stock materials used is compared with the former cutting plan. Also, to evaluate the efficiency of the application, Case I problem was solved using two top commercial 1D-cutting stock software. The results show that the GB program performs better when related results were compared. Research limitations/implications: This study round up the linear programming solution for the number of pattern to cut. Practical implications: From Managerial perspective, implementing optimized cutting plans increases productivity by eliminating calculating errors and drastically reducing operator mistakes. Also, financial benefits that can annually amount to millions in cost savings can be achieved through significant material waste reduction. Originality/value: This paper developed a linear programming one dimensional cutting stock model based on a pattern generation algorithm to minimize waste in the wood working industry. To implement the model, the algorithm was coded using VisualBasic.net and linear programming solver called lpsolvedll (dynamic
One-Dimensionality and Whiteness
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES
International Nuclear Information System (INIS)
Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert
2008-01-01
The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes
Directory of Open Access Journals (Sweden)
William Hansen
2017-12-01
Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.
One dimensional reactor core model
International Nuclear Information System (INIS)
Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.
1984-01-01
The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)
One dimensional model for polytypes
International Nuclear Information System (INIS)
Rosato, A.
1979-01-01
The general expression for the dispersion relation for a polyatomic one dimensional crystal obtained by the Laplace Transform Method is applied to materials with the fcc and hcp structures, both consisting of close-packed planes of atoms with the stacking sequence of plane ABC/ABC... and AB/AB... respectively. The expression is also applied to polytypes, that is materials caracterized by a stacking sequence with longer repeat unit. The effective mass is cast in a condensed form useful for further calculations. The results from this simple model are only qualitative. (Author) [pt
One-Dimensional Photonic Crystal Superprisms
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Cohesive motion in one-dimensional flocking
International Nuclear Information System (INIS)
Dossetti, V
2012-01-01
A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)
One-Dimensional Modelling of Internal Ballistics
Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.
2017-10-01
A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.
Basic physics of one-dimensional metals
International Nuclear Information System (INIS)
Emery, V.J.
1976-01-01
Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
International Nuclear Information System (INIS)
Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun
2013-01-01
This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies
On the effect of memory in one-dimensional K=4 automata on networks
Alonso-Sanz, Ramón; Cárdenas, Juan Pablo
2008-12-01
The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.
One-Dimensional Czedli-Type Islands
Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja
2011-01-01
The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.
Analytical solution of one dimensional temporally dependent ...
African Journals Online (AJOL)
user
transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.
Factorizations of one-dimensional classical systems
International Nuclear Information System (INIS)
Kuru, Senguel; Negro, Javier
2008-01-01
A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems
One-dimensional photonic crystal design
International Nuclear Information System (INIS)
Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo
2010-01-01
In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.
One-dimensional Gromov minimal filling problem
International Nuclear Information System (INIS)
Ivanov, Alexandr O; Tuzhilin, Alexey A
2012-01-01
The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.
Appropriateness of one-dimensional calculations for repository analysis
International Nuclear Information System (INIS)
Eaton, R.R.
1994-01-01
This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed
The appropriateness of one-dimensional Yucca Mountain hydrologic calculations
International Nuclear Information System (INIS)
Eaton, R.R.
1993-07-01
This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed
Sounds in one-dimensional superfluid helium
International Nuclear Information System (INIS)
Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.
1989-01-01
The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero
QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS
Directory of Open Access Journals (Sweden)
J.K.Percus
2003-01-01
Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.
Highly conducting one-dimensional solids
Evrard, Roger; Doren, Victor
1979-01-01
Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...
Remarks for one-dimensional fractional equations
Directory of Open Access Journals (Sweden)
Massimiliano Ferrara
2014-01-01
Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.
Controlled size and one-dimensional growth
Indian Academy of Sciences (India)
875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.
Simulation of the diffraction pattern of one dimensional quasicrystal ...
African Journals Online (AJOL)
The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...
Realization of Configurable One-Dimensional Reflectarray
2017-08-31
experiments show strong signatures of beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential...based, one-dimensional reflectarrays. Several immediate improvements to the device design and process flow are essential to suppress specular...beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential operating procedures (i.e
One-dimensional plasma simulation studies
International Nuclear Information System (INIS)
Friberg, Ari; Virtamo, Jorma
1976-01-01
Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)
Solitons in one-dimensional antiferromagnetic chains
International Nuclear Information System (INIS)
Pires, A.S.T.; Talim, S.L.; Costa, B.V.
1989-01-01
We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Specificities of one-dimensional dissipative magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Popov, P. V., E-mail: popov.pv@mipt.ru [National Research Center Kurchatov Institute (Russian Federation)
2016-11-15
One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.
One-dimensional nanomaterials for energy storage
Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang
2018-03-01
The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.
Stability model for one-dimensional FRCs
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.
1982-01-01
The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically
One dimensional systems with singular perturbations
International Nuclear Information System (INIS)
Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P
2011-01-01
This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.
Few quantum particles on one dimensional lattices
International Nuclear Information System (INIS)
Valiente Cifuentes, Manuel
2010-01-01
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models
Few quantum particles on one dimensional lattices
Energy Technology Data Exchange (ETDEWEB)
Valiente Cifuentes, Manuel
2010-06-18
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and
One dimensional benchmark calculations using diffusion theory
International Nuclear Information System (INIS)
Ustun, G.; Turgut, M.H.
1986-01-01
This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)
One-dimensional model of inertial pumping
Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.
2013-02-01
A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.
Diffusiophoresis in one-dimensional solute gradients
Energy Technology Data Exchange (ETDEWEB)
Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Bebington (United Kingdom); Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)
2017-11-06
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ_{p} relative to the solute diffusivity D_{s} for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.
Diffusiophoresis in one-dimensional solute gradients
International Nuclear Information System (INIS)
Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo; Stone, Howard A.
2017-01-01
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.
Quantum logic using correlated one-dimensional quantum walks
Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk
2018-01-01
Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.
One-dimensional computational modeling on nuclear reactor problems
International Nuclear Information System (INIS)
Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos
2013-01-01
In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)
One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica
Energy Technology Data Exchange (ETDEWEB)
Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf
2017-07-31
Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.
MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN
Directory of Open Access Journals (Sweden)
MILOS RASTOVIC
2013-05-01
Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.
Neutron transmission bands in one dimensional lattices
International Nuclear Information System (INIS)
Monsivais, G.; Moshinsky, M.
1999-01-01
The original Kronig-Penney lattice, which had delta function interactions at the end of each of the equal segments, seems a good model for the motion of neutrons in a linear lattice if the strength b of the δ functions depends of the energy of the neutrons, i.e., b(E). We derive the equation for the transmission bands and consider the relations of b(E) with the R(E) function discussed in a previous paper. We note the great difference in the behavior of the bands when b(E) is constant and when it is related with a single resonance of the R function. (Author)
International Nuclear Information System (INIS)
Xu Hao; Shi Tianjun
2011-01-01
In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)
Stopping time of a one-dimensional bounded quantum walk
International Nuclear Information System (INIS)
Luo Hao; Zhang Peng; Zhan Xiang; Xue Peng
2016-01-01
The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. (paper)
Energy in one-dimensional linear waves
International Nuclear Information System (INIS)
Repetto, C E; Roatta, A; Welti, R J
2011-01-01
This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)
One-dimensional reactor kinetics model for RETRAN
International Nuclear Information System (INIS)
Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.
1981-01-01
Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses
Lateral shifting in one dimensional chiral photonic crystal
International Nuclear Information System (INIS)
You Yuan; Chen Changyuan
2012-01-01
We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.
Lateral shifting in one dimensional chiral photonic crystal
Energy Technology Data Exchange (ETDEWEB)
You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)
2012-07-01
We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.
Non-equilibrium dynamics of one-dimensional Bose gases
International Nuclear Information System (INIS)
Langen, T.
2013-01-01
Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom
One-dimensional thermodynamical model for poling of ferroelectric ceramics
International Nuclear Information System (INIS)
Bassiouny, E.
1990-11-01
In this work, we use a model developed to deduce a one-dimensional model for the description of the poling of ferroelectric ceramics. This is built within the scheme of the thermodynamical theory of internal variables. The model produces both plastic and electric hysteresis effects in the form of ''plasticity'', i.e., rate-independent evolution equations for the plastic strain, and the residual electric polarization and both mechanical and electric hardenings. The influence of stresses on ferroelectric hysteresis loops through piezoelectricity and electrostriction is a natural outcome of this model. Some simple experimental methods for the determination of the material coefficients of the considered ceramics are suggested. (author). 21 refs, 3 figs
Asymmetrically doped one-dimensional trans-polymers
International Nuclear Information System (INIS)
Caldas, Heron
2009-01-01
More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH) x , a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.
Avena, L.; Hollander, den W.Th.F.; Redig, F.H.J.
2010-01-01
Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In previous work we
Study of one dimensional magnetic system via field theory
International Nuclear Information System (INIS)
Talim, S.L.
1988-04-01
We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)
NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML
Stueber, Thomas J.; Paxson, Daniel E.
2014-01-01
The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.
Directory of Open Access Journals (Sweden)
van Buren Simon
2017-01-01
Full Text Available Frost formation is a common, often undesired phenomenon in heat exchanges such as air coolers. Thus, air coolers have to be defrosted periodically, causing significant energy consumption. For the design and optimization, prediction of defrosting by a CFD tool is desired. This paper presents a one-dimensional transient model approach suitable to be used as a zero-dimensional wall-function in CFD for modeling the defrost process at the fin and tube interfaces. In accordance to previous work a multi stage defrost model is introduced (e.g. [1, 2]. In the first instance the multi stage model is implemented and validated using MATLAB. The defrost process of a one-dimensional frost segment is investigated. Fixed boundary conditions are provided at the frost interfaces. The simulation results verify the plausibility of the designed model. The evaluation of the simulated defrost process shows the expected convergent behavior of the three-stage sequence.
RETRAN-02 one-dimensional kinetics model: a review
International Nuclear Information System (INIS)
Gose, G.C.; McClure, J.A.
1986-01-01
RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02
Plasma properties of quasi-one-dimensional ring
Shmelev, G M
2001-01-01
The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy
Quantum one dimensional spin systems. Disorder and impurities
International Nuclear Information System (INIS)
Brunel, V.
1999-01-01
This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)
Transmission properties of one-dimensional ternary plasma photonic crystals
International Nuclear Information System (INIS)
Shiveshwari, Laxmi; Awasthi, S. K.
2015-01-01
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter
Transmission properties of one-dimensional ternary plasma photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)
2015-09-15
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-01-01
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested
Negative differential resistance in a one-dimensional molecular wire ...
Indian Academy of Sciences (India)
voltage characteristics of a one-dimensional molecular wire with odd number of ... lem, although interesting both from a fundamental point of view and in terms of ..... SKP acknowledges the DST, Government of India, for financial support.
The one-dimensional extended Bose–Hubbard model
Indian Academy of Sciences (India)
Unknown
method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.
One-dimensional modeling of plasma diffusion in field reversed configurations
International Nuclear Information System (INIS)
Hamasaki, S.; Krall, N.A.
1986-03-01
Over the past several years, a picture has emerged of transport in field reversed configuration (FRC) which explains many, though not all, of the loss phenomena observed in that device. That picture is complicated by the geometry, which includes both magnetically connected and magnetically isolated regions, and by the transport process, which includes a substantial contribution from short wavelength, fast time scale processes. This paper extends our previous work on this topic by carrying a one-dimensional model as far as it can be carried, in terms of goemetrical and physical consistency, and isolates the difference between the model and experiment as coming from phenomena beyond the scope of 1-D anomalous transport
One-dimensional reactor kinetics model for RETRAN
International Nuclear Information System (INIS)
Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.
1981-01-01
This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs
One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases
Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.
2011-01-01
The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...
One dimensional models of excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
Spin glasses and algorithm benchmarks: A one-dimensional view
International Nuclear Information System (INIS)
Katzgraber, H G
2008-01-01
Spin glasses are paradigmatic models that deliver concepts relevant for a variety of systems. However, rigorous analytical results are difficult to obtain for spin-glass models, in particular for realistic short-range models. Therefore large-scale numerical simulations are the tool of choice. Concepts and algorithms derived from the study of spin glasses have been applied to diverse fields in computer science and physics. In this work a one-dimensional long-range spin-glass model with power-law interactions is discussed. The model has the advantage over conventional systems in that by tuning the power-law exponent of the interactions the effective space dimension can be changed thus effectively allowing the study of large high-dimensional spin-glass systems to address questions as diverse as the existence of an Almeida-Thouless line, ultrametricity and chaos in short range spin glasses. Furthermore, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms
Periodic solutions for one dimensional wave equation with bounded nonlinearity
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Numerical modelling of random walk one-dimensional diffusion
International Nuclear Information System (INIS)
Vamos, C.; Suciu, N.; Peculea, M.
1996-01-01
The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies
A review on one dimensional perovskite nanocrystals for piezoelectric applications
Directory of Open Access Journals (Sweden)
Li-Qian Cheng
2016-03-01
Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1978-01-01
The nonlinear evolution of a monochromatic wave in a one-dimensional Vlasov plasma is studied numerically. The numerical results are carried out far enough in time for phase mixing to dominate the asymptotic state of the system. A qualitative comparison with previously reported simulations is given
Absorption in one-dimensional metallic-dielectric photonic crystals
International Nuclear Information System (INIS)
Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang
2004-01-01
We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)
One-dimensional models of excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm
2004-01-01
Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....
Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals
Energy Technology Data Exchange (ETDEWEB)
Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)
2012-07-15
In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.
Approximate characteristics for one-dimensional two-phase flows
International Nuclear Information System (INIS)
Sarayloo, A.; Peddleson, J.
1985-01-01
An approximate method for determining the characteristics associated with one-dimensional particulate two-phase flow models is presented. The method is based on iteration and is valid for small particulate volume fractions. The method is applied to several special cases involving incompressible particles suspended in a gas. The influences of certain changes in the physical model are investigated
Correlation Functions of the One-Dimensional Attractive Bose Gas
International Nuclear Information System (INIS)
Calabrese, Pasquale; Caux, Jean-Sebastien
2007-01-01
The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect
Analytical solutions of one-dimensional advection–diffusion
Indian Academy of Sciences (India)
Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal ﬁnite initially solute free domain,for two dispersion problems.In the ﬁrst one,temporally dependent solute dispersion along uniform ﬂow in homogeneous domain is studied.In the second problem the ...
Underwater striling engine design with modified one-dimensional model
Directory of Open Access Journals (Sweden)
Daijin Li
2015-05-01
Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Quantitative hyperbolicity estimates in one-dimensional dynamics
International Nuclear Information System (INIS)
Day, S; Kokubu, H; Pilarczyk, P; Luzzatto, S; Mischaikow, K; Oka, H
2008-01-01
We develop a rigorous computational method for estimating the Lyapunov exponents in uniformly expanding regions of the phase space for one-dimensional maps. Our method uses rigorous numerics and graph algorithms to provide results that are mathematically meaningful and can be achieved in an efficient way
Quasi-one-dimensional scattering in a discrete model
DEFF Research Database (Denmark)
Valiente, Manuel; Mølmer, Klaus
2011-01-01
We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...
Structure Variation from One-Dimensional Chain to Three ...
Indian Academy of Sciences (India)
WEN-XUAN LI, XIAO-MIN GU, WEN-LI ZHANG and LIANG NI. School of Chemistry ... Compound 1 possesses one-dimensional chain structure, and expands into ..... sis of fine chemicals and pharmaceuticals.30 The results were summarized ...
Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors
DEFF Research Database (Denmark)
Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.
2003-01-01
The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....
Diffusive transport in a one dimensional disordered potential involving correlations
International Nuclear Information System (INIS)
Monthus, C.; Paris-6 Univ., 75
1995-03-01
Transport properties of one dimensional Brownian diffusion under the influence of a quenched random force, distributed as a two-level Poisson process is discussed. Large time scaling laws of the position of the Brownian particle, and the probability distribution of the stationary flux going through a sample between two prescribed concentrations are studied. (author) 14 refs.; 3 figs
One-dimensional position readout from microchannel plates
International Nuclear Information System (INIS)
Connell, K.A.; Przybylski, M.M.
1982-01-01
The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)
Lekhnitskii's formalism of one-dimensional quasicrystals and its ...
Indian Academy of Sciences (India)
To illustrate its utility, the generalized Lekhnitskii's formal- ism is used to analyse the coupled phonon and phason fields in an infinite quasicrystal medium con- taining an elliptic rigid inclusion. Keywords. Generalized Lekhnitskii's formalism; one-dimensional quasicrystals; plane problems; elliptic inclusion. PACS Nos 61.44.
Backward scattering in the one-dimensional Fermi gas
International Nuclear Information System (INIS)
Apostol, M.
1980-05-01
The Ward identity is derived for non-relativistic fermions with two-body spin-independent interaction. Using this identity for the one-dimensional Fermi gas with backward scattering the equations of the perturbation theory are solved for the effective interaction and the collective excitations of the particle density fluctuations are obtained. (author)
Monte Carlo investigation of the one-dimensional Potts model
International Nuclear Information System (INIS)
Karma, A.S.; Nolan, M.J.
1983-01-01
Monte Carlo results are presented for a variety of one-dimensional dynamical q-state Potts models. Our calculations confirm the expected universal value z = 2 for the dynamic scaling exponent. Our results also indicate that an increase in q at fixed correlation length drives the dynamics into the scaling regime
State reconstruction of one-dimensional wave packets
Krähmer, D. S.; Leonhardt, U.
1997-12-01
We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.
One-dimensional autonomous systems and dissipative systems
International Nuclear Information System (INIS)
Lopez, G.
1996-01-01
The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc
Quantum transport in strongly interacting one-dimensional nanostructures
Agundez, R.R.
2015-01-01
In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.
Statistics of resonances in one-dimensional continuous systems
Indian Academy of Sciences (India)
Vol. 73, No. 3. — journal of. September 2009 physics pp. 565–572. Statistics of resonances in one-dimensional continuous systems. JOSHUA FEINBERG. Physics Department, University of Haifa at Oranim, Tivon 36006, Israel ..... relativistic quantum mechanics (Israel Program for Scientific Translations, Jerusalem,. 1969).
Statistical mechanics of quantum one-dimensional damped harmonic oscillator
International Nuclear Information System (INIS)
Borges, E.N.M.; Borges, O.N.; Ribeiro, L.A.A.
1985-01-01
We calculate the thermal correlation functions of the one-dimensional damped harmonic oscillator in contact with a reservoir, in an exact form by applying Green's function method. In this way the thermal fluctuations are incorporated in the Caldirola-Kanai Hamiltonian
Anomalous heat conduction in a one-dimensional ideal gas.
Casati, Giulio; Prosen, Tomaz
2003-01-01
We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.
Relativistic band gaps in one-dimensional disordered systems
International Nuclear Information System (INIS)
Clerk, G.J.; McKellar, B.H.J.
1992-01-01
Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs
The electromagnetic Brillouin precursor in one-dimensional photonic crystals
Uitham, R.; Hoenders, B. J.
