Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
International Nuclear Information System (INIS)
Asensio Ramos, A.; Manso Sainz, R.; Martínez González, M. J.; Socas-Navarro, H.; Viticchié, B.; Orozco Suárez, D.
2012-01-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
Automatic Flight Controller With Model Inversion
Meyer, George; Smith, G. Allan
1992-01-01
Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.
Wake Vortex Inverse Model User's Guide
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali; Wu, Zedong
2016-01-01
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low
Previous Experience a Model of Practice UNAE
Ormary Barberi Ruiz; María Dolores Pesántez Palacios
2017-01-01
The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP) of the National University of Education (UNAE) of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials), pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subj...
Previous Experience a Model of Practice UNAE
Directory of Open Access Journals (Sweden)
Ormary Barberi Ruiz
2017-02-01
Full Text Available The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP of the National University of Education (UNAE of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials, pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subject nature of the pre professional practice and the demand of socio educational contexts where the practices have been emerging to resize them. By relating these elements allowed conceiving the modeling of the processes of the pre-professional practices for the development of professional skills of future teachers through four components: contextual projective, implementation (tutoring, accompaniment (teaching couple and monitoring (meetings at the beginning, during and end of practice. The initial training of teachers is inherent to teaching (academic and professional training, research and links with the community, these are fundamental pillars of Ecuadorian higher education.
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali
2016-09-21
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single- or double-scattered wavefield computed from a predicted scatter field acting as secondary sources.We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (highscattering- angle) components are directed to the velocity model. As our background velocity matures, the scatteringangle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy. © 2016 Society of Exploration Geophysicists.
Atmospheric inverse modeling via sparse reconstruction
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Modeling of uncertainties in statistical inverse problems
International Nuclear Information System (INIS)
Kaipio, Jari
2008-01-01
In all real world problems, the models that tie the measurements to the unknowns of interest, are at best only approximations for reality. While moderate modeling and approximation errors can be tolerated with stable problems, inverse problems are a notorious exception. Typical modeling errors include inaccurate geometry, unknown boundary and initial data, properties of noise and other disturbances, and simply the numerical approximations of the physical models. In principle, the Bayesian approach to inverse problems, in which all uncertainties are modeled as random variables, is capable of handling these uncertainties. Depending on the type of uncertainties, however, different strategies may be adopted. In this paper we give an overview of typical modeling errors and related strategies within the Bayesian framework.
Modelling and inversion of local magnetic anomalies
International Nuclear Information System (INIS)
Quesnel, Y; Langlais, B; Sotin, C; Galdéano, A
2008-01-01
We present a method—named as MILMA for modelling and inversion of local magnetic anomalies—that combines forward and inverse modelling of aeromagnetic data to characterize both magnetization properties and location of unconstrained local sources. Parameters of simple-shape magnetized bodies (cylinder, prism or sphere) are first adjusted by trial and error to predict the signal. Their parameters provide a priori information for inversion of the measurements. Here, a generalized nonlinear approach with a least-squares criterion is adopted to seek the best parameters of the sphere (dipole). This inversion step allows the model to be more objectively adjusted to fit the magnetic signal. The validity of the MILMA method is demonstrated through synthetic and real cases using aeromagnetic measurements. Tests with synthetic data reveal accurate results in terms of depth source, whatever be the number of sources. The MILMA method is then used with real measurements to constrain the properties of the magnetized units of the Champtoceaux complex (France). The resulting parameters correlate with the crustal structure and properties revealed by other geological and geophysical surveys in the same area. The MILMA method can therefore be used to investigate the properties of poorly constrained lithospheric magnetized sources
Tectonic forward modelling of positive inversion structures
Energy Technology Data Exchange (ETDEWEB)
Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)
2013-08-01
Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe
Inverse hydrochemical models of aqueous extracts tests
Energy Technology Data Exchange (ETDEWEB)
Zheng, L.; Samper, J.; Montenegro, L.
2008-10-10
Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
Stochastic inverse problems: Models and metrics
International Nuclear Information System (INIS)
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-01-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
Voxel inversion of airborne electromagnetic data for improved model integration
Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders
2014-05-01
Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
MCNP HPGe detector benchmark with previously validated Cyltran model.
Hau, I D; Russ, W R; Bronson, F
2009-05-01
An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali; Wu, Zedong
2015-01-01
modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most
Stochastic forward and inverse groundwater flow and solute transport modeling
Janssen, G.M.C.M.
2008-01-01
Keywords: calibration, inverse modeling, stochastic modeling, nonlinear biodegradation, stochastic-convective, advective-dispersive, travel time, network design, non-Gaussian distribution, multimodal distribution, representers
This thesis offers three new approaches that contribute
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang; Youssef, Marzouk; Willcox, Karen
2014-01-01
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce
Application Of Shared Gamma And Inverse-Gaussian Frailty Models ...
African Journals Online (AJOL)
Shared Gamma and Inverse-Gaussian Frailty models are used to analyze the survival times of patients who are clustered according to cancer/tumor types under Parametric Proportional Hazard framework. The result of the ... However, no evidence is strong enough for preference of either Gamma or Inverse Gaussian Frailty.
Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion
DEFF Research Database (Denmark)
Zunino, Andrea; Lange, Katrine; Melnikova, Yulia
2014-01-01
We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear...
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
DEFF Research Database (Denmark)
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....
Inverse modelling for flow and transport in porous media
International Nuclear Information System (INIS)
Giudici, M.
2004-01-01
The problem of parameter identification for flow and transport model in porous media is discussed in this communication. First, a general framework for the development and application of environmental models is discussed. Then the forward and inverse problems for discrete models are described in detail, introducing fundamental concepts (uniqueness, identifiability, stability, conditioning). The importance of model scales is reviewed and is shown its link with the stability and conditioning issues. Finally some remarks are given to the use of several independent sets of data in inverse modelling
Why operational risk modelling creates inverse incentives
Doff, R.
2015-01-01
Operational risk modelling has become commonplace in large international banks and is gaining popularity in the insurance industry as well. This is partly due to financial regulation (Basel II, Solvency II). This article argues that operational risk modelling is fundamentally flawed, despite efforts
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang
2014-01-06
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce the computational cost of numerical PDE evaluations in this context.
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali
2015-08-19
A successful full wavenumber inversion (FWI) implementation updates the low wavenumber model components first for proper wavefield propagation description, and slowly adds the high-wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded data given by direct arrivals or the transmission parts of the single and double-scattering wave-fields developed from a predicted scatter field. We develop a combined inversion of data modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering angle filter is used to divide the gradient of the combined inversion so initially the high wavenumber (low scattering angle) components of the gradient is directed to the perturbation model and the low wavenumber (high scattering angle) components to the velocity model. As our background velocity matures, the scattering angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model.
Data inversion in coupled subsurface flow and geomechanics models
International Nuclear Information System (INIS)
Iglesias, Marco A; McLaughlin, Dennis
2012-01-01
We present an inverse modeling approach to estimate petrophysical and elastic properties of the subsurface. The aim is to use the fully coupled geomechanics-flow model of Girault et al (2011 Math. Models Methods Appl. Sci. 21 169–213) to jointly invert surface deformation and pressure data from wells. We use a functional-analytic framework to construct a forward operator (parameter-to-output map) that arises from the geomechanics-flow model of Girault et al. Then, we follow a deterministic approach to pose the inverse problem of finding parameter estimates from measurements of the output of the forward operator. We prove that this inverse problem is ill-posed in the sense of stability. The inverse problem is then regularized with the implementation of the Newton-conjugate gradient (CG) algorithm of Hanke (1997 Numer. Funct. Anal. Optim. 18 18–971). For a consistent application of the Newton-CG scheme, we establish the differentiability of the forward map and characterize the adjoint of its linearization. We provide assumptions under which the theory of Hanke ensures convergence and regularizing properties of the Newton-CG scheme. These properties are verified in our numerical experiments. In addition, our synthetic experiments display the capabilities of the proposed inverse approach to estimate parameters of the subsurface by means of data inversion. In particular, the added value of measurements of surface deformation in the estimation of absolute permeability is quantified with respect to the standard history matching approach of inverting production data with flow models. The proposed methodology can be potentially used to invert satellite geodetic data (e.g. InSAR and GPS) in combination with production data for optimal monitoring and characterization of the subsurface. (paper)
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Heeding the waveform inversion nonlinearity by unwrapping the model and data
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Unlike traveltime inversion, waveform inversion provides relatively higher-resolution inverted models. This feature, however, comes at the cost of introducing complex nonlinearity to the inversion operator complicating the convergence process. We
Directory of Open Access Journals (Sweden)
Ali Moeini
2015-01-01
Full Text Available Regarding the ecommerce growth, websites play an essential role in business success. Therefore, many authors have offered website evaluation models since 1995. Although, the multiplicity and diversity of evaluation models make it difficult to integrate them into a single comprehensive model. In this paper a quantitative method has been used to integrate previous models into a comprehensive model that is compatible with them. In this approach the researcher judgment has no role in integration of models and the new model takes its validity from 93 previous models and systematic quantitative approach.
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Inverse Gaussian model for small area estimation via Gibbs sampling
African Journals Online (AJOL)
We present a Bayesian method for estimating small area parameters under an inverse Gaussian model. The method is extended to estimate small area parameters for finite populations. The Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the method by application to ...
Influence of seeing effects on cloud model inversions
Czech Academy of Sciences Publication Activity Database
Tziotziou, K.; Heinzel, Petr; Tsiropoula, G.
2007-01-01
Roč. 472, č. 1 (2007), s. 287-292 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : cloud model * inversions * seeing effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007
Numerical modeling of Harmonic Imaging and Pulse Inversion fields
Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis
2003-10-01
Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.
Bergamaschi, Peter; Karstens, Ute; Manning, Alistair J.; Saunois, Marielle; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alexander T.; Arnold, Tim; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina; Ramonet, Michel; Lopez, Morgan; Lavric, Jost; Aalto, Tuula; Chen, Huilin; Feist, Dietrich G.; Gerbig, Christoph; Haszpra, László; Hermansen, Ove; Manca, Giovanni; Moncrieff, John; Meinhardt, Frank; Necki, Jaroslaw; Galkowski, Michal; O'Doherty, Simon; Paramonova, Nina; Scheeren, Hubertus A.; Steinbacher, Martin; Dlugokencky, Ed
2018-01-01
We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) Tg CH4 yr-1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr-1 (2006) to 18.8 Tg CH4 yr-1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) Tg CH4 yr-1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon
Evangeliou, Nikolaos; Hamburger, Thomas; Cozic, Anne; Balkanski, Yves; Stohl, Andreas
2017-07-01
This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30-50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration
Directory of Open Access Journals (Sweden)
N. Evangeliou
2017-07-01
Full Text Available This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km than previously assumed (≈ 2.2 km in order
Two radiative inverse seesaw models, dark matter, and baryogenesis
International Nuclear Information System (INIS)
Baldes, Iason; Bell, Nicole F.; Petraki, Kalliopi; Volkas, Raymond R.
2013-01-01
The inverse seesaw mechanism allows the neutrino masses to be generated by new physics at an experimentally accessible scale, even with O(1) Yukawa couplings. In the inverse seesaw scenario, the smallness of neutrino masses is linked to the smallness of a lepton number violating parameter. This parameter may arise radiatively. In this paper, we study the cosmological implications of two contrasting radiative inverse seesaw models, one due to Ma and the other to Law and McDonald. The former features spontaneous, the latter explicit lepton number violation. First, we examine the effect of the lepton-number violating interactions introduced in these models on the baryon asymmetry of the universe. We investigate under what conditions a pre-existing baryon asymmetry does not get washed out. While both models allow a baryon asymmetry to survive only once the temperature has dropped below the mass of their heaviest fields, the Ma model can create the baryon asymmetry through resonant leptogenesis. Then we investigate the viability of the dark matter candidates arising within these models, and explore the prospects for direct detection. We find that the Law/McDonald model allows a simple dark matter scenario similar to the Higgs portal, while in the Ma model the simplest cold dark matter scenario would tend to overclose the universe
Polynomial model inversion control: numerical tests and applications
Novara, Carlo
2015-01-01
A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...
Energy Technology Data Exchange (ETDEWEB)
Dobranszky, G.
2005-12-15
Stratigraphic modeling aims at rebuilding the history of the sedimentary basins by simulating the processes of erosion, transport and deposit of sediments using physical models. The objective is to determine the location of the bed-rocks likely to contain the organic matter, the location of the porous rocks that could trap the hydrocarbons during their migration and the location of the impermeable rocks likely to seal the reservoir. The model considered within this thesis is based on a multi-lithological diffusive transport model and applies to large scales of time and space. Due to the complexity of the phenomena and scales considered, none of the model parameters is directly measurable. Therefore it is essential to inverse them. The standard approach, which consists in inverting all the parameters by minimizing a cost function using a gradient method, proved very sensitive to the choice of the parameterization, to the weights given to the various terms of the cost function (hearing on data of very diverse nature) and to the numerical noise. These observations led us to give up this method and to carry out the in-version step by step by decoupling the parameters. This decoupling is not obtained by fixing the parameters but by making several assumptions on the model resulting in a range of reduced but relevant models. In this thesis, we show how these models enable us to inverse all the parameters in a robust and interactive way. (author)
High effective inverse dynamics modelling for dual-arm robot
Shen, Haoyu; Liu, Yanli; Wu, Hongtao
2018-05-01
To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.
Anatomy of Higgs mass in supersymmetric inverse seesaw models
Energy Technology Data Exchange (ETDEWEB)
Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-09-07
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.
Effects of induced stress on seismic forward modelling and inversion
Tromp, Jeroen; Trampert, Jeannot
2018-05-01
We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.
Inverse Modeling of Emissions and their Time Profiles
Czech Academy of Sciences Publication Activity Database
Resler, Jaroslav; Eben, Kryštof; Juruš, Pavel; Liczki, Jitka
2010-01-01
Roč. 1, č. 4 (2010), s. 288-295 ISSN 1309-1042 R&D Projects: GA MŽP SP/1A4/107/07 Grant - others:COST(XE) ES0602 Institutional research plan: CEZ:AV0Z10300504 Keywords : 4DVar * inverse modeling * diurnal time profile of emission * CMAQ adjoint * satellite observations Subject RIV: DG - Athmosphere Sciences, Meteorology
Sparse optimization for inverse problems in atmospheric modelling
Czech Academy of Sciences Publication Activity Database
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
Core flow inversion tested with numerical dynamo models
Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes
2000-05-01
We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
Energy Technology Data Exchange (ETDEWEB)
Thimmisetty, Charanraj A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Zhao, Wenju [Florida State Univ., Tallahassee, FL (United States). Dept. of Scientific Computing; Chen, Xiao [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Tong, Charles H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.
Inverse modeling of geochemical and mechanical compaction in sedimentary basins
Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto
2015-04-01
We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model
Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion
Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang
2018-06-01
Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.
Inverse Analysis and Modeling for Tunneling Thrust on Shield Machine
Directory of Open Access Journals (Sweden)
Qian Zhang
2013-01-01
Full Text Available With the rapid development of sensor and detection technologies, measured data analysis plays an increasingly important role in the design and control of heavy engineering equipment. The paper proposed a method for inverse analysis and modeling based on mass on-site measured data, in which dimensional analysis and data mining techniques were combined. The method was applied to the modeling of the tunneling thrust on shield machines and an explicit expression for thrust prediction was established. Combined with on-site data from a tunneling project in China, the inverse identification of model coefficients was carried out using the multiple regression method. The model residual was analyzed by statistical methods. By comparing the on-site data and the model predicted results in the other two projects with different tunneling conditions, the feasibility of the model was discussed. The work may provide a scientific basis for the rational design and control of shield tunneling machines and also a new way for mass on-site data analysis of complex engineering systems with nonlinear, multivariable, time-varying characteristics.
Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin
Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.
2015-12-01
Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity
Incorporating modelled subglacial hydrology into inversions for basal drag
Directory of Open Access Journals (Sweden)
C. P. Koziol
2017-12-01
Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong
2015-08-19
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.
Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control
Directory of Open Access Journals (Sweden)
Elvedin Kljuno
2010-01-01
Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.
Retrieving global aerosol sources from satellites using inverse modeling
Directory of Open Access Journals (Sweden)
O. Dubovik
2008-01-01
Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.
The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.
Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful
Alloy design as an inverse problem of cluster expansion models
DEFF Research Database (Denmark)
Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren
2017-01-01
Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...
EEG-distributed inverse solutions for a spherical head model
Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.
1998-08-01
The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.
Inverse geothermal modelling applied to Danish sedimentary basins
Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.
2017-10-01
This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures
Directory of Open Access Journals (Sweden)
Alexander eHanuschkin
2013-06-01
Full Text Available Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: Random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, they allow for imitating arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions.Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird’s own song
Hanuschkin, A; Ganguli, S; Hahnloser, R H R
2013-01-01
Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
Inverse modeling with RZWQM2 to predict water quality
Nolan, Bernard T.; Malone, Robert W.; Ma, Liwang; Green, Christopher T.; Fienen, Michael N.; Jaynes, Dan B.
2011-01-01
This chapter presents guidelines for autocalibration of the Root Zone Water Quality Model (RZWQM2) by inverse modeling using PEST parameter estimation software (Doherty, 2010). Two sites with diverse climate and management were considered for simulation of N losses by leaching and in drain flow: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard in the San Joaquin Valley, California and the Walnut Creek watershed in central Iowa, which is predominantly in corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals and sensitivities. We describe operation of PEST in both parameter estimation and predictive analysis modes. The goal of parameter estimation is to identify a unique set of parameters that minimize a weighted least squares objective function, and the goal of predictive analysis is to construct a nonlinear confidence interval for a prediction of interest by finding a set of parameters that maximizes or minimizes the prediction while maintaining the model in a calibrated state. We also describe PEST utilities (PAR2PAR, TSPROC) for maintaining ordered relations among model parameters (e.g., soil root growth factor) and for post-processing of RZWQM2 outputs representing different cropping practices at the Iowa site. Inverse modeling provided reasonable fits to observed water and N fluxes and directly benefitted the modeling through: (i) simultaneous adjustment of multiple parameters versus one-at-a-time adjustment in manual approaches; (ii) clear indication by convergence criteria of when calibration is complete; (iii) straightforward detection of nonunique and insensitive parameters, which can affect the stability of PEST and RZWQM2; and (iv) generation of confidence intervals for uncertainty analysis of parameters and model predictions. Composite scaled sensitivities, which
Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling
Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon
2010-01-01
We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong; Alkhalifah, Tariq Ali
2015-01-01
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect
Incorporating model parameter uncertainty into inverse treatment planning
International Nuclear Information System (INIS)
Lian Jun; Xing Lei
2004-01-01
Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment
Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''
Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.
2011-05-01
The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.
An inverse problem for a mathematical model of aquaponic agriculture
Bobak, Carly; Kunze, Herb
2017-01-01
Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.
Bayesian inversion using a geologically realistic and discrete model space
Jaeggli, C.; Julien, S.; Renard, P.
2017-12-01
Since the early days of groundwater modeling, inverse methods play a crucial role. Many research and engineering groups aim to infer extensive knowledge of aquifer parameters from a sparse set of observations. Despite decades of dedicated research on this topic, there are still several major issues to be solved. In the hydrogeological framework, one is often confronted with underground structures that present very sharp contrasts of geophysical properties. In particular, subsoil structures such as karst conduits, channels, faults, or lenses, strongly influence groundwater flow and transport behavior of the underground. For this reason it can be essential to identify their location and shape very precisely. Unfortunately, when inverse methods are specially trained to consider such complex features, their computation effort often becomes unaffordably high. The following work is an attempt to solve this dilemma. We present a new method that is, in some sense, a compromise between the ergodicity of Markov chain Monte Carlo (McMC) methods and the efficient handling of data by the ensemble based Kalmann filters. The realistic and complex random fields are generated by a Multiple-Point Statistics (MPS) tool. Nonetheless, it is applicable with any conditional geostatistical simulation tool. Furthermore, the algorithm is independent of any parametrization what becomes most important when two parametric systems are equivalent (permeability and resistivity, speed and slowness, etc.). When compared to two existing McMC schemes, the computational effort was divided by a factor of 12.
NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs
National Aeronautics and Space Administration — This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that various...
NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs
National Aeronautics and Space Administration — ABSTRACT: This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that...
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
Directory of Open Access Journals (Sweden)
W. Bastiaan Kleijn
2005-06-01
Full Text Available Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel coding.
Natural vs. artificial groundwater recharge, quantification through inverse modeling
Directory of Open Access Journals (Sweden)
H. Hashemi
2013-02-01
Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.
Amalia, Junita; Purhadi, Otok, Bambang Widjanarko
2017-11-01
Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating
Unified dark energy-dark matter model with inverse quintessence
Energy Technology Data Exchange (ETDEWEB)
Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
Determination of hydraulic properties of unsaturated soil via inverse modeling
International Nuclear Information System (INIS)
Kodesova, R.
2004-01-01
The method for determining the hydraulic properties of unsaturated soil with inverse modeling is presented. A modified cone penetrometer has been designed to inject water into the soil through a screen, and measure the progress of the wetting front with two tensiometer rings positioned above the screen. Cumulative inflow and pressure head readings are analyzed to obtain estimates of the hydraulic parameters describing K(h) and θ(h). Optimization results for tests at one side are used to demonstrate the possibility to evaluate either the wetting branches of the soil hydraulic properties, or the wetting and drying curves simultaneously, via analysis of different parts of the experiment. The optimization results are compared to the results of standard laboratory and field methods. (author)
Unified dark energy-dark matter model with inverse quintessence
International Nuclear Information System (INIS)
Ansoldi, Stefano; Guendelman, Eduardo I.
2013-01-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future
Electron electric dipole moment in Inverse Seesaw models
Energy Technology Data Exchange (ETDEWEB)
Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay,91405 Orsay (France)
2016-08-11
We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.
Electron electric dipole moment in Inverse Seesaw models
International Nuclear Information System (INIS)
Abada, Asmaa; Toma, Takashi
2016-01-01
We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.
The Inverse Problem of Identification of Hydrogen Permeability Model
Directory of Open Access Journals (Sweden)
Yury V. Zaika
2018-01-01
Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-10-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly
Temporal rainfall estimation using input data reduction and model inversion
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a
Forecasting wind-driven wildfires using an inverse modelling approach
Directory of Open Access Journals (Sweden)
O. Rios
2014-06-01
Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.
Directory of Open Access Journals (Sweden)
J. F. Meirink
2008-11-01
Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.
Affordable and personalized lighting using inverse modeling and virtual sensors
Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney
2014-03-01
Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.
Modelling and genetic algorithm based optimisation of inverse supply chain
Bányai, T.
2009-04-01
(Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a
Improvement of PM10 prediction in East Asia using inverse modeling
Koo, Youn-Seo; Choi, Dae-Ryun; Kwon, Hi-Yong; Jang, Young-Kee; Han, Jin-Seok
2015-04-01
Aerosols from anthropogenic emissions in industrialized region in China as well as dust emissions from southern Mongolia and northern China that transport along prevailing northwestern wind have a large influence on the air quality in Korea. The emission inventory in the East Asia region is an important factor in chemical transport modeling (CTM) for PM10 (particulate matters less than 10 ㎛ in aerodynamic diameter) forecasts and air quality management in Korea. Most previous studies showed that predictions of PM10 mass concentration by the CTM were underestimated when comparing with observational data. In order to fill the gap in discrepancies between observations and CTM predictions, the inverse Bayesian approach with Comprehensive Air-quality Model with extension (CAMx) forward model was applied to obtain optimized a posteriori PM10 emissions in East Asia. The predicted PM10 concentrations with a priori emission were first compared with observations at monitoring sites in China and Korea for January and August 2008. The comparison showed that PM10 concentrations with a priori PM10 emissions for anthropogenic and dust sources were generally under-predicted. The result from the inverse modeling indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were underestimated while dust emissions from desert and barren soil in southern Mongolia and northern China were overestimated. A priori PM10 emissions from northeastern China regions including Shenyang, Changchun, and Harbin were underestimated by about 300% (i.e., the ratio of a posteriori to a priori PM10 emission was a factor of about 3). The predictions of PM10 concentrations with a posteriori emission showed better agreement with the observations, implying that the inverse modeling minimized the discrepancies in the model predictions by improving PM10 emissions in East Asia.
Partridge, Daniel; Morales, Ricardo; Stier, Philip
2015-04-01
Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
Shell Model Far From Stability: Island of Inversion Mergers
Nowacki, F.; Poves, A.
2018-02-01
In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.
Inverse modeling of FIB milling by dose profile optimization
International Nuclear Information System (INIS)
Lindsey, S.; Waid, S.; Hobler, G.; Wanzenböck, H.D.; Bertagnolli, E.
2014-01-01
FIB technologies possess a unique ability to form topographies that are difficult or impossible to generate with binary etching through typical photo-lithography. The ability to arbitrarily vary the spatial dose distribution and therefore the amount of milling opens possibilities for the production of a wide range of functional structures with applications in biology, chemistry, and optics. However in practice, the realization of these goals is made difficult by the angular dependence of the sputtering yield and redeposition effects that vary as the topography evolves. An inverse modeling algorithm that optimizes dose profiles, defined as the superposition of time invariant pixel dose profiles (determined from the beam parameters and pixel dwell times), is presented. The response of the target to a set of pixel dwell times in modeled by numerical continuum simulations utilizing 1st and 2nd order sputtering and redeposition, the resulting surfaces are evaluated with respect to a target topography in an error minimization routine. Two algorithms for the parameterization of pixel dwell times are presented, a direct pixel dwell time method, and an abstracted method that uses a refineable piecewise linear cage function to generate pixel dwell times from a minimal number of parameters. The cage function method demonstrates great flexibility and efficiency as compared to the direct fitting method with performance enhancements exceeding ∼10× as compared to direct fitting for medium to large simulation sets. Furthermore, the refineable nature of the cage function enables solutions to adapt to the desired target function. The optimization algorithm, although working with stationary dose profiles, is demonstrated to be applicable also outside the quasi-static approximation. Experimental data confirms the viability of the solutions for 5 × 7 μm deep lens like structures defined by 90 pixel dwell times
DEFF Research Database (Denmark)
Oh, Geok Lian
properties such as the elastic wave speeds and soil densities. One processing method is casting the estimation problem into an inverse problem to solve for the unknown material parameters. The forward model for the seismic signals used in the literatures include ray tracing methods that consider only...... density values of the discretized ground medium, which leads to time-consuming computations and instability behaviour of the inversion process. In addition, the geophysics inverse problem is generally ill-posed due to non-exact forward model that introduces errors. The Bayesian inversion method through...... the first arrivals of the reflected compressional P-waves from the subsurface structures, or 3D elastic wave models that model all the seismic wave components. The ray tracing forward model formulation is linear, whereas the full 3D elastic wave model leads to a nonlinear inversion problem. In this Ph...
Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang
2018-05-01
The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.
Risk evaluation of uranium mining: A geochemical inverse modelling approach
Rillard, J.; Zuddas, P.; Scislewski, A.
2011-12-01
It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the
Losada, David E.; Barreiro, Alvaro
2003-01-01
Proposes an approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. Highlights include document representation and matching; incorporating term similarity into the measure of distance; new algorithms for implementation; inverse document frequency; and logical versus classical models of…
A Direct inverse model to determine permeability fields from pressure and flow rate measurements
Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.
2008-01-01
The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard
Comparison of inverse modeling results with measured and interpolated hydraulic head data
International Nuclear Information System (INIS)
Jacobson, E.A.
1986-12-01
Inverse modeling of aquifers involves identification of effective parameters, such as transmissivities, based on hydraulic head data. The result of inverse modeling is a calibrated ground water flow model that reproduces the measured hydraulic head data as closely as is statistically possible. An inverse method that includes prior information about the parameters (i.e., kriged log transmissivity) was applied to the Avra Valley aquifer of southern Arizona using hydraulic heads obtained in three ways: measured at well locations, estimated at nodes by hand contouring, and estimated at nodes by kriging. Hand contouring yields only estimates of hydraulic head at node points, whereas kriging yields hydraulic head estimates at node points and their corresponding estimation errors. A comparison of the three inverse applications indicates the variations in the ground water flow model caused by the different treatments of the hydraulic head data. Estimates of hydraulic head computed by all three inverse models were more representative of the measured or interpolated hydraulic heads than those computed using the kriged estimates of log transmissivity. The large-scale trends in the estimates of log transmissivity determined by the three inverse models were generally similar except in the southern portion of the study area. The hydraulic head values and gradients produced by the three inverse models were similar in the interior of the study area, while the major differences between the inverse models occurred along the boundaries. 17 refs., 18 figs., 1 tab
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Holm Jacobsen, Bo
2014-01-01
forward models, can be more than an order of magnitude larger than the measurement uncertainty. We also found that the modeling error is strongly linked to the spatial variability of the assumed velocity field, i.e., the a priori velocity model.We discovered some general tools by which the modeling error...... synthetic ground-penetrating radar crosshole tomographic inverse problems. Ignoring the modeling error can lead to severe artifacts, which erroneously appear to be well resolved in the solution of the inverse problem. Accounting for the modeling error leads to a solution of the inverse problem consistent...
Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.
2015-01-01
The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.
International Nuclear Information System (INIS)
Guida, M.; Pulcini, G.
2013-01-01
This paper proposes the family of non-stationary inverse Gamma processes for modeling state-dependent deterioration processes with nonlinear trend. The proposed family of processes, which is based on the assumption that the “inverse” time process is Gamma, is mathematically more tractable than previously proposed state-dependent processes, because, unlike the previous models, the inverse Gamma process is a time-continuous and state-continuous model and does not require discretization of time and state. The conditional distribution of the deterioration growth over a generic time interval, the conditional distribution of the residual life and the residual reliability of the unit, given the current state, are provided. Point and interval estimation of the parameters which index the proposed process, as well as of several quantities of interest, are also discussed. Finally, the proposed model is applied to the wear process of the liners of some Diesel engines which was previously analyzed and proved to be a purely state-dependent process. The comparison of the inferential results obtained under the competitor models shows the ability of the Inverse Gamma process to adequately model the observed state-dependent wear process
Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain
Petrov, Petr V.; Newman, Gregory A.
2014-09-01
3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is
Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger
Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.
2013-01-01
In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569
Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain
2018-03-01
The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4
Rosas-Carbajal, M.; Linde, N.; Kalscheuer, T.; Vrugt, J.A.
2014-01-01
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space
On the modeling and inversion of seismic data
Stolk, C.C.
2000-01-01
In this thesis we investigate some mathematical questions related to the inversion of seismic data. In Chapter 2 we review results in the literature and give some new results on wave equations with coefficients that are just bounded and measurable. We show that these equations have unique
Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions
Kim, A.; Dreger, D.; Larsen, S.
2008-12-01
.25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.
Directory of Open Access Journals (Sweden)
YanBin Liu
2017-01-01
Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.
Directory of Open Access Journals (Sweden)
Lingen Chen
2012-01-01
Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.
An Inverse Problem Formulation Methodology for Stochastic Models
2010-05-02
form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after patients contact...manuscript derives from our interest in understanding the spread of infectious diseases in particular, nosocomial infections , in order to prevent major...given by the inverse of the parameter of the exponential distribution. A hand - hygiene policy applied to health care workers on isolated VRE colonized
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Inverse problems in the design, modeling and testing of engineering systems
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
GAO, J.; White, M. J.; Bieger, K.; Yen, H.; Arnold, J. G.
2017-12-01
Over the past 20 years, the Soil and Water Assessment Tool (SWAT) has been adopted by many researches to assess water quantity and quality in watersheds around the world. As the demand increases in facilitating model support, maintenance, and future development, the SWAT source code and data have undergone major modifications over the past few years. To make the model more flexible in terms of interactions of spatial units and processes occurring in watersheds, a completely revised version of SWAT (SWAT+) was developed to improve SWAT's ability in water resource modelling and management. There are only several applications of SWAT+ in large watersheds, however, no study pays attention to validate the new model at field level and assess its performance. To test the basic hydrologic function of SWAT+, it was implemented in five field cases across five states in the U.S. and compared the SWAT+ created results with that from the previous models at the same fields. Additionally, an automatic calibration tool was used to test which model is easier to be calibrated well in a limited number of parameter adjustments. The goal of the study was to evaluate the performance of SWAT+ in simulating stream flow on field level at different geographical locations. The results demonstrate that SWAT+ demonstrated similar performance with previous SWAT model, but the flexibility offered by SWAT+ via the connection of different spatial objects can result in a more accurate simulation of hydrological processes in spatial, especially for watershed with artificial facilities. Autocalibration shows that SWAT+ is much easier to obtain a satisfied result compared with the previous SWAT. Although many capabilities have already been enhanced in SWAT+, there exist inaccuracies in simulation. This insufficiency will be improved with advancements in scientific knowledge on hydrologic process in specific watersheds. Currently, SWAT+ is prerelease, and any errors are being addressed.
Inverse modeling of multicomponent reactive transport through single and dual porosity media
Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis
2008-06-01
Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.
Dehghan, A.; Mariani, Z.; Gascon, G.; Bélair, S.; Milbrandt, J.; Joe, P. I.; Crawford, R.; Melo, S.
2017-12-01
Environment and Climate Change Canada (ECCC) is implementing a 2.5-km resolution version of the Global Environmental Multiscale (GEM) model over the Canadian Arctic. Radiosonde observations were used to evaluate the numerical representation of surface-based temperature inversion which is a major feature in the Arctic region. Arctic surface-based inversions are often created by imbalance between radiative cooling processes at surface and warm air advection above. This can have a significant effect on vertical mixing of pollutants and moisture, and ultimately, on cloud formation. It is therefore important to correctly predict the existence of surface inversions along with their characteristics (i.e., intensity and depth). Previous climatological studies showed that the frequency and intensity of surface-based inversions are larger during colder months in the Arctic. Therefore, surface-based inversions were estimated using radiosonde measurements during winter (December 2015 to February 2016) at Iqaluit (Nunavut, Canada). Results show that the inversion intensity can exceed 10 K with depths as large as 1 km. Preliminary evaluation of GEM outputs reveals that the model tends to underestimate the intensity of near-surface inversions, and in some cases, the model failed to predict an inversion. This study presents the factors contributing to this bias including surface temperature and snow cover.
Lu, Xiao-Ping; Huang, Xiang-Jie; Ip, Wing-Huen; Hsia, Chi-Hao
2018-04-01
In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an important role in the lightcurve inversion process, although the shape variations of asteroids dominate the morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in numerical applications. Numerical simulations are implemented for the comparison of the Hapke model with the other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results show that the numerical models with simple function expressions can fit well with the synthetic lightcurves generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.
Inverting reflections using full-waveform inversion with inaccurate starting models
AlTheyab, Abdullah; Schuster, Gerard T.
2015-01-01
We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless
CSIR Research Space (South Africa)
Evers-King, H
2014-05-01
Full Text Available phytoplankton functional type descriptors within known confidence limits from remotely sensed data has become a major objective to extend the use of ocean colour data beyond chlorophyll a retrievals. Here, a new forward and inverse modelling structure...
Application of Lead Field Theory and Computerized Thorax Modeling for the ECG Inverse Problem
National Research Council Canada - National Science Library
Puurtinen, H
2001-01-01
.... In this study, one anatomically detailed 3D FDM model of the human thorax as a volume conductor was employed for forward and inverse estimation of ECG potentials and cardiac sources, respectively...
Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.
2017-08-01
Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.
An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling
Li, Weixuan; Lin, Guang; Zhang, Dongxiao
2014-02-01
The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect-except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functions is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
DEFF Research Database (Denmark)
Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.
2014-01-01
resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set...... and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey...
Directory of Open Access Journals (Sweden)
А. В. Кирюхин
2017-04-01
Full Text Available Numerical 3D model of Mutnovsky geothermal field (Dachny springs, which consist of 517 elements and partially takes into account double porosity, was developed in 1992-1993 using computer program TOUGH2. Calibration of the model was based on data from test yield of the wells and initial distribution of temperature and pressure in the reservoir. This model was used for techno-economic justification of power plant construction (Mutnovskaya GeoES, 2002. The model was recreated in the program PetraSim v.5.2, the calibration was carried out using additional data on production history before year 2006 and inversion iTOUGH2-EOS1 modeling. Comparison of reservoir parameters, estimated using inversion modeling, with previous parameter estimations (given in brackets showed the following: upflow rate of heat-transfer agent in natural conditions 80.5 (54.1 kg/s, heat flux enthalpy 1430 (1390 kJ/kg, reservoir permeability 27∙10–15-616∙10–15 (3∙10–15-90∙10–15 m2. Inversion modeling was also used to estimate reinjection rates, inflow of meteoric water in the central part of geothermal field and compressibility of reservoir rocks.
Large-scale inverse model analyses employing fast randomized data reduction
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
Soft-sensing Modeling Based on MLS-SVM Inversion for L-lysine Fermentation Processes
Directory of Open Access Journals (Sweden)
Bo Wang
2015-06-01
Full Text Available A modeling approach 63 based on multiple output variables least squares support vector machine (MLS-SVM inversion is presented by a combination of inverse system and support vector machine theory. Firstly, a dynamic system model is developed based on material balance relation of a fed-batch fermentation process, with which it is analyzed whether an inverse system exists or not, and into which characteristic information of a fermentation process is introduced to set up an extended inversion model. Secondly, an initial extended inversion model is developed off-line by the use of the fitting capacity of MLS-SVM; on-line correction is made by the use of a differential evolution (DE algorithm on the basis of deviation information. Finally, a combined pseudo-linear system is formed by means of a serial connection of a corrected extended inversion model behind the L-lysine fermentation processes; thereby crucial biochemical parameters of a fermentation process could be predicted on-line. The simulation experiment shows that this soft-sensing modeling method features very high prediction precision and can predict crucial biochemical parameters of L-lysine fermentation process very well.
Energy Technology Data Exchange (ETDEWEB)
Privette, J.L.
1994-12-31
The angular distribution of radiation scattered by the earth surface contains information on the structural and optical properties of the surface. Potentially, this information may be retrieved through the inversion of surface bidirectional reflectance distribution function (BRDF) models. This report details the limitations and efficient application of BRDF model inversions using data from ground- and satellite-based sensors. A turbid medium BRDF model, based on the discrete ordinates solution to the transport equation, was used to quantify the sensitivity of top-of-canopy reflectance to vegetation and soil parameters. Results were used to define parameter sets for inversions. Using synthetic reflectance values, the invertibility of the model was investigated for different optimization algorithms, surface and sampling conditions. Inversions were also conducted with field data from a ground-based radiometer. First, a soil BRDF model was inverted for different soil and sampling conditions. A condition-invariant solution was determined and used as the lower boundary condition in canopy model inversions. Finally, a scheme was developed to improve the speed and accuracy of inversions.
International Nuclear Information System (INIS)
Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K
2001-01-01
The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Inversion of CO and NOx emissions using the adjoint of the IMAGES model
Directory of Open Access Journals (Sweden)
J.-F. Müller
2005-01-01
Full Text Available We use ground-based observations of CO mixing ratios and vertical column abundances together with tropospheric NO2 columns from the GOME satellite instrument as constraints for improving the global annual emission estimates of CO and NOx for the year 1997. The agreement between concentrations calculated by the global 3-dimensional CTM IMAGES and the observations is optimized using the adjoint modelling technique, which allows to invert for CO and NOx fluxes simultaneously, taking their chemical interactions into account. Our analysis quantifies a total of 39 flux parameters, comprising anthropogenic and biomass burning sources over large continental regions, soil and lightning emissions of NOx, biogenic emissions of CO and non-methane hydrocarbons, as well as the deposition velocities of both CO and NOx. Comparison between observed, prior and optimized CO mixing ratios at NOAA/CMDL sites shows that the inversion performs well at the northern mid- and high latitudes, and that it is less efficient in the Southern Hemisphere, as expected due to the scarsity of measurements over this part of the globe. The inversion, moreover, brings the model much closer to the measured NO2 columns over all regions. Sensitivity tests show that anthropogenic sources exhibit weak sensitivity to changes of the a priori errors associated to the bottom-up inventory, whereas biomass burning sources are subject to a strong variability. Our best estimate for the 1997 global top-down CO source amounts to 2760 Tg CO. Anthropogenic emissions increase by 28%, in agreement with previous inverse modelling studies, suggesting that the present bottom-up inventories underestimate the anthropogenic CO emissions in the Northern Hemisphere. The magnitude of the optimized NOx global source decreases by 14% with respect to the prior, and amounts to 42.1 Tg N, out of which 22.8 Tg N are due to anthropogenic sources. The NOx emissions increase over Tropical regions, whereas they decrease
Duran, Lea; Jardani, Abderrahim; Fournier, Matthieu; Massei, Nicolas
2015-04-01
Karstic aquifers represent an important part of the water resources worldwide. Though they have been widely studied on many aspects, their geological and hydrogeological modeling is still complex. Geophysical methods can provide useful subsurface information for the characterization and mapping of karstic systems, especially when not accessible by speleology. The site investigated in this study is a sinkhole-spring system, with small diameter conduits that run within a chalk aquifer (Norville, in Upper Normandy, France). This site was investigated using several geophysical methods: electrical tomography, self-potential, mise-à-la-masse methods, and electromagnetic method (EM34). Coupling those results with boreholes data, a 3D geological model of the hydrogeological basin was established, including tectonic features as well as infiltration structures (sinkhole, covered dolines). The direction of the karstic conduits near the main sinkhole could be established, and the major fault was shown to be a hydraulic barrier. Also the average concentration of dolines on the basin could be estimated, as well as their depth. At last, several hypotheses could be made concerning the location of the main conduit network between the sinkhole and the spring, using previous hydrodynamic study of the site along with geophysical data. In order to validate the 3D geological model, an image-guided inversion of the apparent resistivity data was used. With this approach it is possible to use geological cross sections to constrain the inversion of apparent resistivity data, preserving both discontinuities and coherences in the inversion of the resistivity data. This method was used on the major fault, enabling to choose one geological interpretation over another (fault block structure near the fault, rather than important folding). The constrained inversion was also applied on covered dolines, to validate the interpretation of their shape and depth. Key words: Magnetic and electrical
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Energy Technology Data Exchange (ETDEWEB)
Passalia, Claudio; Alfano, Orlando M. [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina); Brandi, Rodolfo J., E-mail: rbrandi@santafe-conicet.gov.ar [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina)
2012-04-15
Highlights: Black-Right-Pointing-Pointer Indoor pollution control via photocatalytic reactors. Black-Right-Pointing-Pointer Scaling-up methodology based on previously determined mechanistic kinetics. Black-Right-Pointing-Pointer Radiation interchange model between catalytic walls using configuration factors. Black-Right-Pointing-Pointer Modeling and experimental validation of a complex geometry photocatalytic reactor. - Abstract: A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO{sub 2} as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%.
Inverse problem for the mean-field monomer-dimer model with attractive interaction
International Nuclear Information System (INIS)
Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia
2017-01-01
The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion. (paper)
Isomorphs in the phase diagram of a model liquid without inverse power law repulsion
DEFF Research Database (Denmark)
Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.
2012-01-01
scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
The Importance of Business Model Factors for Cloud Computing Adoption: Role of Previous Experiences
Directory of Open Access Journals (Sweden)
Bogataj Habjan Kristina
2017-08-01
Full Text Available Background and Purpose: Bringing several opportunities for more effective and efficient IT governance and service exploitation, cloud computing is expected to impact the European and global economies significantly. Market data show that despite many advantages and promised benefits the adoption of cloud computing is not as fast and widespread as foreseen. This situation shows the need for further exploration of the potentials of cloud computing and its implementation on the market. The purpose of this research was to identify individual business model factors with the highest impact on cloud computing adoption. In addition, the aim was to identify the differences in opinion regarding the importance of business model factors on cloud computing adoption according to companies’ previous experiences with cloud computing services.
Modeling and inverse feedforward control for conducting polymer actuators with hysteresis
International Nuclear Information System (INIS)
Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo
2014-01-01
Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)
Directory of Open Access Journals (Sweden)
Pablo D. Mininni
2012-01-01
Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.
Krissansen-Totton, Joshua; Catling, David C
2017-05-22
The relative influences of tectonics, continental weathering and seafloor weathering in controlling the geological carbon cycle are unknown. Here we develop a new carbon cycle model that explicitly captures the kinetics of seafloor weathering to investigate carbon fluxes and the evolution of atmospheric CO 2 and ocean pH since 100 Myr ago. We compare model outputs to proxy data, and rigorously constrain model parameters using Bayesian inverse methods. Assuming our forward model is an accurate representation of the carbon cycle, to fit proxies the temperature dependence of continental weathering must be weaker than commonly assumed. We find that 15-31 °C (1σ) surface warming is required to double the continental weathering flux, versus 3-10 °C in previous work. In addition, continental weatherability has increased 1.7-3.3 times since 100 Myr ago, demanding explanation by uplift and sea-level changes. The average Earth system climate sensitivity is K (1σ) per CO 2 doubling, which is notably higher than fast-feedback estimates. These conclusions are robust to assumptions about outgassing, modern fluxes and seafloor weathering kinetics.
On the feasibility of inversion methods based on models of urban sky glow
International Nuclear Information System (INIS)
Kolláth, Z.; Kránicz, B.
2014-01-01
Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures. - Highlights: • A method of urban sky glow inversion is introduced based on Monte-Carlo calculations. • Imaging photometry can provide enough information for basic inversions. • The inversion technique can be used to construct maps of light pollution. • The inclusion of multiple scattering in the models plays an important role
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
Directory of Open Access Journals (Sweden)
P. Bergamaschi
2005-01-01
Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
A model reduction approach to numerical inversion for a parabolic partial differential equation
International Nuclear Information System (INIS)
Borcea, Liliana; Druskin, Vladimir; Zaslavsky, Mikhail; Mamonov, Alexander V
2014-01-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments. (paper)
A model reduction approach to numerical inversion for a parabolic partial differential equation
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
DEFF Research Database (Denmark)
Gillet, N.; Jault, D.; Finlay, Chris
2013-01-01
Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core-mantle boundary together with its associated model covariances. However, most currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....
DEFF Research Database (Denmark)
Gillet, Nicolas; Jault, D.; Finlay, Chris
2013-01-01
Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core mantle boundary together with its associated model covariances. However, all currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....
Inverse modeling and animation of growing single-stemmed trees at interactive rates
S. Rudnick; L. Linsen; E.G. McPherson
2007-01-01
For city planning purposes, animations of growing trees of several species can be used to deduce which species may best fit a particular environment. The models used for the animation must conform to real measured data. We present an approach for inverse modeling to fit global growth parameters. The model comprises local production rules, which are iteratively and...
DEFF Research Database (Denmark)
Tordrup, Karl Woldum; Poulsen, Uffe Vestergaard; Nielsen, Carsten
2017-01-01
We use a modular approach to develop a TRNSYS model for a district heating facility by applying inverse modelling to one year of operational data for individual components. We assemble the components into a single TRNSYS model for the full system using the accumulation tanks as a central hub conn...
Identification of Loss-of-Coolant Accidents in LWRs by Inverse Models
International Nuclear Information System (INIS)
Cholewa, Wojciech; Frid, Wiktor; Bednarski, Marcin
2004-01-01
This paper describes a novel diagnostic method based on inverse models that could be applied to identification of transients and accidents in nuclear power plants. In particular, it is shown that such models could be successfully applied to identification of loss-of-coolant accidents (LOCAs). This is demonstrated for LOCA scenarios for a boiling water reactor. Two classes of inverse models are discussed: local models valid only in a selected neighborhood of an unknown element in the data set, representing a state of a considered object, and global models, in the form of partially unilateral models, valid over the whole learning data set. An interesting and useful property of local inverse models is that they can be considered as example-based models, i.e., models that are spanned on particular sets of pattern data. It is concluded that the optimal diagnostic method should combine the advantages of both models, i.e., the high quality of results obtained from a local inverse model and the information about the confidence interval for the expected output provided by a partially unilateral model
DEFF Research Database (Denmark)
Yoon, Daeung; Zhdanov, Michael; Cai, Hongzhu
2015-01-01
One of the major problems in the modeling and inversion of marine controlled source electromagnetic (MCSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward modeling algorithms...
International Nuclear Information System (INIS)
McMurray, J. S.; Williams, C. C.
1998-01-01
Scanning Capacitance Microscopy (SCM) is capable of providing two-dimensional information about dopant and carrier concentrations in semiconducting devices. This information can be used to calibrate models used in the simulation of these devices prior to manufacturing and to develop and optimize the manufacturing processes. To provide information for future generations of devices, ultra-high spatial accuracy (<10 nm) will be required. One method, which potentially provides a means to obtain these goals, is inverse modeling of SCM data. Current semiconducting devices have large dopant gradients. As a consequence, the capacitance probe signal represents an average over the local dopant gradient. Conversion of the SCM signal to dopant density has previously been accomplished with a physical model which assumes that no dopant gradient exists in the sampling area of the tip. The conversion of data using this model produces results for abrupt profiles which do not have adequate resolution and accuracy. A new inverse model and iterative method has been developed to obtain higher resolution and accuracy from the same SCM data. This model has been used to simulate the capacitance signal obtained from one and two-dimensional ideal abrupt profiles. This simulated data has been input to a new iterative conversion algorithm, which has recovered the original profiles in both one and two dimensions. In addition, it is found that the shape of the tip can significantly impact resolution. Currently SCM tips are found to degrade very rapidly. Initially the apex of the tip is approximately hemispherical, but quickly becomes flat. This flat region often has a radius of about the original hemispherical radius. This change in geometry causes the silicon directly under the disk to be sampled with approximately equal weight. In contrast, a hemispherical geometry samples most strongly the silicon centered under the SCM tip and falls off quickly with distance from the tip's apex. Simulation
Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions
Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.
2011-12-01
Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Heeding the waveform inversion nonlinearity by unwrapping the model and data
Alkhalifah, Tariq Ali
2012-01-01
Unlike traveltime inversion, waveform inversion provides relatively higher-resolution inverted models. This feature, however, comes at the cost of introducing complex nonlinearity to the inversion operator complicating the convergence process. We use unwrapped-phase-based objective functions to reduce such nonlinearity in a domain in which the high-frequency component is given by the traveltime inversion. Such information is packaged in a frequency-dependent attribute (or traveltime) that can be easily manipulated at different frequencies. It unwraps the phase of the wavefield yielding far less nonlinearity in the objective function than those experienced with the conventional misfit objective function, and yet it still holds most of the critical waveform information in its frequency dependency. However, it suffers from nonlinearity introduced by the model (or reflectivity), as events interact with each other (something like cross talk). This stems from the sinusoidal nature of the band-limited reflectivity model. Unwrapping the phase for such a model can mitigate this nonlinearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced nonlinearity and, thus, make the inversion more convergent. Simple examples are used to highlight such features.
Inverse Problems in Geosciences: Modelling the Rock Properties of an Oil Reservoir
DEFF Research Database (Denmark)
Lange, Katrine
. We have developed and implemented the Frequency Matching method that uses the closed form expression of the a priori probability density function to formulate an inverse problem and compute the maximum a posteriori solution to it. Other methods for computing models that simultaneously fit data...... of the subsurface of the reservoirs. Hence the focus of this work has been on acquiring models of spatial parameters describing rock properties of the subsurface using geostatistical a priori knowledge and available geophysical data. Such models are solutions to often severely under-determined, inverse problems...
pyGIMLi: An open-source library for modelling and inversion in geophysics
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time
The inverse niche model for food webs with parasites
Warren, Christopher P.; Pascual, Mercedes; Lafferty, Kevin D.; Kuris, Armand M.