2008-01-01
We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron
On the quantisation of one-dimensional bags
International Nuclear Information System (INIS)
Fairley, G.T.; Squires, E.J.
1976-01-01
The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)
Light propagation in one-dimensional porous silicon complex systems
Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, Aart; Wiersma, D.S.
2003-01-01
We discuss the optical properties of one-dimensional complex dielectric systems, in particular the time-resolved transmission through thick porous silicon quasiperiodic multi-layers. Both in numerical calculations and experiments we find dramatic distortion effects, i.e. pulse stretching and
Analytical approach for collective diffusion: one-dimensional heterogeneous lattice
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander
2016-01-01
Roč. 144, č. 14 (2016), 1-11, č. článku 144105. ISSN 0021-9606 Institutional support: RVO:68378271 Keywords : diffusion * Monte Carlo simulations * one-dimensional heterogeneous lattice Subject RIV: BE - Theoretical Physics Impact factor: 2.965, year: 2016
Approximate Approaches to the One-Dimensional Finite Potential Well
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
Toward precise solution of one-dimensional velocity inverse problems
International Nuclear Information System (INIS)
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent
Directory of Open Access Journals (Sweden)
Nicolai Lang, Hans Peter Büchler
2018-01-01
Full Text Available Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.
Quantum phase transitions in matrix product states of one-dimensional spin-1 chains
International Nuclear Information System (INIS)
Zhu Jingmin
2014-01-01
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement. (author)
The one-dimensional Gross-Pitaevskii equation and its some excitation states
Energy Technology Data Exchange (ETDEWEB)
Prayitno, T. B., E-mail: trunk-002@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun no. 10, Jakarta, 13220 (Indonesia)
2015-04-16
We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.
Boudin , Laurent; Mathiaud , Julien
2012-01-01
In this work, we discuss some numerical properties of the viscous numerical scheme introduced in [Boudin, Mathiaud, NMPDE 2012] to solve the one-dimensional pressureless gases system, and study in particular, from a computational viewpoint, its asymptotic behavior when the viscosity parameter used in the scheme becomes smaller.
Al-Aidroos, Naseem; Emrich, Stephen M.; Ferber, Susanne; Pratt, Jay
2012-01-01
In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search.…
Bioinspired one-dimensional materials for directional liquid transport.
Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-08-19
One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate
Bound states of Dipolar Bosons in One-dimensional Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2013-01-01
that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....
Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films
Directory of Open Access Journals (Sweden)
A. J. Qviller
2012-01-01
Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.
Versatile hydrothermal synthesis of one-dimensional composite structures
Luo, Yonglan
2008-12-01
In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.
Solitons in one-dimensional charge density wave systems
International Nuclear Information System (INIS)
Su, W.P.
1981-01-01
Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics
Applications of one-dimensional models in simplified inelastic analyses
International Nuclear Information System (INIS)
Kamal, S.A.; Chern, J.M.; Pai, D.H.
1980-01-01
This paper presents an approximate inelastic analysis based on geometric simplification with emphasis on its applicability, modeling, and the method of defining the loading conditions. Two problems are investigated: a one-dimensional axisymmetric model of generalized plane strain thick-walled cylinder is applied to the primary sodium inlet nozzle of the Clinch River Breeder Reactor Intermediate Heat Exchanger (CRBRP-IHX), and a finite cylindrical shell is used to simulate the branch shell forging (Y) junction. The results are then compared with the available detailed inelastic analyses under cyclic loading conditions in terms of creep and fatigue damages and inelastic ratchetting strains per the ASME Code Case N-47 requirements. In both problems, the one-dimensional simulation is able to trace the detailed stress-strain response. The quantitative comparison is good for the nozzle, but less satisfactory for the Y junction. Refinements are suggested to further improve the simulation
Thermal conductivity in one-dimensional nonlinear systems
Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo
2000-03-01
Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.
Thermoelectric properties of one-dimensional graphene antidot arrays
International Nuclear Information System (INIS)
Yan, Yonghong; Liang, Qi-Feng; Zhao, Hui; Wu, Chang-Qin; Li, Baowen
2012-01-01
We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green's function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. -- Highlights: ► We study thermoelectric properties of one-dimensional (1D) graphene antidot arrays. ► Thermoelectric figure of merit (ZT) of 1D antidot arrays can exceed unity. ► ZT of 1D antidot arrays is larger than that of two-dimensional arrays.
Scattering theory for one-dimensional step potentials
International Nuclear Information System (INIS)
Ruijsenaars, S.N.M.; Bongaarts, P.J.M.
1977-01-01
The scattering theory is treated for the one-dimensional Dirac equation with potentials that are bounded, measurable, real-valued functions on the real line, having constant values, not necessarily the same, on the left and on the right side of a compact interval. Such potentials appear in the Klein paradox. It is shown that appropriately modified wave operators exist and that the corresponding S-operator is unitary. The connection between time-dependent scattering theory and time-independent scattering theory in terms of incoming and outgoing plane wave solutions is established and some further properties are proved. All results and their proofs have a straightforward translation to the one-dimensional Schroedinger equation with the same class of step potentials
Resonance Raman spectroscopy in one-dimensional carbon materials
Directory of Open Access Journals (Sweden)
Dresselhaus Mildred S.
2006-01-01
Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.
Impurity modes in the one-dimensional XXZ Heisenberg model
International Nuclear Information System (INIS)
Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.
2014-01-01
A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.
UNICIN - an one-dimensional computer code for reactor kinetics
International Nuclear Information System (INIS)
Rosa, M.A.P.; Alcantara, H.G. de; Nair, R.P.K.
1984-01-01
A program for the solution of the time- and space-dependent multigroup diffusion equations and the delayed-neutron precursors concentration equations in one dimensional geometries by the weighted residual method is described. The discretized equations are solved through an iterative procedure with convergence accelerated by the over-relaxation method. The system is perturbed through the variation of the nuclide concentrations in specified regions. Two feedback effects are included, namely, the temperature and the burnup. (Author) [pt
Nonlinear acoustic wave propagating in one-dimensional layered system
International Nuclear Information System (INIS)
Yun, Y.; Miao, G.Q.; Zhang, P.; Huang, K.; Wei, R.J.
2005-01-01
The propagation of finite-amplitude plane sound in one-dimensional layered media is studied by the extended method of transfer matrix formalism. For the periodic layered system consisting of two alternate types of liquid, the energy distribution and the phase vectors of the interface vibration are computed and analyzed. It is found that in the pass-band, the second harmonic of sound wave can propagate with the characteristic modulation
The analysis of one-dimensional reactor kinetics benchmark computations
International Nuclear Information System (INIS)
Sidell, J.
1975-11-01
During March 1973 the European American Committee on Reactor Physics proposed a series of simple one-dimensional reactor kinetics problems, with the intention of comparing the relative efficiencies of the numerical methods employed in various codes, which are currently in use in many national laboratories. This report reviews the contributions submitted to this benchmark exercise and attempts to assess the relative merits and drawbacks of the various theoretical and computer methods. (author)
Heat transfer in a one-dimensional mixed convection loop
International Nuclear Information System (INIS)
Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun
1999-01-01
Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed
Energy in one-dimensional linear waves in a string
International Nuclear Information System (INIS)
Burko, Lior M
2010-01-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)
Quasi-one-dimensional intermittent flux behavior in superconducting films
Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.; Vestgården, J. I.; Mozhaev, Peter; Hansen, Jørn Bindslev; Johansen, T. H.
2012-01-01
Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a ...
Variational iteration method for one dimensional nonlinear thermoelasticity
International Nuclear Information System (INIS)
Sweilam, N.H.; Khader, M.M.
2007-01-01
This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems
Localization in a one-dimensional spatially correlated random potential
International Nuclear Information System (INIS)
Kasner, M.; Weller, W.
1986-01-01
The motion of an electron in a random one-dimensional spatially correlated potential is investigated. The spatial correlation is generated by a Markov chain. It is shown that the influence of the spatial correlation can be described by means of oscillating vertices usually neglected in the Berezinskii diagram technique. Correlation mainly leads to an increase of the localization length in comparison with an uncorrelated potential. However, there is a region of the parameter, where the localization decreases. (author)
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Nikola Stefanović
2007-01-01
In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...
Correlation functions of one-dimensional bosons at low temperature
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)
Graphene-based one-dimensional photonic crystal
Berman, Oleg L.; Kezerashvili, Roman Ya.
2011-01-01
A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...
Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-01-01
Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...
Majorana fermion exchange in strictly one dimensional structures
Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.
2014-01-01
It is generally thought that adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of "Majorana shuttle" whereby a $\\pi$ domain wall in the superconducting order parameter which hosts a pair of ancillary Majoranas delivers one zero mode across the wire while the other one tunnels in ...
On a class of one-dimensional random walks
O.J. Boxma (Onno); V.I. Lotov
1995-01-01
textabstractnoindent This paper studies a one-dimensional Markov chain ${X_n,n=0,1,dots$ that satisfies the recurrence relation $X_n = max(0, X_{n-1 + eta_n^{(m) )$ if $X_{n-1 =m leq a$; for $X_{n-1 > a$ it satisfies the same relation with $eta_n^{(m)$ replaced by $xi_n$. Here ${ eta_n^{(m) $ and ${
Theory of the one-dimensional forest-fire model
International Nuclear Information System (INIS)
Paczuski, M.; Bak, P.
1993-01-01
Turbulent cascade processes are studied in terms of a one-dimensional forest-fire model. A hier- archy of steady-state equations for the forests and the holes between them is constructed and solved within a mean-field closure scheme. The exact hole distribution function is found to be N H (s)=4N/[s(s+1)(s+2)], where N is the number of forests
Quasi-one-dimensional metals on semiconductor surfaces with defects
International Nuclear Information System (INIS)
Hasegawa, Shuji
2010-01-01
Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.
Gravitational anomalies and one-dimensional behavior of black holes
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)
2015-12-15
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)
One-dimensional crystal with a complex periodic potential
International Nuclear Information System (INIS)
Boyd, John K.
2001-01-01
A one-dimensional crystal model is constructed with a complex periodic potential. A wave function solution for the crystal model is derived without relying on Bloch functions. The new wave function solution of this model is shown to correspond to the solution for the probability amplitude of a two-level system. The energy discriminant is evaluated using an analytic formula derived from the probability amplitude solution, and based on an expansion parameter related to the energy and potential amplitude. From the wave function energy discriminant the crystal band structure is derived and related to standard energy bands and gaps. It is also shown that several of the properties of the two-level system apply to the one-dimensional crystal model. The two-level system solution which evolves in time is shown to manifest as a spatial configuration of the one-dimensional crystal model. The sensitivity of the wave function probability density is interpreted in the context of the new solution. The spatial configuration of the wave function, and the appearance of a long wavelength in the wave function probability density is explained in terms of the properties of Bessel functions
Impact of previous pharmacy work experience on pharmacy school academic performance.
Mar, Ellena; Barnett, Mitchell J; T-L Tang, Terrill; Sasaki-Hill, Debra; Kuperberg, James R; Knapp, Katherine
2010-04-12
To determine whether students' previous pharmacy-related work experience was associated with their pharmacy school performance (academic and clinical). The following measures of student academic performance were examined: pharmacy grade point average (GPA), scores on cumulative high-stakes examinations, and advanced pharmacy practice experience (APPE) grades. The quantity and type of pharmacy-related work experience each student performed prior to matriculation was solicited through a student survey instrument. Survey responses were correlated with academic measures, and demographic-based stratified analyses were conducted. No significant difference in academic or clinical performance between those students with prior pharmacy experience and those without was identified. Subanalyses by work setting, position type, and substantial pharmacy work experience did not reveal any association with student performance. A relationship was found, however, between age and work experience, ie, older students tended to have more work experience than younger students. Prior pharmacy work experience did not affect students' overall academic or clinical performance in pharmacy school. The lack of significant findings may have been due to the inherent practice limitations of nonpharmacist positions, changes in pharmacy education, and the limitations of survey responses.
Impact of Previous Pharmacy Work Experience on Pharmacy School Academic Performance
Mar, Ellena; T-L Tang, Terrill; Sasaki-Hill, Debra; Kuperberg, James R.; Knapp, Katherine
2010-01-01
Objectives To determine whether students' previous pharmacy-related work experience was associated with their pharmacy school performance (academic and clinical). Methods The following measures of student academic performance were examined: pharmacy grade point average (GPA), scores on cumulative high-stakes examinations, and advanced pharmacy practice experience (APPE) grades. The quantity and type of pharmacy-related work experience each student performed prior to matriculation was solicited through a student survey instrument. Survey responses were correlated with academic measures, and demographic-based stratified analyses were conducted. Results No significant difference in academic or clinical performance between those students with prior pharmacy experience and those without was identified. Subanalyses by work setting, position type, and substantial pharmacy work experience did not reveal any association with student performance. A relationship was found, however, between age and work experience, ie, older students tended to have more work experience than younger students. Conclusions Prior pharmacy work experience did not affect students' overall academic or clinical performance in pharmacy school. The lack of significant findings may have been due to the inherent practice limitations of nonpharmacist positions, changes in pharmacy education, and the limitations of survey responses. PMID:20498735
Service for victims of crime VDS info and victims’ support: Analysis of the previous work
Directory of Open Access Journals (Sweden)
Ćopić Sanja M.
2004-01-01
Full Text Available The first victim support service in our country VDS info and victims’ support started with its work in April 2003 within the Victimology Society of Serbia. This service is aimed at victims of crime (women and men, primarily at victims of violent crime, but also of some forms of property crime (such as burglary. The aim of the Service is to offer victims of crime information on their rights and the ways of how to realize them, emotional support, as well as to refer them to other institutions/organizations depending on the certain victim’s needs. Coordinators and volunteers, who passed the appropriate training, are responsible for that. Bearing that in mind, this paper will give the brief glens on the Service itself, its organization and the way of work, followed by the analysis of the results of previous work.
Determination of heat flows inside turbochargers by means of a one dimensional lumped model
Olmeda González, Pablo Cesar; Dolz Ruiz, Vicente; Arnau Martínez, Francisco José; Reyes Belmonte, Miguel Angel
2013-01-01
In the present paper, a methodology to calculate the heat fluxes inside a turbocharger from diesel passenger car is presented. The heat transfer phenomenon is solved by using a one dimensional lumped model that takes into account both the heat fluxes between the different turbocharger elements, as well as the heat fluxes between the working fluids and the turbocharger elements. This heat transfer study is supported by the high temperature differences between the working fluids passing thr...
Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash
Directory of Open Access Journals (Sweden)
Jinsu Kim
2018-04-01
Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.
One-dimensional organic lead halide perovskites with efficient bluish white-light emission
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-01
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Lateral shift in one-dimensional quasiperiodic chiral photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)
2015-02-01
We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.
Integrability of the one dimensional Schrödinger equation
Combot, Thierry
2018-02-01
We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
Inversion of reflection for the one-dimensional Dirac equation
International Nuclear Information System (INIS)
Clerk, G.L.; Davies, A.J.
1991-01-01
It is a general result of one-dimensional non-relativistic quantum mechanics that the coefficient of reflection (reflected flux) is the same irrespective of the direction of traversing a potential barrier, a result that is independent of the barrier shape. In this note, the authors consider the transmission coefficient instead, and derive a strong result, namely that the transmission amplitude is independent of the direction of barrier traversal. That is, the transmission amplitude has the same complex phase as well as being unchanged in magnitude by changing the barrier around. This process was called inversion of reflection. 2 refs
Two-dimensional beam profiles and one-dimensional projections
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
Optical Tamm states in one-dimensional magnetophotonic structures.
Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B
2008-09-12
We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.
Exactly integrable analogue of a one-dimensional gravitating system
International Nuclear Information System (INIS)
Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill
2005-01-01
Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed
Acoustic and electronic properties of one-dimensional quasicrystals
International Nuclear Information System (INIS)
Nori, F.; Rodriguez, J.P.
1986-01-01
We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces
Hidden symmetries in one-dimensional quantum Hamiltonians
International Nuclear Information System (INIS)
Curado, E.M.F.; Rego-Monteiro, M.A.; Nazareno, H.N.
2000-11-01
We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This square-well algebra is an example of an algebra in large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-oscillators as a particular case. We also show here how this general algebra can address hidden symmetries present in several quantum systems. (author)
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-02
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.
Chemical potential of one-dimensional simple harmonic oscillators
International Nuclear Information System (INIS)
Mungan, Carl E
2009-01-01
Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.
Peierls' instability in a one-dimensional potentially metallic solid
International Nuclear Information System (INIS)
Valladares, A.A.; Cetina, E.A.; Sansores, L.E.
1980-01-01
The Peierls instability of one-dimensional potentially metallic lithium solid is investigated in the Hueckel and SCF approximations. In the Hueckel approximation Esub(F) is a monotonic increasing function of the displacement of every other atom of the lattice, whereas in the SCF approximation, where the filling of the bands is considered, Esub(F) shows the minimum predicted by Peierls. The energy gap (for the arrangement that minimizes Esub(F)) is 4.5 eV, indicating that this solid is an insulator. (author)
One-dimensional radionuclide transport under time-varying conditions
International Nuclear Information System (INIS)
Gelbard, F.; Olague, N.E.; Longsine, D.E.
1990-01-01
This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste
One-dimensional nonlinear inverse heat conduction technique
International Nuclear Information System (INIS)
Hills, R.G.; Hensel, E.C. Jr.
1986-01-01
The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data
The quantum flux in quasis one-dimensional conductors
International Nuclear Information System (INIS)
Ventura, J.
1989-01-01
A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt
Evaluation of one dimensional analytical models for vegetation canopies
Goel, Narendra S.; Kuusk, Andres
1992-01-01
The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Generalized entropy decay rates of one-dimensional maps
International Nuclear Information System (INIS)
Csordas, A.; Szepfalusy, P.
1988-01-01
A series of entropies, approaching the order-q Renyi's entropies when the length of orbits tends to infinity, is considered. Their scaling form is determined for chaotic one-dimensional maps. For the characteristic relaxation time a general expression is derived, and it is shown to be closely related to the eigenvalues of a generalized Frobenius-Perron operator. The case of intermittent maps is also considered, and the spectrum of relaxation time is found to reflect the phase transition at q = 1. Results of numerical experiments are also presented
Entanglement entropy and complexity for one-dimensional holographic superconductors
Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin
2017-08-01
Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.
Fragmented one dimensional man / El hombre unidimensional fragmentado
Directory of Open Access Journals (Sweden)
Juan Antonio Rodríguez del Pino
2013-10-01
Full Text Available Paraphrase the title of the famous essay by Herbert Marcuse, since the image has traditionally been generated of man, masculinity, has been one-dimensional. I mean, the man was characterized by traits and behaviors established and entrenched since ancient time, considering all other distinguishing signs as mere deviations from the normative improper. But observe that this undeniable reality, as analyzed various researchers through what has come to be called Men's studies, has proven to be a fallacy difficult to maintain throughout history and today turns into fallacious and ineffective against changes in our current existing corporate models.
One-dimensional neutron imager for the Sandia Z facility.
Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J
2008-10-01
A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.
Ordering phase transition in the one-dimensional Axelrod model
Vilone, D.; Vespignani, A.; Castellano, C.
2002-12-01
We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.
One-Dimensional Rydberg Gas in a Magnetoelectric Trap
International Nuclear Information System (INIS)
Mayle, Michael; Hezel, Bernd; Lesanovsky, Igor; Schmelcher, Peter
2007-01-01
We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms
One-dimensional inverse problems of mathematical physics
Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R
1986-01-01
This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in
One-dimensional energy flow model for poroelastic material
International Nuclear Information System (INIS)
Kim, Jung Soo; Kang, Yeon June
2009-01-01
This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.
Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae
2016-10-01
To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
One-dimensional pulse-flow modeling of a twin-scroll turbine
International Nuclear Information System (INIS)
Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.
2016-01-01
This paper presents a revised one-dimensional (1D) pulse flow modeling of twin-scroll turbocharger turbine under pulse flow operating conditions. The proposed methodology in this paper provides further consideration for the turbine partial admission performance during model characterization. This gives rise to significant improvement on the model pulse flow prediction quality compared to the previous model. The results show that a twin-scroll turbine is not operating at full admission throughout the in-phase pulse flow conditions. Instead, they are operating at unequal admission state due to disparity in the magnitude of turbine inlet flow. On the other hand, during out-of-phase pulse flow, a twin-scroll turbine is working at partial admission state for majority of the pulse cycle. An amended mathematical correlation in calculating the twin-scroll turbine partial admission characteristics is also presented in the paper. The impact of its accuracy on the pulse flow model prediction is explored. - Highlights: • Paper presents a 1D modeling for twin-scroll turbine under pulsating flow. • Predicted pulse pressure propagation is in good agreement with experimental data. • A methodology is proposed to consider the turbine partial admission performance. • Prediction shows twin-scroll turbine operates at unequal admission during in-phase flow. • During out-of-phase flow a twin-scroll turbine mainly operates at partial admission.
Hydrogen peroxide stabilization in one-dimensional flow columns
Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.
2011-09-01
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.
One-Dimensional Forward–Forward Mean-Field Games
Energy Technology Data Exchange (ETDEWEB)
Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)
2016-12-15
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
One-Dimensional Forward–Forward Mean-Field Games
Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc
2016-01-01
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
One-Dimensional Forward–Forward Mean-Field Games
Gomes, Diogo A.
2016-11-01
While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.
International Nuclear Information System (INIS)
Doster, J.M.; Sills, E.D.
1986-01-01
Current efforts are under way to develop and evaluate numerical algorithms for the parallel solution of the large sparse matrix equations associated with the finite difference representation of the macroscopic Navier-Stokes equations. Previous work has shown that these equations can be cast into smaller coupled matrix equations suitable for solution utilizing multiple computer processors operating in parallel. The individual processors themselves may exhibit parallelism through the use of vector pipelines. This wor, has concentrated on the one-dimensional drift flux form of the Navier-Stokes equations. Direct and iterative algorithms that may be suitable for implementation on parallel computer architectures are evaluated in terms of accuracy and overall execution speed. This work has application to engineering and training simulations, on-line process control systems, and engineering workstations where increased computational speeds are required
Theory of finite-entanglement scaling at one-dimensional quantum critical points.
Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E
2009-06-26
Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
International Nuclear Information System (INIS)
Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.
1986-01-01
The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt
International Nuclear Information System (INIS)
Prasad, S.; Singh, Vivek; Singh, A. K.
2013-01-01
The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)
A numerical scheme for the one-dimensional pressureless gases system
Boudin , Laurent; Mathiaud , Julien
2012-01-01
International audience; In this work, we investigate the numerical solving of the one-dimensional pressureless gases system. After briefly recalling the mathematical framework of the duality solutions introduced by Bouchut and James, we point out that the upwind scheme for the density and momentum does not satisfy the one-sided Lipschitz (OSL) condition on the expansion rate required for the duality solutions. Then we build a diffusive scheme which allows to recover the OSL condition by follo...
Resonant scattering induced thermopower in one-dimensional disordered systems
Müller, Daniel; Smit, Wilbert J.; Sigrist, Manfred
2015-05-01
This study analyzes thermoelectric properties of a one-dimensional random conductor which shows localization effects and simultaneously includes resonant scatterers yielding sharp conductance resonances. These sharp features give rise to a distinct behavior of the Seebeck coefficient in finite systems and incorporate the degree of localization as a means to enhance thermoelectric performance, in principle. The model for noninteracting electrons is discussed within the Landauer-Büttiker formalism such that analytical treatment is possible for a wide range of properties, if a special averaging scheme is applied. The approximations in the averaging procedure are tested with numerical evaluations showing good qualitative agreement, with some limited quantitative disagreement. The validity of low-temperature Mott's formula is determined and a good approximation is developed for the intermediate temperature range. In both regimes the intricate interplay between Anderson localization due to disorder and conductance resonances of the disorder potential is analyzed.
Testing of a one dimensional model for Field II calibration
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2008-01-01
Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...
Magnons in one-dimensional k-component Fibonacci structures
Energy Technology Data Exchange (ETDEWEB)
Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)
2014-05-07
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.
One-dimensional Ising model with multispin interactions
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
NMR relaxation rate in quasi one-dimensional antiferromagnets
Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.
We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.
Quasi one dimensional transport in individual electrospun composite nanofibers
Energy Technology Data Exchange (ETDEWEB)
Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)
2014-01-15
We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.
One-dimensional disk model simulation for klystron design
International Nuclear Information System (INIS)
Yonezawa, H.; Okazaki, Y.
1984-05-01
In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use
Probing the exchange statistics of one-dimensional anyon models
Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis
2018-05-01
We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.
One-dimensional reduction of viscous jets. II. Applications
Pitrou, Cyril
2018-04-01
In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.
One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ
Energy Technology Data Exchange (ETDEWEB)
Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-11-12
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).
Dynamics of an impurity in a one-dimensional lattice
International Nuclear Information System (INIS)
Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P
2013-01-01
We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)
The transmission probability method in one-dimensional cylindrical geometry
International Nuclear Information System (INIS)
Rubin, I.E.
1983-01-01
The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems
Piezoelectric transducer vibrations in a one-dimensional approximation
Hilke, H J
1973-01-01
The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...
Experiment and simulation on one-dimensional plasma photonic crystals
International Nuclear Information System (INIS)
Zhang, Lin; Ouyang, Ji-Ting
2014-01-01
The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range
Analytical models of optical response in one-dimensional semiconductors
International Nuclear Information System (INIS)
Pedersen, Thomas Garm
2015-01-01
The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons
SUSY-hierarchy of one-dimensional reflectionless potentials
Maydanyuk, Sergei P
2004-01-01
A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...
Strongly-Refractive One-Dimensional Photonic Crystal Prisms
Ting, David Z. (Inventor)
2004-01-01
One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.
Well-posedness of one-dimensional Korteweg models
Directory of Open Access Journals (Sweden)
Sylvie Benzoni-Gavage
2006-05-01
Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.
A Reduced Order, One Dimensional Model of Joint Response
Energy Technology Data Exchange (ETDEWEB)
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Capillary condensation in one-dimensional irregular confinement.
Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N
2013-07-01
A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.
Topologically protected states in one-dimensional systems
Fefferman, C L; Weinstein, M I
2017-01-01
The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.
Interacting Fermi gases in disordered one-dimensional lattices
International Nuclear Information System (INIS)
Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.
2006-01-01
Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation
A one-dimensional ice structure built from pentagons
Carrasco, Javier; Michaelides, Angelos
2010-03-01
Heterogeneous nucleation of water plays a key role in fields as diverse as atmospheric chemistry, astrophysics, and biology. Ice nucleation on metal surfaces offers an opportunity to watch this process unfold, providing a molecular-scale description at a well-defined, planar interface. We discuss a density-functional theory study on a metal surface specifically designed to understand such phenomena. Together with our colleges at the University of Liverpool, we found that the nanometer wide water-ice chains experimentally observed to nucleate and grow on Cu(110) are built from a face sharing arrangement of water pentagons [1]. The novel one-dimensional pentagon structure maximizes the water-metal bonding whilst simultaneously maintaining a strong hydrogen bonding network. These results reveal an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favor non-conventional structural units. [4pt] [1] J. Carrasco et al., Nature Mater. 8, 427 (2009).
One-dimensional plasma photonic crystals with sinusoidal densities
International Nuclear Information System (INIS)
Qi, L.; Shang, L.; Zhang, S.
2014-01-01
Properties of electromagnetic waves with normal and oblique incidence have been studied for one-dimensional plasma layers with sinusoidal densities. Wave transmittance as a function of wave frequency exhibits photonic band gaps characteristic of photonic crystals. For periodic structures, increasing collision frequency is demonstrated to lead to greater absorption, increasing the modulation factor enlarges the gap width, and increasing incidence angle can change the gap locations of the two polarizations. If a defect layer is introduced by inserting a new plasma layer in the center, a defect mode may appear within the gap. Periodic number, collision frequency, and modulation factor can affect magnitude of the defect mode. The incidence angle enables the frequency to be tuned. Defect layer thickness affects both frequency and number of defect modes. These results may provide theoretical guidance in designing tunable narrow-band filters
Hidden magnetism in periodically modulated one dimensional dipolar fermions
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
Relativistic collective diffusion in one-dimensional systems
Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong
2018-05-01
The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-04-05
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.
Charge and spin separation in one-dimensional systems
International Nuclear Information System (INIS)
Balseiro, C.A.; Jagla, E.A.; Hallberg, K.
1995-01-01
In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)
One-dimensional central-force problem, including radiation reaction
International Nuclear Information System (INIS)
Kasher, J.C.
1976-01-01
Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem
Periodic transmission peak splitting in one dimensional disordered photonic structures
Kriegel, Ilka; Scotognella, Francesco
2016-08-01
In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.
REVIEW One-Dimensional Dynamical Modeling of Earthquakes: A Review
Directory of Open Access Journals (Sweden)
Jeen-Hwa Wang
2008-01-01
Full Text Available Studies of the power-law relations of seismicity and earthquake source parameters based on the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model, especially those studies conducted by Taiwan¡¦s scientists, are reviewed in this article. In general, velocity- and/or state-dependent friction is considered to control faulting. A uniform distribution of breaking strengths (i.e., the static friction strength is taken into account in some studies, and inhomogeneous distributions in others. The scaling relations in these studies include: Omori¡¦s law, the magnitude-frequency or energy-frequency relation, the relation between source duration time and seismic moment, the relation between rupture length and seismic moment, the frequency-length relation, and the source power spectra. The main parameters of the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model include: the decreasing rate (r of dynamic friction strength with sliding velocity; the type and degree of heterogeneous distribution of the breaking strengths, the stiffness ratio (i.e., the ratio between the stiffness of the coil spring connecting two mass elements and that of the leaf spring linking a mass element and the moving plate; the frictional drop ratio of the minimum dynamic friction strength to the breaking strength; and the maximum breaking strength. For some authors, the distribution of the breaking strengths was considered to be a fractal function. Hence, the fractal dimension of such a distribution is also a significant parameter. Comparison between observed scaling laws and simulation results shows that the 1-D BK dynamical lattice model acceptably approaches fault dynamics.
One-dimensional reduction of viscous jets. I. Theory
Pitrou, Cyril
2018-04-01
We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].
Comparison of one-dimensional and point kinetics for various light water reactor transients
International Nuclear Information System (INIS)
Naser, J.A.; Lin, C.; Gose, G.C.; McClure, J.A.; Matsui, Y.
1985-01-01
The object of this paper is to compare the results from the three kinetics options: 1) point kinetics; 2) point kinetics by not changing the shape function; and 3) one-dimensional kinetics for various transients on both BWRs and PWRs. A systematic evaluation of the one-dimensional kinetics calculation and its alternatives is performed to determine the status of these models and to identify additional development work. In addition, for PWRs, the NODEP-2 - NODETRAN and SIMULATE - SIMTRAN paths for calculating kinetics parameters are compared. This type of comparison has not been performed before and is needed to properly evaluate the RASP methodology of which these codes are a part. It should be noted that RASP is in its early pre-release stage and this is the first serious attempt to examine the consistency between these two similar but different methods of generating physics parameters for the RETRAN computer code
International Nuclear Information System (INIS)
Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.
2010-01-01
In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)
Advances in one-dimensional wave mechanics towards a unified classical view
Cao, Zhuangqi
2014-01-01
Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics. Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China. Dr. Cheng Yin is a teacher at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.
Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps
International Nuclear Information System (INIS)
Avrutin, V; Granados, A; Schanz, M
2011-01-01
Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs
An algorithm for engineering regime shifts in one-dimensional dynamical systems
Tan, James P. L.
2018-01-01
Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.
Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps
Avrutin, V.; Granados, A.; Schanz, M.
2011-09-01
Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs.
Al-Aidroos, Naseem; Emrich, Stephen M; Ferber, Susanne; Pratt, Jay
2012-06-01
In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search. We evaluated this proposal by testing three predictions. First, Experiments 1 and 2 demonstrate that preview inhibition is more effective when the number of previewed distractors is below VWM capacity than above; an effect that can only be observed at small preview set sizes (Experiment 2A) and when observers are allowed to move their eyes freely (Experiment 2B). Second, Experiment 3 shows that, when quantified as the number of inhibited distractors, the magnitude of the preview effect is stable across different search difficulties. Third, Experiment 4 demonstrates that individual differences in preview inhibition are correlated with individual differences in VWM capacity. These findings provide converging evidence that VWM supports the inhibition of previewed distractors. More generally, these findings demonstrate how VWM contributes to the efficiency of human visual information processing--VWM prioritizes new information by inhibiting old information from being reselected for attention.
BERMUDA-1DG: a one-dimensional photon transport code
International Nuclear Information System (INIS)
Suzuki, Tomoo; Hasegawa, Akira; Nakashima, Hiroshi; Kaneko, Kunio.
1984-10-01
A one-dimensional photon transport code BERMUDA-1DG has been developed for spherical and infinite slab geometries. The purpose of development is to equip the function of gamma rays calculation for the BERMUDA code system, which was developed by 1983 only for neutron transport calculation as a preliminary version. A group constants library has been prepared for 30 nuclides, and it now consists of the 36-group total cross sections and secondary gamma ray yields by the 120-group neutron flux. For the Compton scattering, group-angle transfer matrices are accurately obtained by integrating the Klein-Nishina formula taking into account the energy and scattering angle correlation. The pair production cross sections are now calculated in the code from atomic number and midenergy of each group. To obtain angular flux distribution, the transport equation is solved in the same way as in case of neutron, using the direct integration method in a multigroup model. Both of an independent gamma ray source problem and a neutron-gamma source problem are possible to be solved. This report is written as a user's manual with a brief description of the calculational method. (author)
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Tunneling and resonant conductance in one-dimensional molecular structures
International Nuclear Information System (INIS)
Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.
2005-01-01
We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer
New Poisson–Boltzmann type equations: one-dimensional solutions
International Nuclear Information System (INIS)
Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun
2011-01-01
The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations
Localization properties of one-dimensional electrified chains
International Nuclear Information System (INIS)
Ouasti, R.; Brezini, A.; Zekri, N.
1993-08-01
A Kronig-Penney model with a constant electric filed for a non-interacting electron is used to study the transmission properties of Anderson transition in one-dimensional (1-D) systems with disordered strengths of δ-function potentials. we examined the cases where the potential varies uniformly from O to W (barriers) or from -W to O (wells) for a given disorder W. Mainly, we observe unexpected abrupt transition at the points E + Fx = n 2 π 2 . However, these transitions are related to the small oscillations observed by Soukoulis et al. in the mixed case (wells and barriers). An interesting feature in the wells is that in the presence of a small field the states become more localized and the localization length decrease up to a minimum for a critical value F m . In the end, we have studied the effect of the disorder on the Anderson transition by the mean of the participation ratio and the localization length. (author). 27 refs, 6 figs
SUSY-hierarchy of one-dimensional reflectionless potentials
International Nuclear Information System (INIS)
Maydanyuk, Sergei P.
2005-01-01
A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Directory of Open Access Journals (Sweden)
Ujwal K. Thakur
2017-04-01
Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.
Integral Transport Theory in One-dimensional Geometries
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1966-06-15
A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.
One-dimensional two-phase thermal hydraulics (ENSTA course)
International Nuclear Information System (INIS)
Olive, J.
1995-11-01
This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends
One-dimensional long-range percolation: A numerical study
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
Magnetic ordering in arrays of one-dimensional nanoparticle chains
International Nuclear Information System (INIS)
Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J
2009-01-01
The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.
Validation and Comparison of One-Dimensional Ground Motion Methodologies
International Nuclear Information System (INIS)
B. Darragh; W. Silva; N. Gregor
2006-01-01
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)
Energy Current Cumulants in One-Dimensional Systems in Equilibrium
Dhar, Abhishek; Saito, Keiji; Roy, Anjan
2018-06-01
A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.
Electroconvection in one-dimensional liquid crystal cells
Huh, Jong-Hoon
2018-04-01
We investigate the alternating current (ac) -driven electroconvection (EC) in one-dimensional cells (1DCs) under the in-plane switching mode. In 1DCs, defect-free EC can be realized. In the presence and absence of external multiplicative noise, the features of traveling waves (TWs), such as their Hopf frequency fH and velocity, are examined in comparison with those of conventional two-dimensional cells (2DCs) accompanying defects of EC rolls. In particular, we show that the defects significantly contribute to the features of the TWs. Additionally, owing to the defect-free EC in the 1DCs, the effects of the ac and noise fields on the TW are clarified. The ac field linearly increases fH, independent of the ac frequency f . The noise increases fH monotonically, but fH does not vary below a characteristic noise intensity VN*. In addition, soliton-like waves and unfamiliar oscillation of EC vortices in 1DCs are observed, in contrast to the localized EC (called worms) and the oscillation of EC rolls in 2DCs.
17th century treatments of one-dimensional collisions
International Nuclear Information System (INIS)
Goehring, G.D.
1975-01-01
The issue of conservation in the collisions of bodies aroused considerable interest in the period of its initial investigation. Descartes asserted that the quantity of motion, the scalar product of the mass and speed, was the quantity that was conserved. Huygens, with the aid of his relativity of motion principle, recognized that it was not Descartes' scalar quantity that was conserved, but instead another scalar quality, the product of the mass and the square of the speed, whose total remained constant. Newton discovered that Descartes' quantity was conserved if considered a vector quantity, and thereby announced the principle of conservation of momentum. Leibniz recognized the conservation of Newton's momentum, and also the conservation of vis viva, the same scalar quantity that Huygens has earlier proposed. Although recognition of the immense importance of these principles had to await further developments in physics, the original formulation of these conservation principles, resulting from the analysis of one-dimensional collisions, was completed by the end of the 17th century. (U.K.)
Negative refraction angular characterization in one-dimensional photonic crystals.
Directory of Open Access Journals (Sweden)
Jesus Eduardo Lugo
2011-04-01
Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
Negative refraction angular characterization in one-dimensional photonic crystals.
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-04-06
Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
One-dimensional quantum walk with a moving boundary
International Nuclear Information System (INIS)
Kwek, Leong Chuan; Setiawan
2011-01-01
Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.