2010-01-01
Although parasites represent an important component of ecosystems, few field and theoretical studies have addressed the structure of parasites in food webs. We evaluate the structure of parasitic links in an extensive salt marsh food web, with a new model distinguishing parasitic links from non-parasitic links among free-living species. The proposed model is an extension of the niche model for food web structure, motivated by the potential role of size (and related metabolic rates) in structuring food webs. The proposed extension captures several properties observed in the data, including patterns of clustering and nestedness, better than does a random model. By relaxing specific assumptions, we demonstrate that two essential elements of the proposed model are the similarity of a parasite's hosts and the increasing degree of parasite specialization, along a one-dimensional niche axis. Thus, inverting one of the basic rules of the original model, the one determining consumers' generality appears critical. Our results support the role of size as one of the organizing principles underlying niche space and food web topology. They also strengthen the evidence for the non-random structure of parasitic links in food webs and open the door to addressing questions concerning the consequences and origins of this structure.
Regime transitions in near-surface temperature inversions : a conceptual model
van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.
2017-01-01
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes
Data and modelling requirements for CO2 inversions using high-frequency data
International Nuclear Information System (INIS)
Law, R.M.; Rayner, P.J.; Steele, L.P.; Enting, I.G.
2003-01-01
We explore the future possibilities for CO 2 source estimation from atmospheric concentration data by performing synthetic data experiments. Synthetic data are used to test seasonal CO 2 inversions using high-frequency data. Monthly CO 2 sources over the Australian region are calculated for inversions with data at 4-hourly frequency and averaged over 1 d, 2.5 d, 5 d, 12.17 d and 1 month. The inversion quality, as determined by bias and uncertainty, is degraded when averaging over longer periods. This shows the value of the strong but relatively short-lived signals present in high-frequency records that are removed in averaged and particularly filtered records. Sensitivity tests are performed in which the synthetic data are 'corrupted' to simulate systematic measurement errors such as intercalibration differences or to simulate transport modelling errors. The inversion is also used to estimate the effect of calibration offsets between sites. We find that at short data-averaging periods the inversion is reasonably robust to measurement-type errors. For transport-type errors, the best results are achieved for synoptic (2-5 d) timescales. Overall the tests indicate that improved source estimates should be possible by incorporating continuous measurements into CO 2 inversions
Fukuda, J.; Johnson, K. M.
2009-12-01
Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress
Micromechanical modeling and inverse identification of damage using cohesive approaches
International Nuclear Information System (INIS)
Blal, Nawfal
2013-01-01
In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr
Directory of Open Access Journals (Sweden)
A.A. Fahmy
2013-12-01
Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.
Inverse mathematical modelling and identification in metal powder compaction process
International Nuclear Information System (INIS)
Gakwaya, A.; Hrairi, M.; Guillot, M.
2000-01-01
An online assessment of the quality of advanced integrated computer aided manufacturing systems require the knowledge of accurate and reliable non-linear constitutive material behavior. This paper is concerned with material parameter identification based on experimental data for which non uniform distribution of stresses and deformation within the volume of the specimen is considered. Both geometric and material non linearities as well interfacial frictional contact are taken into account during the simulation. Within the framework of finite deformation theory, a multisurface multiplicative plasticity model for metal powder compaction process is presented. The model is seen to involve several parameters which are not always activated by a single state variable even though it may be technologically important in assessing the final product quality and manufacturing performance. The resulting expressions are presented in spatial setting and gradient based descent method utilizing the modified Levenberg-Marquardt scheme is used for the minimization of least square functional so as to obtain the best agreement between relevant experimental data and simulated data in a specified energy norm. The identification of a subset of material parameters of the cap model for stainless steel powder compaction is performed. The obtained parameters are validated through a simulation of an industrial part manufacturing case. A very good agreement between simulated final density and measured density is obtained thus demonstrating the practical usefulness of the proposed approach. (author)
Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data
Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.
2011-12-01
M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
Model study of the compact gravity reconstruction; Juryoku inversion `CGR` no model kento
Energy Technology Data Exchange (ETDEWEB)
Ishii, Y; Muraoka, A [Sogo Geophysical Exploration Co. Ltd., Tokyo (Japan)
1996-05-01
An examination was made on gravity inversion using a compact gravity reconstruction (CGR) method in gravity tomography analysis. In a model analysis, an analytical region of 100m{times}50m was divided into cells of 10m{times}10m, on the assumption that two density anomalous bodies with a density difference of 1.0g/cm{sup 3} existed with one shallow and the other deep density distribution. The result of the analysis revealed that, in a linear analysis by a general inverse matrix, blurs and blotting were plenty with a tendency of making gravity anomaly attributable to an anomalous distribution of shallow density; that CGR provided a large effect in making a clear contrast of an anomalous part; that, where structures of shallow and deep density anomalies existed, the analysis by CGR was inferior in the restoration of a deep structure with errors enlarged; that, if a gravity traverse was taken long compared with the distribution depth of density anomalies, the analytical precision of a deep part was improved; that an analytical convergence was better with the restriction of density difference given on the large side than on the small side; and so on. 3 refs., 10 figs.
Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S
2013-01-01
Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...
Inverse geothermal modelling applied to Danish sedimentary basins
DEFF Research Database (Denmark)
Poulsen, Soren E.; Balling, Niels; Bording, Thue S.
2017-01-01
. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature...... gradients to depths of 2000-3000 m are generally around 25-30. degrees C km(-1), locally up to about 35. degrees C km(-1). Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50. degrees C, at 1000-1500 m depth, to ca. 80-110. degrees C, at 2500-3500 m, however...
Theoretical study on the inverse modeling of deep body temperature measurement
International Nuclear Information System (INIS)
Huang, Ming; Chen, Wenxi
2012-01-01
We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)
Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code
International Nuclear Information System (INIS)
He, Tongming Tony
2003-01-01
Inaccurate dose calculations and limitations of optimization algorithms in inverse planning introduce systematic and convergence errors to treatment plans. This work was to implement a Monte Carlo based inverse planning model for clinical IMRT aiming to minimize the aforementioned errors. The strategy was to precalculate the dose matrices of beamlets in a Monte Carlo based method followed by the optimization of beamlet intensities. The MCNP 4B (Monte Carlo N-Particle version 4B) code was modified to implement selective particle transport and dose tallying in voxels and efficient estimation of statistical uncertainties. The resulting performance gain was over eleven thousand times. Due to concurrent calculation of multiple beamlets of individual ports, hundreds of beamlets in an IMRT plan could be calculated within a practical length of time. A finite-sized point source model provided a simple and accurate modeling of treatment beams. The dose matrix calculations were validated through measurements in phantoms. Agreements were better than 1.5% or 0.2 cm. The beamlet intensities were optimized using a parallel platform based optimization algorithm that was capable of escape from local minima and preventing premature convergence. The Monte Carlo based inverse planning model was applied to clinical cases. The feasibility and capability of Monte Carlo based inverse planning for clinical IMRT was demonstrated. Systematic errors in treatment plans of a commercial inverse planning system were assessed in comparison with the Monte Carlo based calculations. Discrepancies in tumor doses and critical structure doses were up to 12% and 17%, respectively. The clinical importance of Monte Carlo based inverse planning for IMRT was demonstrated
Inverse modelling of thermal histories with apatite fission tracks
International Nuclear Information System (INIS)
El Lmrani, A.; Zine El Abidine, H.; Limouri, M.; Essaid, A.; POupeau, G.
1998-01-01
The problem of modelling thermal histories lies in the exploration of a time-temperature space, usually so broad, in order to identify the optimal paths. For overcoming this difficulty, many approaches were proposed, using linear and non-linear optimisation algorithms. Generally, these approaches do not take into account the experimental data (fission track age [FTA] and fission track length distribution [FTLD]) to better aim the search strategy. The present work shows that experimental data hold some precious information, for which it should be known how to extract it. In fact, it allows us to tighten the time-temperature space of search, supposed to contain the optimal solutions. A genetic algorithm is also used in this work to perform the search for these optimal solutions. (authors)
Application of random seismic inversion method based on tectonic model in thin sand body research
Dianju, W.; Jianghai, L.; Qingkai, F.
2017-12-01
The oil and gas exploitation at Songliao Basin, Northeast China have already progressed to the period with high water production. The previous detailed reservoir description that based on seismic image, sediment core, borehole logging has great limitations in small scale structural interpretation and thin sand body characterization. Thus, precise guidance for petroleum exploration is badly in need of a more advanced method. To do so, we derived the method of random seismic inversion constrained by tectonic model.It can effectively improve the depicting ability of thin sand bodies, combining numerical simulation techniques, which can credibly reducing the blindness of reservoir analysis from the whole to the local and from the macroscopic to the microscopic. At the same time, this can reduce the limitations of the study under the constraints of different geological conditions of the reservoir, accomplish probably the exact estimation for the effective reservoir. Based on the research, this paper has optimized the regional effective reservoir evaluation and the productive location adjustment of applicability, combined with the practical exploration and development in Aonan oil field.
National Research Council Canada - National Science Library
Hatch, Andrew G; Smith, Ralph C; De, Tathagata; Salapaka, Murti V
2005-01-01
.... In this paper, we illustrate the construction of inverse filters, based on homogenized energy models, which can be used to approximately linearize the piezoceramic transducer behavior for linear...
Inverse modeling of cloud-aerosol interactions -- Part 1: Detailed response surface analysis
Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Gorea, D.; Sooroshian, A.
2011-01-01
New methodologies are required to probe the sensitivity of parameters describing cloud droplet activation. This paper presents an inverse modeling-based method for exploring cloud-aerosol interactions via response surfaces. The objective function, containing the difference between the measured and
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking
Koopman, Hubertus F.J.M.; Grootenboer, H.J.; de Jongh, Henk J.; Huijing, P.A.J.B.M.; de Vries, J.
1995-01-01
Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constrains will always occur due to measuring errors and deviations of the segments
Digital Repository Service at National Institute of Oceanography (India)
Tripathy, G.R.; Das, Anirban.
used methods, the Least Square Regression (LSR) and Inverse Modeling (IM), to determine the contributions of (i) solutes from different sources to global river water, and (ii) various rocks to a glacial till. The purpose of this exercise is to compare...
Justiniano, A.; Jaya, Y.; Diephuis, G.; Veenhof, R.; Pringle, T.
2015-01-01
The objective of the study is to characterise the Triassic massive stacked sandstone deposits of the Main Buntsandstein Subgroup at Block Q16 located in the West Netherlands Basin. The characterisation was carried out through combining rock-physics modelling and seismic inversion techniques. The
Evaluation of inverse modeling techniques for pinpointing water leakages at building constructions
Schijndel, van A.W.M.
2015-01-01
The location and nature of the moisture leakages are sometimes difficult to detect. Moreover, the relation between observed inside surface moisture patterns and where the moisture enters the construction is often not clear. The objective of this paper is to investigate inverse modeling techniques as
A Systematic and Numerically Efficient Procedure for Stable Dynamic Model Inversion of LTI Systems
George, K.; Verhaegen, M.; Scherpen, J.M.A.
1999-01-01
Output tracking via the novel Stable Dynamic model Inversion (SDI) technique, applicable to non-minimum phase systems, and which naturally takes into account the presence of noise in target time histories, is considered here. We are motivated by the typical need to replicate time signals in the
Inverse problem theory methods for data fitting and model parameter estimation
Tarantola, A
2002-01-01
Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals wi
Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.
2018-01-01
To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.
Double point source W-phase inversion: Real-time implementation and automated model selection
Nealy, Jennifer; Hayes, Gavin
2015-01-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.
Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model
International Nuclear Information System (INIS)
Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.
2007-01-01
This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients
GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling
International Nuclear Information System (INIS)
Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas
2015-01-01
Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and
Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration
Doherty, John E.; Hunt, Randall J.
2010-01-01
Highly parameterized groundwater models can create calibration difficulties. Regularized inversion-the combined use of large numbers of parameters with mathematical approaches for stable parameter estimation-is becoming a common approach to address these difficulties and enhance the transfer of information contained in field measurements to parameters used to model that system. Though commonly used in other industries, regularized inversion is somewhat imperfectly understood in the groundwater field. There is concern that this unfamiliarity can lead to underuse, and misuse, of the methodology. This document is constructed to facilitate the appropriate use of regularized inversion for calibrating highly parameterized groundwater models. The presentation is directed at an intermediate- to advanced-level modeler, and it focuses on the PEST software suite-a frequently used tool for highly parameterized model calibration and one that is widely supported by commercial graphical user interfaces. A brief overview of the regularized inversion approach is provided, and techniques for mathematical regularization offered by PEST are outlined, including Tikhonov, subspace, and hybrid schemes. Guidelines for applying regularized inversion techniques are presented after a logical progression of steps for building suitable PEST input. The discussion starts with use of pilot points as a parameterization device and processing/grouping observations to form multicomponent objective functions. A description of potential parameter solution methodologies and resources available through the PEST software and its supporting utility programs follows. Directing the parameter-estimation process through PEST control variables is then discussed, including guidance for monitoring and optimizing the performance of PEST. Comprehensive listings of PEST control variables, and of the roles performed by PEST utility support programs, are presented in the appendixes.
Dettmer, Jan; Dosso, Stan E
2012-10-01
This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.
Effect of recent observations on Asian CO2 flux estimates by transport model inversions
International Nuclear Information System (INIS)
Maksyutov, Shamil; Patra, Prabir K.; Machida, Toshinobu; Mukai, Hitoshi; Nakazawa, Takakiyo; Inoue, Gen
2003-01-01
We use an inverse model to evaluate the effects of the recent CO 2 observations over Asia on estimates of regional CO 2 sources and sinks. Global CO 2 flux distribution is evaluated using several atmospheric transport models, atmospheric CO 2 observations and a 'time-independent' inversion procedure adopted in the basic synthesis inversion by the Transcom-3 inverse model intercomparison project. In our analysis we include airborne and tower observations in Siberia, continuous monitoring and airborne observations over Japan, and airborne monitoring on regular flights on Tokyo-Sydney route. The inclusion of the new data reduces the uncertainty of the estimated regional CO 2 fluxes for Boreal Asia (Siberia), Temperate Asia and South-East Asia. The largest effect is observed for the emission/sink estimate for the Boreal Asia region, where introducing the observations in Siberia reduces the source uncertainty by almost half. It also produces an uncertainty reduction for Boreal North America. Addition of the Siberian airborne observations leads to projecting extra sinks in Boreal Asia of 0.2 Pg C/yr, and a smaller change for Europe. The Tokyo-Sydney observations reduce and constrain the Southeast Asian source
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Directory of Open Access Journals (Sweden)
S. Henne
2016-03-01
Full Text Available Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4 from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr−1 for the year 2013 (1σ uncertainty. This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr−1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter, and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %, waste handling (15 % and natural gas distribution and combustion (6 %. The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr−1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr−1 implied by the
New Ages for Gorgona Island, Colombia: Implications for Previous Petrogenetic and Tectonic Models
Serrano Duran, L.; Lopez Martinez, M.; Ferrari, L.
2007-05-01
reliable plateau and/or isochron ages. Only one basaltic sample, located in the western coast, yielded an age comparable with those previously reported in the literature. For two basalts intercalated with komatiites and a gabbro exposed in the north-eastern coast of the island we obtained younger ages, similar to those reported for some mafic and ultramafic rocks along the Pacific coast of Colombia. The two sets of ages for the ultramafic suite of Gorgona also correspond to different petrologic types. The depleted rocks in the eastern coast are younger than the enriched basalts and picrites located in the southern and western part of the island with ages around 90 Ma, suggesting a more complex tectonic evolution with the accretion of at least two different blocks. This eventually questions the "single plume" model for the formation of the Gorgona Island plateau.
Magnetotelluric Forward Modeling and Inversion In 3 -d Conductivity Model of The Vesuvio Volcano
Spichak, V.; Patella, D.
Three-dimensional forward modeling of MT fields in the simplified conductivity model of the Vesuvio volcano (T=0.1, 1, 10, 100 and 1000s) indicates that the best image of the magma chamber could be obtained basing on the pseudo-section of the determinant apparent resitivity phase as well as on the real and imaginary components of the electric field. Another important result of the studies conducted is that it was demonstrated the principal opportunity of detection and contouring the magma chamber by 2-D pseudo-sections constructed basing on the data transforms mentioned above. Bayesian three-dimensional inversion of synthetic MT data in the volcano model indicates that it is possible to determine the depth and vertical size of the magma chamber, however, simultaneous detection of the conductivity distribution inside the domain of search is of pure quality. However, if the geometrical parameters of the magma chamber are determined in advance, it becomes quite realistic to find out the conductivity distribution inside. The accuracy of such estimation strongly depends on the uncertainty in its prior value: the more narrow is the prior conductivity palette the closer could be the posterior conductivity distribution to the true one.
Modelling Inverse Gaussian Data with Censored Response Values: EM versus MCMC
Directory of Open Access Journals (Sweden)
R. S. Sparks
2011-01-01
Full Text Available Low detection limits are common in measure environmental variables. Building models using data containing low or high detection limits without adjusting for the censoring produces biased models. This paper offers approaches to estimate an inverse Gaussian distribution when some of the data used are censored because of low or high detection limits. Adjustments for the censoring can be made if there is between 2% and 20% censoring using either the EM algorithm or MCMC. This paper compares these approaches.
Inversion of the Jacobi-Porstendörfer Room Model for the Radon Progeny
Czech Academy of Sciences Publication Activity Database
Thomas, J.; Jílek, K.; Brabec, Marek
2010-01-01
Roč. 55, č. 4 (2010), s. 433-437 ISSN 0029-5922 Institutional research plan: CEZ:AV0Z10300504 Keywords : Jacobi room model * inversion and invariants of the model * unattached radon daughters * attachment rate * deposition rate Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.321, year: 2010 http://www.nukleonika.pl/www/back/full/vol55_2010/v55n4p433f.pdf
Efficient non-negative constrained model-based inversion in optoacoustic tomography
International Nuclear Information System (INIS)
Ding, Lu; Luís Deán-Ben, X; Lutzweiler, Christian; Razansky, Daniel; Ntziachristos, Vasilis
2015-01-01
The inversion accuracy in optoacoustic tomography depends on a number of parameters, including the number of detectors employed, discrete sampling issues or imperfectness of the forward model. These parameters result in ambiguities on the reconstructed image. A common ambiguity is the appearance of negative values, which have no physical meaning since optical absorption can only be higher or equal than zero. We investigate herein algorithms that impose non-negative constraints in model-based optoacoustic inversion. Several state-of-the-art non-negative constrained algorithms are analyzed. Furthermore, an algorithm based on the conjugate gradient method is introduced in this work. We are particularly interested in investigating whether positive restrictions lead to accurate solutions or drive the appearance of errors and artifacts. It is shown that the computational performance of non-negative constrained inversion is higher for the introduced algorithm than for the other algorithms, while yielding equivalent results. The experimental performance of this inversion procedure is then tested in phantoms and small animals, showing an improvement in image quality and quantitativeness with respect to the unconstrained approach. The study performed validates the use of non-negative constraints for improving image accuracy compared to unconstrained methods, while maintaining computational efficiency. (paper)
Directory of Open Access Journals (Sweden)
Warsa
2014-07-01
Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.
Energy Technology Data Exchange (ETDEWEB)
Garreta, Vincent; Guiot, Joel; Hely, Christelle [CEREGE, UMR 6635, CNRS, Universite Aix-Marseille, Europole de l' Arbois, Aix-en-Provence (France); Miller, Paul A.; Sykes, Martin T. [Lund University, Department of Physical Geography and Ecosystems Analysis, Geobiosphere Science Centre, Lund (Sweden); Brewer, Simon [Universite de Liege, Institut d' Astrophysique et de Geophysique, Liege (Belgium); Litt, Thomas [University of Bonn, Paleontological Institute, Bonn (Germany)
2010-08-15
Climate reconstructions from data sensitive to past climates provide estimates of what these climates were like. Comparing these reconstructions with simulations from climate models allows to validate the models used for future climate prediction. It has been shown that for fossil pollen data, gaining estimates by inverting a vegetation model allows inclusion of past changes in carbon dioxide values. As a new generation of dynamic vegetation model is available we have developed an inversion method for one model, LPJ-GUESS. When this novel method is used with high-resolution sediment it allows us to bypass the classic assumptions of (1) climate and pollen independence between samples and (2) equilibrium between the vegetation, represented as pollen, and climate. Our dynamic inversion method is based on a statistical model to describe the links among climate, simulated vegetation and pollen samples. The inversion is realised thanks to a particle filter algorithm. We perform a validation on 30 modern European sites and then apply the method to the sediment core of Meerfelder Maar (Germany), which covers the Holocene at a temporal resolution of approximately one sample per 30 years. We demonstrate that reconstructed temperatures are constrained. The reconstructed precipitation is less well constrained, due to the dimension considered (one precipitation by season), and the low sensitivity of LPJ-GUESS to precipitation changes. (orig.)
Inverse modeling as a step in the calibration of the LBL-USGS site-scale model of Yucca Mountain
International Nuclear Information System (INIS)
Finsterle, S.; Bodvarsson, G.S.; Chen, G.
1995-05-01
Calibration of the LBL-USGS site-scale model of Yucca Mountain is initiated. Inverse modeling techniques are used to match the results of simplified submodels to the observed pressure, saturation, and temperature data. Hydrologic and thermal parameters are determined and compared to the values obtained from laboratory measurements and conventional field test analysis
Three-dimensional gravity modeling and focusing inversion using rectangular meshes.
Energy Technology Data Exchange (ETDEWEB)
Commer, M.
2011-03-01
Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies, owing to their flexibility in constructing complex models. The straightforward handling of cubic cells in gravity inversion algorithms allows for a flexible imposition of model regularization constraints, which are generally essential in the inversion of static potential field data. The first part of this paper provides a review of commonly used expressions for calculating the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical for implementation. In the second part, a weighting scheme for resolution enhancement at depth is presented. Modelling the earth using highly digitized meshes, depth weighting schemes are typically applied to the model objective functional, subject to minimizing the data misfit. The scheme proposed here involves a non-linear conjugate gradient inversion scheme with a weighting function applied to the non-linear conjugate gradient scheme's gradient vector of the objective functional. The low depth resolution due to the quick decay of the gravity kernel functions is counteracted by suppressing the search directions in the parameter space that would lead to near-surface concentrations of gravity anomalies. Further, a density parameter transformation function enabling the imposition of lower and upper bounding constraints is employed. Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the transform space can recover geologically meaningful models requiring a minimum of prior information and user interaction.
Full-model wavenumber inversion: An emphasis on the appropriate wavenumber continuation
Alkhalifah, Tariq Ali
2016-04-06
A model of the earth can be described using a Fourier basis represented by its wavenumber content. In full-waveform inversion (FWI), the wavenumber description of the model is natural because our Born-approximation-based velocity updates are made up of wavefields. Our objective in FWI is to access all the model wavenumbers available in our limited aperture and bandwidth recorded data that are not yet accurately present in the initial velocity model. To invert for those model wavenumbers, we need to locate their imprint in the data. Thus, I review the relation between the model wavenumber buildup and the inversion process. Specifically, I emphasize a focus on the model wavenumber components and identified their individual influence on the data. Missing the energy for a single vertical low-model wavenumber from the residual between the true Marmousi model and some initial linearly increasing velocity model produced a worse least-squares fit to the data than the initial model itself, in which all the residual model wavenumbers were missing. This stern realization validated the importance of wavenumber continuation, specifically starting from the low-model wavenumbers, to higher (resolution) wavenumbers, especially those attained in an order dictated by the scattering angle filter. A numerical Marmousi example determined the important role that the scattering angle filter played in managing the wavenumber continuation from low to high. An application on the SEG2014 blind test data set with frequencies lower than 7 Hz muted out further validated the versatility of the scattering angle filtering.
Full-model wavenumber inversion: An emphasis on the appropriate wavenumber continuation
Alkhalifah, Tariq Ali
2016-01-01
A model of the earth can be described using a Fourier basis represented by its wavenumber content. In full-waveform inversion (FWI), the wavenumber description of the model is natural because our Born-approximation-based velocity updates are made up of wavefields. Our objective in FWI is to access all the model wavenumbers available in our limited aperture and bandwidth recorded data that are not yet accurately present in the initial velocity model. To invert for those model wavenumbers, we need to locate their imprint in the data. Thus, I review the relation between the model wavenumber buildup and the inversion process. Specifically, I emphasize a focus on the model wavenumber components and identified their individual influence on the data. Missing the energy for a single vertical low-model wavenumber from the residual between the true Marmousi model and some initial linearly increasing velocity model produced a worse least-squares fit to the data than the initial model itself, in which all the residual model wavenumbers were missing. This stern realization validated the importance of wavenumber continuation, specifically starting from the low-model wavenumbers, to higher (resolution) wavenumbers, especially those attained in an order dictated by the scattering angle filter. A numerical Marmousi example determined the important role that the scattering angle filter played in managing the wavenumber continuation from low to high. An application on the SEG2014 blind test data set with frequencies lower than 7 Hz muted out further validated the versatility of the scattering angle filtering.
DEFF Research Database (Denmark)
Herckenrath, Daan; Fiandaca, G.; Auken, Esben
2013-01-01
hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM) and electrical resistivity tomography (ERT) data. In a sequential hydrogeophysical inversion (SHI) a groundwater model is calibrated with geophysical data by coupling groundwater model parameters...... with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI). In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical...
DEFF Research Database (Denmark)
Herckenrath, Daan; Fiandaca, G.; Auken, Esben
2013-01-01
with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI). In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical...... hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM) and electrical resistivity tomography (ERT) data. In a sequential hydrogeophysical inversion (SHI) a groundwater model is calibrated with geophysical data by coupling groundwater model parameters...