Fractal geometry in an expanding, one-dimensional, Newtonian universe.
Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel
2007-09-01
Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.
MARG1D: One dimensional outer region matching data code
International Nuclear Information System (INIS)
Tokuda, Shinji; Watanabe, Tomoko.
1995-08-01
A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)
One-dimensional magnetophotonic crystals with magnetooptical double layers
International Nuclear Information System (INIS)
Berzhansky, V. N.; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O.; Salyuk, O. Yu.; Belotelov, V. I.
2016-01-01
One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ F and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ F =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ F =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.
One-dimensional magnetophotonic crystals with magnetooptical double layers
Energy Technology Data Exchange (ETDEWEB)
Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V. [V.I. Vernadsky Crimean Federal University (Russian Federation); Lukienko, I. N.; Kharchenko, Yu. N., E-mail: kharcenko@ilt.kharkov.ua [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine); Golub, V. O., E-mail: v-o-golub@yahoo.com; Salyuk, O. Yu. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Belotelov, V. I., E-mail: belotelov@physics.msu.ru [Russian Quantum Center (Russian Federation)
2016-11-15
One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.
Approximate approaches to the one-dimensional finite potential well
International Nuclear Information System (INIS)
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik
2017-01-01
The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280
Stepwise Nanopore Evolution in One-Dimensional Nanostructures
Choi, Jang Wook
2010-04-14
We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.
Validation and Comparison of One-Dimensional Graound Motion Methodologies
Energy Technology Data Exchange (ETDEWEB)
B. Darragh; W. Silva; N. Gregor
2006-06-28
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).
Advances in one-dimensional wave mechanics. Towards a unified classical view
Energy Technology Data Exchange (ETDEWEB)
Cao, Zhuangqi [Shanghai Jiao Tong Univ., (China). Dept. of Physics and Astronomy; Yin, Cheng [Hohai Univ., Changzhou, Jiangsu (China). College of IoT Engineering
2014-06-01
Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.
Advances in one-dimensional wave mechanics. Towards a unified classical view
International Nuclear Information System (INIS)
Cao, Zhuangqi; Yin, Cheng
2014-01-01
Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.
Maximizing kinetic energy transfer in one-dimensional many-body collisions
International Nuclear Information System (INIS)
Ricardo, Bernard; Lee, Paul
2015-01-01
The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions. (paper)
Maximizing kinetic energy transfer in one-dimensional many-body collisions
Ricardo, Bernard; Lee, Paul
2015-03-01
The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions.
Library system for a one dimensional tokamak transport code: (LIBJT60), 1
International Nuclear Information System (INIS)
Hirayama, Toshio
1982-12-01
A library system is developed to control and manage huge programs in terms of FORTRAN source. It is applied to widely used one dimensional tokamak transport codes (LIBJT60), which have been developed in the Division of Large Tokamak Development. The structure of data and program in the transport code turn out to be flexible enough to respond to various demands and this gigantic code frame work can be decomposed into groups of a compact code with a specific function. Some editing support tools for programming and debugging are also developed to save programming work. By applying this library system, users can obtain a code whose functions can be efficiently developed. (author)
A One-Dimensional Wave Equation with White Noise Boundary Condition
International Nuclear Information System (INIS)
Kim, Jong Uhn
2006-01-01
We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations
Two routes to the one-dimensional discrete nonpolynomial Schroedinger equation
International Nuclear Information System (INIS)
Gligoric, G.; Hadzievski, Lj.; Maluckov, A.; Salasnich, L.; Malomed, B. A.
2009-01-01
The Bose-Einstein condensate (BEC), confined in a combination of the cigar-shaped trap and axial optical lattice, is studied in the framework of two models described by two versions of the one-dimensional (1D) discrete nonpolynomial Schroedinger equation (NPSE). Both models are derived from the three-dimensional Gross-Pitaevskii equation (3D GPE). To produce 'model 1' (which was derived in recent works), the 3D GPE is first reduced to the 1D continual NPSE, which is subsequently discretized. 'Model 2,' which was not considered before, is derived by first discretizing the 3D GPE, which is followed by the reduction in the dimension. The two models seem very different; in particular, model 1 is represented by a single discrete equation for the 1D wave function, while model 2 includes an additional equation for the transverse width. Nevertheless, numerical analyses show similar behaviors of fundamental unstaggered solitons in both systems, as concerns their existence region and stability limits. Both models admit the collapse of the localized modes, reproducing the fundamental property of the self-attractive BEC confined in tight traps. Thus, we conclude that the fundamental properties of discrete solitons predicted for the strongly trapped self-attracting BEC are reliable, as the two distinct models produce them in a nearly identical form. However, a difference between the models is found too, as strongly pinned (very narrow) discrete solitons, which were previously found in model 1, are not generated by model 2--in fact, in agreement with the continual 1D NPSE, which does not have such solutions either. In that respect, the newly derived model provides for a more accurate approximation for the trapped BEC.
Self-consistent one-dimensional modelling of x-ray laser plasmas
International Nuclear Information System (INIS)
Wan, A.S.; Walling, R.S.; Scott, H.A.; Mayle, R.W.; Osterheld, A.L.
1992-01-01
This paper presents the simulation of a planar, one-dimensional expanding Ge x-ray laser plasma using a new code which combines hydrodynamics, laser absorption, and detailed level population calculations within the same simulation. Previously, these simulations were performed in separate steps. We will present the effect of line transfer on gains and excited level populations and compare the line transfer result with simulations using escape probabilities. We will also discuss the impact of different atomic models on the accuracy of our simulation
Interfacial Thermal Transport via One-Dimensional Atomic Junction Model
Directory of Open Access Journals (Sweden)
Guohuan Xiong
2018-03-01
Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.
Shell-crossing in quasi-one-dimensional flow
Rampf, Cornelius; Frisch, Uriel
2017-10-01
Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi
1988-10-01
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.
Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen
2018-04-17
Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally
Energy Technology Data Exchange (ETDEWEB)
Betin, A Yu; Bobrinev, V I; Verenikina, N M; Donchenko, S S; Odinokov, S B [Research Institute ' Radiotronics and Laser Engineering' , Bauman Moscow State Technical University, Moscow (Russian Federation); Evtikhiev, N N; Zlokazov, E Yu; Starikov, S N; Starikov, R S [National Reseach Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)
2015-08-31
A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)
Semi-analytical model for a slab one-dimensional photonic crystal
Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.
2018-02-01
In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.
Directory of Open Access Journals (Sweden)
Vladimir Shiryaev
2018-04-01
Full Text Available A stretching behavior of knitted and woven textiles is modeled. In our work, the yarns are modeled as one-dimensional hyperelastic strings with frictional contact. Capstan law known for Coulomb’s friction of yarns is extended to an additional adhesion due to gluing of filaments on the yarn surface or some chemical reaction. Two-step Newton’s method is applied for the solution of the large stretching with sliding evolution in the contact nodes. The approach is illustrated on a hysteresis of knitted textile and on the force-strain curve for a woven pattern and both compared with experimental effective curves.
One dimensional two-body collisions experiment based on LabVIEW interface with Arduino
Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai
2017-09-01
The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.
Nature of the band tails in one-dimensional disordered systems
International Nuclear Information System (INIS)
Brezini, A.; Sebbani, M.; Benkhaled, N.; Depollier, C.; Kergomard, J.
1995-12-01
A theoretical model for the density of states based on a tight-binding scheme for one-dimensional disordered systems is investigated within a self-consistent approach in terms of a probabilistic procedure. In particular an exact analytical expression is worked out for the density of states for the case of a Cauchy distribution for the site energies in the region of localized states. A particular attention is paid to the energies lying in the band tails. It is mainly shown that the band tails are sensitive to the typical nature of the disorder. (author). 35 refs, 1 fig
Electric Field Guided Assembly of One-Dimensional Nanostructures for High Performance Sensors
Directory of Open Access Journals (Sweden)
Wing Kam Liu
2012-05-01
Full Text Available Various nanowire or nanotube-based devices have been demonstrated to fulfill the anticipated future demands on sensors. To fabricate such devices, electric field-based methods have demonstrated a great potential to integrate one-dimensional nanostructures into various forms. This review paper discusses theoretical and experimental aspects of the working principles, the assembled structures, and the unique functions associated with electric field-based assembly. The challenges and opportunities of the assembly methods are addressed in conjunction with future directions toward high performance sensors.
Black phosphorus-based one-dimensional photonic crystals and microcavities.
Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco
2016-11-10
The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.
Yao, Zhongqi; Luo, Jie; Lai, Yun
2017-12-11
In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.
International Nuclear Information System (INIS)
Nebel, R.A.; Hagenson, R.L.; Moses, R.W.; Krakowski, R.A.
1980-01-01
Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code that has been developed and parametrically evaluated for the RFPR. Agreement is good between the zero-dimensional and one-dimensional models, giving more confidence in the RFPR design point reported previously from the zero-dimensional analysis
Charged-particle thermonuclear reaction rates: IV. Comparison to previous work
International Nuclear Information System (INIS)
Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.
2010-01-01
We compare our Monte Carlo reaction rates (see Paper II of this issue) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions considered here. The changes are caused by (i) our new Monte Carlo method of computing reaction rates (see Paper I of this issue), and (ii) newly available nuclear physics information (see Paper III of this issue).
A transient one-dimensional numerical model for kinetic Stirling engine
International Nuclear Information System (INIS)
Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei
2016-01-01
Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different
Burin, Debora I.; Barreyro, Juan P.; Saux, Gastón; Irrazábal, Natalia C.
2015-01-01
Introduction: In contemporary information societies, reading digital text has become pervasive. One of the most distinctive features of digital texts is their internal connections via hyperlinks, resulting in non-linear hypertexts. Hypertext structure and previous knowledge affect navigation and comprehension of digital expository texts. From the…
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
Numerical solution of multigroup diffuse equations of one-dimensional geometry
International Nuclear Information System (INIS)
Pavelesku, M.; Adam, S.
1975-01-01
The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)
Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues
International Nuclear Information System (INIS)
Buksa, J.J.; Houts, M.G.
1991-01-01
A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs
Feature binding and attention in working memory: a resolution of previous contradictory findings.
Allen, Richard J; Hitch, Graham J; Mate, Judit; Baddeley, Alan D
2012-01-01
We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer Baddeley, ( 2000 ) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer Baddeley, Allen, & Hitch, ( 2011 ). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.
Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications
Parthangal, Prahalad Madhavan
The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same
Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures
Energy Technology Data Exchange (ETDEWEB)
Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein
2016-12-01
In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.
A one-dimensional material transfer model for HECTR version 1.5
International Nuclear Information System (INIS)
Geller, A.S.; Wong, C.C.
1991-08-01
HECTR (Hydrogen Event Containment Transient Response) is a lumped-parameter computer code developed for calculating the pressure-temperature response to combustion in a nuclear power plant containment building. The code uses a control-volume approach and subscale models to simulate the mass, momentum, and energy transfer occurring in the containment during a loss-of-collant-accident (LOCA). This document describes one-dimensional subscale models for mass and momentum transfer, and the modifications to the code required to implement them. Two problems were analyzed: the first corresponding to a standard problem studied with previous HECTR versions, the second to experiments. The performance of the revised code relative to previous HECTR version is discussed as is the ability of the code to model the experiments. 8 refs., 5 figs., 3 tabs
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
Elementary notions on one-dimensional flow thermohydraulic modelling
International Nuclear Information System (INIS)
Perrin, M.
1982-02-01
This paper is an overview of the notions of mathematical and simulation model applied to flows met in pipes and in several components of power plants (valves, pump, turbine). Finally, the results of a computer code based on the equations previously presented are given [fr
Orientation of One-Dimensional Silicon Polymer Films Studied by X-Ray Absorption Spectroscopy
Directory of Open Access Journals (Sweden)
Md. Abdul Mannan
2012-01-01
Full Text Available Molecular orientations for thin films of one-dimensional silicon polymers grown by vacuum evaporation have been assigned by near-edge X-ray absorption fine structure (NEXAFS using linearly polarized synchrotron radiation. The polymer investigated was polydimethylsilane (PDMS which is the simplest stable silicon polymer, and one of the candidate materials for one-dimensional molecular wire. For PDMS films deposited on highly oriented pyrolytic graphite (HOPG, four resonance peaks have been identified in the Si K-edge NEXAFS spectra. Among these peaks, the intensities of the two peaks lower-energy at 1842.0 eV and 1843.2 eV were found to be strongly polarization dependent. The peaks are assigned to the resonance excitations from the Si 1s to σ∗ pyz and σ∗ px orbitals localized at the Si–C and Si–Si bonds, respectively. Quantitative evaluation of the polarization dependence of the NEXAFS spectra revealed that the molecules are self-assembled on HOPG surface, and the backbones of the PDMS are oriented nearly parallel to the surface. The observed orientation is opposite to the previously observed results for PDMS on the other surfaces such as oxide (indium tin oxide and metal (polycrystalline copper. The flat-lying feature of PDMS observed only on HOPG surface is attributed to the interaction between CH bonds in PDMS and π orbitals in HOPG surface.
Quasi-one-dimensional density of states in a single quantum ring.
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-05
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.
Kubrak, Elżbieta; Kubrak, Janusz; Rowiński, Paweł
2013-02-01
One-dimensional model for vertical profiles of longitudinal velocities in open-channel flows is verified against laboratory data obtained in an open channel with artificial plants. Those plants simulate Canadian waterweed which in nature usually forms dense stands that reach all the way to the water surface. The model works particularly well for densely spaced plants.
Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures
Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.
1999-01-01
The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.
Exactly solvable irreversible processes on one-dimensional lattices
International Nuclear Information System (INIS)
Wolf, N.O.; Evans, J.W.; Hoffman, D.K.
1984-01-01
We consider the kinetics of a process where the sites of an infinite 1-D lattice are filled irreversibly and, in general, cooperatively by N-mers (taking N consecutive sites at a time). We extend the previously available exact solution for nearest neighbor cooperative effects to range N cooperative effects. Connection with the continuous ''cooperative car parking problem'' is indicated. Both uniform and periodic lattices, and empty and certain partially filled lattice initial conditions are considered. We also treat monomer ''filling in stages'' for certain highly autoinhibitory cooperative effects of arbitrary range
A computational method for the solution of one-dimensional ...
Indian Academy of Sciences (India)
embedding parameter p ∈ [0, 1], which is considered as a 'small parameter'. Consid- erable research work has recently been conducted in applying this method to a class of linear and nonlinear equations. This method was further developed and improved by He, and applied to nonlinear oscillators with discontinuities [1], ...
Collective transport of Lennard–Jones particles through one-dimensional periodic potentials
International Nuclear Information System (INIS)
He Jian-hui; Wen Jia-le; Chen Pei-rong; Zheng Dong-qin; Zhong Wei-rong
2017-01-01
The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick’s law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials—the potential well and barrier—which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems. (rapid communication)
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
Lazarescu, Alexandre
2015-12-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results.
Sensitivity experiments with a one-dimensional coupled plume - iceflow model
Beckmann, Johanna; Perette, Mahé; Alexander, David; Calov, Reinhard; Ganopolski, Andrey
2016-04-01
Over the last few decades Greenland Ice sheet mass balance has become increasingly negative, caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers at the ice sheet margins. Glaciers speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and less obviously, by increased subglacial discharge. While ice-ocean processes potentially play an important role in recent and future mass balance changes of the Greenland Ice Sheet, their physical understanding remains poorly understood. In this work we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional iceflow model. First we investigated the sensitivity of submarine melt rate to changes in ocean properties (ocean temperature and salinity), to the amount of subglacial discharge and to the glacier's tongue geometry itself. A second set of experiments investigates the response of the coupled model, i.e. the dynamical response of the outlet glacier to altered submarine melt, which results in new glacier geometry and updated melt rates.
Development of a reactivity worth correction scheme for the one-dimensional transient analysis
International Nuclear Information System (INIS)
Cho, J. Y.; Song, J. S.; Joo, H. G.; Kim, H. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.
2003-11-01
This work is to develop a reactivity worth correction scheme for the MASTER one-dimensional (1-D) calculation model. The 1-D cross section variations according to the core state in the MASTER input file, which are produced for 1-D calculation performed by the MASTER code, are incorrect in most of all the core states except for exactly the same core state where the variations are produced. Therefore this scheme performs the reactivity worth correction factor calculations before the main 1-D transient calculation, and generates correction factors for boron worth, Doppler and moderator temperature coefficients, and control rod worth, respectively. These correction factors force the one dimensional calculation to generate the same reactivity worths with the 3-dimensional calculation. This scheme is applied to the control bank withdrawal accident of Yonggwang unit 1 cycle 14, and the performance is examined by comparing the 1-D results with the 3-D results. This problem is analyzed by the RETRAN-MASTER consolidated code system. Most of all results of 1-D calculation including the transient power behavior, the peak power and time are very similar with the 3-D results. In the MASTER neutronics computing time, the 1-D calculation including the correction factor calculation requires the negligible time comparing with the 3-D case. Therefore, the reactivity worth correction scheme is concluded to be very good in that it enables the 1-D calculation to produce the very accurate results in a few computing time
A one-dimensional Q-machine model taking into account charge-exchange collisions
International Nuclear Information System (INIS)
Maier, H.; Kuhn, S.
1992-01-01
The Q-machine is a nontrivial bounded plasma system which is excellently suited not only for fundamental plasma physics investigations but also for the development and testing of new theoretical methods for modeling such systems. However, although Q-machines have now been around for over thirty years, it appears that there exist no comprehensive theoretical models taking into account their considerable geometrical and physical complexity with a reasonable degree of self-consistency. In the present context we are concerned with the low-density, single-emitter Q-machine, for which the most widely used model is probably the (one-dimensional) ''collisionless plane-diode model'', which has originally been developed for thermionic diodes. Although the validity of this model is restricted to certain ''axial'' phenomena, we consider it a suitable starting point for extensions of various kinds. While a generalization to two-dimensional geometry (with still collisionless plasma) is being reported elsewhere, the present work represents a first extension to collisional plasma (with still one-dimensional geometry). (author) 12 refs., 2 figs
Directory of Open Access Journals (Sweden)
Katharine N. Farrell
2012-11-01
Full Text Available Wind energy is an emblem of sustainability with the potential to promote a qualitative alternative to current energy systems and nuclear options for CO2 reduction. However, wind farm siting often conflicts with aspirations to conserve traditional landscapes and wildlife habitats. In this paper we adopt a Critical Theory perspective, informed by Herbert Marcuse`s work, to study the discourse concerning wind energy siting in Catalonia, Spain. We give particular attention to how tensions between potentially conflicting sustainability objectives are addressed and by whom. Based on a review of this siting discourse and the application of Marcuse’s theory, we find that the Catalan wind energy siting discourse is both influenced by and reproducing what Marcuse referred to as the ‘one-dimensional thinking’ of technology as ideology: erasing the possibility of critical dialectical thought by subsuming the question of “what should be” under the question of “what is”. This has implications both for how these conflicts are investigated and for the sustainability of decisions taken. We conclude that closer attention to the role of ‘one-dimensional thinking’ in wind energy siting discourses could improve not only the understanding of their logic but might also have the potential to help make them more democratic.