Inverse Optimization: A New Perspective on the Black-Litterman Model
Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.
2014-01-01
The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views. PMID:25382873
Inverse Optimization: A New Perspective on the Black-Litterman Model.
Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch
2012-12-11
The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct "BL"-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new "BL"-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views.
Energy Technology Data Exchange (ETDEWEB)
Lehikoinen, A.; Huttunen, J.M.J.; Finsterle, S.; Kowalsky, M.B.; Kaipio, J.P.
2009-08-01
We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques, that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system, which involves the construction of a stochastic evolution model and an observation model. The observation model used in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate - and therefore computationally efficient - observation and evolution models in the Bayesian filtering. We consider a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than a frame-by-frame imaging approach.
Research Note: Full-waveform inversion of the unwrapped phase of a model
Alkhalifah, Tariq Ali
2013-12-06
Reflections in seismic data induce serious non-linearity in the objective function of full- waveform inversion. Thus, without a good initial velocity model that can produce reflections within a half cycle of the frequency used in the inversion, convergence to a solution becomes difficult. As a result, we tend to invert for refracted events and damp reflections in data. Reflection induced non-linearity stems from cycle skipping between the imprint of the true model in observed data and the predicted model in synthesized data. Inverting for the phase of the model allows us to address this problem by avoiding the source of non-linearity, the phase wrapping phenomena. Most of the information related to the location (or depths) of interfaces is embedded in the phase component of a model, mainly influenced by the background model, while the velocity-contrast information (responsible for the reflection energy) is mainly embedded in the amplitude component. In combination with unwrapping the phase of data, which mitigates the non-linearity introduced by the source function, I develop a framework to invert for the unwrapped phase of a model, represented by the instantaneous depth, using the unwrapped phase of the data. The resulting gradient function provides a mechanism to non-linearly update the velocity model by applying mainly phase shifts to the model. In using the instantaneous depth as a model parameter, we keep track of the model properties unfazed by the wrapping phenomena. © 2013 European Association of Geoscientists & Engineers.
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor
2018-02-01
Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.
Directory of Open Access Journals (Sweden)
I. Pison
2006-07-01
Full Text Available A new methodology for the inversion of anthropogenic emissions at a local scale is tested. The inversion constraints are provided by a kriging technique used in air quality forecast in the Paris area, which computes an analyzed concentration field from network measurements and the first-guess simulation of a CTM. The inverse developed here is based on the CHIMERE model and its adjoint to perform 4-D integration. The methodology is validated on synthetic cases inverting emission fluxes. It is shown that the information provided by the analyzed concentrations is sufficient to reach a mathematically acceptable solution to the optimization, even when little information is available in the measurements. As compared to the use of measurements alone or of measurements and a background matrix, the use of kriging leads to a more homogeneous distribution of the corrections, both in space and time. Moreover, it is then possible to double the accuracy of the inversion by performing two kriging-optimization cycles. Nevertheless, kriging analysis cannot compensate for a very important lack of information in the measurements.
Seyfi, Behzad; Fatouraee, Nasser; Imeni, Milad
2018-01-01
In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relaxation test scenario with different depths and preloads was designed to capture the mechanical characteristics of the tissue in different regions of the medial and lateral menisci. Thereafter, a FE simulation was performed considering experimental conditions. Constitutive parameters were optimized by solving a FE-based inverse problem using the heuristic Simulated Annealing (SA) optimization algorithm. These parameters were ranged according to previously reported data to improve the optimization procedure. Based on the results, the mechanical properties of meniscus were highly influenced by both superficial and main layers. At low indentation depths, a high percentage relaxation (p < 0.01) with a high relaxation rate (p < 0.05) was obtained, due to the poroelastic and viscoelastic nature of the superficial layer. Increasing both penetration depth and preload level involved the main layer response and caused alterations in hyperelastic and viscoelastic parameters of the tissue, such that for both layers, the shear modulus was increased (p < 0.01) while the rate and percentage of relaxation were decreased (p < 0.01). Results reflect that, shear modulus of the main layer in anterior region is higher than central and posterior sites in medial meniscus. In contrast, in lateral meniscus, posterior side is stiffer than central and anterior sides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Leszek Majkut
Full Text Available In the work, in order to solve the inverse problem, i.e. the problem of finding values of the additional quantities (mass, elasticity, the beam inverse model was proposed. Analysis of this model allows finding such a value of additional mass (elasticity as a function of its localization so that the free vibration frequency changes to desirable value. The criteria for choice of the “proper” pair (mass - its position, including the criterion allowing changing the position of the vibration node of the second mode of the free vibrations, were given. Analysis of the influence of uncertainties in the determination of the additional quantity value and its position on the desired free vibration frequency was carried out, too. The proposed beam inverse model can be employing to identification of the beam cracks. In such a case, the input quantity is free vibration frequency measured on the damaged object. Each determined free-vibration frequency allows determining the flexibility curve for the spring modeling crack as a function of its position. The searched parameters of the crack (its depth and position are indicated by the common point of two arbitrary curves. Accuracy of crack parameters determination depends on accuracy (uncertainty of frequency measurement. Only some regions containing the searched crack parameters can be obtained in such a situation.
An Inverse Modeling Approach to Investigate Past Lead Atmospheric Deposition in Southern Greenland
Massa, C.; Monna, F.; Bichet, V.; Gauthier, E.; Richard, H.
2013-12-01
The aim of this study is to model atmospheric pollution lead fluxes using two different paleoenvironmental records, covering the last 2000 years, located in southern Greenland. Fifty five sediment samples from the Lake Igaliku sequence (61°00.403'N, 45°26.494'W) were analyzed for their Pb and Al contents, and for lead isotopic compositions. The second archive consists in a previously published dataset (Shotyk et al., 2003), including Zr and Pb concentrations, and lead isotopic compositions, obtained from a minerogenic peat deposit located 16 km northwest of Lake Igaliku (61°08.314'N, 45°33.703'W). As natural background concentrations are high and obliterate most of the airborne anthropogenic lead, it is not possible to isolate this anthropogenic contribution through time with classical methods (i.e. Pb is normalized to a lithogenic and conservative element). Moreover, the background 206Pb/207Pb ratio is rather noisy because of the wide geological heterogeneity of sediment sources, which further complicated unambiguous detection of the lead pollution. To overcome these difficulties, an inverse modeling approach based on assumptions about past lead inputs was applied. This method consists of simulating a range of anthropogenic fluxes to determine the best match between measured and simulated data, both for Pb concentrations and isotopic compositions. The model is validated by the coherence of the results obtained from the two independent datasets that must reflect a similar pollution history. Although notable 206Pb/207Pb ratio shifts suggest that the first signs of anthropogenic inputs may have occurred in the 15th century, the signal-to-noise ratio was too low to significantly influence the sediment composition. Nevertheless we were able to estimate that anthropogenic lead fluxes did not exceed 2700 μg m-2 yr-1, a maximum value recorded during the 1960s. The comparison with other records from the North Atlantic Islands reveals a spatial gradient most likely due
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Leszek Majkut
Full Text Available In the work, the problems of the beam structural modification through coupling the additional mass or elastic support, as well as the problem of diagnostics of the beam cracks, are discussed. The common feature for both problems is that the material parameters in each of the discussed cases change only in one point (additional mass, the support in one point, the crack described by the elastic joint. These systems, after determination of the value of additional element and its localization, should have a given natural vibration frequency. In order to solve the inverse problem, i.e. the problem of finding values of the additional quantities (mass, elasticity, the beam inverse model was proposed. Analysis of this model allows finding such a value of additional mass (elasticity as a function of its localization so that the system has the free vibration frequency, which is desired in the modification problem or measured on the object in the diagnostics.
Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection
Brunetti, Carlotta; Linde, Niklas
2018-01-01
Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link geophysical properties to hydrogeological properties and state variables. Coupled inversion studies are frequently based on the questionable assumption that these relationships are perfect (i.e., no scatter). Using synthetic examples and crosshole ground-penetrating radar (GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA, we investigate the impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection. Our study shows that accounting for petrophysical uncertainty in the inversion (I) decreases bias of the inferred variance of hydrogeological subsurface properties, (II) provides more realistic uncertainty assessment and (III) reduces the overconfidence in the ability of geophysical data to falsify conceptual hydrogeological models.
Comparison of inverse dynamics calculated by two- and three-dimensional models during walking
DEFF Research Database (Denmark)
Alkjaer, T; Simonsen, E B; Dyhre-Poulsen, P
2001-01-01
recorded the subjects as they walked across two force plates. The subjects were invited to approach a walking speed of 4.5 km/h. The ankle, knee and hip joint moments in the sagittal plane were calculated by 2D and 3D inverse dynamics analysis and compared. Despite the uniform walking speed (4.53 km....../h) and similar footwear, relatively large inter-individual variations were found in the joint moment patterns during the stance phase. The differences between individuals were present in both the 2D and 3D analysis. For the entire sample of subjects the overall time course pattern of the ankle, knee and hip...... the magnitude of the joint moments calculated by 2D and 3D inverse dynamics but the inter-individual variation was not affected by the different models. The simpler 2D model seems therefore appropriate for human gait analysis. However, comparisons of gait data from different studies are problematic...
Liu, Long; Liu, Wei
2018-04-01
A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.
Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets
Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke
2018-02-01
Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.
International Nuclear Information System (INIS)
Geels, C.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Gloor, M.; Ciais, P.; Bousquet, P.; Peylin, P.; Dargaville, R.; Ramonet, M.; Vermeulen, A.T.; Aalto, T.; Haszpra, L.; Karstens, U.; Rodenbeck, C.; Carboni, G.; Santaguida, R.
2007-01-01
The CO 2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO 2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatio-temporal coverage of CO 2 observations and biases of the models. In order to assess the biases related to the use of different models the CO 2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO 2 observations from continental, coastal and mountain sites as well as flasks sampled on aircraft are used to evaluate the models ability to capture the spatio-temporal variability and distribution of lower troposphere CO 2 across Europe. 14 CO 2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to similar to 10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation-data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are
Energy Technology Data Exchange (ETDEWEB)
Geels, C.; Brandt, J.; Christensen, J.H.; Frohn, L.M. [Univ Aarhus, Natl Environm Res Inst, DK-4000 Roskilde, (Denmark); Gloor, M. [Univ Leeds, Leeds, W Yorkshire, (United Kingdom); Ciais, P.; Bousquet, P.; Peylin, P.; Dargaville, R.; Ramonet, M. [CEA, CNRS, UMR 1572, Lab Sci Climat and Environm, F-91191 Gif Sur Yvette, (France); Vermeulen, A.T. [ECN, NL-1755 ZG Petten, (Netherlands); Aalto, T. [Finnish Meteorol Inst Air Qual Res, Helsinki 00810, (Finland); Haszpra, L. [Hungarian Meteorol Serv, H-1675 Budapest, (Hungary); Karstens, U.; Rodenbeck, C. [Max Planck Inst Biogeochem, D-07701 Jena, (Germany); Carboni, G. [CESI ApA, I-20134 Milan, (Italy); Santaguida, R. [Italian AF Meteorol Serv, I-41029 Sestola, MO, (Italy)
2007-07-01
The CO{sub 2} source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO{sub 2} observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatio-temporal coverage of CO{sub 2} observations and biases of the models. In order to assess the biases related to the use of different models the CO{sub 2} concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO{sub 2} observations from continental, coastal and mountain sites as well as flasks sampled on aircraft are used to evaluate the models ability to capture the spatio-temporal variability and distribution of lower troposphere CO{sub 2} across Europe. {sup 14}CO{sub 2} is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to similar to 10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation-data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite
Directory of Open Access Journals (Sweden)
M. Ramonet
2007-07-01
Full Text Available The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain sites as well as flasks sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are
Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad
2016-04-01
Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling
2011-09-01
2005). We implemented a method to increase the usefulness of gravity data by filtering the Bouguer anomaly map. Though commonly applied 40 km 30 35...remove the long-wavelength components from the Bouguer gravity map we follow Tessema and Antoine (2004), who use an upward continuation method and...inversion of group velocities and gravity. (a) Top: Group velocities from a representative cell in the model. Bottom: Filtered Bouguer anomalies. (b
Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept
International Nuclear Information System (INIS)
Bieg, B.; Chrzanowski, J.; Kravtsov, Yu. A.; Mazon, D.
2015-01-01
Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.
Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept
Energy Technology Data Exchange (ETDEWEB)
Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)
2015-10-15
Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.
Smith, G. A.; Meyer, G.; Nordstrom, M.
1986-01-01
A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.
Fitz, Hartmut; Chang, Franklin
2017-09-01
Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions. Copyright © 2017 Elsevier B.V. All rights reserved.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Directory of Open Access Journals (Sweden)
Alex Alexandridis
2018-01-01
Full Text Available This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.
Pant, Anup D; Dorairaj, Syril K; Amini, Rouzbeh
2018-07-01
Quantifying the mechanical properties of the iris is important, as it provides insight into the pathophysiology of glaucoma. Recent ex vivo studies have shown that the mechanical properties of the iris are different in glaucomatous eyes as compared to normal ones. Notwithstanding the importance of the ex vivo studies, such measurements are severely limited for diagnosis and preclude development of treatment strategies. With the advent of detailed imaging modalities, it is possible to determine the in vivo mechanical properties using inverse finite element (FE) modeling. An inverse modeling approach requires an appropriate objective function for reliable estimation of parameters. In the case of the iris, numerous measurements such as iris chord length (CL) and iris concavity (CV) are made routinely in clinical practice. In this study, we have evaluated five different objective functions chosen based on the iris biometrics (in the presence and absence of clinical measurement errors) to determine the appropriate criterion for inverse modeling. Our results showed that in the absence of experimental measurement error, a combination of iris CL and CV can be used as the objective function. However, with the addition of measurement errors, the objective functions that employ a large number of local displacement values provide more reliable outcomes.
Juhojuntti, N. G.; Kamm, J.
2010-12-01
We present a layered-model approach to joint inversion of shallow seismic refraction and resistivity (DC) data, which we believe is a seldom tested method of addressing the problem. This method has been developed as we believe that for shallow sedimentary environments (roughly fairly simple 2D geometries, mainly for checking the validity of the calculations. The inversion generally converges towards the correct solution, although there could be stability problems if the starting model is too erroneous. We have also applied the code to field data from seismic refraction and multi-electrode resistivity measurements at typical sand-gravel groundwater reservoirs. The tests are promising, as the calculated depths agree fairly well with information from drilling and the velocity and resistivity values appear reasonable. Current work includes better regularization of the inversion as well as defining individual weight factors for the different datasets, as the present algorithm tends to constrain the depths mainly by using the seismic data. More complex synthetic examples will also be tested, including models addressing the seismic hidden-layer problem.
Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian
Teneng, Dean
2013-09-01
We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.
American Option Pricing using GARCH models and the Normal Inverse Gaussian distribution
DEFF Research Database (Denmark)
Stentoft, Lars Peter
In this paper we propose a feasible way to price American options in a model with time varying volatility and conditional skewness and leptokurtosis using GARCH processes and the Normal Inverse Gaussian distribution. We show how the risk neutral dynamics can be obtained in this model, we interpret...... properties shows that there are important option pricing differences compared to the Gaussian case as well as to the symmetric special case. A large scale empirical examination shows that our model outperforms the Gaussian case for pricing options on three large US stocks as well as a major index...
Whitton, R Christopher; Trope, Gareth D; Ghasem-Zadeh, Ali; Anderson, Garry A; Parkin, Timothy D H; Mackie, Eleanor J; Seeman, Ego
2010-10-01
Bone modelling and remodelling reduce the risk of fatigue fractures; the former by adapting bone to its loading circumstances, the latter by replacing fatigued bone. Remodelling transiently increases porosity because of the normal delay in onset of the formation phase of the remodelling sequence. Protracted intense loading suppresses remodelling leaving modelling as the only means of maintaining bone strength. We therefore hypothesized that race horses with fatigue fractures of the distal third metacarpal bone (MC3) will have reduced porosity associated with suppressed remodelling while continued adaptive modelling will result in higher volume fraction (BV/TV) at this site. Using high resolution peripheral quantitative computed tomography (HR-pQCT), we measured the distal aspect of the MC3 obtained at postmortem from 13 thoroughbred race horses with condylar fractures of the MC3 (cases), 8 horses without fractures (training controls), 14 horses with a fracture at another site (fractured controls) and 9 horses resting from training (resting controls). Porosity of the subchondral bone of MC3 was lower in cases than resting controls (12±1.4% vs. 18±1.6%, P=0.017) although areas of focal porosity were observed adjacent to fractures in 6/13 horses. BV/TV of the distal metacarpal epiphysis tended to be higher in horses with condylar fractures (0.79±0.015) than training controls (0.74±0.019, P=0.070), but also higher in controls with a fracture elsewhere (0.79±0.014) than the training controls (0.74±0.019, P=0.040). BV/TV was higher in horses over three years of age than those aged two or three years (0.79±0.01 vs. 0.74±0.01, P=0.016). All metacarpal condylar fractures occurred within focal areas of high BV/TV. We infer that intense training in equine athletes suppresses remodelling of third metacarpal subchondral bone limiting damage repair while modelling increases regional bone volume in an attempt to minimise local stresses but may fail to offset bone
Directory of Open Access Journals (Sweden)
A. Richter
2009-11-01
Full Text Available Tropospheric glyoxal and formaldehyde columns retrieved from the SCIAMACHY satellite instrument in 2005 are used with the IMAGESv2 global chemistry-transport model and its adjoint in a two-compound inversion scheme designed to estimate the continental source of glyoxal. The formaldehyde observations provide an important constraint on the production of glyoxal from isoprene in the model, since the degradation of isoprene constitutes an important source of both glyoxal and formaldehyde. Current modelling studies underestimate largely the observed glyoxal satellite columns, pointing to the existence of an additional land glyoxal source of biogenic origin. We include an extra glyoxal source in the model and we explore its possible distribution and magnitude through two inversion experiments. In the first case, the additional source is represented as a direct glyoxal emission, and in the second, as a secondary formation through the oxidation of an unspecified glyoxal precursor. Besides this extra source, the inversion scheme optimizes the primary glyoxal and formaldehyde emissions, as well as their secondary production from other identified non-methane volatile organic precursors of anthropogenic, pyrogenic and biogenic origin.
In the first inversion experiment, the additional direct source, estimated at 36 Tg/yr, represents 38% of the global continental source, whereas the contribution of isoprene is equally important (30%, the remainder being accounted for by anthropogenic (20% and pyrogenic fluxes. The inversion succeeds in reducing the underestimation of the glyoxal columns by the model, but it leads to a severe overestimation of glyoxal surface concentrations in comparison with in situ measurements. In the second scenario, the inferred total global continental glyoxal source is estimated at 108 Tg/yr, almost two times higher than the global a priori source. The extra secondary source is the largest contribution to the global glyoxal
Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling
Directory of Open Access Journals (Sweden)
A. Stohl
2010-04-01
Full Text Available The emissions of three hydrochlorofluorocarbons, HCFC-22 (CHClF_{2}, HCFC-141b (CH_{3}CCl_{2}F and HCFC-142b (CH_{3}CClF_{2} and three hydrofluorocarbons, HFC-23 (CHF_{3}, HFC-134a (CH_{2}FCF_{3} and HFC-152a (CH_{3}CHF_{2} from four East Asian countries and the Taiwan region for the year 2008 are determined by inverse modeling. The inverse modeling is based on in-situ measurements of these halocarbons at the Japanese stations Cape Ochi-ishi and Hateruma, the Chinese station Shangdianzi and the South Korean station Gosan. For every station and every 3 h, 20-day backward calculations were made with the Lagrangian particle dispersion model FLEXPART. The model output, the measurement data, bottom-up emission information and corresponding uncertainties were fed into an inversion algorithm to determine the regional emission fluxes. The model captures the observed variation of halocarbon mixing ratios very well for the two Japanese stations but has difficulties explaining the large observed variability at Shangdianzi, which is partly caused by small-scale transport from Beijing that is not adequately captured by the model. Based on HFC-23 measurements, the inversion algorithm could successfully identify the locations of factories known to produce HCFC-22 and emit HFC-23 as an unintentional byproduct. This lends substantial credibility to the inversion method. We report national emissions for China, North Korea, South Korea and Japan, as well as emissions for the Taiwan region. Halocarbon emissions in China are much larger than the emissions in the other countries together and contribute a substantial fraction to the global emissions. Our estimates of Chinese emissions for the year 2008 are 65.3±6.6 kt/yr for HCFC-22 (17% of global emissions extrapolated from Montzka et al., 2009, 12.1±1.6 kt/yr for HCFC-141b (22%, 7.3±0.7 kt/yr for HCFC-142b (17%, 6.2±0.7 kt/yr for HFC
Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo
2017-11-07
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Bertagna, Luca; Veneziani, Alessandro
2014-01-01
Scientific computing has progressively become an important tool for research in cardiovascular diseases. The role of quantitative analyses based on numerical simulations has moved from ‘proofs of concept’ to patient-specific investigations, thanks to a strong integration between imaging and computational tools. However, beyond individual geometries, numerical models require the knowledge of parameters that are barely retrieved from measurements, especially in vivo. For this reason, recently cardiovascular mathematics considered data assimilation procedures for extracting the knowledge of patient-specific parameters from measures and images. In this paper, we consider specifically the quantification of vascular compliance, i.e. the parameter quantifying the tendency of arterial walls to deform under blood stress. Following up a previous paper, where a variational data assimilation procedure was proposed, based on solving an inverse fluid–structure interaction problem, here we consider model reduction techniques based on a proper orthogonal decomposition approach to accomplish the solution of the inverse problem in a computationally efficient way. (paper)
Wu, Zedong; Alkhalifah, Tariq Ali
2017-01-01
Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current
TransCom N2O model inter-comparison, Part II : Atmospheric inversion estimates of N2O emissions
Thompson, R. L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P. K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R. G.; Weiss, R. F.; O'Doherty, S.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Vermeulen, A.; Tohjima, Y.; Jordan, A.; Haszpra, L.; Steinbacher, M.; Van Der Laan, S.; Aalto, T.; Meinhardt, F.; Popa, Maria Elena; Moncrieff, J.; Bousquet, P.
2014-01-01
This study examines N2O emission estimates from 5 different atmospheric inversion frameworks. The 5 frameworks differ in the choice of atmospheric transport model, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation dataset. The mean
TransCom N2O model inter-comparison - Part 2 : Atmospheric inversion estimates of N2O emissions
Thompson, R. L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P. K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R. G.; Weiss, R. F.; O'Doherty, S.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Vermeulen, A.; Tohjima, Y.; Jordan, A.; Haszpra, L.; Steinbacher, M.; Van Der Laan, S.; Aalto, T.; Meinhardt, F.; Popa, Maria Elena|info:eu-repo/dai/nl/375806407; Moncrieff, J.; Bousquet, P.
2014-01-01
This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation
Park, K.; Mak, J. E.; Emmons, L. K.
2008-12-01
Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers
Transient Inverse Calibration of the Site-Wide Groundwater Flow Model (ACM-2): FY03 Progress Report
International Nuclear Information System (INIS)
Vermeul, Vince R.; Bergeron, Marcel P.; Cole, C R.; Murray, Christopher J.; Nichols, William E.; Scheibe, Timothy D.; Thorne, Paul D.; Waichler, Scott R.; Xie, YuLong
2003-01-01
DOE and PNNL are working to strengthen the technical defensibility of the groundwater flow and transport model at the Hanford Site and to incorporate uncertainty into the model. One aspect of the initiative is developing and using a three-dimensional transient inverse model to estimate the hydraulic conductivities, specific yields, and other parameters using data from Hanford since 1943. The focus of the alternative conceptual model (ACM-2) inverse modeling initiative documented in this report was to address limitations identified in the ACM-1 model, complete the facies-based approach for representing the hydraulic conductivity distribution in the Hanford and middle Ringold Formations, develop the approach and implementation methodology for generating multiple ACMs based on geostatistical data analysis, and develop an approach for inverse modeling of these stochastic ACMs. The primary modifications to ACM-2 transient inverse model include facies-based zonation of Units 1 (Hanford ) and 5 (middle Ringold); an improved approach for handling run-on recharge from upland areas based on watershed modeling results; an improved approach for representing artificial discharges from site operations; and minor changes to the geologic conceptual model. ACM-2 is the first attempt to fully incorporate the facies-based approach to represent the hydrogeologic structure. Further refinement and additional improvements to overall model fit will be realized during future inverse simulations of groundwater flow and transport. In addition, preliminary work was completed on an approach and implementation for generating an inverse modeling of stochastic ACMs. These techniques were applied to assess the uncertainty in the facies-based zonation of the Hanford formation and the geological structure of Ringold mud units. The geostatistical analysis used a preliminary interpretation of the facies-based zonation that was not consistent with that used in ACM-2. Although the overall objective of
Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak
2012-01-01
A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha
Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.
Breskin, Alexander; Cole, Stephen R; Westreich, Daniel
2018-05-01
Since being introduced to epidemiology in 2000, marginal structural models have become a commonly used method for causal inference in a wide range of epidemiologic settings. In this brief report, we aim to explore three subtleties of marginal structural models. First, we distinguish marginal structural models from the inverse probability weighting estimator, and we emphasize that marginal structural models are not only for longitudinal exposures. Second, we explore the meaning of the word "marginal" in "marginal structural model." Finally, we show that the specification of a marginal structural model can have important implications for the interpretation of its parameters. Each of these concepts have important implications for the use and understanding of marginal structural models, and thus providing detailed explanations of them may lead to better practices for the field of epidemiology.
Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model
Directory of Open Access Journals (Sweden)
Dong Wang
2015-02-01
Full Text Available A modified Prandtl–Ishlinskii (PI model, referred to as a direct inverse asymmetric PI (DIAPI model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace and voltage-decrease-loop (retrace. A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.
Directory of Open Access Journals (Sweden)
Birgül Kınalıbalaban
2013-08-01
Full Text Available In this study, the province of Gaziantep, Şehitkamil district, there are thought to be chrome-metallic mine in the village of Sofalıca the localization of gravity and economical method was to investigate whether it has a reserve. Approximately 189 hectares of land gravity measurements over the measurement point in the study area was 220. By differentiating regional and residual Bouguer gravity map of the generated residual maps were obtained on areas likely to be created on the source. The inversion method of pre-NTG was required for the selection model is the appropriate start. On the structure of polygon slices as a result of application received in the form of the inversion in the range of 125 meters and 450 meters long, 25 meters to 70 meters in thickness in the range of existence of geometric structures have been identified.
Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model
International Nuclear Information System (INIS)
Malinsky, Michal; Ohlsson, Tommy; Xing, Zhi-zhong; Zhang He
2009-01-01
We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This 'minimal' inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.
Inverse modeling for the determination of hydrogeological parameters of a two-phase system
International Nuclear Information System (INIS)
Finsterle, S.
1993-02-01
Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs
Inverse modeling for the determination of hydrogeological parameters of a two-phase system
International Nuclear Information System (INIS)
Finsterle, S.
1993-01-01
Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs
Energy Technology Data Exchange (ETDEWEB)
Kiryukhin, Alexey V. [Institute of Volcanology and Seismology FEB RAS, Piip-9, P-Kamchatsky 683006 (Russian Federation); Asaulova, Natalia P. [Kamchatskburgeotemia Enterprise, Krasheninnikova-1, Thermalny, Kamchatka 684035 (Russian Federation); Finsterle, Stefan [Lawrence Berkeley National Laboratory, MS 90-1116, One Cyclotron Road, Berkeley, CA 94720 (United States)
2008-10-15
A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km{sup 2} area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 [Finsterle, S., 2004. Multiphase inverse modeling: review and iTOUGH2 applications. Vadose Zone J. 3, 747-762], the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five make-up wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant. (author)
Hernández, B; Peña, E; Pascual, G; Rodríguez, M; Calvo, B; Doblaré, M; Bellón, J M
2011-04-01
The aims of this study are to experimentally characterize the passive elastic behaviour of the rabbit abdominal wall and to develop a mechanical constitutive law which accurately reproduces the obtained experimental results. For this purpose, tissue samples from New Zealand White rabbits 2150±50 (g) were mechanically tested in vitro. Mechanical tests, consisting of uniaxial loading on tissue samples oriented along the craneo-caudal and the perpendicular directions, respectively, revealed the anisotropic non-linear mechanical behaviour of the abdominal tissues. Experiments were performed considering the composite muscle (including external oblique-EO, internal oblique-IO and transverse abdominis-TA muscle layers), as well as separated muscle layers (i.e., external oblique, and the bilayer formed by internal oblique and transverse abdominis). Both the EO muscle layer and the IO-TA bilayer demonstrated a stiffer behaviour along the transversal direction to muscle fibres than along the longitudinal one. The fibre arrangement was measured by means of a histological study which confirmed that collagen fibres are mainly responsible for the passive mechanical strength and stiffness. Furthermore, the degree of anisotropy of the abdominal composite muscle turned out to be less pronounced than those obtained while studying the EO and IO-TA separately. Moreover, a phenomenological constitutive law was used to capture the measured experimental curves. A Levenberg-Marquardt optimization algorithm was used to fit the model constants to reproduce the experimental curves. Copyright © 2010 Elsevier Ltd. All rights reserved.
Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.
2016-12-01
Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.
Tiampo, K. F.; Fernández, J.; Jentzsch, G.; Charco, M.; Rundle, J. B.
2004-11-01
Here we present an inversion methodology using the combination of a genetic algorithm (GA) inversion program, and an elastic-gravitational earth model to determine the parameters of a volcanic intrusion. Results from the integration of the elastic-gravitational model, a suite of FORTRAN 77 programs developed to compute the displacements due to volcanic loading, with the GA inversion code, written in the C programming language, are presented. These codes allow for the calculation of displacements (horizontal and vertical), tilt, vertical strain and potential and gravity changes on the surface of an elastic-gravitational layered Earth model due to the magmatic intrusion. We detail the appropriate methodology for examining the sensitivity of the model to variation in the constituent parameters using the GA, and present, for the first time, a Monte Carlo technique for evaluating the propagation of error through the GA inversion process. One application example is given at Mayon volcano, Philippines, for the inversion program, the sensitivity analysis, and the error evaluation. The integration of the GA with the complex elastic-gravitational model is a blueprint for an efficient nonlinear inversion methodology and its implementation into an effective tool for the evaluation of parameter sensitivity. Finally, the extension of this inversion algorithm and the error assessment methodology has important implications to the modeling and data assimilation of a number of other nonlinear applications in the field of geosciences.
A stochastic approach for model reduction and memory function design in hydrogeophysical inversion
Hou, Z.; Kellogg, A.; Terry, N.
2009-12-01
Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the
International Nuclear Information System (INIS)
Garratt, T.J.
1989-05-01
Compartment models for the transport of radionuclides in the biosphere are conventionally solved using a numerical time-stepping procedure. This report examines an alternative method based on the numerical inversion of Laplace transforms, which is potentially more efficient and accurate for some classes of problem. The central problem considered is the most efficient and robust technique for solving the Laplace-transformed rate equations. The conclusion is that Gaussian elimination is the most efficient and robust solution method. A general compartment model has been implemented on a personal computer and used to solve a realistic case including radionuclide decay chains. (author)
Hanuschkin, A.; Ganguli, S.; Hahnloser, R. H. R.
2013-01-01
Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop...
The uniqueness of the solution of cone-like inversion models for halo CMEs
Zhao, X. P.
2006-12-01
Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.
Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M
2018-05-07
A Bayesian model for sparse, hierarchical inverse covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fmri, meg and eeg data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in meg beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.
Rafique, Rashad; Fienen, Michael N.; Parkin, Timothy B.; Anex, Robert P.
2013-01-01
DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameterized through a traditional “trial and error” approach and has not been calibrated using statistical inverse modelling (i.e. algorithmic parameter estimation). The aim of this study is to establish and demonstrate a procedure for calibration of DayCent to improve estimation of GHG emissions. We coupled DayCent with the parameter estimation (PEST) software for inverse modelling. The PEST software can be used for calibration through regularized inversion as well as model sensitivity and uncertainty analysis. The DayCent model was analysed and calibrated using N2O flux data collected over 2 years at the Iowa State University Agronomy and Agricultural Engineering Research Farms, Boone, IA. Crop year 2003 data were used for model calibration and 2004 data were used for validation. The optimization of DayCent model parameters using PEST significantly reduced model residuals relative to the default DayCent parameter values. Parameter estimation improved the model performance by reducing the sum of weighted squared residual difference between measured and modelled outputs by up to 67 %. For the calibration period, simulation with the default model parameter values underestimated mean daily N2O flux by 98 %. After parameter estimation, the model underestimated the mean daily fluxes by 35 %. During the validation period, the calibrated model reduced sum of weighted squared residuals by 20 % relative to the default simulation. Sensitivity analysis performed provides important insights into the model structure providing guidance for model improvement.
Inverse modeling of test SB4-VM2/216.7 at Wellenberg
International Nuclear Information System (INIS)
Finsterle, S.
1994-03-01
Pressure and flow rate data from a water sampling test, which also produced gas, at the Wellenberg site are analyzed using inverse modeling techniques. Two conceptual models are developed and used for parameter estimation. The first model assumes that the gas observed at the surface is dissolved in the pore water under natural pressure and temperature conditions and comes out of solution due to the pressure reduction during pumping. The second model considers a mobile gas phase originally present in the formation. While both models are able to explain the observed pressure response as well as the gas seen at the surface, large uncertainties in the data and in the model assumptions inhibit the determination of two-phase flow parameters. The analysis indicates, however, that the formation has a very low permeability and that formation head is far below hydrostatic
Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.
2017-12-01
Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km
The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data
Directory of Open Access Journals (Sweden)
Changcheng Wang
2016-03-01
Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.
International Nuclear Information System (INIS)
Winiarek, Victor
2014-01-01
Uncontrolled releases of pollutant in the atmosphere may be the consequence of various situations: accidents, for instance leaks or explosions in an industrial plant, or terrorist attacks such as biological bombs, especially in urban areas. In the event of such situations, authorities' objectives are various: predict the contaminated zones to apply first countermeasures such as evacuation of concerned population; determine the source location; assess the long-term polluted areas, for instance by deposition of persistent pollutants in the soil. To achieve these objectives, numerical models can be used to model the atmospheric dispersion of pollutants. We will first present the different processes that govern the transport of pollutants in the atmosphere, then the different numerical models that are commonly used in this context. The choice between these models mainly depends of the scale and the details one seeks to take into account. We will then present several inverse modeling methods to estimate the emission as well as statistical methods to estimate prior errors, to which the inversion is very sensitive. Several case studies are presented, using synthetic data as well as real data such as the estimation of source terms from the Fukushima accident in March 2011. From our results, we estimate the Cesium-137 emission to be between 12 and 19 PBq with a standard deviation between 15 and 65% and the Iodine-131 emission to be between 190 and 380 PBq with a standard deviation between 5 and 10%. Concerning the localization of an unknown source of pollutant, two strategies can be considered. On one hand parametric methods use a limited number of parameters to characterize the source term to be reconstructed. To do so, strong assumptions are made on the nature of the source. The inverse problem is hence to estimate these parameters. On the other hand nonparametric methods attempt to reconstruct a full emission field. Several parametric and nonparametric methods are
Directory of Open Access Journals (Sweden)
S. L. Heck
2012-02-01
Full Text Available There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON, five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.
Directory of Open Access Journals (Sweden)
Xiaochao Tang
2013-03-01
Full Text Available With the movement towards the implementation of mechanistic-empirical pavement design guide (MEPDG, an accurate determination of pavement layer moduli is vital for predicting pavement critical mechanistic responses. A backcalculation procedure is commonly used to estimate the pavement layer moduli based on the non-destructive falling weight deflectometer (FWD tests. Backcalculation of flexible pavement layer properties is an inverse problem with known input and output signals based upon which unknown parameters of the pavement system are evaluated. In this study, an inverse analysis procedure that combines the finite element analysis and a population-based optimization technique, Genetic Algorithm (GA has been developed to determine the pavement layer structural properties. A lightweight deflectometer (LWD was used to infer the moduli of instrumented three-layer scaled flexible pavement models. While the common practice in backcalculating pavement layer properties still assumes a static FWD load and uses only peak values of the load and deflections, dynamic analysis was conducted to simulate the impulse LWD load. The recorded time histories of the LWD load were used as the known inputs into the pavement system while the measured time-histories of surface central deflections and subgrade deflections measured with a linear variable differential transformers (LVDT were considered as the outputs. As a result, consistent pavement layer moduli can be obtained through this inverse analysis procedure.
Estimation of semolina dough rheological parameters by inversion of a finite elements model
Directory of Open Access Journals (Sweden)
Angelo Fabbri
2015-10-01
Full Text Available The description of the rheological properties of food material plays an important role in food engineering. Particularly for the optimisation of pasta manufacturing process (extrusion is needful to know the rheological properties of semolina dough. Unfortunately characterisation of non-Newtonian fluids, such as food doughs, requires a notable time effort, especially in terms of number of tests to be carried out. The present work proposes an alternative method, based on the combination of laboratory measurement, made with a simplified tool, with the inversion of a finite elements numerical model. To determine the rheological parameters, an objective function, defined as the distance between simulation and experimental data, was considered and the well-known Levenberg-Marqard optimisation algorithm was used. In order to verify the feasibility of the method, the rheological characterisation of the dough was carried also by a traditional procedure. Results shown that the difference between measurements of rheological parameters of the semolina dough made with traditional procedure and inverse methods are very small (maximum percentage error equal to 3.6%. This agreement supports the coherence of the inverse method that, in general, may be used to characterise many non-Newtonian materials.
Evaluation of methane emissions from West Siberian wetlands based on inverse modeling
Energy Technology Data Exchange (ETDEWEB)
Kim, H-S; Inoue, G [Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047 (Japan); Maksyutov, S; Machida, T [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Glagolev, M V [Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991 (Russian Federation); Patra, P K [Research Institute for Global Change/JAMSTEC, 3173-25 Showa-cho, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Sudo, K, E-mail: heonsook.kim@gmail.com [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)
2011-07-15
West Siberia contains the largest extent of wetlands in the world, including large peat deposits; the wetland area is equivalent to 27% of the total area of West Siberia. This study used inverse modeling to refine emissions estimates for West Siberia using atmospheric CH{sub 4} observations and two wetland CH{sub 4} emissions inventories: (1) the global wetland emissions dataset of the NASA Goddard Institute for Space Studies (the GISS inventory), which includes emission seasons and emission rates based on climatology of monthly surface air temperature and precipitation, and (2) the West Siberian wetland emissions data (the Bc7 inventory), based on in situ flux measurements and a detailed wetland classification. The two inversions using the GISS and Bc7 inventories estimated annual mean flux from West Siberian wetlands to be 2.9 {+-} 1.7 and 3.0 {+-} 1.4 Tg yr{sup -1}, respectively, which are lower than the 6.3 Tg yr{sup -1} predicted in the GISS inventory, but similar to those of the Bc7 inventory (3.2 Tg yr{sup -1}). The well-constrained monthly fluxes and a comparison between the predicted CH{sub 4} concentrations in the two inversions suggest that the Bc7 inventory predicts the seasonal cycle of West Siberian wetland CH{sub 4} emissions more reasonably, indicating that the GISS inventory predicts more emissions from wetlands in northern and middle taiga.
Thermal-hydraulic modeling of flow inversion in a research reactor
International Nuclear Information System (INIS)
Kazeminejad, H.
2008-01-01
The course of loss of flow accident and flow inversion in a pool type research reactor, with scram enabled under natural circulation condition is numerically investigated. The analyses were performed by a lumped parameters approach for the coupled kinetic-thermal-hydraulics, with continuous feedback due to coolant and fuel temperature effects. A modified Runge-Kutta method was adopted for a better solution to the set of stiff differential equations. Transient thermal-hydraulics during the process of flow inversion and establishment of natural circulation were considered for a 10-MW IAEA research reactor. Some important parameters such as the peak temperatures for the hot channel were obtained for both high-enriched and low enriched fuel. The model prediction is also verified through comparison with other computer code results reported in the literature for detailed simulations of loss of flow accidents (LOFA) and the agreement between the results for the peak clad temperatures and key parameters has been satisfactory. It was found that the flow inversion and subsequent establishment of natural circulation keep the peak cladding surface temperature below the saturation temperature to avoid the escalation of clad temperature to the level of onset of nucleate boiling and sub-cooled void formation to ensure the safe operation of the reactor
Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji
2015-12-01
Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.
Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model
Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.
2015-12-01
We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.
Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.
Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; D'Amelio, Roberto; Falkai, Peter; Strauss, Daniel J
2006-01-01
Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus.
Werdell, P. Jeremy; Ooesler, Collin S.
2012-01-01
The daily, synoptic images provided by satellite ocean color instruments provide viable data streams for observing changes in the biogeochemistrY of marine ecosystems. Ocean reflectance inversion models (ORMs) provide a common mechanism for inverting the "color" of the water observed a satellite into marine inherent optical properties (lOPs) through a combination of empiricism and radiative transfer theory. lOPs, namely the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents, describe the contents of the upper ocean, information critical for furthering scientific understanding of biogeochemical oceanic processes. Many recent studies inferred marine particle sizes and discriminated between phytoplankton functional groups using remotely-sensed lOPs. While all demonstrated the viability of their approaches, few described the vertical distributions of the water column constituents under consideration and, thus, failed to report the biophysical conditions under which their model performed (e.g., the depth and thickness of the phytoplankton bloom(s)). We developed an ORM to remotely identifY Noctiluca miliaris and other phytoplankton functional types using satellite ocean color data records collected in the northern Arabian Sea. Here, we present results from analyses designed to evaluate the applicability and sensitivity of the ORM to varied biophysical conditions. Specifically, we: (1) synthesized a series of vertical profiles of spectral inherent optical properties that represent a wide variety of bio-optical conditions for the northern Arabian Sea under aN Miliaris bloom; (2) generated spectral remote-sensing reflectances from these profiles using Hydrolight; and, (3) applied the ORM to the synthesized reflectances to estimate the relative concentrations of diatoms and N Miliaris for each example. By comparing the estimates from the inversion model to those from synthesized vertical profiles, we were able to
Dewaele, Hélène; Munier, Simon; Albergel, Clément; Planque, Carole; Laanaia, Nabil; Carrer, Dominique; Calvet, Jean-Christophe
2017-09-01
Soil maximum available water content (MaxAWC) is a key parameter in land surface models (LSMs). However, being difficult to measure, this parameter is usually uncertain. This study assesses the feasibility of using a 15-year (1999-2013) time series of satellite-derived low-resolution observations of leaf area index (LAI) to estimate MaxAWC for rainfed croplands over France. LAI interannual variability is simulated using the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and observed LAI and (2) a more complex method consisting in integrating observed LAI in ISBA through a land data assimilation system (LDAS) and minimising LAI analysis increments. The evaluation of the MaxAWC estimates from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high proportion of straw cereals. Significant correlations (p value Bag and GY are found for up to 36 and 53 % of the administrative units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using undisaggregated LAI observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum values of disaggregated LAI observations are found to correlate very well with MaxAWC.
Inverse grey-box model-based control of a dielectric elastomer actuator
DEFF Research Database (Denmark)
Jones, Richard William; Sarban, Rahimullah
2012-01-01
control performance across the operating range of the DE actuator, a gain scheduling term, which linearizes the operating characteristics of the tubular dielectric elastomer actuator, is developed and implemented in series with the IMC controller. The IMC-based approach is investigated for servo control......An accurate physical-based electromechanical model of a commercially available tubular dielectric elastomer (DE) actuator has been developed and validated. In this contribution, the use of the physical-based electromechanical model to formulate a model-based controller is examined. The choice...... of control scheme was dictated by the desire for transparency in both controller design and operation. The internal model control (IMC) approach was chosen. In this particular application, the inverse of the linearized form of the grey-box model is used to formulate the IMC controller. To ensure consistent...
Laterally constrained inversion for CSAMT data interpretation
Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun
2015-10-01
Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.
International Nuclear Information System (INIS)
Li, Maokun; Abubakar, Aria; Habashy, Tarek M
2010-01-01
In this paper, we apply a model-based inversion scheme for the interpretation of the crosswell electromagnetic data. In this approach, we use open and closed polygons to parameterize the unknown configuration. The parameters that define these polygons are then inverted for by minimizing the data misfit cost function. Compared with the pixel-based inversion approach, the model-based inversion uses only a few number of parameters; hence, it is more efficient. Furthermore, with sufficient sensitivity in the data, the model-based approach can provide quantitative estimates of the inverted parameters such as the conductivity. The model-based inversion also provides a convenient way to incorporate a priori information from other independent measurements such as seismic, gravity and well logs
International Nuclear Information System (INIS)
Desesquelles, P.
1997-01-01
Computer Monte Carlo simulations occupy an increasingly important place between theory and experiment. This paper introduces a global protocol for the comparison of model simulations with experimental results. The correlated distributions of the model parameters are determined using an original recursive inversion procedure. Multivariate analysis techniques are used in order to optimally synthesize the experimental information with a minimum number of variables. This protocol is relevant in all fields if physics dealing with event generators and multi-parametric experiments. (authors)
Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia
Babeyko, A. Y.; Hoechner, A.; Sobolev, S. V.
2010-07-01
We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.
Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk
2018-04-03
Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.
Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.
Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M
2016-08-01
Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.
Inversion of the Jacobi-Porstendorfer room model for the radon progeny
International Nuclear Information System (INIS)
Thomas, J.; Jilek, K.; Brabec, M.
2010-01-01
The Jacobi-Porstendoerfer (J-P) room model describes the behaviour of radon progeny in the atmosphere of a room. It distinguishes between free and attached radon progeny in air. It has been successfully used without substantial changes for nearly 40 years. There have been several attempts to invert the model approximately to determine the parameters describing the physical processes. Here, an exact solution is aimed at as an algebraic inversion of the system of six linear equations for the five unknown physical parameters k, X, R, q f , q a of the room model. Two strong linear dependencies in this system, unfortunately do not allow to obtain a general solution (especially not for the ventilation coefficient k), but only a parameterized one or for reduced sets of unknown parameters. More, the impossibility to eliminate one of the two linear dependencies and the departures of the measured concentrations forces to solve a set of allowed combinations of equations of the algebraic system and to accept its mean values (therefore with variances) as a result of the algebraic inversion. These results are in agreement with results of the least squares method as well as of a sophisticated modern statistical approach. The algebraic approach provides, of course, a lot of analytical relations to study the mutual dependencies between the model parameters and the measurable quantities. (authors)
Hamim, Salah Uddin Ahmed
Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.
Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince
2018-01-01
To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.
Salvus: A scalable software suite for full-waveform modelling & inversion
Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.
2017-12-01
Full-waveform inversion (FWI), whether at the lab, exploration, or planetary scale, requires the cooperation of five principal components. (1) The geometry of the domain needs to be properly discretized and an initial guess of the model parameters must be projected onto it; (2) Large volumes of recorded waveform data must be collected, organized, and processed; (3) Synthetic waveform data must be efficiently and accurately computed through complex domains; (4) Suitable misfit functions and optimization techniques must be used to relate discrepancies in data space to perturbations in the model; and (5) Some form of workflow management must be employed to schedule and run (1) - (4) in the correct order. Each one of these components can represent a formidable technical challenge which redirects energy from the true task at hand: using FWI to extract new information about some underlying continuum.In this presentation we give an overview of the current status of the Salvus software suite, which was introduced to address the challenges listed above. Specifically, we touch on (1) salvus_mesher, which eases the discretization of complex Earth models into hexahedral meshes; (2) salvus_seismo, which integrates with LASIF and ObsPy to streamline the processing and preparation of seismic data; (3) salvus_wave, a high-performance and scalable spectral-element solver capable of simulating waveforms through general unstructured 2- and 3-D domains, and (4) salvus_opt, an optimization toolbox specifically designed for full-waveform inverse problems. Tying everything together, we also discuss (5) salvus_flow: a workflow package designed to orchestrate and manage the rest of the suite. It is our hope that these developments represent a step towards the automation of large-scale seismic waveform inversion, while also lowering the barrier of entry for new applications. We include several examples of Salvus' use in (extra-) planetary seismology, non-destructive testing, and medical
Varugu, B. K.; Amelung, F.
2017-12-01
Mauna Loa volcano, located on the Big Island, Hawaii, is the largest volcano on the earth and historically been one of the most active volcanoes on the earth. Since its last eruption in 1984, there was a decrease in the magmatic activity, yet episodic inflations with increased seismicity sparks interests in the scientific community and there is strong need to monitor the volcano with growing infrastructure close to the flanks of the volcano. Geodetic modelling of the previous inflations illustrate that the magma activity is due to inflation of hydraulically connected dike and magma chamber located from 4-8km beneath the summit (Amelung et al. 2007). Most of the seismicity observed on Mauna Loa is due to the movement along a decollement fault situated at the base of the volcano. Magma inflation under Mauna Loa has started again during the last quarter of 2013 and is continuing still with an increased seismicity. In this study, we used 140 images form COSMO SkyMED between 2013-2017 to derive and model the ground deformation. We carried out time series InSAR analysis using Small Baseline (SB) approach. While the deformation pattern seems similar in many ways to the previous inflation periods, geodetic modelling for inversion of source parameters indicate a significant propagation of the dike ( 1 km) into the South West Rift Zone(SWRZ) and a decreased depth of the dike top from summit, compared to the previous inflations. Such propagation needs to be studied further in view of the steep slope of SWRZ. In understanding the dynamics of this propagating dike, we also observed an increased seismic activity since 2014 in the vicinity of the modelled dike. Here in this study we attempt to characterize the stresses induced by the propagating dike and seaward slipping movement along the basal decollement, to explain the increased seismicity using a finite element model.
Energy Technology Data Exchange (ETDEWEB)
Ait-gougam, Y.; Ibtiouen, R.; Touhami, O. [Laboratoire de Recherche en Electrotechnique, Ecole Nationale Polytechnique, BP 182, El-Harrach 16200 (Algeria); Louis, J.-P.; Gabsi, M. [Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), CNRS UMR 8029, Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)
2008-01-15
Sinusoidal motor's mathematical models are usually obtained using classical d-q transformation in the case of salient pole synchronous motors having sinusoidal field distribution. In this paper, a new inverse modelling for synchronous motors is presented. This modelling is derived from the properties of constant torque curves in the Concordia's reference frame. It takes into account the non-sinusoidal field distribution; EMF, self and mutual inductances having non-sinusoidal variations with respect to the angular rotor position. Both copper losses and torque ripples are minimized by adapted currents waveforms calculated from this model. Experimental evaluation was carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed method in reducing torque ripple. (author)
A model for the inverse 1-median problem on trees under uncertain costs
Directory of Open Access Journals (Sweden)
Kien Trung Nguyen
2016-01-01
Full Text Available We consider the problem of justifying vertex weights of a tree under uncertain costs so that a prespecified vertex become optimal and the total cost should be optimal in the uncertainty scenario. We propose a model which delivers the information about the optimal cost which respect to each confidence level \\(\\alpha \\in [0,1]\\. To obtain this goal, we first define an uncertain variable with respect to the minimum cost in each confidence level. If all costs are independently linear distributed, we present the inverse distribution function of this uncertain variable in \\(O(n^{2}\\log n\\ time, where \\(n\\ is the number of vertices in the tree.
Inverse stochastic-dynamic models for high-resolution Greenland ice core records
DEFF Research Database (Denmark)
Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu
2017-01-01
as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the 18O and dust......Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from 18O and dust records of unprecedented, subdecadal...