Methodology of calculation in one-dimensional kinetic
International Nuclear Information System (INIS)
Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.
1986-01-01
This paper resulted from a study of the WIGLE's program calculation method ]1], which is RESTRICTED to USA users. In view of this fact, a successful attempt was made to fully understand and reproduce the WIGLE methodology, thus providing support for national development on the subject. After finishing the theoretical study, CITER-1D, a program for search of control rod position in PWR slabs under steady-state conditions was written and is supposed to correctly reproduce WIGL3 ]4] version behavior. Program restriction to steady-state conditions was due to scarcity of examples, thought to be intentional, as well as to time limitations for conclusion of a M.Sc. Thesis ]2], which originated this work. Results obtained with CITER-1D agree very well with the ones found in the the available literature pertaining to WIGL3. Further work on CITER-1D is being pursued, in order to complete the program. (Author) [pt
Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains
Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.
The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...
Non-thermal fixed points and solitons in a one-dimensional Bose gas
International Nuclear Information System (INIS)
Schmidt, Maximilian; Erne, Sebastian; Nowak, Boris; Sexty, Dénes; Gasenzer, Thomas
2012-01-01
Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ. (paper)
Analysis and synthesis of one-dimensional magneto-photonic crystals using coupled mode theory
Energy Technology Data Exchange (ETDEWEB)
Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Nezhad, Abolghasem Zeidaabadi; Firouzeh, Zaker Hossein
2017-03-15
We utilize our previously developed temporal coupled mode approach to investigate the performance of one-dimensional magneto-photonic crystals (MPCs). We analytically demonstrate that a double-defect MPC provides adequate degrees of freedom to design a structure for arbitrary transmittance and Faraday rotation. By using our developed analytic approach along with the numerical transfer matrix method, we present a procedure for the synthesis of an MPC to generate any desired transmittance and Faraday rotation in possible ranges. However it is seen that only discrete values of transmittance and Faraday rotation are practically obtainable. To remedy this problem along with having short structures, we introduce a class of MPC heterostructures which are combinations of stacks with high and low optical contrast ratios.
Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.
Li, Ben; Stenstrom, M K
2014-01-01
One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.
A new method of solution for one-dimensional quasi-neutral bounded plasmas
Kamran, M.; Kuhn, S.
2010-08-01
A new method is proposed for calculating the potential distribution Φ(z) in a one-dimensional quasi-neutral bounded plasma; Φ(z) is assumed to satisfy a quasi-neutrality condition (plasma equation) of the form ni{Φ(z)} = ne(Φ), where the electron density ne is a given function of Φ and the ion density ni is expressed in terms of trajectory integrals of the ion kinetic equation. While previous methods relied on formally solving a global integral equation (Riemann, Phys. Plasmas, vol. 13, 2006, paper no. 013503; Kos et al., Phys. Plasmas, vol. 16, 2009, paper no. 093503), the present method is characterized by piecewise analytic solution of the plasma equation in reasonably small intervals of z. As a first concrete application, Φ(z) is found analytically through order z4 near the center of a collisionless Tonks-Langmuir discharge with a cold-ion source.
Analysis of the one-dimensional transient compressible vapor flow in heat pipes
Jang, Jong H.; Faghri, Amir; Chang, Won S.
1991-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.
One-Dimensional Modelling of Marine Current Turbine Runaway Behaviour
Directory of Open Access Journals (Sweden)
Staffan Lundin
2016-04-01
Full Text Available If a turbine loses its electrical load, it will rotate freely and increase speed, eventually achieving that rotational speed which produces zero net torque. This is known as a runaway situation. Unlike many other types of turbine, a marine current turbine will typically overshoot the final runaway speed before slowing down and settling at the runaway speed. Since the hydrodynamic forces acting on the turbine are dependent on rotational speed and acceleration, turbine behaviour during runaway becomes important for load analyses during turbine design. In this article, we consider analytical and numerical models of marine current turbine runaway behaviour in one dimension. The analytical model is found not to capture the overshoot phenomenon, while still providing useful estimates of acceleration at the onset of runaway. The numerical model incorporates turbine wake build-up and predicts a rotational speed overshoot. The predictions of the models are compared against measurements of runaway of a marine current turbine. The models are also used to recreate previously-published results for a tidal turbine and applied to a wind turbine. It is found that both models provide reasonable estimates of maximum accelerations. The numerical model is found to capture the speed overshoot well.
One-dimensional gravity in infinite point distributions
Gabrielli, A.; Joyce, M.; Sicard, F.
2009-10-01
The dynamics of infinite asymptotically uniform distributions of purely self-gravitating particles in one spatial dimension provides a simple and interesting toy model for the analogous three dimensional problem treated in cosmology. In this paper we focus on a limitation of such models as they have been treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e., the definition requires explicitly the breaking of statistical translational invariance). The problem arises because naive background subtraction (due to expansion, or by “Jeans swindle” for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling of the Jeans swindle in three dimensions, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show explicitly that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N -body simulations. For identical particles the dynamics of the simplest toy model (without expansion) is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss and compare with previous results in the literature and present new results for the specific case of this simplest (static) model starting from “shuffled lattice” initial conditions. These show qualitative properties of the evolution (notably its “self-similarity”) like those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.
Extended forward sensitivity analysis of one-dimensional isothermal flow
International Nuclear Information System (INIS)
Johnson, M.; Zhao, H.
2013-01-01
Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)
Properties of one-dimensional anharmonic lattice solitons
Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed
2000-12-01
The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.
Phononic crystals with one-dimensional defect as sensor materials
Aly, Arafa H.; Mehaney, Ahmed
2017-09-01
Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.
Integrals of motion for one-dimensional Anderson localized systems
International Nuclear Information System (INIS)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A; Shastry, B Sriram
2016-01-01
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction. (paper)
Bipolarons in one-dimensional extended Peierls-Hubbard models
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
2017-04-01
We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2
International Nuclear Information System (INIS)
Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.
1989-01-01
A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs
Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers
Peter, E.; Rizzato, F. B.; Endler, A.
2017-06-01
In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position of the onset of mixing, in the case of a initially cold electron beam, and the position of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave-particle simulations showing a reasonable agreement.
Like-charge attraction in a one-dimensional setting: the importance of being odd
Trizac, Emmanuel; Téllez, Gabriel
2018-03-01
From cement cohesion to DNA condensation, a proper statistical physics treatment of systems with long-range forces is important for a number of applications in physics, chemistry, and biology. We compute here the effective force between fixed charged macromolecules, screened by oppositely charged mobile ions (counterions). We treat the problem in a one-dimensional configuration that allows for interesting discussion and derivation of exact results, remaining at a level of mathematical difficulty compatible with an undergraduate course. Emphasis is put on the counterintuitive but fundamental phenomenon of like-charge attraction, which our treatment brings for the first time to the level of undergraduate teaching. The parity of the number of counterions is shown to play a prominent role, which sheds light on the binding mechanism at work when like-charge macromolecules do attract.
Cluster properties of the one-dimensional lattice gas: the microscopic meaning of grand potential.
Fronczak, Agata
2013-02-01
Using a concrete example, we demonstrate how the combinatorial approach to a general system of particles, which was introduced in detail in an earlier paper [Fronczak, Phys. Rev. E 86, 041139 (2012)], works and where this approach provides a genuine extension of results obtained through more traditional methods of statistical mechanics. We study the cluster properties of a one-dimensional lattice gas with nearest-neighbor interactions. Three cases (the infinite temperature limit, the range of finite temperatures, and the zero temperature limit) are discussed separately, yielding interesting results and providing alternative proof of known results. In particular, the closed-form expression for the grand partition function in the zero temperature limit is obtained, which results in the nonanalytic behavior of the grand potential, in accordance with the Yang-Lee theory.
Solitons and polarons in quasi-one dimensional conducting polymers and related materials
International Nuclear Information System (INIS)
Campbell, D.K.
1983-01-01
In recent years it has become increasingly appreciated that fundamentally nonlinear excitations - solitons - play an essential role in an incredible variety of natural systems. These solitons, which frequently exhibit remarkable stability under interactions and perturbations, often dominate the transport, response, or structural properties of the systems in which they occur. In this article, we present an introduction to the solitons that occur in quasi-one-dimensional conducting polymers (synmetals) and related systems. The relevance of this subject to molecular electronic devices is twofold. First, many of these materials have molecular structures similar to possible prototype molecular switches. Second, to understand in detail how a molecular electronic device could work, it is essential to have a broad perspective on the nature of possible excitations in a variety of natural and synthetic molecular materials. 51 references
Energy Technology Data Exchange (ETDEWEB)
Tumelero, Fernanda; Bodmann, Bardo E. J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Lapa, Celso M.F., E-mail: fernanda.tumelero@yahoo.com.br, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
In this work we solve the space kinetic diffusion equation in a one-dimensional geometry considering a homogeneous domain, for two energy groups and six groups of delayed neutron precursors. The proposed methodology makes use of a Taylor expansion in the space variable of the scalar neutron flux (fast and thermal) and the concentration of delayed neutron precursors, allocating the time dependence to the coefficients. Upon truncating the Taylor series at quadratic order, one obtains a set of recursive systems of ordinary differential equations, where a modified decomposition method is applied. The coefficient matrix is split into two, one constant diagonal matrix and the second one with the remaining time dependent and off-diagonal terms. Moreover, the equation system is reorganized such that the terms containing the latter matrix are treated as source terms. Note, that the homogeneous equation system has a well known solution, since the matrix is diagonal and constant. This solution plays the role of the recursion initialization of the decomposition method. The recursion scheme is set up in a fashion where the solutions of the previous recursion steps determine the source terms of the subsequent steps. A second feature of the method is the choice of the initial and boundary conditions, which are satisfied by the recursion initialization, while from the rst recursion step onward the initial and boundary conditions are homogeneous. The recursion depth is then governed by a prescribed accuracy for the solution. (author)
Wu, Wei; Fisher, A. J.; Harrison, N. M.
2011-07-01
We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.
One-dimensional calculation of flow branching using the method of characteristics
International Nuclear Information System (INIS)
Meier, R.W.; Gido, R.G.
1978-05-01
In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements
One-dimensional treatment of polyatomic crystals by the Laplace transform method
International Nuclear Information System (INIS)
Rosato, A.; Santana, P.H.A.
1976-01-01
The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt
Non-periodic one-dimensional ideal conductors and integrable turbulence
Energy Technology Data Exchange (ETDEWEB)
Zakharov, Dmitry V. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012 (United States); Zakharov, Vladimir E. [Department of Mathematics, University of Arizona, Tucson, AZ, 85791 (United States); Dyachenko, Sergey A., E-mail: sdyachen@math.uiuc.edu [Department of Mathematics, University of Illinois, Urbana-Champaign, IL, 61801 (United States)
2016-12-01
Highlights: • An efficient procedure for construction of non-periodic, non-vanishing reflectionless potentials is presented. • The analytical procedure is reinforced by numerical simulation that presents some of these potentials. • The present work is a key ingredient for the study of integrable turbulence and statistical description of “solitonic gas”. - Abstract: To relate the motion of a quantum particle to the properties of the potential is a fundamental problem of physics, which is far from being solved. Can a medium with a potential which is neither periodic nor quasi-periodic be a conductor? That question seems to have been never addressed, despite being both interesting and having practical importance. Here we propose a new approach to the spectral problem of the one-dimensional Schrödinger operator with a bounded potential. We construct a wide class of potentials having a spectrum consisting of the positive semiaxis and finitely many bands on the negative semiaxis. These potentials, which we call primitive, are reflectionless for positive energy and in general are neither periodic nor quasi-periodic. Moreover, they can be stochastic, and yet allow ballistic transport, and thus describe one-dimensional ideal conductors. Primitive potentials also generate a new class of solutions of the KdV hierarchy. Stochastic primitive potentials describe integrable turbulence, which is important for hydrodynamics and nonlinear optics. We construct the potentials by numerically solving a system of singular integral equations. We hypothesize that finite-gap potentials are a subclass of primitive potentials, and prove this in the case of one-gap potentials.
Energy Technology Data Exchange (ETDEWEB)
Eichert, K.; Kaeppeler, H. J. [Institut fuer Plasmaforschung der Technischen Hochschule Stuttgart, Federal Republic of Germany (Germany)
1966-10-15
In previous publications, a system of equations was derived from the gas-kinetic description of a multi-component reacting plasma and employed for the calculation of one-dimensional subsonic flows. This system is now extended to include non-equilibrium excitation. No thermal or chemical equilibrium between the various components of the plasma is assumed. The components of the plasma considered are a non-reacting working fluid, an alkali metal vapour as a seeding material, ions of this seeding substance, and electrons. Three levels for the excited states are introduced. The reactions considered are excitation and ionization by electron collisions, and photo-ionization, as well as the corresponding reverse processes. For the reaction velocities, analytical equations are introduced permitting insertion of any excitation or ionization cross-sections of either experimental or theoretical origin. The method employed had been previously suggested by one of the authors. As examples, the degrees of excitation and ionization in the flow of a helium working fluid with 1% caesium seeding through a channel against transverse magnetic fields of 15 and 40 kg at Mach numbers of 0.7 and 0.8, respectively, were calculated. The results of the calculations show that for relatively small magnetic fields there is no rapid rise of the ionization to Saha-equilibrium as a function of electron temperature. A comparison with the results of a calculation neglecting excitation shows that especially for relatively large magnetic fields non-equilibrium excitation has an essential influence on the electron density and its approach to equilibrium. Neglecting excitation, there results a nearly frozen behaviour of the degree of ionization within channel lengths of technical interest for small magnetic fields. (author)
Yujun Yi; Caihong Tang; Zhifeng Yang; Shanghong Zhang; Cheng Zhang
2017-01-01
The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon), which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movem...
Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations
International Nuclear Information System (INIS)
Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.
2005-01-01
Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications
International Nuclear Information System (INIS)
Abadi, Mohammad Tahaye
2015-01-01
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Energy Technology Data Exchange (ETDEWEB)
Abadi, Mohammad Tahaye [Aerospace Research Institute, Tehran (Iran, Islamic Republic of)
2015-10-15
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor
Directory of Open Access Journals (Sweden)
Tuyen Danh Pham
2015-08-01
Full Text Available In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs, which contain little texture. Third, 1-level discrete wavelet transformation (DWT is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods.
Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor.
Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Nguyen, Dat Tien; Vokhidov, Husan; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo
2015-08-27
In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods.
Crossover properties of a one-dimensional reaction-diffusion process with a transport current
International Nuclear Information System (INIS)
Fortin, Jean-Yves
2014-01-01
1D non-equilibrium models of particles subjected to a coagulation-diffusion process are important in understanding non-equilibrium dynamics, and fluctuation-dissipation relations. We consider in this paper transport properties in finite and semi-infinite one-dimensional chains. A set of particles freely hop between nearest-neighbor sites, with the additional condition that, when two particles meet, they merge instantaneously into one particle. A localized source of particle-current is imposed at the origin as well as a non-symmetric hopping rate between the left and right directions (particle drift). This model was previously studied with exact results for the particle density by Hinrichsen et al [1] in the long-time limit. We are interested here in the crossover process between a scaling regime and long-time behavior, starting with a chain filled with particles. As in the previous reference [1], we employ the empty-interval-particle method, where the probability of finding an empty interval between two given sites is considered. However a different method is developed here to treat the boundary conditions by imposing the continuity and differentiability of the interval probability, which allows for a closed and unique solution, especially for any given initial particle configuration. In the finite size case, we find a crossover between the scaling regime and two different exponential decays for the particle density as a function of the input current. Precise asymptotic expressions for the particle density and coagulation rate are given. (paper)
Testing ground for fluctuation theorems: The one-dimensional Ising model
Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.
2018-04-01
In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.
Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".
Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A
2015-02-01
In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.
International Nuclear Information System (INIS)
Gong, Longyan; Zhu, Hao; Zhao, Shengmei; Cheng, Weiwen; Sheng, Yubo
2012-01-01
We investigate numerically the quantum discord and the classical correlation in a one-dimensional slowly varying potential model and a one-dimensional Soukoulis–Economou ones, respectively. There are well-defined mobility edges in the slowly varying potential model, while there are discrepancies on mobility edges in the Soukoulis–Economou ones. In the slowly varying potential model, we find that extended and localized states can be distinguished by both the quantum discord and the classical correlation. There are sharp transitions in the quantum discord and the classical correlation at mobility edges. Based on these, we study “mobility edges” in the Soukoulis–Economou model using the quantum discord and the classical correlation, which gives another perspectives for these “mobility edges”. All these provide us good quantities, i.e., the quantum discord and the classical correlation, to reflect mobility edges in these one-dimensional aperiodic single-electron systems. Moreover, our studies propose a consistent interpretation of the discrepancies between previous numerical results about the Soukoulis–Economou model. -- Highlights: ► Quantum discord and classical correlation can signal mobility edges in two models. ► An interpretation for mobility edges in the Soukoulis–Economou model is proposed. ► Quantum discord and classical correlation can reflect well localization properties.
Energy Technology Data Exchange (ETDEWEB)
Brunel, V
1999-06-29
This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)
Prediction of inorganic superconductors with quasi-one-dimensional crystal structure
International Nuclear Information System (INIS)
Volkova, L M; Marinin, D V
2013-01-01
Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)
Critical exponents in the transition to chaos in one-dimensional ...
Indian Academy of Sciences (India)
The transition from periodic to chaotic behavior in one-dimensional discrete dynamical systems .... consider the reverse sequence from µb to µ∞, a ... at which the change from one scaling region to another takes place, with the higher order. 12.
Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics
Abdulloev, K O
1999-01-01
The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)
Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion
Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana
2017-01-01
Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct
International Nuclear Information System (INIS)
Shvets', D.V.
2009-01-01
By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.
Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro
2009-01-01
Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...
On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Barannik, L.L.
1996-01-01
Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained
Ultra-refractive and extended-range one-dimensional photonic crystal superprisms
Ting, D. Z. Y.
2003-01-01
We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.
One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I
National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...
One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II
National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...
A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation
Karaoglu, Bekir
2007-01-01
A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)
One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials
Choi, Nam-Soon; Yao, Yan; Cui, Yi; Cho, Jaephil
2011-01-01
There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si
One- and Two- Magnon Excitations in a One-Dimensional Antiferromagnet in a Magnetic Field
DEFF Research Database (Denmark)
Heilmann, I.U.; Kjems, Jørgen; Endoh, Y.
1981-01-01
We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3...
An Angular Leakage Correction for Modeling a Hemisphere, Using One-Dimensional Spherical Coordinates
International Nuclear Information System (INIS)
Schwinkendorf, K.N.; Eberle, C.S.
2003-01-01
A radially dependent, angular leakage correction was applied to a one-dimensional, multigroup neutron diffusion theory computer code to accurately model hemispherical geometry. This method allows the analyst to model hemispherical geometry, important in nuclear criticality safety analyses, with one-dimensional computer codes, which execute very quickly. Rapid turnaround times for scoping studies thus may be realized. This method uses an approach analogous to an axial leakage correction in a one-dimensional cylinder calculation. The two-dimensional Laplace operator was preserved in spherical geometry using a leakage correction proportional to 1/r 2 , which was folded into the one-dimensional spherical calculation on a mesh-by-mesh basis. Hemispherical geometry is of interest to criticality safety because of its similarity to piles of spilled fissile material and accumulations of fissile material in process containers. A hemisphere also provides a more realistic calculational model for spilled fissile material than does a sphere
Solute transport with periodic input point source in one-dimensional ...
African Journals Online (AJOL)
JOY
groundwater flow velocity is considered proportional to multiple of temporal function and ζ th ... One-dimensional solute transport through porous media with or without .... solute free. ... the periodic concentration at source of the boundary i.e.,. 0.
Ising critical behaviour in the one-dimensional frustrated quantum XY model
International Nuclear Information System (INIS)
Granato, E.
1993-06-01
A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs
One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena
Kibbey, Timothy P.
2012-01-01
Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.
One dimensional modeling of a diesel-CNG dual fuel engine
Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir
2017-04-01
Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.
One-dimensional power spectrum and neutrino mass in the spectra of BOSS
International Nuclear Information System (INIS)
Borde, Arnaud
2014-01-01
-volume ones. Using a splicing technique, the resolution is further enhanced to reach the equivalent of simulations with 3072"3 = 29 billion particles of each type in a (100 Mpc/h)"3 box size, i.e. a mean mass per gas particle of 1.2x10"5 solar masses. We show that the resulting power spectrum is accurate at the 2% level over the full range from a few Mpc to several tens of Mpc. We explore the effect on the one-dimensional transmitted-flux power spectrum of 4 cosmological parameters (n_s, sigma_8, Omega_m,H_0), 2 astrophysical parameters (T_0, gamma) related to the heating rate of the IGM and the sum of the neutrino masses. By varying the input parameters around a central model chosen to be in agreement with the latest Planck results, we built a grid of simulations that allows the study of the impact on the flux power spectrum of these seven relevant parameters. We improve upon previous studies by not only measuring the effect of each parameter individually, but also probing the impact of the simultaneous variation of each pair of parameters. We thus provide a full second-order expansion, including cross-terms, around our central model. We check the validity of the second-order expansion with independent simulations obtained either with different cosmological parameters or different seeds for the initial condition generation. Finally, a comparison to the one-dimensional Lyman-alpha forest power spectrum obtained in the first part with BOSS data shows an excellent agreement. Eventually, even if there are still some potential biases and systematic errors that need to be studied in our simulation, we performed cosmological fits combining our measurement of the one-dimensional power spectrum and other cosmological probes such as the CMB results provided by Planck. These preliminary results are very encouraging as they lead to some of the tightest cosmological constraints as of today, especially on the sum of the neutrino masses with an upper limit of 0.1 eV. (author) [fr
Spin-zero sound in one- and quasi-one-dimensional 3He
International Nuclear Information System (INIS)
Hernandez, E.S.
2002-01-01
The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension
Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit
DEFF Research Database (Denmark)
Dyre, Jeppe; Schrøder, Thomas
1996-01-01
A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....
Energy Technology Data Exchange (ETDEWEB)
Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)
2012-09-15
We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the
Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays
Zhang, Bing; Liu, Yang; Chen, Qihong; Lai, Zhiping; Sheng, Ping
2017-01-01
The only known approach to fabricate large, uniform arrays of 4-Å single wall carbon nanotubes (SWNTs) is by using zeolite crystals as the template, in which the nanotubes are formed by chemical vapor deposition inside the linear channels of the AlPO-5 (AFI for short) zeolite. However, up to now the pore filling factor has been very low, as evidenced by the weight percentage of carbon in thermal gravimetric analysis (TGA) measurements. In this work, we show that by using a new, micro-platelet AFI crystals as the template, combined with the use of a new CVD process, we can increase the TGA result to 22.5wt%, which translates to a pore filling factor of 91%. We have observed one dimensional (1D) superconductivity in such samples. The temperature dependence of resistance shows a smooth decreasing trend below 60 K, and the differential resistance displays a gap that disappears above the 1D superconducting initiation temperature. The observed behaviour is shown to agree very well with the theoretical predictions of 1D superconductivity.
Edge state preparation in a one-dimensional lattice by quantum Lyapunov control
International Nuclear Information System (INIS)
Zhao, X L; Shi, Z C; Qin, M; Yi, X X
2017-01-01
Quantum Lyapunov control uses a feedback control methodology to determine control fields applied to control quantum systems in an open-loop way. In this work, we employ two Lyapunov control schemes to prepare an edge state for a fermionic chain consisting of cold atoms loaded in an optical lattice. Such a chain can be described by the Harper model. Corresponding to the two schemes, two types of quantum Lyapunov functions are considered. The results show that both the schemes are effective at preparing the edge state within a wide range of parameters. We found that the edge state can be prepared with high fidelity even if there are moderate fluctuations of on-site or hopping potentials. Both control schemes can be extended to similar chains (3 m + d , d = 2) of different lengths. Since a regular amplitude control field is easier to apply in practice, an amplitude-modulated control field is used to replace the unmodulated one. Such control approaches provide tools to explore the edge states of one-dimensional topological materials. (paper)
Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays
Zhang, Bing
2017-02-14
The only known approach to fabricate large, uniform arrays of 4-Å single wall carbon nanotubes (SWNTs) is by using zeolite crystals as the template, in which the nanotubes are formed by chemical vapor deposition inside the linear channels of the AlPO-5 (AFI for short) zeolite. However, up to now the pore filling factor has been very low, as evidenced by the weight percentage of carbon in thermal gravimetric analysis (TGA) measurements. In this work, we show that by using a new, micro-platelet AFI crystals as the template, combined with the use of a new CVD process, we can increase the TGA result to 22.5wt%, which translates to a pore filling factor of 91%. We have observed one dimensional (1D) superconductivity in such samples. The temperature dependence of resistance shows a smooth decreasing trend below 60 K, and the differential resistance displays a gap that disappears above the 1D superconducting initiation temperature. The observed behaviour is shown to agree very well with the theoretical predictions of 1D superconductivity.
Separation of time scales in one-dimensional directed nucleation-growth processes
Pierobon, Paolo; Miné-Hattab, Judith; Cappello, Giovanni; Viovy, Jean-Louis; Lagomarsino, Marco Cosentino
2010-12-01
Proteins involved in homologous recombination such as RecA and hRad51 polymerize on single- and double-stranded DNA according to a nucleation-growth kinetics, which can be monitored by single-molecule in vitro assays. The basic models currently used to extract biochemical rates rely on ensemble averages and are typically based on an underlying process of bidirectional polymerization, in contrast with the often observed anisotropic polymerization of similar proteins. For these reasons, if one considers single-molecule experiments, the available models are useful to understand observations only in some regimes. In particular, recent experiments have highlighted a steplike polymerization kinetics. The classical model of one-dimensional nucleation growth, the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model, predicts the correct polymerization kinetics only in some regimes and fails to predict the steplike behavior. This work illustrates by simulations and analytical arguments the limitation of applicability of the KAMJ description and proposes a minimal model for the statistics of the steps based on the so-called stick-breaking stochastic process. We argue that this insight might be useful to extract information on the time and length scales involved in the polymerization kinetics.
An algorithm for determining the K-best solutions of the one-dimensional Knapsack problem
Directory of Open Access Journals (Sweden)
Horacio Hideki Yanasse
2000-06-01
Full Text Available In this work we present an enumerative scheme for determining the K-best solutions (K > 1 of the one dimensional knapsack problem. If n is the total number of different items and b is the knapsack's capacity, the computational complexity of the proposed scheme is bounded by O(Knb with memory requirements bounded by O(nb. The algorithm was implemented in a workstation and computational tests for varying values of the parameters were performed.Neste trabalho apresenta-se um esquema enumerativo para se determinar as K-melhores (K > 1 soluções para o problema da mochila unidimensional. Se n é o número total de itens diferentes e b é a capacidade da mochila, a complexidade computacional do esquema proposto é limitado por O(Knb. O algoritmo foi implementado em uma estação de trabalho e testes computacionais foram realizados variando-se diferentes parâmetros do problema.
Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems
Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng
2018-03-01
Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.
Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions
International Nuclear Information System (INIS)
Citro, R; Palo, S De; Orignac, E; Pedri, P; Chiofalo, M-L
2008-01-01
Ultracold bosonic and fermionic quantum gases confined to quasi-one-dimensional (1D) geometry are promising candidates for probing fundamental concepts of Luttinger liquid (LL) physics. They can also be exploited for devising applications in quantum information processing and precision measurements. Here, we focus on 1D dipolar Bose gases, where evidence of super-strong coupling behavior has been demonstrated by analyzing the low-energy static and dynamical structures of the fluid at zero temperature by a combined reptation quantum Monte Carlo (RQMC) and bosonization approach. Fingerprints of LL behavior emerge in the whole crossover from the already strongly interacting Tonks-Girardeau at low density to a dipolar density wave regime at high density. We have also shown that a LL framework can be effectively set up and utilized to describe this strongly correlated crossover physics in the case of confined 1D geometries after using the results for the homogeneous system in LL hydrodynamic equations within a local density approximation. This leads to the prediction of observable quantities such as the frequencies of the collective modes of the trapped dipolar gas under the more realistic conditions that could be found in ongoing experiments. The present paper provides a description of the theoretical framework in which the above results have been worked out, making available all the detailed derivations of the hydrodynamic Luttinger equations for the inhomogeneous trapped gas and of the correlation functions for the homogeneous system
On the One-Dimensional Modeling of Vertical Upward Bubbly Flow
Directory of Open Access Journals (Sweden)
C. Peña-Monferrer
2018-01-01
Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.
An introduction to integrable techniques in one-dimensional quantum systems
Franchini, Fabio
2017-01-01
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and t...
Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean
2017-10-01
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.
Magnon band structure and magnon density in one-dimensional magnonic crystals
International Nuclear Information System (INIS)
Qiu, Rong-ke; Huang, Te; Zhang, Zhi-dong
2014-01-01
By using Callen's Green's function method and the Tyablikov and Anderson–Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the K x -direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. - Highlights: • A quantum approach has been developed to study the magnon band of magnonic crystals. • The separate and overlapping magnon bands of magnetic superlattices are investigated. • The results are beneficial for the design of gigahertz-range spin-wave filters
Magnon band structure and magnon density in one-dimensional magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Qiu, Rong-ke, E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Huang, Te [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Zhi-dong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2014-11-15
By using Callen's Green's function method and the Tyablikov and Anderson–Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the K{sub x}-direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. - Highlights: • A quantum approach has been developed to study the magnon band of magnonic crystals. • The separate and overlapping magnon bands of magnetic superlattices are investigated. • The results are beneficial for the design of gigahertz-range spin-wave filters.
Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces
Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team
2015-06-01
Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.
Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.
2018-04-01
In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
Timpanaro, André M.; Prado, Carmen P. C.
2014-05-01
We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.
Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution
Vallejo, E; Espinosa, J E
2003-01-01
A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)
A general spectral method for the numerical simulation of one-dimensional interacting fermions
Clason, Christian; von Winckel, Gregory
2012-08-01
solution of the multi-particle one-dimensional Schrödinger equation in a quantum well is challenging due to the exponential growth in the number of degrees of freedom with increasing particles. Solution method: A nodal spectral Galerkin scheme is used where the basis functions are constructed to obey the antisymmetry relations of the fermionic wave function. The assembly of these matrices is performed efficiently by exploiting the combinatorial structure of the sparsity patterns. Reasons for new version: A Python implementation is now included. Summary of revisions: Added a Python implementation; small documentation fixes in Matlab implementation. No change in features of the package. Restrictions: Only one-dimensional computational domains with homogeneous Dirichlet or periodic boundary conditions are supported. Running time: Seconds to minutes.
Equilibrium charge distribution on a finite straight one-dimensional wire
Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed
2017-09-01
The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.
Equilibrium charge distribution on a finite straight one-dimensional wire
International Nuclear Information System (INIS)
Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Farouk, Ahmed; Alkhambashi, Majid
2017-01-01
The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges. (paper)
Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin
2015-04-01
Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.
One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application
Luo, Lin-Bao; Wang, Xian-He; Xie, Chao; Li, Zhong-Jun; Lu, Rui; Yang, Xiao-Bao; Lu, Jian
2014-11-01
In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 [InlineEquation not available: see fulltext.] 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.
Molinero-Ruiz, Emilia; Navarro, Albert; Moriña, David; Albertí-Casas, Constança; Jardí-Lliberia, Josefina; de Montserrat-Nonó, Jaume
2015-01-01
To estimate the frequency of non-work sickness absence (ITcc) related to previous occupational injuries with (ATB) or without (ATSB) sick leave. Prospective longitudinal study. Workers with ATB or ATSB notified to the Occupational Accident Registry of Catalonia were selected in the last term of 2009. They were followed-up for six months after returning to work (ATB) or after the accident (ATSB), by sex and occupation. Official labor and health authority registries were used as information sources. An "injury-associated ITcc" was defined when the sick leave occurred in the following six months and within the same diagnosis group. The absolute and relative frequency were calculated according to time elapsed and its duration (cumulated days, measures of central trend and dispersion), by diagnosis group or affected body area, as compared to all of Catalonia. 2,9%of ATB (n=627) had an injury-associated ITcc, with differences by diagnosis, sex and occupation; this was also the case for 2,1% of ATSB (n=496).With the same diagnosis, duration of ITcc was longer among those who had an associated injury, and with respect to all of Catalonia. Some of the under-reporting of occupational pathology corresponds to episodes initially recognized as being work-related. Duration of sickness absence depends not only on diagnosis and clinical course, but also on criteria established by the entities managing the case. This could imply that more complicated injuries are referred to the national health system, resulting in personal, legal, healthcare and economic cost consequences for all involved stakeholders. Copyright belongs to the Societat Catalana de Salut Laboral.
One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois
Robertson, Dale M.
2000-01-01
As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.
An optimal algorithm for configuring delivery options of a one-dimensional intensity-modulated beam
International Nuclear Information System (INIS)
Luan Shuang; Chen, Danny Z; Zhang, Li; Wu Xiaodong; Yu, Cedric X
2003-01-01
The problem of generating delivery options for one-dimensional intensity-modulated beams (1D IMBs) arises in intensity-modulated radiation therapy. In this paper, we present an algorithm with the optimal running time, based on the 'rightmost-preference' method, for generating all distinct delivery options for an arbitrary 1D IMB. The previously best known method for generating delivery options for a 1D IMB with N left leaf positions and N right leaf positions is a 'brute-force' solution, which first generates all N! possible combinations of the left and right leaf positions and then removes combinations that are not physically allowed delivery options. Compared with the brute-force method, our algorithm has several advantages: (1) our algorithm runs in an optimal time that is linearly proportional to the total number of distinct delivery options that it actually produces. Note that for a 1D IMB with multiple peaks, the total number of distinct delivery options in general tends to be considerably smaller than the worst case N!. (2) Our algorithm can be adapted to generating delivery options subject to additional constraints such as the 'minimum leaf separation' constraint. (3) Our algorithm can also be used to generate random subsets of delivery options; this feature is especially useful when the 1D IMBs in question have too many delivery options for a computer to store and process. The key idea of our method is that we impose an order on how left leaf positions should be paired with right leaf positions. Experiments indicated that our rightmost-preference algorithm runs dramatically faster than the brute-force algorithm. This implies that our algorithm can handle 1D IMBs whose sizes are substantially larger than those handled by the brute-force method. Applications of our algorithm in therapeutic techniques such as intensity-modulated arc therapy and 2D modulations are also discussed
Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires
Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas
One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).
One-Dimensional Finite Elements An Introduction to the FE Method
Öchsner, Andreas
2013-01-01
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics.
Method and apparatus for the electro-optic convolution of a one-dimensional signal
International Nuclear Information System (INIS)
1979-01-01
Procedure for the electro-optic convolution of a signal and a filter function, whereby the one dimensional electro-optical signal would be portrayed as a line along which the clarity varies and whereby filter function is determined by one or more masks, whilst after each mask is placed a light detector, with which the light passing through the masks may be detected, whilst a one-dimensional portrayal of the signal along the masks will be developed, characterised in that a one dimensional portrayal of the signal, with the aid of an optical system in a direction across the line, will be enlarged, and that this enlarged signal in the direction of the line along the masks will be affected which the masks closing fields will contain, which are either fully transparent or are fully non-transparent. (Auth.)
Synthesis and applications of one-dimensional nano-structured polyaniline: An overview
International Nuclear Information System (INIS)
Zhang Donghua; Wang Yangyong
2006-01-01
This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory
Quantum interference of ballistic carriers in one-dimensional semiconductor rings
International Nuclear Information System (INIS)
Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.
2000-01-01
Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru
One dimensional neutron kinetics in the TRAC-BF1 code
International Nuclear Information System (INIS)
Weaver, W.L. III; Wagner, K.C.
1987-01-01
The TRAC-BWR code development program at the Idaho National Engineering Laboratory is developing a version of the TRAC code for the U.S. Nuclear Regulatory Commission (USNRC) to provide a best-estimate analysis capability for the simulation of postulated accidents in boiling water reactor (BWR) power systems and related experimental facilities. Recent development efforts in the TRAC-BWR program have focused on improving the computational efficiency through the incorporation of a hybrid Courant- limit-violating numerical solution scheme in the one-dimensional component models and on improving code accuracy through the development of a one-dimensional neutron kinetics model. Many other improvements have been incorporated into TRAC-BWR to improve code portability, accuracy, efficiency, and maintainability. This paper will describe the one- dimensional neutron kinetics model, the generation of the required input data for this model, and present results of the first calculations using the model
International Nuclear Information System (INIS)
Li Dejun; Mi Xianwu; Deng Ke; Tang Yi
2006-01-01
In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j 0 .
A one-dimensional plasma and impurity transport model for reversed field pinches
International Nuclear Information System (INIS)
Veerasingam, R.
1991-11-01
In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency
Directory of Open Access Journals (Sweden)
Tuyen Danh Pham
2016-03-01
Full Text Available Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM, and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods.
Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo
2016-03-04
Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods.
Apparent destruction of superconductivity in the disordered one-dimensional limit
International Nuclear Information System (INIS)
Graybeal, J.M.; Mankiewich, P.M.; Dynes, R.C.; Beasley, M.R.
1987-01-01
We present the results of a model-system study of the competition between superconductivity and disorder in narrow superconducting wires. As one moves from the two-dimensional regime toward the one-dimensional limit, large and systematic reductions in the superconducting transition temperature are obtained. The observed behavior extrapolates to the total destruction of superconductivity in the disordered one-dimensional limit. Our findings are in clear disagreement with a recent theoretical treatment. In addition, the superconducting fluctuations appear to be modified by disorder for the narrowest samples
Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe
2008-01-01
It is proved that for general, not necessarily periodic, quasi one-dimensional systems the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one-dimensional systems, and this proves the strong Marzari-Vanderbilt conjecture. If the system has some translation symmetries (e.g. usual translations, screw...
Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe
It is proved that for general, not necessarily periodic quasi one dimensional systems, the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one dimensional systems. If the system has some translation symmetries (e.g. usual translations, screw transformations), they are "inherited" bythe Wannier basis....
Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials
Institute of Scientific and Technical Information of China (English)
GONG Long-Yan; TONG Pei-Qing
2005-01-01
@@ By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electronmoving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. Thedelocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in yon Neumann entropy of the individual eigenstates at mobility edges. In the curveof the spectrum averaged yon Neumann entropy as a function of potential parameter λ, a sharp transition existsat the metal-insulator transition point λc = 2. It is found that the yon Neumann entropy is a good quantity toreflect localization and metal-insulator transition.
Longitudinal and spin Hall conductance of a one-dimensional Aharonov-Bohm ring
International Nuclear Information System (INIS)
Moca, Catalin Pascu; Marinescu, D C
2006-01-01
The longitudinal and spin Hall conductances of an electron gas with Rashba-Dresselhaus spin-orbit interaction, confined to a quasi-one-dimensional Aharonov-Bohm ring, are studied as functions of disorder and magnetic flux. The system is mapped onto a one-dimensional virtual lattice and is described, in a tight binding approximation, by a Hamiltonian that depends parametrically on the nearest neighbour hopping integral t, the Rashba spin-orbit coupling V R , the Dresselhaus spin-orbit coupling V D and an Anderson-like, on-site disorder energy strength W. Numerical results are obtained within a spin dependent Landauer-Buettiker formalism
On the conductivity of a one-dimensional system of interacting fermions in a random potential
International Nuclear Information System (INIS)
Apel, W.
1981-01-01
A one-dimensional system of interacting fermions in an external potential is studied. The problem was for this purpose transformed to two classical models of statistical mechanics in two dimensions in which occasionally results were found in complementary ranges of the interaction constants of the fermion system. The conductivity appeared as a simple correlation function in both classical models. It was shown that the interaction in a one-dimensional polluted fermion system can cause an isolator-metal transition. (orig./HSI) [de
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin
2011-08-01
We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
International Nuclear Information System (INIS)
Wang Xing-Yuan; Qin Xue; Xie Yi-Xin
2011-01-01
We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number x i generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application. (general)
Metal-insulator transition in one-dimensional lattices with chaotic energy sequences
International Nuclear Information System (INIS)
Pinto, R.A.; Rodriguez, M.; Gonzalez, J.A.; Medina, E.
2005-01-01
We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging
Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder
International Nuclear Information System (INIS)
Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan
2007-01-01
In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder
Metal-insulator transition in one-dimensional lattices with chaotic energy sequences
Energy Technology Data Exchange (ETDEWEB)
Pinto, R.A. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)]. E-mail: ripinto@ivic.ve; Rodriguez, M. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Gonzalez, J.A. [Laboratorio de Fisica Computacional, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Medina, E. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)
2005-06-20
We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging.
An Auxiliary Equation for the Bellman Equation in a One-Dimensional Ergodic Control
International Nuclear Information System (INIS)
Fujita, Y.
2001-01-01
In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples
GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3
International Nuclear Information System (INIS)
Basko, M.M.; Sokolovskij, M.V.
1989-01-01
Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs
Quasi-exact solvability of the one-dimensional Holstein model
International Nuclear Information System (INIS)
Pan Feng; Dai Lianrong; Draayer, J P
2006-01-01
The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)
Wave packet fractional revivals in a one-dimensional Rydberg atom
International Nuclear Information System (INIS)
Veilande, Rita; Bersons, Imants
2007-01-01
We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time
One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials
Choi, Nam-Soon
2011-01-01
There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.
Accurate correlation energies in one-dimensional systems from small system-adapted basis functions
Baker, Thomas E.; Burke, Kieron; White, Steven R.
2018-02-01
We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.
Quantum quenches to the attractive one-dimensional Bose gas: exact results
Directory of Open Access Journals (Sweden)
Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler
2016-09-01
Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.
Dias, Clenilda F; Carvalho-Santos, Vagson L
2012-01-01
The Euler-Lagrange equations (EL) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of EL to study one-dimensional motions under the action of a constant force. From using the definition of partial derivative, we have proposed two operators, here called \\textit{mean delta operators}, which may be used to solve the EL in a simplest way. We have applied this simplification to solve three simple mechanical problems under th...
Yan, David
This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions. In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and
A near one-dimensional 2-shock indirectly driven implosion at convergence ratio 30
MacLaren, Steve
2017-10-01
Inertial confinement fusion implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional multi-physics implosion simulations. The current understanding, based on simulations as well as experimental evidence, suggests that the principle reason for the disagreement is a breeching of the cold fuel assembly at stagnation which would otherwise completely confine the hot spot. 3-D simulations indicate a combination of low-mode symmetry swings and ablation-front hydrodynamic instability seeded by engineering features such as the capsule tent and fill tube lead to localized thinning and perforation of the stagnated fuel, resulting in a loss of hot spot pressure and energy. We describe a short series of experiments on the NIF designed specifically to avoid these issues in order to understand if, once they are removed, a suspended-fuel-layer deuterium-tritium implosion can achieve 1-D simulated performance. The particular implosion system combines a thick capsule shell with an elevated initial ablation temperature to minimize the ablation front perturbations from the engineering features, and incorporates a large ratio of hohlraum-to-capsule radius as a means to permit a higher degree of control over implosion symmetry. The resulting implosion at a convergence ratio of 30 was not perfectly spherically symmetric as observed by both neutron and time-resolved x-ray imaging diagnostics. However, the stagnation observables match closely the performance predicted by 1D simulations, including, when some hot spot motion is accounted for, the apparent ion temperature. We present this result along with the design for an upcoming 2-shock experiment to test whether this level of agreement with the 1D model can be achieved in the self-heating regime. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under
A One-Dimensional Magnetic Chip with a Hybrid Magnetosensor and a Readout Circuit
Directory of Open Access Journals (Sweden)
Guo-Ming Sung
2018-01-01
Full Text Available This work presents a one-dimensional magnetic chip composed of a hybrid magnetosensor and a readout circuit, which were fabricated with 0.18 μm 1P6M CMOS technology. The proposed magnetosensor includes a polysilicon cross-shaped Hall plate and two separated metal-oxide semiconductor field-effect transistors (MOSFETs to sense the magnetic induction perpendicular to the chip surface. The readout circuit, which comprises a current-to-voltage converter, a low-pass filter, and an instrumentation amplifier, is designed to amplify the output Hall voltage with a gain of 43 dB. Furthermore, a SPICE macro model is proposed to predict the sensor’s performance in advance and to ensure sufficient comprehension of the magnetic mechanism of the proposed magnetosensor. Both simulated and measured results verify the correctness and flexibility of the proposed SPICE macro model. Measurements reveal that the maximum output Hall voltage VH, the optimum current-related magnetosensitivity SRI, the optimum voltage-related magnetosensitivity SRV, the averaged nonlinearity error NLE, and the relative bias current Ibias are 4.381 mV, 520.5 V/A·T, 40.04 V/V·T, 7.19%, and 200 μA, respectively, for the proposed 1-D magnetic chip with a readout circuit of 43 dB. The averaged NLE is small at high magnetic inductions of ±30 mT, whereas it is large at low magnetic inductions of ±30 G.
International Nuclear Information System (INIS)
Yuan Le; Glaser, Kevin J; Rouviere, Olivier; Gorny, Krzysztof R; Chen, Shigao; Manduca, Armando; Ehman, Richard L; Felmlee, Joel P
2007-01-01
The purpose of this work is to assess a fast technique that measures tissue stiffness and temperature during focused ultrasound thermal therapy (FUS). A one-dimensional (1D) MR elastography (MRE) pulse sequence was evaluated for the purpose of obtaining rapid measurements of thermally induced changes in tissue stiffness and temperature for monitoring FUS treatments. The accuracy of the 1D measurement was studied by comparing tissue displacements measured by 1D MRE with those measured by the well-established 2D MRE pulse sequence. The reproducibility of the 1D MRE measurement was assessed, in gel phantoms and ex vivo porcine tissue, for varied FUS intensity levels (31.5-199.9 W cm -2 ) and over a range of displacements at the focus (0.1-1 μm). Temperature elevations in agarose gel phantoms were measured using 1D MRE and calibrated using fiberoptic-thermometer-based measurements. The 1D MRE displacement measurements are highly correlated with those obtained with the 2D technique (R 2 = 0.88-0.93), indicating that 1D MRE can successfully measure tissue displacement. Ten repeated trials at each FUS power level yielded a minimum detectable displacement change of 0.2 μm in phantoms and 0.4 μm in tissue (at 95% confidence level). The 1D MRE temperature measurements correlated well with temperature changes measured simultaneously with fiberoptic thermometers (R 2 = 0.97). The 1D MRE technique is capable of detecting tissue displacements as low as 0.4 μm, which is an order of magnitude smaller than 5 μm displacements expected during FUS therapy (Le et al 2005 AIP Conf. Proc.: Ther. Ultrasound 829 186-90). Additionally, 1D MRE was shown to provide adequate measurements of temperature elevations in tissue. These findings indicate that 1D MRE may be an effective tool for monitoring FUS treatments
One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells
Energy Technology Data Exchange (ETDEWEB)
Wang, Hao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Shimin [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liu, Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2014-05-02
One-dimensional (1D) titania (TiO{sub 2}) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO{sub 2} nanostructures and the applications of 1D TiO{sub 2} nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO{sub 2} nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO{sub 2} nanostructures in DSCs into four parts, that is, 1D TiO{sub 2} nanostructures only, 1D TiO{sub 2} nanostructure/nanoparticle composites, branched 1D TiO{sub 2} nanostructures, and 1D TiO{sub 2} nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO{sub 2} nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO{sub 2} nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO{sub 2} nanostructures in DSCs are summarized in this review article.
Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J
2017-03-08
Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide
Haakh, Harald R.; Faez, Sanli; Sandoghdar, Vahid
2016-01-01
We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode
Semi-analytical Study of a One-dimensional Contaminant Flow in a ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The Bubnov-Galerkin weighted residual method was used to solve a one- dimensional contaminant flow problem in this paper. The governing equation of the contaminant flow, which is characterized by advection, dispersion and adsorption was discretized and solved to obtain the semi-analytical solution.
Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface
Fernandez, Francisco M.
2010-01-01
We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…
One-dimensional metallic edge states in MoS2
DEFF Research Database (Denmark)
Bollinger, Mikkel; Lauritsen, J.V.; Jacobsen, Karsten Wedel
2001-01-01
By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling...
A computationally exact method of Dawson's model for hole dynamics of one-dimensional plasma
International Nuclear Information System (INIS)
Kitahara, Kazuo; Tanno, Kohki; Takada, Toshio; Hatori, Tadatsugu; Urata, Kazuhiro; Irie, Haruyuki; Nambu, Mitsuhiro; Saeki, Kohichi.
1990-01-01
We show a simple but computationally exact solution of the one-dimensional plasma model, so-called 'Dawson's model'. Using this solution, we can describe the evolution of the plasma and find the relative stabilization of a big hole after the instability of two streams. (author)
Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems
Directory of Open Access Journals (Sweden)
Ahmad Makki
2015-01-01
Full Text Available Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [8]. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects.
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...
PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code
International Nuclear Information System (INIS)
Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.
1976-12-01
Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems
Critical exponents in the transition to chaos in one-dimensional
Indian Academy of Sciences (India)
We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of ...
A Simple Proof of the Theorem Concerning Optimality in a One-Dimensional Ergodic Control Problem
International Nuclear Information System (INIS)
Fujita, Y.
2000-01-01
We give a simple proof of the theorem concerning optimality in a one-dimensional ergodic control problem. We characterize the optimal control in the class of all Markov controls. Our proof is probabilistic and does not need to solve the corresponding Bellman equation. This simplifies the proof
DEFF Research Database (Denmark)
Sing, M.; Schwingenschlögl, U.; Claessen, R.
2003-01-01
We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...
DEFF Research Database (Denmark)
Rotvig, J.; Smith, H.; Jauho, Antti-Pekka
1996-01-01
We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model...
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff
International Nuclear Information System (INIS)
Maxon, S.; Nielsen, P.D.
1981-01-01
A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV
International Nuclear Information System (INIS)
Zhang, L.
1981-08-01
With coherent potential approximation method the effect of the substitutional disorder in the pseudo one-dimensional conductors on the Peierls transition temperature (Tsub(p)) and superconductive transition temperature (Tsub(c)) has been calculated. The favourable condition for searching for somewhat high Tsub(c) superconductors in these systems has been discussed. (author)
Theory of superfluidity and drag force in the one-dimensional Bose gas
Cherny, A.Y.; Caux, J.-S.; Brand, J.
2012-01-01
The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and
Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors
Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.
2014-01-01
Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,
International Nuclear Information System (INIS)
Gorelik, V.S.; Voinov, Yu.P.; Shchavlev, V.V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao
2017-01-01
Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.
A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate
Lankelma, M.; de Boer, J.; Ferbinteanu, M.; Dantas Ramos, A.L.; Tanasa, R.; Rothenberg, G.; Tanase, S.
2015-01-01
We present a new coordination polymer, {[VO(pzdc)(H2O)(2)] H2O}(n), built from vanadyl and pyrazine-2,5-dicarboxylate (pzdc) ions. It consists of a one-dimensional chain of vanadyl ions linked by pzdc ions. The carboxylate groups show monodentate coordination, while the pyrazine ring is present both
Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction
DEFF Research Database (Denmark)
Frank, Rupert; Hanizl, Christian; Seiringer, Robert
2013-01-01
In a recent paper we give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Here we present our results in the simplified case of a one-dimensional system of particles interacting via a delta-potential....
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti; Rundell, William
2012-01-01
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique
Stimulated wave of polarization in a one-dimensional Ising chain
International Nuclear Information System (INIS)
Lee, Jae-Seung; Khitrin, A.K.
2005-01-01
It is demonstrated that in a one-dimensional Ising chain with nearest-neighbor interactions, irradiated by a weak resonant transverse field, a stimulated wave of flipped spins can be triggered by a flip of a single spin. This analytically solvable model illustrates mechanisms of quantum amplification and quantum measurement
International Nuclear Information System (INIS)
Clancy, B.E.
1982-05-01
ANAUSN is a general purpose, one-dimensional discrete ordinate transport theory program which has access to AUS datapools. Fixed source, reactivity and a variety of criticality search calculations can be performed. The program can be operated as a module in the AUS scheme or as a stand-alone program
Regularized integrable version of the one-dimensional quantum sine-Gordon model
International Nuclear Information System (INIS)
Japaridze, G.I.; Nersesyan, A.A.; Wiegmann, P.B.
1983-01-01
The authors derive a regularized exactly solvable version of the one-dimensional quantum sine-Gordon model proceeding from the exact solution of the U(1)-symmetric Thirring model. The ground state and the excitation spectrum are obtained in the region ν 2 < 8π. (Auth.)
Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer
Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.
1989-01-01
We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...
Mahoney, Joyce; And Others
1988-01-01
Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)
Friedel oscillations in one-dimensional metals: From Luttinger's theorem to the Luttinger liquid
International Nuclear Information System (INIS)
Vieira, Daniel; Freire, Henrique J.P.; Campo, V.L.; Capelle, K.
2008-01-01
Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations
One-dimensional simulation of a stirling three-stage pulse-tube refrigerator
Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2009-01-01
A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there
One-dimensional simulation of a Stirling three-stage pulse-tube refrigerator
Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2009-01-01
A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there
Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.
Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures
Czech Academy of Sciences Publication Activity Database
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014
Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet
DEFF Research Database (Denmark)
Maslyuk, V.; Bagrets, A.; Meded, V.
2006-01-01
Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established meth...
High-intensity ionization approximations: test of convergence in a one-dimensional model
International Nuclear Information System (INIS)
Antunes Neto, H.S.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Davidovich, L.; Marchesin, D.
1983-06-01
By solving numerically a one-dimensional model, the range of validity of some non-perturbative treatments proposed for the problem of atomic ionization by strong laser fields is examined. Some scalling properties of the ionization probability are stablished and a new approximation, which converges to the exact results in the limit of very strong fields is proposed. (Author) [pt
One-dimensional random walk of nanosized liquid Pb inclusions on dislocations in Al
DEFF Research Database (Denmark)
Johnson, E.; Levinsen, M.T.; Steenstrup, S.
2004-01-01
to and perpendicular to the dislocations respectively. Movements parallel to the dislocation lines display properties of partially confined one-dimensional random walks where smaller inclusions can be seen to move over distances that are many times their own sizes. In contrast, the trajectories perpendicular...
One-dimensional numerical simulation of the Stirling-type pulse-tube refrigerator
Etaati, M.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2007-01-01
Change of title: One-dimensional numerical simulation of the Stirling-type pulse-tube cooler. Pulse-tube refrigeration (PTR) is a new technology for cooling down to extremely low temperatures. In this paper a particular type, the so-called Stirling single-stage refrigerator, is considered. A
Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion
Gomes, Diogo A.
2017-01-05
Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
One-dimensional modelling of limit-cycle oscillation and H-mode power scaling
DEFF Research Database (Denmark)
Wu, Xingquan; Xu, Guosheng; Wan, Baonian
2015-01-01
To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...
Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems
International Nuclear Information System (INIS)
Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi
2015-01-01
Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case
International Nuclear Information System (INIS)
Goedert, J.; Lewis, H.R.
1984-01-01
A momentum-resonance ansatz of Lewis and Leach was used to study exact invariants for time-dependent, one-dimensional potentials. This ansatz provides a framework for finding invariants admitted by a larger class of time-dependent potentials that was known previously. For a potential that admits an exact invariant in this resonance form, we have shown how to construct the invariant as a functional of the potential in terms of the solution of a definite linear algebraic system of equations. We have found a necessary and sufficient condition on the potential for the existence of an invariant with a given number of resonances. There exist more potentials that admit invariants with two resonances than were previously known and we have found an example in parametric form of such a potential. We have also found examples of potentials that admit invariants with three resonances
International Nuclear Information System (INIS)
Park, Chansaem; Zahid, Umer; Lee, Sangho; Han, Chonghun
2015-01-01
Torrefaction reactor model is required for the development of reactor and process design for biomass torrefaction. In this study, a one-dimensional reactor model is developed based on the kinetic model describing volatiles components and solid evolution and the existing thermochemical model considering the heat and mass balance. The developed reactor model used the temperature and flow rate of the recycled gas as the practical manipulated variables instead of the torrefaction temperature. The temperature profiles of the gas and solid phase were generated, depending on the practical thermal conditions, using developed model. Moreover, the effect of each selected operating variables on the parameters of the torrefaction process and the effect of whole operating variables with particular energy yield were analyzed. Through the results of sensitivity analysis, it is shown that the residence time insignificantly influenced the energy yield when the flow rate of recycled gas is low. Moreover, higher temperature of recycled gas with low flow rate and residence time produces the attractive properties, including HHV and grindability, of torrefied biomass when the energy yield is specified. - Highlights: • A one-dimensional reactor model for biomass torrefaction is developed considering the heat and mass balance. • The developed reactor model uses the temperature and flow rate of the recycled gas as the practical manipulated variables. • The effect of operating variables on the parameters of the torrefaction process is analyzed. • The results of sensitivity analysis represent notable discussions which were not done by the previous researches
One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.