DEFF Research Database (Denmark)
Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan
1996-01-01
An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow...... to steady state versus transient flow conditions and to the amount of hydraulic and solute data used is investigated. The flow parameters, transmissivity and leakage factor, are estimated simultaneously with the transport parameters: source strength, porosity, and longitudinal dispersivity. This paper...
Bayesian and Classical Estimation of Stress-Strength Reliability for Inverse Weibull Lifetime Models
Directory of Open Access Journals (Sweden)
Qixuan Bi
2017-06-01
Full Text Available In this paper, we consider the problem of estimating stress-strength reliability for inverse Weibull lifetime models having the same shape parameters but different scale parameters. We obtain the maximum likelihood estimator and its asymptotic distribution. Since the classical estimator doesn’t hold explicit forms, we propose an approximate maximum likelihood estimator. The asymptotic confidence interval and two bootstrap intervals are obtained. Using the Gibbs sampling technique, Bayesian estimator and the corresponding credible interval are obtained. The Metropolis-Hastings algorithm is used to generate random variates. Monte Carlo simulations are conducted to compare the proposed methods. Analysis of a real dataset is performed.
Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture
Budescu, E.; Merticaru, E.; Chirazi, M.
The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.
Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study
Directory of Open Access Journals (Sweden)
A. M. Michalak
2010-07-01
Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
Surface roughness retrieval by inversion of the Hapke model: A multiscale approach
Labarre, S.; Ferrari, C.; Jacquemoud, S.
2017-07-01
Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.
Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance
Ngo, Christina L.; Powell, Jessica M.; Ross, James C.
2017-01-01
A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.
A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller
Directory of Open Access Journals (Sweden)
Carlos Robles Algarín
2018-01-01
Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.
Directory of Open Access Journals (Sweden)
Congrong Li
2015-08-01
Full Text Available Forest canopy leaf area index (LAI inversion based on remote sensing data is an important method to obtain LAI. Currently, the most widely-used model to achieve forest canopy structure parameters is the Li-Strahler geometric-optical bidirectional reflectance model, by considering the effect of crown shape and mutual shadowing, which is referred to as the GOMS model. However, it is difficult to retrieve LAI through the GOMS model directly because LAI is not a fundamental parameter of the model. In this study, a gap probability model was used to obtain the relationship between the canopy structure parameter nR2 and LAI. Thus, LAI was introduced into the GOMS model as an independent variable by replacing nR2 The modified GOMS (MGOMS model was validated by application to Dayekou in the Heihe River Basin of China. The LAI retrieved using the MGOMS model with optical multi-angle remote sensing data, high spatial resolution images and field-measured data was in good agreement with the field-measured LAI, with an R-square (R2 of 0.64, and an RMSE of 0.67. The results demonstrate that the MGOMS model obtained by replacing the canopy structure parameter nR2 of the GOMS model with LAI can be used to invert LAI directly and precisely.
Kumar, B Shiva; Venkateswarlu, Ch
2014-08-01
The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
International Nuclear Information System (INIS)
Kim, Joo Yeon; Ryu, Hyung Joon; Jung, Gyu Hwan; Lee, Jai Ki
2011-01-01
The dependency within the sequential realizations in the generated Markov chains and their reliabilities are monitored by introducing the autocorrelation and the potential scale reduction factor (PSRF) by model parameters in the atmospheric dispersion. These two diagnostics have been applied for the posterior quantities of the release point and the release rate inferred through the inverse tracking of unknown model parameters for the Yonggwang atmospheric tracer experiment in Korea. The autocorrelations of model parameters are decreasing to low values approaching to zero with increase of lag, resulted in decrease of the dependencies within the two sequential realizations. Their PSRFs are reduced to within 1.2 and the adequate simulation number recognized from these results. From these two convergence diagnostics, the validation of Markov chains generated have been ensured and PSRF then is especially suggested as the efficient tool for convergence monitoring for the source reconstruction in atmospheric dispersion. (author)
Thin-Sheet Inversion Modeling of Geomagnetic Deep Sounding Data Using MCMC Algorithm
Directory of Open Access Journals (Sweden)
Hendra Grandis
2013-01-01
Full Text Available The geomagnetic deep sounding (GDS method is one of electromagnetic (EM methods in geophysics that allows the estimation of the subsurface electrical conductivity distribution. This paper presents the inversion modeling of GDS data employing Markov Chain Monte Carlo (MCMC algorithm to evaluate the marginal posterior probability of the model parameters. We used thin-sheet model to represent quasi-3D conductivity variations in the heterogeneous subsurface. The algorithm was applied to invert field GDS data from the zone covering an area that spans from eastern margin of the Bohemian Massif to the West Carpathians in Europe. Conductivity anomalies obtained from this study confirm the well-known large-scale tectonic setting of the area.
Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw
Directory of Open Access Journals (Sweden)
Shaaban Khalil
2016-12-01
Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.
Feng, R.; Sharma, S.; Luthi, S.M.; Gisolf, A.
2015-01-01
Previously, Tetyukhina et al. (2014) developed a geological and petrophysical model based on the Book Cliffs outcrops that contained eight lithotypes. For reservoir modelling purposes, this model is judged to be too coarse because in the same lithotype it contains reservoir and non-reservoir
Directory of Open Access Journals (Sweden)
Mac Sisson
2016-11-01
Full Text Available Poquoson River is a tidal coastal embayment located along the Western Shore of the Chesapeake Bay about 4 km south of the York River mouth in the City of Poquoson and in York County, Virginia. Its drainage area has diversified land uses, including high densities of residence, agricultural, salt marsh land uses, as well as a National Wildlife Refuge. This embayment experiences elevated bacterial concentration due to excess bacterial inputs from storm water runoff, nonpoint sources, and wash off from marshes due to tide and wind-induced set-up and set-down. Bacteria can also grow in the marsh and small tributaries. It is difficult to use a traditional watershed model to simulate bacterial loading, especially in this low-lying marsh area with abundant wildlife, while runoff is not solely driven by precipitation. An inverse approach is introduced to estimate loading from unknown sources based on observations in the embayment. The estimated loadings were combined with loadings estimated from different sources (human, wildlife, agriculture, pets, etc. and input to the watershed model. The watershed model simulated long-term flow and bacterial loading and discharged to a three-dimensional transport model driven by tide, wind, and freshwater discharge. The transport model efficiently simulates the transport and fate of the bacterial concentration in the embayment and is capable of determining the loading reduction needed to improve the water quality condition of the embayment. Combining inverse, watershed, and transport models is a sound approach for simulating bacterial transport correctly in the coastal embayment with complex unknown bacterial sources, which are not solely driven by precipitation.
Understanding the Yellowstone magmatic system using 3D geodynamic inverse models
Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.
2017-12-01
The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.
Singing with yourself: evidence for an inverse modeling account of poor-pitch singing.
Pfordresher, Peter Q; Mantell, James T
2014-05-01
Singing is a ubiquitous and culturally significant activity that humans engage in from an early age. Nevertheless, some individuals - termed poor-pitch singers - are unable to match target pitches within a musical semitone while singing. In the experiments reported here, we tested whether poor-pitch singing deficits would be reduced when individuals imitate recordings of themselves as opposed to recordings of other individuals. This prediction was based on the hypothesis that poor-pitch singers have not developed an abstract "inverse model" of the auditory-vocal system and instead must rely on sensorimotor associations that they have experienced directly, which is true for sequences an individual has already produced. In three experiments, participants, both accurate and poor-pitch singers, were better able to imitate sung recordings of themselves than sung recordings of other singers. However, this self-advantage was enhanced for poor-pitch singers. These effects were not a byproduct of self-recognition (Experiment 1), vocal timbre (Experiment 2), or the absolute pitch of target recordings (i.e., the advantage remains when recordings are transposed, Experiment 3). Results support the conceptualization of poor-pitch singing as an imitative deficit resulting from a deficient inverse model of the auditory-vocal system with respect to pitch. Copyright © 2014 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Kandil, H.A.; Elhadidi, B.M.; Kader, A. A.; Moaty, A.A.; Sherif, A.O.
2006-01-01
Air pollution episodes have been recorded in Cairo, during the fall season, since 1999, as a result of specific meteorological conditions combined with large quantity of pollutants created by several ground-based sources. The main reason for the smog-like episodes (black clouds) is adverse weather conditions with low and variable winds, high humidity and strong temperature inversions in the few-hundred meters above the ground. The two important types of temperature inversion affecting the air pollution are surface or ground (radiation) inversion and subsidence (elevated) inversion. The surface temperature inversion is associated with a rapid decrease in the ground surface temperature with the simultaneous existence of warm air in the lower troposphere. The inversion develops at dusk and continues until the surface warms again the following day. Pollutants emitted during the night are caught under this i nversion lid. S ubsidence inversion forms when warm air masses move over colder air masses. The inversion develops with a stagnating high-pressure system (generally associated with fair weather). Under these conditions, the pressure gradient becomes progressively weaker so that winds become light. These light winds greatly reduce the horizontal transport and dispersion of pollutants. At the same time, the subsidence inversion acts as a barrier to the vertical dispersion of the pollutants. In this study, the Penn State/NCAR meso -scale model (MM5) is used to simulate the temperature inversion phenomenon over Greater Cairo region during the fall season of 2004. Accurate computations of the heat transfer at the surface are needed to capture this phenomenon. This can only be achieved by high-resolution simulations in both horizontal and vertical directions. Hence, for accurate simulation of the temperature inversion over Greater Cairo, four nested domains of resolutions of 27 km, 9 km, 3 km and 1 km, respectively, were used in the horizontal planes. Furthermore, 42
Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.
2016-12-01
Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete
Directory of Open Access Journals (Sweden)
Patrick Piprek
2018-02-01
Full Text Available This paper presents an approach to model a ski jumper as a multi-body system for an optimal control application. The modeling is based on the constrained Newton-Euler-Equations. Within this paper the complete multi-body modeling methodology as well as the musculoskeletal modeling is considered. For the musculoskeletal modeling and its incorporation in the optimization model, we choose a nonlinear dynamic inversion control approach. This approach uses the muscle models as nonlinear reference models and links them to the ski jumper movement by a control law. This strategy yields a linearized input-output behavior, which makes the optimal control problem easier to solve. The resulting model of the ski jumper can then be used for trajectory optimization whose results are compared to literature jumps. Ultimately, this enables the jumper to get a very detailed feedback of the flight. To achieve the maximal jump length, exact positioning of his body with respect to the air can be displayed.
Energy Technology Data Exchange (ETDEWEB)
Akhil Datta-Gupta
2008-03-31
Streamline-based assisted and automatic history matching techniques have shown great potential in reconciling high resolution geologic models to production data. However, a major drawback of these approaches has been incompressibility or slight compressibility assumptions that have limited applications to two-phase water-oil displacements only. We propose an approach to history matching three-phase flow using a novel compressible streamline formulation and streamline-derived analytic sensitivities. First, we utilize a generalized streamline model to account for compressible flow by introducing an 'effective density' of total fluids along streamlines. Second, we analytically compute parameter sensitivities that define the relationship between the reservoir properties and the production response, viz. water-cut and gas/oil ratio (GOR). These sensitivities are an integral part of history matching, and streamline models permit efficient computation of these sensitivities through a single flow simulation. We calibrate geologic models to production data by matching the water-cut and gas/oil ratio using our previously proposed generalized travel time inversion (GTTI) technique. For field applications, however, the highly non-monotonic profile of the gas/oil ratio data often presents a challenge to this technique. In this work we present a transformation of the field production data that makes it more amenable to GTTI. Further, we generalize the approach to incorporate bottom-hole flowing pressure during three-phase history matching. We examine the practical feasibility of the method using a field-scale synthetic example (SPE-9 comparative study) and a field application. Recently Ensemble Kalman Filtering (EnKF) has gained increased attention for history matching and continuous reservoir model updating using data from permanent downhole sensors. It is a sequential Monte-Carlo approach that works with an ensemble of reservoir models. Specifically, the method
DEFF Research Database (Denmark)
Nielsen, S.B.; Clausen, O.R.; Gallagher, Kerry
2011-01-01
the thermal history information contained in high quality thermal maturity data comprising temperature profiles, vitrinite reflectance and apatite fission track data. Having remained open for experimental purposes, the data of two of the deep wells (Aars-1 and Farsoe-1) are of exceptionally high quality. Here...... about the magnitude of deposition and erosion during this hiatus. We use Markov Chain Monte Carlo with a transient one-dimensional thermal model to explore the parameter space of potential thermal history solutions, using the different available data as constraints. The variable parameters comprise...... inversion of the STZ. This is in agreement with numerical rheological models of inversion zone dynamics, which explain how marginal trough subsidence occurred as a consequence of late Cretaceous compressional inversion and erosion along the inversion axis (Nielsen et al. 2005, 2007). Following this, the in-plane...
Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation
Bonin, Jennifer; Chambers, Don
2013-07-01
The low spatial resolution of GRACE causes leakage, where signals in one location spread out into nearby regions. Because of this leakage, using simple techniques such as basin averages may result in an incorrect estimate of the true mass change in a region. A fairly simple least squares inversion technique can be used to more specifically localize mass changes into a pre-determined set of basins of uniform internal mass distribution. However, the accuracy of these higher resolution basin mass amplitudes has not been determined, nor is it known how the distribution of the chosen basins affects the results. We use a simple `truth' model over Greenland as an example case, to estimate the uncertainties of this inversion method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We determine that an appropriate level of smoothing (300-400 km) and process noise (0.30 cm2 of water) gets the best results. The trends of the Greenland internal basins and Iceland can be reasonably estimated with this method, with average systematic errors of 3.5 cm yr-1 per basin. The largest mass losses found from GRACE RL04 occur in the coastal northwest (-19.9 and -33.0 cm yr-1) and southeast (-24.2 and -27.9 cm yr-1), with small mass gains (+1.4 to +7.7 cm yr-1) found across the northern interior. Acceleration of mass change is measurable at the 95 per cent confidence level in four northwestern basins, but not elsewhere in Greenland. Due to an insufficiently detailed distribution of basins across internal Canada, the trend estimates of Baffin and Ellesmere Islands are expected to be incorrect due to systematic errors caused by the inversion technique.
Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.
2011-01-01
Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.
Inverse photoemission of uranium oxides
International Nuclear Information System (INIS)
Roussel, P.; Morrall, P.; Tull, S.J.
2009-01-01
Understanding the itinerant-localised bonding role of the 5f electrons in the light actinides will afford an insight into their unusual physical and chemical properties. In recent years, the combination of core and valance band electron spectroscopies with theoretic modelling have already made significant progress in this area. However, information of the unoccupied density of states is still scarce. When compared to the forward photoemission techniques, measurements of the unoccupied states suffer from significantly less sensitivity and lower resolution. In this paper, we report on our experimental apparatus, which is designed to measure the inverse photoemission spectra of the light actinides. Inverse photoemission spectra of UO 2 and UO 2.2 along with the corresponding core and valance electron spectra are presented in this paper. UO 2 has been reported previously, although through its inclusion here it allows us to compare and contrast results from our experimental apparatus to the previous Bremsstrahlung Isochromat Spectroscopy and Inverse Photoemission Spectroscopy investigations
De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele
2017-04-01
Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical
A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.
Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio
2017-11-01
Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this
Mohamad Noor, Faris; Adipta, Agra
2018-03-01
Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.
Fréour , Sylvain; Gloaguen , David; François , Marc; Guillén , Ronald
2006-01-01
International audience; The scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 beta-phase. A rigorous inverse thermo-elastic self-consistent scale transition inicro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied (alpha + b...
Energy Technology Data Exchange (ETDEWEB)
Freour, S. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)]. E-mail: freour@crttsn.univ-nantes.fr; Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Guillen, R. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)
2006-04-15
scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 {beta}-phase. A rigorous inverse thermo-elastic self-consistent scale transition micro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied ({alpha} + {beta}) two-phase titanium alloy.
Cui, Y.; Falk, M.; Chen, Y.; Herner, J.; Croes, B. E.; Vijayan, A.
2017-12-01
Methane (CH4) is an important short-lived climate pollutant (SLCP), and the second most important greenhouse gas (GHG) in California which accounts for 9% of the statewide GHG emissions inventory. Over the years, California has enacted several ambitious climate change mitigation goals, including the California Global Warming Solutions Act of 2006 which requires ARB to reduce statewide GHG emissions to 1990 emission level by 2020, as well as Assembly Bill 1383 which requires implementation of a climate mitigation program to reduce statewide methane emissions by 40% below the 2013 levels. In order to meet these requirements, ARB has proposed a comprehensive SLCP Strategy with goals to reduce oil and gas related emissions and capture methane emissions from dairy operations and organic waste. Achieving these goals will require accurate understanding of the sources of CH4 emissions. Since direct monitoring of CH4 emission sources in large spatial and temporal scales is challenging and resource intensive, we developed a complex inverse technique combined with atmospheric three-dimensional (3D) transport model and atmospheric observations of CH4 concentrations from a regional tower network and aircraft measurements, to gain insights into emission sources in California. In this study, develop a comprehensive inversion estimate using available aircraft measurements from CalNex airborne campaigns (May-June 2010) and three years of hourly continuous measurements from the ARB Statewide GHG Monitoring Network (2014-2016). The inversion analysis is conducted using two independent 3D Lagrangian models (WRF-STILT and WRF-FLEXPART), with a variety of bottom-up prior inputs from national and regional inventories, as well as two different probability density functions (Gaussian and Lognormal). Altogether, our analysis provides a detailed picture of the spatially resolved CH4 emission sources and their temporal variation over a multi-year period.
Energy Technology Data Exchange (ETDEWEB)
Wu, Xu, E-mail: xuwu2@illinois.edu; Kozlowski, Tomasz
2017-03-15
Modeling and simulations are naturally augmented by extensive Uncertainty Quantification (UQ) and sensitivity analysis requirements in the nuclear reactor system design, in which uncertainties must be quantified in order to prove that the investigated design stays within acceptance criteria. Historically, expert judgment has been used to specify the nominal values, probability density functions and upper and lower bounds of the simulation code random input parameters for the forward UQ process. The purpose of this paper is to replace such ad-hoc expert judgment of the statistical properties of input model parameters with inverse UQ process. Inverse UQ seeks statistical descriptions of the model random input parameters that are consistent with the experimental data. Bayesian analysis is used to establish the inverse UQ problems based on experimental data, with systematic and rigorously derived surrogate models based on Polynomial Chaos Expansion (PCE). The methods developed here are demonstrated with the Point Reactor Kinetics Equation (PRKE) coupled with lumped parameter thermal-hydraulics feedback model. Three input parameters, external reactivity, Doppler reactivity coefficient and coolant temperature coefficient are modeled as uncertain input parameters. Their uncertainties are inversely quantified based on synthetic experimental data. Compared with the direct numerical simulation, surrogate model by PC expansion shows high efficiency and accuracy. In addition, inverse UQ with Bayesian analysis can calibrate the random input parameters such that the simulation results are in a better agreement with the experimental data.
Naturalness and lepton number/flavor violation in inverse seesaw models
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University,1060, Nishikawatsu, Matsue, Shimane (Japan); Ishida, Hiroyuki [Graduate School of Science and Engineering, Shimane University,1060, Nishikawatsu, Matsue, Shimane (Japan); Physics Division, National Center for Theoretical Sciences,101, Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan (China); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University,1060, Nishikawatsu, Matsue, Shimane (Japan); Department of Physics, Faculty of Science, Hokkaido University,Kita 9 Nishi 8, Kita-ku, Sapporo, Hokkaido (Japan)
2016-11-02
We introduce three right-handed neutrinos and three sterile neutrinos, and consider an inverse seesaw mechanism for neutrino mass generation. From naturalness point of view, their Majorana masses should be small, while it induces a large neutrino Yukawa coupling. Then, a neutrinoless double beta decay rate can be enhanced, and a sizable Higgs mass correction is inevitable. We find that the enhancement rate can be more than ten times compared with a standard prediction from light neutrino contribution alone, and an analytic form of heavy neutrino contributions to the Higgs mass correction. In addition, we numerically analyze the model, and find almost all parameter space of the model can be complementarily searched by future experiments of neutrinoless double beta decay and μ→e conversion.
On the critical behavior of the inverse susceptibility of a model of structural phase transitions
International Nuclear Information System (INIS)
Pisanova, E.S.; Ivanov, S.I.
2013-01-01
An exactly solvable lattice model describing structural phase transitions in an anharmonic crystal with long-range interaction is considered in the neighborhoods of the quantum and classical critical points at the corresponding upper critical dimensions. In a broader neighborhood of the critical region the inverse susceptibility of the model is exactly calculated in terms of the Lambert W-function and graphically presented as a function of the deviation from the critical point and the upper critical dimension. For quantum and classical systems with real physical dimensions (chains, thin layers and three-dimensional systems) the exact results are compared with the asymptotic ones on the basis of some numerical data for their ratio. Relative errors are also provided
Modeling of inverse Cherenkov laser acceleration with axicon laser-beam focusing
International Nuclear Information System (INIS)
Romea, R.D.; Kimura, W.D.
1990-01-01
Acceleration of free electrons by the inverse Cherenkov effect using radially polarized laser light focused through an axicon [J. P. Fontana and R. H. Pantell, J. Appl. Phys. 54, 4285 (1983)] has been studied utilizing a Monte Carlo computer simulation and further theoretical analysis. The model includes effects, such as scattering of the electrons by the gas, and diffraction and interference effects of the axicon laser beam, that were not included in the original analysis of Fontana and Pantell. Its accuracy is validated using available experimental data. The model results show that effective acceleration is possible even with the effects of scattering. Sample results are given. The analysis includes examining the issues of axicon focusing, phase errors, energy gain, phase slippage, focusing of the e beam, and emittance growth
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI 1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
Development of CO2 inversion system based on the adjoint of the global coupled transport model
Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon
2014-05-01
We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations
Adaptive forward-inverse modeling of reservoir fluids away from wellbores; TOPICAL
International Nuclear Information System (INIS)
Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G
1999-01-01
This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques[Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by signal
DEFF Research Database (Denmark)
Viezzoli, Andrea; Christiansen, Anders Vest; Auken, Esben
This paper aims at providing more insight into the parameters that need to be modelled during inversion of Helicopter TEM data for accurate modelling, both for hydrogeophysical and exploration applications. We use synthetic data to show in details the effect, both in data and in model space...
Inverse modelling of radionuclide release rates using gamma dose rate observations
Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian
2015-04-01
Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The
[Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].
Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua
2015-08-01
Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.
A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.
van Dongen, Koen W A; Wright, William M D
2006-10-01
Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.
Invariant models in the inversion of gravity and magnetic fields and their derivatives
Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni
2014-11-01
In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.
Charco, María; González, Pablo J.; Galán del Sastre, Pedro
2017-04-01
The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.
Loos, Martin; Krauss, Martin; Fenner, Kathrin
2012-09-18
Formation of soil nonextractable residues (NER) is central to the fate and persistence of pesticides. To investigate pools and extent of NER formation, an established inverse modeling approach for pesticide soil degradation time series was evaluated with a Monte Carlo Markov Chain (MCMC) sampling procedure. It was found that only half of 73 pesticide degradation time series from a homogeneous soil source allowed for well-behaved identification of kinetic parameters with a four-pool model containing a parent compound, a metabolite, a volatile, and a NER pool. A subsequent simulation indeed confirmed distinct parameter combinations of low identifiability. Taking the resulting uncertainties into account, several conclusions regarding NER formation and its impact on persistence assessment could nonetheless be drawn. First, rate constants for transformation of parent compounds to metabolites were correlated to those for transformation of parent compounds to NER, leading to degradation half-lives (DegT50) typically not being larger than disappearance half-lives (DT50) by more than a factor of 2. Second, estimated rate constants were used to evaluate NER formation over time. This showed that NER formation, particularly through the metabolite pool, may be grossly underestimated when using standard incubation periods. It further showed that amounts and uncertainties in (i) total NER, (ii) NER formed from the parent pool, and (iii) NER formed from the metabolite pool vary considerably among data sets at t→∞, with no clear dominance between (ii) and (iii). However, compounds containing aromatic amine moieties were found to form significantly more total NER when extrapolating to t→∞ than the other compounds studied. Overall, our study stresses the general need for assessing uncertainties, identifiability issues, and resulting biases when using inverse modeling of degradation time series for evaluating persistence and NER formation.
Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties
Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.; Feldman, Gene C.; Boss, Emmanuel; Brando, Vittorio E.; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J.; Lee, ZhongPing;
2013-01-01
Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future ensemble applications.
PENENTUAN HARGA KONTRAK OPSI TIPE ASIA MENGGUNAKAN MODEL SIMULASI NORMAL INVERSE GAUSSIAN (NIG
Directory of Open Access Journals (Sweden)
I PUTU OKA PARAMARTHA
2015-02-01
Full Text Available The aim to determine of the simulation results and to calculate the stock price of Asian Option with Normal Inverse Gaussian (NIG method and Monte Carlo method using MATLAB program. Results of both models are compared and selected a fair price. Besides to determine simulation accuracy of the stock price, speed of program execution MATLAB is calculated for both models for time efficiency. The first part, set variabels used to calculate the trajectory of stock prices at time t to simulate the stock price at the time. The second part, simulate the stock price with NIG model. The third part, simulate the stock price with Monte Carlo model. After simulating the stock price, calculated the value of the pay-off of the Asian Option, and then estimate the price of Asian Option by averaging the entire value of pay-off from each iteration. The last part, compare result of both models. The results of this research is price of Asian Option calculated using Monte Carlo simulation and NIG. The rates were calculated using the NIG produce a fair price, because of the pricing contract NIG using four parameters ?, ?, ?, and ?, while Monte Carlo is using only two parameters ? and ?. For execution time of the program, the Monte Carlo model is better in all iterations.