Lhomme, J; Bouvier, C; Mignot, E; Paquier, A
2006-01-01
A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.
Scale-dependent Patterns in One-dimensional Fracture Spacing and Aperture Data
Roy, A.; Perfect, E.
2013-12-01
One-dimensional scanline data about fracture spacing and size attributes such as aperture or length are mostly considered in separate studies that compute the cumulative frequency of these attributes without regard to their actual spatial sequence. In a previous study, we showed that spacing data can be analyzed using lacunarity to identify whether fractures occur in clusters. However, to determine if such clusters also contain the largest fractures in terms of a size attribute such as aperture, it is imperative that data about the size attribute be integrated with information about fracture spacing. While for example, some researchers have considered aperture in conjunction with spacing, their analyses were either applicable only to a specific type of data (e.g. multifractal) or failed to characterize the data at different scales. Lacunarity is a technique for analyzing multi-scale non-binary data and is ideally-suited for characterizing scanline data with spacing and aperture values. We present a technique that can statistically delineate the relationship between size attributes and spatial clustering. We begin by building a model scanline that has complete partitioning of fractures with small and large apertures between the intercluster regions and clusters. We demonstrate that the ratio of lacunarity for this model to that of its counterpart for a completely randomized sequence of apertures can be used to determine whether large-aperture fractures preferentially occur next to each other. The technique is then applied to two natural fracture scanline datasets, one with most of the large apertures occurring in fracture clusters, and the other with more randomly-spaced fractures, without any specific ordering of aperture values. The lacunarity ratio clearly discriminates between these two datasets and, in the case of the first example, it is also able to identify the range of scales over which the widest fractures are clustered. The technique thus developed for
Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.
Walls, Jamie D; Hadad, Daniel
2015-02-13
Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.
One-dimensional versus two-dimensional electronic states in vicinal surfaces
International Nuclear Information System (INIS)
Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F
2005-01-01
Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d
International Nuclear Information System (INIS)
Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting
2013-01-01
Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.
International Nuclear Information System (INIS)
Chen Yuan; Song Chuangchuang; Xiang Ying
2010-01-01
In this paper, we apply the two-time Green's function method, and provide a simple way to study the magnetic properties of one-dimensional spin-(S,s) Heisenberg ferromagnets. The magnetic susceptibility and correlation functions are obtained by using the Tyablikov decoupling approximation. Our results show that the magnetic susceptibility and correlation length are a monotonically decreasing function of temperature regardless of the mixed spins. It is found that in the case of S=s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropic ferromagnetic Heisenberg chain in the whole temperature region. Our results for the susceptibility are in agreement with those obtained by other theoretical approaches. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet
Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan
2017-08-01
We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.
X-ray imaging device for one-dimensional and two-dimensional radioscopy
International Nuclear Information System (INIS)
1978-01-01
The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)
Energy Technology Data Exchange (ETDEWEB)
Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)
2013-02-01
Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.
Use of one-dimensional Cosserat theory to study instability in a viscous liquid jet
International Nuclear Information System (INIS)
Bogy, D.B.
1978-01-01
The problem of the instability of an incompressible viscous liquid jet is considered within the context of one-dimensional Cosserat equations. Linear stability analyses are performed for both the infinite and semi-infinite jets. The results obtained for the inviscid case are compared with the corresponding results derived from ideal fluid equations. They are also compared with recent results by other authors obtained from a different set of one-dimensional jet equations. Solutions are also obtained, within the framework of the linearized theory, to the jet break-up problems formulated as an initial-value problem for the infinite jet and as a boundary-value problem for the semi-infinite jet
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....
International Nuclear Information System (INIS)
Skoczen, A.; Machowski, W.; Kaprzyk, S.
1990-07-01
Computer program aiming at application in quantum mechanics didactics has been proposed. This program can generate the moving pictures of one-dimensional quantum mechanics scattering phenomena. Constructions of this program provide two options. In the first option the wave packet is generated in infinite one-dimensional well which has walls on the borders of graphic window. In the second option the square potential barrier is located in this well and transmission and reflection of wave packet are shown. We have selected a Gaussian wave packet to represent the initial state of the particle. The wave equation is solved numerically by a method discussed in detail. Solutions for the succesive time moments are graphically presented on the monitor screen. In this way observer can watch whole time-development of physical system. Graphically presented results are physically realistic when program parameters satisfy conditions discussed in this paper. (author)
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
International Nuclear Information System (INIS)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-01
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-15
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.
Enhancement of conductivity due to local disorder in a one-dimensional conductor
International Nuclear Information System (INIS)
Morifuji, Masato; Maeda, Yusuke
2011-01-01
We theoretically investigate electron transport in a one-dimensional conductor with a locally disordered potential by using the non-equilibrium Green’s function theory. It is found that, by changing the energy of a site in a one-dimensional atomic chain, the electron conductivity can be larger when the modulated site energy is smaller than that of the other sites. This contradicts the conventional picture that an electron is scattered by the disorder of the potential, because such a scattering process usually causes resistivity. We show that the enhancement of conductivity that seems contradictory to the conventional picture of electron motion is explained by the change of energy of quasi bound states in the conductor. (paper)
One-dimensional flame instability and control of burning in fire-chamber
Directory of Open Access Journals (Sweden)
Victor E. Volkov
2015-03-01
Full Text Available The flame stability with regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maximum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of pulsations if these pulsations are inevitable.
A general one-dimensional model for conduction-controlled rewetting of a surface
International Nuclear Information System (INIS)
Elias, E.; Yadigaroglu, G.
1977-01-01
A computer-oriented analytical method for predicting the rewetting rate of a hot dry wall is proposed. The wall, which is modeled as a thin flat plate with internal heat generation, receives a variable heat flux from one side while it is cooled from the other side. The model accounts for the large variations of the heat transfer coefficient near the wet front and for the temperature dependence of the thermal and physical properties of the wall. The one-dimensional heat-conduction equation is solved by dividing the quenching zone into small segments of arbitrary temperature increment and constant properties and heat transfer coefficient. A trial-and-error method is developed to predict the velocity of the wet front, the length of the quenching zone and the temperature profile. The one-dimensional models of other authors can be obtained as particular cases of the present model. (Auth.)
Broadband slow light in one-dimensional logically combined photonic crystals.
Alagappan, G; Png, C E
2015-01-28
Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.
One-dimensional silicon nanolines in the Si(001):H surface
International Nuclear Information System (INIS)
Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H.G.; Renner, Ch.; Bowler, D. R.
2013-01-01
We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality
Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime
International Nuclear Information System (INIS)
Pollet, L.; Rombouts, S.M.A.; Denteneer, P.J. H.
2004-01-01
Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range correlations do not enhance the convergence to the hard-core limit
Double and super-exchange model in one-dimensional systems
International Nuclear Information System (INIS)
Vallejo, E.; Navarro, O.; Avignon, M.
2010-01-01
We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .
International Nuclear Information System (INIS)
Khater, Antoine; Szczesniak, Dominik
2011-01-01
An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.
International Nuclear Information System (INIS)
Kang, Kai; Qin, Shaojing; Wang, Chuilin
2011-01-01
We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.
Boukahil, A.; Huber, D. L.
1989-09-01
The harmonic magnon modes in a one-dimensional Heisenberg spin glass having nearest-neighbor exchange interactions of fixed magnitude and random sign are investigated. The Lyapounov exponent is calculated for chains of 107-108 spins over the interval 0Stinchcombe and Pimentel using transfer-matrix techniques; at higher frequencies, gaps appear in the spectrum. At low frequencies, the localization length diverges as ω-2/3. A formal connection is established between the spin glass and the one-dimensional discretized Schrödinger equation. By making use of the connection, it is shown that the theory of Derrida and Gardner, which was developed for weak potential disorder, can account quantitatively for the distribution and localization of the low-frequency magnon modes in the spin-glass model.
International Nuclear Information System (INIS)
Shen, Yun; Fu, Jiwu; Yu, Guoping
2011-01-01
Highlights: → A simple one-dimensional chirped photonic crystal is proposed to realize rainbow trapping. → The results show different wavelengths can be trapped at different spatial positions. → The structure can be used for optical buffer, memories and filter, sorter, etc. -- Abstract: One-dimensional chirped photonic crystals composed of alternating dielectric slabs are proposed to realize rainbow trapping. We theoretically and numerically demonstrate that not only significantly reduced group velocity can be achieved in the proposed chirped structures, but different wavelengths can be localized in different spatial positions, indicating trapped rainbow. Our results imply a feasible way to slow or even trap light in simple systems, which can be used for optical buffer, memory, data processor and filter, sorter, etc.
Polyacene and a new class of quasi-one-dimensional conductors
International Nuclear Information System (INIS)
Kivelson, S.; Chapman, O.L.
1983-01-01
Most one-dimensional conductors are quite similar since the Fermi surface is a point and the electron energy dispersion relation near the Fermi surface is linear. It is pointed out that in polyacene the Fermi surface lies at the edge of the Brillouin zone, but that an accidental degeneracy between the valence and conduction bands makes it metallic nonetheless. The dispersion relation is therefore quadratic, and the density of states diverges at the Fermi surface. Thus, polyacene [(C 4 H 2 )/sub n/] and its possible derivatives represent a conceptually new class of quasi-one-dimensional conductors. Moreover, we find that this class of materials has the possibility of possessing interesting condensed phases including high-temperature superconductivity and ferromagnetism
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
International Nuclear Information System (INIS)
Lazarescu, Alexandre
2015-01-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs–Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results. (topical review)
Directory of Open Access Journals (Sweden)
Agalar M. Agalarov
2018-01-01
Full Text Available In the article, the possibility of using a bispectrum under the investigation of regular and chaotic behaviour of one-dimensional point mappings is discussed. The effectiveness of the transfer of this concept to nonlinear dynamics was demonstrated by an example of the Feigenbaum mapping. Also in the work, the application of the Kullback-Leibler entropy in the theory of point mappings is considered. It has been shown that this information-like value is able to describe the behaviour of statistical ensembles of one-dimensional mappings. In the framework of this theory some general properties of its behaviour were found out. Constructivity of the Kullback-Leibler entropy in the theory of point mappings was shown by means of its direct calculation for the ”saw tooth” mapping with linear initial probability density. Moreover, for this mapping the denumerable set of initial probability densities hitting into its stationary probability density after a finite number of steps was pointed out.
Liu, Chaohong; Zhang, Dun
2015-03-01
The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.
International Nuclear Information System (INIS)
Cho, Baekhyun; Choi, Geunwon; Uruno, Yumi; Kim, Hyunseo; Chung, Jaewon; Kim, Hyojun; Lee, Kihyun
2017-01-01
Highlights: • An attemperator is a device to spray water into the superheated steam. • The evaporation was analyzed using the enthalpy balance from the commissioning data. • The spray atomization and its concurrent evaporation in an attemperator were physically modeled. • A simple one-dimensional simulation was conducted to verify the commissioning results. - Abstract: An attemperator is a device that is used to spray water into the superheated steam between the primary, platen, and final superheaters and the reheat lines. The goal of the attemperator is to control the temperature of the superheated steam in accordance with desired turbine-inlet temperature during both steady-state and transient operation. Because the thermowell installed at the attemperator outlet is tied back to the feedback control of the spray water, the spray water should evaporate ahead of the thermowell for accurate control of the steam temperature. In this work, the completion of the evaporation ahead of the thermowell was analyzed using the enthalpy balance from the start-up commissioning data of an 800-MW coal-fired steam power plant. In addition, the phenomena of the spray atomization and its concurrent evaporation in an attemperator were physically modeled, and a simple one-dimensional simulation was conducted to verify the analysis of the commissioning data.
Dolnik, Milos; Bánsági, Tamás; Ansari, Sama; Valent, Ivan; Epstein, Irving R
2011-07-21
We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns with spatial periodic forcing. Wavenumber-locked stripe patterns are the typical resonant structures that labyrinthine patterns exhibit in response to one-dimensional forcing by illumination when images of stripes are projected on a working medium. Our experimental results reveal that segmented oblique, hexagonal and rectangular patterns can also be obtained. However, these two-dimensional resonant structures only develop in a relatively narrow range of forcing parameters, where the unforced stripe pattern is in close proximity to the domain of hexagonal patterns. Numerical simulations based on a model that incorporates the forcing by illumination using an additive term reproduce well the experimental observations. These findings confirm that additive one-dimensional forcing can generate a two-dimensional resonant response. However, such a response is considerably less robust than the effect of multiplicative forcing. This journal is © the Owner Societies 2011
International Nuclear Information System (INIS)
Vrankar, L.; Turk, G.; Runovc, F.; Kansa, E.J.
2006-01-01
Many heat-transfer problems involve a change of phase of material due to solidification or melting. Applications include: the safety studies of nuclear reactors (molten core concrete interaction), the drilling of high ice-content soil, the storage of thermal energy, etc. These problems are often called Stefan's or moving boundary value problems. Mathematically, the interface motion is expressed implicitly in an equation for the conservation of thermal energy at the interface (Stefan's conditions). This introduces a non-linear character to the system which treats each problem somewhat uniquely. The exact solution of phase change problems is limited exclusively to the cases in which e.g. the heat transfer regions are infinite or semi-infinite one dimensional-space. Therefore, solution is obtained either by approximate analytical solution or by numerical methods. Finite-difference methods and finite-element techniques have been used extensively for numerical solution of moving boundary problems. Recently, the numerical methods have focused on the idea of using a mesh-free methodology for the numerical solution of partial differential equations based on radial basis functions. In our case we will study solid-solid transformation. The numerical solutions will be compared with analytical solutions. Actually, in our work we will examine usefulness of radial basis functions (especially multiquadric-MQ) for one-dimensional Stefan's problems. The position of the moving boundary will be simulated by moving grid method. The resultant system of RBF-PDE will be solved by affine space decomposition. (author)
A Fast Humidity Sensor Based on Li+-Doped SnO2 One-Dimensional Porous Nanofibers
Directory of Open Access Journals (Sweden)
Min Yin
2017-05-01
Full Text Available One-dimensional SnO2- and Li+-doped SnO2 porous nanofibers were easily fabricated via electrospinning and a subsequent calcination procedure for ultrafast humidity sensing. Different Li dopant concentrations were introduced to investigate the dopant’s role in sensing performance. The response properties were studied under different relative humidity levels by both statistic and dynamic tests. The best response was obtained with respect to the optimal doping of Li+ into SnO2 porous nanofibers with a maximum 15 times higher response than that of pristine SnO2 porous nanofibers, at a relative humidity level of 85%. Most importantly, the ultrafast response and recovery time within 1 s was also obtained with the 1.0 wt % doping of Li+ into SnO2 porous nanofibers at 5 V and at room temperature, benefiting from the co-contributions of Li-doping and the one-dimensional porous structure. This work provides an effective method of developing ultrafast sensors for practical applications—especially fast breathing sensors.
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Analytical Solution and Application for One-Dimensional Consolidation of Tailings Dam
Liu, Hai-ming; Nan, Gan; Guo, Wei; Yang, Chun-he; Zhang, Chao
2018-01-01
The pore water pressure of tailings dam has a very great influence on the stability of tailings dam. Based on the assumption of one-dimensional consolidation and small strain, the partial differential equation of pore water pressure is deduced. The obtained differential equation can be simplified based on the parameters which are constants. According to the characteristics of the tailings dam, the pore water pressure of the tailings dam can be divided into the slope dam segment, dry beach seg...
A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion
International Nuclear Information System (INIS)
Suidan, T M
2001-01-01
The surprising connection between a one-dimensional gravitationally interacting gas of sticky particles and the convex minorant process generated by Brownian motion on [0,1] is studied. A study is made of the dynamics of this 1-D gas system by identifying three distinct clustering regimes and the time scales at which they occur. At the critical moment of time the mass distribution of the gas can be computed in terms of functionals of the convex minorant process
Travelling wave solutions of the homogeneous one-dimensional FREFLO model
Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.
2018-01-01
Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.
Two new types of solvability of the one-dimensional anharmonic oscillators
International Nuclear Information System (INIS)
Znojil, M.
1989-01-01
In the Schroedinger picture, we propose a new modification of the so-called Hill-determinant technique. It is shown to guarantee a proper matching of the two underlying power series Ψ(x) at x=0. In the Heisenberg picture, an evolution of the same one-dimensional polynomially anharmonic oscillator is considered. A modified Peano-Baker method is applied and shown to define the explicit solutions by recurrences. 11 refs
One dimensional Dirac-Moshinsky oscillator-like system and isospectral partners
International Nuclear Information System (INIS)
Contreras-Astorga, A
2015-01-01
Two different exactly solvable systems are constructed using the supersymmetric quantum mechanics formalism and a pseudoscalar one-dimensional version of the Dirac- Moshinsky oscillator as a departing system. One system is built using a first-order SUSY transformation. The second is obtained through the confluent supersymmetry algorithm. The two of them are explicitly designed to have the same spectrum as the departing system and pseudoscalar potentials. (paper)
Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays
Bascones, E.; Estevez, V.; Trinidad, J. A.; MacDonald, A. H.
2007-01-01
We analyze and clarify the transport properties of a one-dimensional metallic nanoparticle array with interaction between charges restricted to charges placed in the same conductor. We study the threshold voltage, the I-V curves and the potential drop through the array and their dependence on the array parameters including the effect of charge and resistance disorder. We show that very close to threshold the current depends linearly on voltage with a slope independent on the array size. At in...
Transverse Kerr effect in one-dimensional magnetophotonic crystals: Experiment and theory
International Nuclear Information System (INIS)
Erokhin, S.; Boriskina, Yu.; Vinogradov, A.; Inoue, M.; Kobayashi, D.; Fedyanin, A.; Gan'shina, E.; Kochneva, M.; Granovsky, A.
2006-01-01
Magneto-optical transverse Kerr and Faraday effects are studied experimentally and theoretically in one-dimensional magnetophotonic crystals fabricated from a stack of four repetitions of layers of Bi-substituted yttrium iron garnet and SiO 2 layers. The results of theoretical calculations in the framework of modified matrices approach are consistent with the obtained experimental data with the exception of the one cusp at 480 nm in the transverse Kerr effect spectra. Possible mechanisms of this disagreement are discussed
Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ
DEFF Research Database (Denmark)
Sing, M.; Schwingenschlögl, U.; Claessen, R.
2003-01-01
We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....
Topological phase transition in the quench dynamics of a one-dimensional Fermi gas
Wang, Pei; Yi, Wei; Xianlong, Gao
2014-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...
Localization of the solution of a one-dimensional one-phase Stefan problem
Cortazar, C.; Elgueta, M.; Primicerio, M.
1996-01-01
Studiamo la localizzazione, l'insieme dei punti di blow up ed alcuni aspetti della velocità di propagazione della frontiera libera di soluzioni di un problema di Stefan unidimensionale ad una fase. We study localization, the set of blow up points and some aspects of the speed of the free boundary of solutions of a one-dimensional, one-phase Stefan problem.