Building a good initial model for full-waveform inversion using frequency shift filter
Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie
2018-05-01
Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.
PENENTUAN HARGA KONTRAK OPSI TIPE ASIA MENGGUNAKAN MODEL SIMULASI NORMAL INVERSE GAUSSIAN (NIG
Directory of Open Access Journals (Sweden)
I PUTU OKA PARAMARTHA
2014-08-01
Full Text Available The aim to determine of the simulation results and to calculate the stock price of Asian Option with Normal Inverse Gaussian (NIG method and Monte Carlo method using MATLAB program. Results of both models are compared and selected a fair price. Besides to determine simulation accuracy of the stock price, speed of program execution MATLAB is calculated for both models for time efficiency. The first part, set variabels used to calculate the trajectory of stock prices at time t to simulate the stock price at the time. The second part, simulate the stock price with NIG model. The third part, simulate the stock price with Monte Carlo model. After simulating the stock price, calculated the value of the pay-off of the Asian Option, and then estimate the price of Asian Option by averaging the entire value of pay-off from each iteration. The last part, compare result of both models. The results of this research is price of Asian Option calculated using Monte Carlo simulation and NIG. The rates were calculated using the NIG produce a fair price, because of the pricing contract NIG using four parameters ?, ?, ?, and ?, while Monte Carlo is using only two parameters ? and ?. For execution time of the program, the Monte Carlo model is better in all iterations.
Energy Technology Data Exchange (ETDEWEB)
Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.
2008-04-01
A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin; Strawn, Laura K
2016-02-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin
2015-01-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280
Directory of Open Access Journals (Sweden)
Asan Gani
2010-09-01
Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB
Thermo-mechanical model identification of a strengthened copper with an inverse method
Peroni, M; Dallocchio, A
2009-01-01
This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work.
Identification of strain-rate and thermal sensitive material model with an inverse method
Peroni, L; Peroni, M
2010-01-01
This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, an...
Dorati, Rossella; Genta, Ida; Modena, Tiziana; Conti, Bice
2013-01-01
The goal of the present work was to evaluate and discuss vibration nozzle microencapsulation (VNM) technology combined to lyophilization, for the microencapsulation of a hydrophilic model molecule into a hydrophilic polymer. Fluorescein-loaded alginate microparticles prepared by VNM and emulsion phase inversion microencapsulation (EPIM) were lyophilized. Morphology, particle size distribution, lyophilized microspheres stability upon rehydration, drug loading and in vitro release were evaluated. Well-formed microspheres were obtained by the VNM technique, with higher yields of production (93.3-100%) and smaller particle size (d50138.10-158.00) than the EPIM microspheres. Rehydration upon lyophilization occurred in 30 min maintaining microsphere physical integrity. Fluorescein release was always faster from the microspheres obtained by VNM (364 h) than from those obtained by EPIM (504 h). The results suggest that VNM is a simple, easy to be scaled-up process suitable for the microencapsulation hydrophilic drugs.
Inverting reflections using full-waveform inversion with inaccurate starting models
AlTheyab, Abdullah
2015-08-19
We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless of the low-wavenumber velocity error in the initial models. Therefore, we use them as a starting point for FWI, and the subsurface velocity model is then updated during the FWI iterations using reflection wavepaths from varying offsets that are not cycle-skipped. To enhance low-wavenumber updates and accelerate the convergence, we take several passes through the non-linear Gauss-Seidel iterations, where we invert traces from a narrow range of near offsets and finally end at the far offsets. Every pass is followed by applying smoothing to the cumulative slowness update. The smoothing is strong at the early stages and relaxed at later iterations to allow for a gradual reconstruction of the subsurface model in a multiscale manner. Applications to synthetic and field data, starting from inaccurate models, show significant low-wavenumber updates and flattening of common-image gathers after many iterations.
Regional inverse modeling for high reactive species with PYVAR-CHIMERE
Fortems-Cheiney, A.; Pison, I.; Dufour, G.; Broquet, G.; Costantino, L.
2017-12-01
The degradation of air quality is a worldwide environmental problem: according to the World Health Organization WHO, 92% of the world's population breathe polluted air in 2016. A number of air pollutants associated with respiratory disease and shortened life expectancy play a particularly important role in global outdoor air pollution. In addition to threatening both human health and ecosystems, these gaseous air pollutants including nitrogen oxides (NOx=NO+NO2), sulfur dioxide (SO2), ammonia (NH3), and volatile organic compounds (VOCs) could be precursors of ozone (O3) and Particulate Matter (PM). Without a strong scientific back-up to determine their different sources, the necessary regulations to improve air quality will not be efficient. To date, only chemistry-transport models (CTM) are able to describe pollutant concentrations at any location in the world and their evolution in the atmosphere. Consequently, they have become essential tools for studying air quality. However, CTM are hampered by incomplete information on gaseous precursors and one of the large shortcoming for simulating the gaseous pollutants budgets is the lack of high spatio-temporal variability for the emission estimations provided as inputs for chemistry-transport models. For all these reasons, an inverse system called PYVAR-CHIMERE has been developed, operating in synergy between a CTM and atmospheric observations, and being adjust for the highly reactive species of interest here, as NO2. We present here the first results of this Bayesian variational inverse method for the quantification of NO2 emissions both over Europe (in March 2011) and over China (in January 2015), with a spatial resolution of 0.5°x0.5° and at a weekly temporal resolution, constrained by surface measurements and OMI NO2 satellite observations.
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
Tarver, Craig
2017-06-01
An Ignition and Growth reactive flow model for detonating LX-04 (85% HMX / 15% Viton) was developed using new and previously obtained experimental data on: cylinder test expansion; wave curvature; failure diameter; and laser interferometric copper and tantalum foil free surface velocities and LiF interface particle velocity histories. A reaction product JWL EOS generated by the CHEETAH code compared favorably with the existing, well normalized LX-04 product JWL when both were used with the Ignition and Growth model. Good agreement with all existing experimental data was obtained. Keywords: LX-04, HMX, detonation, Ignition and Growth PACS:82.33.Vx, 82.40.Fp This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Backus, George E.
1999-01-01
The purpose of the grant was to study how prior information about the geomagnetic field can be used to interpret surface and satellite magnetic measurements, to generate quantitative descriptions of prior information that might be so used, and to use this prior information to obtain from satellite data a model of the core field with statistically justifiable error estimates. The need for prior information in geophysical inversion has long been recognized. Data sets are finite, and faithful descriptions of aspects of the earth almost always require infinite-dimensional model spaces. By themselves, the data can confine the correct earth model only to an infinite-dimensional subset of the model space. Earth properties other than direct functions of the observed data cannot be estimated from those data without prior information about the earth. Prior information is based on what the observer already knows before the data become available. Such information can be "hard" or "soft". Hard information is a belief that the real earth must lie in some known region of model space. For example, the total ohmic dissipation in the core is probably less that the total observed geothermal heat flow out of the earth's surface. (In principle, ohmic heat in the core can be recaptured to help drive the dynamo, but this effect is probably small.) "Soft" information is a probability distribution on the model space, a distribution that the observer accepts as a quantitative description of her/his beliefs about the earth. The probability distribution can be a subjective prior in the sense of Bayes or the objective result of a statistical study of previous data or relevant theories.
Pasquier, B.; Holzer, M.; Frants, M.
2016-02-01
We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.
Directory of Open Access Journals (Sweden)
S. Lowe
2016-09-01
Carlo Markov Chain (MCMC approach to constraining parametric uncertainties.A complete treatment of bulk–surface partitioning is shown to predict CCN spectra similar to those calculated using classical Köhler theory with the surface tension of a pure water drop, as found in previous studies. In addition, model sensitivity to perturbations in the partitioning parameters was found to be negligible. As a result, this study supports previously held recommendations that complex surfactant effects might be neglected, and the continued use of classical Köhler theory in global climate models (GCMs is recommended to avoid an additional computational burden. The framework developed is suitable for application to many additional composition-dependent processes that might impact CCN activation potential. However, the focus of this study is to demonstrate the efficacy of the applied sensitivity analysis to identify important parameters in those processes and will be extended to facilitate a global sensitivity analysis and inverse aerosol–CCN closure analysis.
DEFF Research Database (Denmark)
Cai, Hongzhu; Zhdanov, Michael
2014-01-01
This letter introduces a new method for the modeling and inversion of magnetic anomalies caused by crystalline basements. The method is based on the 3-D Cauchy-type integral representation of the magnetic field. Traditional methods use volume integrals over the domains occupied by anomalous...... is particularly significant in solving problems of the modeling and inversion of magnetic data for the depth to the basement. In this letter, a novel method is proposed, which only requires discretizing the magnetic contrast surface for modeling and inversion. We demonstrate the method using several synthetic...... susceptibility and on the prismatic representation of the volumes with an anomalous susceptibility distribution. Such discretization is computationally expensive, particularly in 3-D cases. The technique of Cauchy-type integrals makes it possible to represent the magnetic field as surface integrals, which...
Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.
2009-12-01
A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.
Directory of Open Access Journals (Sweden)
Maryam Raoof DDS, MS
2012-09-01
Full Text Available BACKGROUND AND AIM:This study aimed to solve the problems faced with the previous model of inflammatory tooth painin rats.METHODS:After cutting 2 mm of the distal extremities, the polyethylene crownswere placed on the mandibularincisors. In contrast to the original model, we used flow composite instead of wire in order to maximize the retention ofcrowns. Different concentrations of capsaicin (10, 25 and 100 mg/ml and formalin were administrated into the cavitiesunder the crowns. The algesic agent-induced behaviors were evaluated.RESULTS:The modified model had no liquid leakage. Furthermore, composite allowed the crowns to remain for alonger period of time. Capsaicin 25, 100 mg/ml and formalin applications induced significantly more painfulstimulation compared with control groups (P < 0.001. These responses were significantly reduced by theadministration of ibuprofen, 20 minutes prior to the capsaicin 100 mg/ml injection.CONCLUSIONS:This model seems to be adequate for long-term pain related experiments in which fluid leakageelimination is important.
Liang, Yingjie; Chen, Wen
2018-04-01
The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.
Directory of Open Access Journals (Sweden)
Chin-Teng Lin
2010-01-01
Full Text Available In this paper, we develop a vision based obstacle detection system by utilizing our proposed fisheye lens inverse perspective mapping (FLIPM method. The new mapping equations are derived to transform the images captured by the fisheye lens camera into the undistorted remapped ones under practical circumstances. In the obstacle detection, we make use of the features of vertical edges on objects from remapped images to indicate the relative positions of obstacles. The static information of remapped images in the current frame is referred to determining the features of source images in the searching stage from either the profile or temporal IPM difference image. The profile image can be acquired by several processes such as sharpening, edge detection, morphological operation, and modified thinning algorithms on the remapped image. The temporal IPM difference image can be obtained by a spatial shift on the remapped image in the previous frame. Moreover, the polar histogram and its post-processing procedures will be used to indicate the position and length of feature vectors and to remove noises as well. Our obstacle detection can give drivers the warning signals within a limited distance from nearby vehicles while the detected obstacles are even with the quasi-vertical edges.
DEFF Research Database (Denmark)
Addassi, Mouadh; Johannesson, Björn; Wadsö, Lars
2018-01-01
Here we present an inverse analyses approach to determining the two-phase moisture transport properties relevant to concrete durability modeling. The purposed moisture transport model was based on a continuum approach with two truly separate equations for the liquid and gas phase being connected...... test, and, (iv) capillary suction test. Mass change over time, as obtained from the drying test, the two different cup test intervals and the capillary suction test, was used to obtain the effective diffusion parameters using the proposed inverse analyses approach. The moisture properties obtained...
Normal Inverse Gaussian Model-Based Image Denoising in the NSCT Domain
Directory of Open Access Journals (Sweden)
Jian Jia
2015-01-01
Full Text Available The objective of image denoising is to retain useful details while removing as much noise as possible to recover an original image from its noisy version. This paper proposes a novel normal inverse Gaussian (NIG model-based method that uses a Bayesian estimator to carry out image denoising in the nonsubsampled contourlet transform (NSCT domain. In the proposed method, the NIG model is first used to describe the distributions of the image transform coefficients of each subband in the NSCT domain. Then, the corresponding threshold function is derived from the model using Bayesian maximum a posteriori probability estimation theory. Finally, optimal linear interpolation thresholding algorithm (OLI-Shrink is employed to guarantee a gentler thresholding effect. The results of comparative experiments conducted indicate that the denoising performance of our proposed method in terms of peak signal-to-noise ratio is superior to that of several state-of-the-art methods, including BLS-GSM, K-SVD, BivShrink, and BM3D. Further, the proposed method achieves structural similarity (SSIM index values that are comparable to those of the block-matching 3D transformation (BM3D method.
Energy Technology Data Exchange (ETDEWEB)
Hawley, B.W.; Zandt, G.; Smith, R.B.
1981-08-10
An iterative inversion technique has been developed that uses the direct P and S wave arrival times from local earthquakes to compute simultaneously a three-dimensional velocity structure and relocated hypocenters. Crustal structure is modeled by subdiving flat layers into rectangular blocks. An interpolation function is used to smoothly vary velocities between blocks, allowing ray trace calculations of travel times in a three-dimensional medium. Tests using synthetic data from known models show that solutions are reasonably independent of block size and spatial distribution but are sensitive to the choice of layer thicknesses. Application of the technique to observed earthquake data from north-central Utah shown the following: (1) lateral velcoity variations in the crust as large as 7% occur over 30-km distance, (2) earthquake epicenters computed with the three-dimensional velocity structure were shifted an average of 3.0 km from location determined assuming homogeneous flat layered models, and (3) the laterally varying velocity structure correlates with anomalous variations in the local gravity and aeromagnetic fields, suggesting that the new velocity information can be valuable in acquiring a better understanding of crustal structure.
DEFF Research Database (Denmark)
Oh, Geok Lian; Brunskog, Jonas
2014-01-01
Techniques have been studied for the localization of an underground source with seismic interrogation signals. Much of the work has involved defining either a P-wave acoustic model or a dispersive surface wave model to the received signal and applying the time-delay processing technique and frequ...... that for field data, inversion for localization is most advantageous when the forward model completely describe all the elastic wave components as is the case of the FDTD 3D elastic model....
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
Directory of Open Access Journals (Sweden)
K. Verbist
2009-10-01
Full Text Available In arid and semi-arid zones, runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study, a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (K_{sat} independently. The tension infiltrometer measurements proved a good estimator of the K_{sat} value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between the observed soil water content and the simulated values was as high as R^{2}=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. The model results indicate that the infiltration trench has a
Huang, Xinyan; Rein, Guillermo
2013-04-01
Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.
Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.
2015-04-01
The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.
Hoerning, Sebastian; Bardossy, Andras; du Plessis, Jaco
2017-04-01
Most geostatistical inverse groundwater flow and transport modelling approaches utilize a numerical solver to minimize the discrepancy between observed and simulated hydraulic heads and/or hydraulic concentration values. The optimization procedure often requires many model runs, which for complex models lead to long run times. Random Mixing is a promising new geostatistical technique for inverse modelling. The method is an extension of the gradual deformation approach. It works by finding a field which preserves the covariance structure and maintains observed hydraulic conductivities. This field is perturbed by mixing it with new fields that fulfill the homogeneous conditions. This mixing is expressed as an optimization problem which aims to minimize the difference between the observed and simulated hydraulic heads and/or concentration values. To preserve the spatial structure, the mixing weights must lie on the unit hyper-sphere. We present a modification to the Random Mixing algorithm which significantly reduces the number of model runs required. The approach involves taking n equally spaced points on the unit circle as weights for mixing conditional random fields. Each of these mixtures provides a solution to the forward model at the conditioning locations. For each of the locations the solutions are then interpolated around the circle to provide solutions for additional mixing weights at very low computational cost. The interpolated solutions are used to search for a mixture which maximally reduces the objective function. This is in contrast to other approaches which evaluate the objective function for the n mixtures and then interpolate the obtained values. Keeping the mixture on the unit circle makes it easy to generate equidistant sampling points in the space; however, this means that only two fields are mixed at a time. Once the optimal mixture for two fields has been found, they are combined to form the input to the next iteration of the algorithm. This
DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L
2013-08-26
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.
Population inversion in a stationary recombining plasma
International Nuclear Information System (INIS)
Otsuka, M.
1980-01-01
Population inversion, which occurs in a recombining plasma when a stationary He plasma is brought into contact with a neutral gas, is examined. With hydrogen as a contact gas, noticeable inversion between low-lying levels of H as been found. The overpopulation density is of the order of 10 8 cm -3 , which is much higher then that (approx. =10 5 cm -3 ) obtained previously with He as a contact gas. Relations between these experimental results and the conditions for population inversion are discussed with the CR model
Identification of strain-rate and thermal sensitive material model with an inverse method
Directory of Open Access Journals (Sweden)
Peroni M.
2010-06-01
Full Text Available This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena. Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.
Inverse stochastic–dynamic models for high-resolution Greenland ice core records
Directory of Open Access Journals (Sweden)
N. Boers
2017-12-01
Full Text Available Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic–dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP, and we focus on the time interval 59–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i high-resolution training data, (ii cubic drift terms, (iii nonlinear coupling terms between the δ18O and dust time series, and (iv non-Markovian contributions that represent short-term memory effects.
Inverse stochastic-dynamic models for high-resolution Greenland ice core records
Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael
2017-12-01
Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.
International Nuclear Information System (INIS)
Hey, Jonathan; Malloy, Adam C.; Martinez-Botas, Ricardo; Lamperth, Michael
2015-01-01
Highlights: • Conjugate heat transfer analysis of an electric machine. • Inverse identification method for estimating the model parameters. • Experimentally determined thermal properties and electromagnetic losses. • Coupling of inverse identification method with a numerical model. • Improved modeling accuracy through introduction of interface material. - Abstract: Energy conversion devices undergo thermal loading during their operation as a result of inefficiencies in the energy conversion process. This will eventually lead to degradation and possible failure of the device if the heat generated is not properly managed. The ability to accurately predict the thermal behavior of such a device during the initial developmental stage is an important requirement. However, accurate predictions of critical temperature is challenging due to the variation of heat transfer parameters from one device to another. The ability to determine the model parameters is key to accurately representing the heat transfer in such a device. This paper presents the use of an inverse identification technique to estimate the model parameters of an energy conversion device designed for vehicular applications. To simulate the imperfect contact and the presence of insulating materials in the permanent magnet electric machine, thin material are introduced at the component interface of the numerical model. The proposed inverse identification method is used to estimate the equivalent thermal conductance of the thin material. In addition, the electromagnetic losses generated in the permanent magnet is also derived indirectly from the temperature measurement using the same method. With the thermal properties and input parameters of the numerical model obtained from the inverse identification method, the critical temperature of the device can be predicted more accurately. The deviation between the maximum measured and predicted winding temperature is less than 2.4%
Cannavo', Flavio; Scandura, Danila; Palano, Mimmo; Musumeci, Carla
2014-05-01
Seismicity and ground deformation represent the principal geophysical methods for volcano monitoring and provide important constraints on subsurface magma movements. The occurrence of migrating seismic swarms, as observed at several volcanoes worldwide, are commonly associated with dike intrusions. In addition, on active volcanoes, (de)pressurization and/or intrusion of magmatic bodies stress and deform the surrounding crustal rocks, often causing earthquakes randomly distributed in time within a volume extending about 5-10 km from the wall of the magmatic bodies. Despite advances in space-based, geodetic and seismic networks have significantly improved volcano monitoring in the last decades on an increasing worldwide number of volcanoes, quantitative models relating deformation and seismicity are not common. The observation of several episodes of volcanic unrest throughout the world, where the movement of magma through the shallow crust was able to produce local rotation of the ambient stress field, introduces an opportunity to improve the estimate of the parameters of a deformation source. In particular, during these episodes of volcanic unrest a radial pattern of P-axes of the focal mechanism solutions, similar to that of ground deformation, has been observed. Therefore, taking into account additional information from focal mechanisms data, we propose a novel approach to volcanic source modeling based on the joint inversion of deformation and focal plane solutions assuming that both observations are due to the same source. The methodology is first verified against a synthetic dataset of surface deformation and strain within the medium, and then applied to real data from an unrest episode occurred before the May 13th 2008 eruption at Mt. Etna (Italy). The main results clearly indicate as the joint inversion improves the accuracy of the estimated source parameters of about 70%. The statistical tests indicate that the source depth is the parameter with the highest
Modeling locomotion of a soft-bodied arthropod using inverse dynamics
International Nuclear Information System (INIS)
Saunders, Frank; Trimmer, Barry A; Rife, Jason
2011-01-01
Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.
Zhang, D.; Liao, Q.
2016-12-01
The Bayesian inference provides a convenient framework to solve statistical inverse problems. In this method, the parameters to be identified are treated as random variables. The prior knowledge, the system nonlinearity, and the measurement errors can be directly incorporated in the posterior probability density function (PDF) of the parameters. The Markov chain Monte Carlo (MCMC) method is a powerful tool to generate samples from the posterior PDF. However, since the MCMC usually requires thousands or even millions of forward simulations, it can be a computationally intensive endeavor, particularly when faced with large-scale flow and transport models. To address this issue, we construct a surrogate system for the model responses in the form of polynomials by the stochastic collocation method. In addition, we employ interpolation based on the nested sparse grids and takes into account the different importance of the parameters, under the condition of high random dimensions in the stochastic space. Furthermore, in case of low regularity such as discontinuous or unsmooth relation between the input parameters and the output responses, we introduce an additional transform process to improve the accuracy of the surrogate model. Once we build the surrogate system, we may evaluate the likelihood with very little computational cost. We analyzed the convergence rate of the forward solution and the surrogate posterior by Kullback-Leibler divergence, which quantifies the difference between probability distributions. The fast convergence of the forward solution implies fast convergence of the surrogate posterior to the true posterior. We also tested the proposed algorithm on water-flooding two-phase flow reservoir examples. The posterior PDF calculated from a very long chain with direct forward simulation is assumed to be accurate. The posterior PDF calculated using the surrogate model is in reasonable agreement with the reference, revealing a great improvement in terms of
Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel
2016-04-01
Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when
A highly predictive A 4 flavor 3-3-1 model with radiative inverse seesaw mechanism
Cárcamo Hernández, A. E.; Long, H. N.
2018-04-01
We build a highly predictive 3-3-1 model, where the field content is extended by including several SU(3) L scalar singlets and six right handed Majorana neutrinos. In our model the {SU}{(3)}C× {SU}{(3)}L× U{(1)}X gauge symmetry is supplemented by the {A}4× {Z}4× {Z}6× {Z}16× {Z}16{\\prime } discrete group, which allows to get a very good description of the low energy fermion flavor data. In the model under consideration, the {A}4× {Z}4× {Z}6× {Z}16× {Z}16{\\prime } discrete group is broken at very high energy scale down to the preserved Z 2 discrete symmetry, thus generating the observed pattern of SM fermion masses and mixing angles and allowing the implementation of the loop level inverse seesaw mechanism for the generation of the light active neutrino masses, respectively. The obtained values for the physical observables in the quark sector agree with the experimental data, whereas those ones for the lepton sector also do, only for the case of inverted neutrino mass spectrum. The normal neutrino mass hierarchy scenario of the model is ruled out by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m ee = 46.9 meV, a leptonic Dirac CP violating phase of -81.37° and a Jarlskog invariant of about 10-2 for the inverted neutrino mass hierarchy. The preserved Z 2 symmetry allows for a stable scalar dark matter candidate.
Methane in the Amazon: A forward and inverse regional modeling approach
Beck, V.; Gerbig, C.; Koch, F. T.; Karstens, U.; Chen, H.; Bela, M. M.; Longo, K.; Freitas, S.; Bergamaschi, P. M.; Kaplan, J. O.; Prigent, C.
2011-12-01
The Amazon region is an important player in the global methane (CH4) cycle, the second most important greenhouse gas after CO2. Different major CH4 sources in the Amazon region such as anaerobic microbial production in wetlands and biomass burning will be affected by changing climate. Therefore, a thorough understanding of the processes is required. Within the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) project, airborne measurements of greenhouse gases, associated tracers and aerosols were taken during the end of the dry season in November 2008 as well as during the end of the wet season in May 2009. These aircraft measurements and additional ground based measurements provide a test bed for high resolution transport simulation of CH4. Here we present a comparison of WRF-Chem passive tracer simulations of CH4 to airborne CH4 observations obtained from the BARCA campaigns in November 2008 and May 2009 using the newly established WRF Greenhouse Gas Model (WRF-GHG) in combination with two different process-based bottom-up models for the calculation of CH4 emissions from anaerobic microbial production in wetlands (Kaplan and Walter-Heimann) and three different wetland inundation maps (Kaplan, JERS-1SAR, Prigent). The comparison illustrates the importance of a wetland inundation map with inundated area changing in time, and the quality of the representation of atmospheric transport in regional models in tropical regions. In addition, we demonstrate a comparison of WRF-GHG CH4 simulations to TT34 tower observations (35 m above ground; located 60 km north-west of Manaus, Brazil) for August 2009, evaluating the performance of WRF-GHG in representing CH4 observations in the planetary boundary layer in tropical regions. Finally, we present preliminary results of a regional inversion using the TM3-STILT model together with the above mentioned observations for the estimation of the CH4 budget of the Amazon region.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
DEFF Research Database (Denmark)
Sakellariou, Jason; Roudi, Yasser; Mezard, Marc
2012-01-01
We study how the degree of symmetry in the couplings influences the performance of three mean field methods used for solving the direct and inverse problems for generalized Sherrington-Kirkpatrick models. In this context, the direct problem is predicting the potentially time-varying magnetizations...... than the other two approximations, TAP outperforms MF when the coupling matrix is nearly symmetric, while MF works better when it is strongly asymmetric. For the inverse problem, MF performs better than both TAP and nMF, although an ad hoc adjustment of TAP can make it comparable to MF. For high...
International Nuclear Information System (INIS)
Lucas, Donald D.; Simpson, Matthew; Cameron-Smith, Philip; Baskett, Ronald L.
2017-01-01
Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 10 3 ), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km x 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best match
Energy Technology Data Exchange (ETDEWEB)
Lucas, Donald D.; Simpson, Matthew; Cameron-Smith, Philip; Baskett, Ronald L. [Lawrence Livermore National Laboratory, Livermore, CA (United States)
2017-07-01
Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 10{sup 3}), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km x 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best
Directory of Open Access Journals (Sweden)
Ericson Thorild
2009-11-01
Full Text Available Abstract Background Dental caries is a chronic disease with plaque bacteria, diet and saliva modifying disease activity. Here we have used the PLS method to evaluate a multiplicity of such biological variables (n = 88 for ability to predict caries in a cross-sectional (baseline caries and prospective (2-year caries development setting. Methods Multivariate PLS modelling was used to associate the many biological variables with caries recorded in thirty 14-year-old children by measuring the numbers of incipient and manifest caries lesions at all surfaces. Results A wide but shallow gliding scale of one fifth caries promoting or protecting, and four fifths non-influential, variables occurred. The influential markers behaved in the order of plaque bacteria > diet > saliva, with previously known plaque bacteria/diet markers and a set of new protective diet markers. A differential variable patterning appeared for new versus progressing lesions. The influential biological multimarkers (n = 18 predicted baseline caries better (ROC area 0.96 than five markers (0.92 and a single lactobacilli marker (0.7 with sensitivity/specificity of 1.87, 1.78 and 1.13 at 1/3 of the subjects diagnosed sick, respectively. Moreover, biological multimarkers (n = 18 explained 2-year caries increment slightly better than reported before but predicted it poorly (ROC area 0.76. By contrast, multimarkers based on previous caries predicted alone (ROC area 0.88, or together with biological multimarkers (0.94, increment well with a sensitivity/specificity of 1.74 at 1/3 of the subjects diagnosed sick. Conclusion Multimarkers behave better than single-to-five markers but future multimarker strategies will require systematic searches for improved saliva and plaque bacteria markers.
Directory of Open Access Journals (Sweden)
Priyanka eSingh
2011-03-01
Full Text Available We have taken advantage of a newly described Drosophila model to gain insights into the potential mechanism of antiepileptic drugs (AEDs, a group of drugs that are widely used in the treatment of several neurological and psychiatric conditions besides epilepsy. In the recently described Drosophila model that is inspired by pentylenetetrazole (PTZ induced kindling epileptogenesis in rodents, chronic PTZ treatment for seven days causes a decreased climbing speed and an altered CNS transcriptome, with the latter mimicking gene expression alterations reported in epileptogenesis. In the model, an increased climbing speed is further observed seven days after withdrawal from chronic PTZ. We used this post-PTZ withdrawal regime to identify potential AED mechanism. In this regime, treatment with each of the five AEDs tested, namely, ethosuximide (ETH, gabapentin (GBP, vigabatrin (VGB, sodium valproate (NaVP and levetiracetam (LEV, resulted in rescuing of the altered climbing behavior. The AEDs also normalized PTZ withdrawal induced transcriptomic perturbation in fly heads; whereas AED untreated flies showed a large number of up- and down-regulated genes which were enriched in several processes including gene expression and cell communication, the AED treated flies showed differential expression of only a small number of genes that did not enrich gene expression and cell communication processes. Gene expression and cell communication related upregulated genes in AED untreated flies overrepresented several pathways - spliceosome, RNA degradation, and ribosome in the former category, and inositol phosphate metabolism, phosphatidylinositol signaling, endocytosis and hedgehog signaling in the latter. Transcriptome remodeling effect of AEDs was overall confirmed by microarray clustering that clearly separated the profiles of AED treated and untreated flies. Besides being consistent with previously implicated pathways, our results provide evidence for a role of
Viganotti, Matteo; Jackson, Ruth; Krahn, Hartmut; Dyer, Mark
2013-05-01
Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.
Developing an Earth system Inverse model for the Earth's energy and water budgets.
Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.
2017-12-01
The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing
Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper
2013-09-01
The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement
Directory of Open Access Journals (Sweden)
B. Verheggen
2006-01-01
Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.
Dark Matter in B – L supersymmetric Standard Model with inverse seesaw
Energy Technology Data Exchange (ETDEWEB)
Abdallah, W. [Department of Mathematics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Khalil, S., E-mail: awaleed@sci.cu.edu.eg, E-mail: s.khalil@zewailcity.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, 6 October City, Giza 12588 (Egypt)
2017-04-01
We show that the B – L Supersymmetric Standard Model with Inverse Seesaw (BLSSMIS) provides new Dark Matter (DM) candidates (lightest right-handed sneutrino and lightest B – L neutralino) with mass of order few hundreds GeV, while most of other SUSY spectrum can be quite heavy, consistently with the current Large Hadron Collider (LHC) constraints. We emphasize that the thermal relic abundance and direct detection experiments via relic neutralino scattering with nuclei impose stringent constraints on the B – L neutralinos. These constraints can be satisfied by few points in the parameter space where the B – L lightest neutralino is higgsino-like, which cannot explain the observed Galactic Center (GC) gamma-ray excess measured by Fermi-LAT. The lightest right-handed sneutrino DM is analysed. We show that for a wide region of parameter space the lightest right-handed sneutrino, with mass between 80 GeV and 1.2 TeV, can satisfy the limits of the relic abundance and the scattering cross section with nuclei. We also show that the lightest right-handed sneutrino with mass O(100) GeV can account for the observed GC gamma-ray results.
Directory of Open Access Journals (Sweden)
Shirmohammadi Adel
2006-10-01
Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and
Solving inverse problems for biological models using the collage method for differential equations.
Capasso, V; Kunze, H E; La Torre, D; Vrscay, E R
2013-07-01
In the first part of this paper we show how inverse problems for differential equations can be solved using the so-called collage method. Inverse problems can be solved by minimizing the collage distance in an appropriate metric space. We then provide several numerical examples in mathematical biology. We consider applications of this approach to the following areas: population dynamics, mRNA and protein concentration, bacteria and amoeba cells interaction, tumor growth.
Study of temperature inversion symmetry for the twisted Wess-Zumino model
International Nuclear Information System (INIS)
Oikonomou, V K
2007-01-01
The temperature inversion symmetry, for a non-interacting supersymmetric ensemble, at finite volume, is studied. It is found that the scaled free energy, f(ξ), is antisymmetric under temperature inversion transformation, i.e. f(ξ) = -ξ d (1/ξ). This occurs for antiperiodic bosons and periodic fermions in the compact dimension. In contrast, for periodic bosons and antiperiodic fermions, f(ξ = ξ d (1/ξ)
International Nuclear Information System (INIS)
Zhang, Jun; Merced, Emmanuelle; Sepúlveda, Nelson; Tan, Xiaobo
2014-01-01
Vanadium dioxide (VO 2 ), a promising multifunctional smart material, has shown strong promise in microactuation, memory, and optical applications. During thermally induced insulator-to-metal phase transition of VO 2 , the changes of its electrical, mechanical, and optical properties demonstrate pronounced, complex hysteresis with respect to the temperature, which presents a challenge in the utilization of this material. In this paper, an extended generalized Prandtl–Ishlinskii model is proposed to model the hysteresis in VO 2 , where a nonlinear memoryless function is introduced to improve its modeling capability. A novel inverse compensation algorithm for this hysteresis model is developed based on fixed-point iteration with which the convergence conditions of the algorithm are derived. The proposed approach is shown to be effective for modeling and compensating the asymmetric and non-monotonic hysteresis with saturation between the curvature output and the temperature input of a VO 2 -coated microactuator, as well as the asymmetric hysteresis with partial saturation between the resistance output and the temperature input of a VO 2 film. (paper)
International Nuclear Information System (INIS)
Cartalade, Alain
2002-01-01
This research thesis concerns the modelling of aquifer flows under the CEA/Cadarache site. The author reports the implementation of a numerical simulation tool adapted to large scale flows in fractured media, and its application to the Cadarache nuclear site. After a description of the site geological and hydrogeological characteristics, the author presents the conceptual model on which the modelling is based, presents the inverse model which allows a better definition of parameters, reports the validation of the inverse approach by means of synthetic and semi-synthetic cases. Then, he reports experiments and simulation of the Cadarache site
Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai
2017-11-01
Ground deformation, commonly observed in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.
Giudici, Mauro; Baratelli, Fulvia; Vassena, Chiara; Cattaneo, Laura
2014-05-01
Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBC) on ice velocity, stress and temperature; on the other hand the constitutive laws involves many physical parameters, which possibly depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP) requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws and which cannot be easily measured at the study scale in the field. Therefore these quantities can be obtained through model calibration, i.e. by the solution of an inverse problem (IP). Roughly speaking, the IP aims at finding the optimal values of the model parameters that yield the best agreement of the model output with the field observations and data. The practical application of IPs is usually formulated as a generalised least squares approach, which can be cast in the framework of Bayesian inference. IPs are well developed in several areas of science and geophysics and several applications were proposed also in glaciology. The objective of this paper is to provide a further step towards a thorough and rigorous theoretical framework in cryospheric studies. Although the IP is often claimed to be ill-posed, this is rigorously true for continuous domain models, whereas for numerical models, which require the solution of algebraic equations, the properties of the IP must be analysed with more care. First of all, it is necessary to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed
DEFF Research Database (Denmark)
Houborg, Rasmus Møller; Søgaard, Henrik; Bøgh, Eva
2007-01-01
for the inversion of a canopy reflectance model using Terra and Aqua MODIS multi-spectral, multi-temporal, and multi-angle reflectance observations to aid the determination of vegetation-specific physiological and structural canopy parameters. Land cover and site-specific inversion modeling was applied...
Directory of Open Access Journals (Sweden)
Jesper Sjolte
2014-09-01
Full Text Available The relation between δ 18O of precipitation and temperature has been used in numerous studies to reconstruct past temperatures at ice core sites in Greenland and Antarctica. During the past two decades, it has become clear that the slope between δ 18O and temperature varies in both space and time. Here, we use a general circulation model driven by changes in orbital parameters to investigate the Greenland δ 18O–temperature relation for the previous interglacial, the Eemian. In our analysis, we focus on changes in the moisture source regions, and the results underline the importance of taking the seasonality of climate change into account. The orbitally driven experiments show that continental evaporation over North America increases during summer in the warm parts of the Eemian, while marine evaporation decreases. This likely flattens the Greenland δ 18O response to temperature during summer. Since the main climate change in the experiments occurs during summer this adds to a limited response of δ 18O, which is more strongly tied to temperature during winter than during summer. A south–west to north–east gradient in the δ 18O–temperature slope is also evident for Greenland, with low slopes in the south–west and steeper slopes in the north–east. This probably reflects the proportion of continental moisture and Arctic moisture arriving in Greenland, with more continental moisture in the south–west and less in the north–east, and vice versa for the Arctic moisture.
Turner, D. P.; Jacobson, A. R.; Nemani, R. R.
2013-12-01
The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global
Directory of Open Access Journals (Sweden)
Kleiton Augusto dos Santos Silva
Full Text Available Exercise training (ET is an important intervention for chronic diseases such as diabetes mellitus (DM. However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p<0.05. Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p<0.05. The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p<0.05, and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p<0.05. In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p<0.05. This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.
Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.
2018-03-01
The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.
Inverse modelling of atmospheric tracers: non-Gaussian methods and second-order sensitivity analysis
Directory of Open Access Journals (Sweden)
M. Bocquet
2008-02-01
Full Text Available For a start, recent techniques devoted to the reconstruction of sources of an atmospheric tracer at continental scale are introduced. A first method is based on the principle of maximum entropy on the mean and is briefly reviewed here. A second approach, which has not been applied in this field yet, is based on an exact Bayesian approach, through a maximum a posteriori estimator. The methods share common grounds, and both perform equally well in practice. When specific prior hypotheses on the sources are taken into account such as positivity, or boundedness, both methods lead to purposefully devised cost-functions. These cost-functions are not necessarily quadratic because the underlying assumptions are not Gaussian. As a consequence, several mathematical tools developed in data assimilation on the basis of quadratic cost-functions in order to establish a posteriori analysis, need to be extended to this non-Gaussian framework. Concomitantly, the second-order sensitivity analysis needs to be adapted, as well as the computations of the averaging kernels of the source and the errors obtained in the reconstruction. All of these developments are applied to a real case of tracer dispersion: the European Tracer Experiment [ETEX]. Comparisons are made between a least squares cost function (similar to the so-called 4D-Var approach and a cost-function which is not based on Gaussian hypotheses. Besides, the information content of the observations which is used in the reconstruction is computed and studied on the application case. A connection with the degrees of freedom for signal is also established. As a by-product of these methodological developments, conclusions are drawn on the information content of the ETEX dataset as seen from the inverse modelling point of view.
Bumgarner, Johnathan R; McCray, John E
2007-06-01
During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.
Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling
Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain
2016-09-01
Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.
Elsawy, Hesham
2014-08-01
Using stochastic geometry, we develop a tractable uplink modeling paradigm for outage probability and spectral efficiency in both single and multi-tier cellular wireless networks. The analysis accounts for per user equipment (UE) power control as well as the maximum power limitations for UEs. More specifically, for interference mitigation and robust uplink communication, each UE is required to control its transmit power such that the average received signal power at its serving base station (BS) is equal to a certain threshold ρo. Due to the limited transmit power, the UEs employ a truncated channel inversion power control policy with a cutoff threshold of ρo. We show that there exists a transfer point in the uplink system performance that depends on the following tuple: BS intensity λ, maximum transmit power of UEs Pu, and ρo. That is, when Pu is a tight operational constraint with respect to (w.r.t.) λ and ρo, the uplink outage probability and spectral efficiency highly depend on the values of λ and ρo. In this case, there exists an optimal cutoff threshold ρ*o, which depends on the system parameters, that minimizes the outage probability. On the other hand, when Pu is not a binding operational constraint w.r.t. λ and ρo, the uplink outage probability and spectral efficiency become independent of λ and ρo. We obtain approximate yet accurate simple expressions for outage probability and spectral efficiency, which reduce to closed forms in some special cases. © 2002-2012 IEEE.
Sun, Jia; Shi, Shuo; Yang, Jian; Du, Lin; Gong, Wei; Chen, Biwu; Song, Shalei
2018-01-01
Leaf biochemical constituents provide useful information about major ecological processes. As a fast and nondestructive method, remote sensing techniques are critical to reflect leaf biochemistry via models. PROSPECT model has been widely applied in retrieving leaf traits by providing hemispherical reflectance and transmittance. However, the process of measuring both reflectance and transmittance can be time-consuming and laborious. Contrary to use reflectance spectrum alone in PROSPECT model inversion, which has been adopted by many researchers, this study proposes to use transmission spectrum alone, with the increasing availability of the latter through various remote sensing techniques. Then we analyzed the performance of PROSPECT model inversion with (1) only transmission spectrum, (2) only reflectance and (3) both reflectance and transmittance, using synthetic datasets (with varying levels of random noise and systematic noise) and two experimental datasets (LOPEX and ANGERS). The results show that (1) PROSPECT-5 model inversion based solely on transmission spectrum is viable with results generally better than that based solely on reflectance spectrum; (2) leaf dry matter can be better estimated using only transmittance or reflectance than with both reflectance and transmittance spectra.
The θ-term, CPN-1 model and the inversion approach in the imaginary θ method
International Nuclear Information System (INIS)
Imachi, Masahiro; Kambayashi, Hitoshi; Shinno, Yasuhiko; Yoneyama, Hiroshi
2006-01-01
The weak coupling region of CP N-1 lattice field theory with the θ-term is investigated. Both the usual real theta method can the imaginary theta method are studied. The latter was first proposed by Bhanot and David. Azcoiti et al. proposed an inversion approach based on the imaginary theta method. The role of the inversion approach is investigated in this paper. A wide range of values of h=-Imθ is studied, where θ denotes the magnitude of the topological term. Step-like behavior in the x-h relation (where x=Q/V, Q is the topological charge, and V is the two-dimensional volume) is found in the weak coupling region. The physical meaning of the position of the step-like behavior is discussed. The inversion approach is applied to weak coupling regions. (author)
An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians
International Nuclear Information System (INIS)
Hughes, Ciaran; Mehta, Dhagash; Wales, David J.
2014-01-01
Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems
International Nuclear Information System (INIS)
Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung
2008-01-01
In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Directory of Open Access Journals (Sweden)
S. M. Miller
2014-02-01
the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.
2017-12-01
Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby
International Nuclear Information System (INIS)
Namatame, Hirofumi; Taniguchi, Masaki
1994-01-01
Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)
Directory of Open Access Journals (Sweden)
D. Herckenrath
2013-10-01
Full Text Available Increasingly, ground-based and airborne geophysical data sets are used to inform groundwater models. Recent research focuses on establishing coupling relationships between geophysical and groundwater parameters. To fully exploit such information, this paper presents and compares different hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM and electrical resistivity tomography (ERT data. In a sequential hydrogeophysical inversion (SHI a groundwater model is calibrated with geophysical data by coupling groundwater model parameters with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI. In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical relationship and its accuracy. Simulations for a synthetic groundwater model and TDEM data showed improved estimates for groundwater model parameters that were coupled to relatively well-resolved geophysical parameters when employing a high-quality petrophysical relationship. Compared to a SHI these improvements were insignificant and geophysical parameter estimates became slightly worse. When employing a low-quality petrophysical relationship, groundwater model parameters improved less for both the SHI and JHI, where the SHI performed relatively better. When comparing a SHI and JHI for a real-world groundwater model and ERT data, differences in parameter estimates were small. For both cases investigated in this paper, the SHI seems favorable, taking into account parameter error, data fit and the complexity of implementing a JHI in combination with its larger computational burden.
Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010
Directory of Open Access Journals (Sweden)
S. Pandey
2016-04-01
Full Text Available This study investigates the constraint provided by greenhouse gas measurements from space on surface fluxes. Imperfect knowledge of the light path through the atmosphere, arising from scattering by clouds and aerosols, can create biases in column measurements retrieved from space. To minimize the impact of such biases, ratios of total column retrieved CH4 and CO2 (Xratio have been used. We apply the ratio inversion method described in Pandey et al. (2015 to retrievals from the Greenhouse Gases Observing SATellite (GOSAT. The ratio inversion method uses the measured Xratio as a weak constraint on CO2 fluxes. In contrast, the more common approach of inverting proxy CH4 retrievals (Frankenberg et al., 2005 prescribes atmospheric CO2 fields and optimizes only CH4 fluxes. The TM5–4DVAR (Tracer Transport Model version 5–variational data assimilation system inverse modeling system is used to simultaneously optimize the fluxes of CH4 and CO2 for 2009 and 2010. The results are compared to proxy inversions using model-derived CO2 mixing ratios (XCO2model from CarbonTracker and the Monitoring Atmospheric Composition and Climate (MACC Reanalysis CO2 product. The performance of the inverse models is evaluated using measurements from three aircraft measurement projects. Xratio and XCO2model are compared with TCCON retrievals to quantify the relative importance of errors in these components of the proxy XCH4 retrieval (XCH4proxy. We find that the retrieval errors in Xratio (mean = 0.61 % are generally larger than the errors in XCO2model (mean = 0.24 and 0.01 % for CarbonTracker and MACC, respectively. On the annual timescale, the CH4 fluxes from the different satellite inversions are generally in agreement with each other, suggesting that errors in XCO2model do not limit the overall accuracy of the CH4 flux estimates. On the seasonal timescale, however, larger differences are found due to uncertainties in XCO2model, particularly
STUDY OF ESTIMATE CONCENTRATION OF WATER CONSTITUENTS AT BADUNG STRAIT BALI USING INVERSE MODEL
Directory of Open Access Journals (Sweden)
I Ketut Swardika
2012-11-01
Full Text Available An algorithm was employed to retrieve the concentrations of three water constituents, chlorophyll-a,suspended matter and colored dissolved organic matter (CDOM from MODIS (Moderate-ResolutionImaging Spectrometer in wide range covering from oligotrophic case-1 to turbid case-2 waters at theBadung Strait Bali. The algorithm is a neural network (NN which is used to parameterize the inverse of aradiative transfer model. It’s used in this study as a multiple nonlinear regression technique. The NN is a feedforward back propagation model with two hidden layers. The NN was trained with computed radiancecovering the range of chlorophyll-a from 0.001 to 64.0 ?g/l, inorganic suspended matter from 0.01 to 50.0mg/l, and CDOM absorption at 440nm from 0.001 to 5.0 m-1. Inputs to the NN are the radiance of the fivespectral channels which were under discussion for MODIS. The outputs are the three water constituentconcentrations. The NN algorithm was tested using in-situ data set on May, September, November 2005 atthe Badung Strait Bali and the north sea of Sumbawa Island and applied to MODIS. The coefficient ofdetermination (R2 between chlorophyll-a concentrations derived from simulation and in-situ data is 0.327,for suspended matter R2 is 0.408. No in-situ measurements of CDOM available for validation. Also, in-situdata were compared with the corresponding distribution obtained by the NASA standard OC4 (OC3M forMODIS chlorophyll-a algorithm and giving R2 0.188. This study gives better accuracy compare withstandard algorithm. How ever both studies are giving over estimate chlorophyll-a concentration. Since thereare no standard MODIS products available for suspended matter and CDOM, the result of the retrieval by theNN for these two variables could only be assessed by a general knowledge of their concentrations anddistribution patterns
Tran, A. P.; Dafflon, B.; Hubbard, S.
2017-12-01
Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content
Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling
Nickless, Alecia; Rayner, Peter J.; Engelbrecht, Francois; Brunke, Ernst-Günther; Erni, Birgit; Scholes, Robert J.
2018-04-01
We present a city-scale inversion over Cape Town, South Africa. Measurement sites for atmospheric CO2 concentrations were installed at Robben Island and Hangklip lighthouses, located downwind and upwind of the metropolis. Prior estimates of the fossil fuel fluxes were obtained from a bespoke inventory analysis where emissions were spatially and temporally disaggregated and uncertainty estimates determined by means of error propagation techniques. Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange). Uncertainty estimates were based on the estimates of net primary productivity. CABLE was dynamically coupled to the regional climate model CCAM (Conformal Cubic Atmospheric Model), which provided the climate inputs required to drive the Lagrangian particle dispersion model. The Bayesian inversion framework included a control vector where fossil fuel and NEE fluxes were solved for separately.Due to the large prior uncertainty prescribed to the NEE fluxes, the current inversion framework was unable to adequately distinguish between the fossil fuel and NEE fluxes, but the inversion was able to obtain improved estimates of the total fluxes within pixels and across the domain. The median of the uncertainty reductions of the total weekly flux estimates for the inversion domain of Cape Town was 28 %, but reach as high as 50 %. At the pixel level, uncertainty reductions of the total weekly flux reached up to 98 %, but these large uncertainty reductions were for NEE-dominated pixels. Improved corrections to the fossil fuel fluxes would be possible if the uncertainty around the prior NEE fluxes could be reduced. In order for this inversion framework to be operationalised for monitoring, reporting, and verification (MRV) of emissions from Cape Town, the NEE component of the CO2 budget needs to be better understood. Additional measurements of Δ14C and δ13C isotope
2010-09-01
shorter periods). Figure 4 shows example fits to the dispersion values and the Bouguer gravity variations. As seen in earlier studies (Maceira and Ammon...50 100 150 150 100 50 Figure 4. Sample dispersion (top) and Bouguer gravity (bottom) for the preliminary inversion. As for other
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Babu, M.T.; Ramanamurty, M.V.; Saran, A.K.; Joseph, A.; Sudheesh, K.; Patgaonkar, R.S.; Jayakumar, S.
are noticed in the eastern Gulf, where a cold and high saline tongue is observed in the subsurface layers. Salinity indicates the characteristic feature of an inverse estuary with low values (37.20 psu) near the mouth and high values (40.0 psu) near the head...
Physics-based models for measurement correlations: application to an inverse Sturm–Liouville problem
International Nuclear Information System (INIS)
Bal, Guillaume; Ren Kui
2009-01-01
In many inverse problems, the measurement operator, which maps objects of interest to available measurements, is a smoothing (regularizing) operator. Its inverse is therefore unbounded and as a consequence, only the low-frequency component of the object of interest is accessible from inevitably noisy measurements. In many inverse problems however, the neglected high-frequency component may significantly affect the measured data. Using simple scaling arguments, we characterize the influence of the high-frequency component. We then consider situations where the correlation function of such an influence may be estimated by asymptotic expansions, for instance as a random corrector in homogenization theory. This allows us to consistently eliminate the high-frequency component and derive a closed form, more accurate, inverse problem for the low-frequency component of the object of interest. We present the asymptotic expression of the correlation matrix of the eigenvalues in a Sturm–Liouville problem with unknown potential. We propose an iterative algorithm for the reconstruction of the potential from knowledge of the eigenvalues and show that using the approximate correlation matrix significantly improves the reconstructions
Quantification of the emissions of the ozone preceding by inverse modelization. Final report
International Nuclear Information System (INIS)
Granier, C.; Petron, G.; Ciais, Ph.; Bousquet, Ph.
2007-01-01
In the framework of this work, inverse methods have been developed and applied for two types of applications: climatological observations to optimize the monthly average of the observed compounds; the distribution of the carbon monoxide. The report presents the experimental methodologies, the used simulation and the results. (A.L.B.)
Bayes procedures for adaptive inference in inverse problems for the white noise model
Knapik, B.T.; Szabó, B.T.; van der Vaart, A.W.; van Zanten, J.H.
2016-01-01
We study empirical and hierarchical Bayes approaches to the problem of estimating an infinite-dimensional parameter in mildly ill-posed inverse problems. We consider a class of prior distributions indexed by a hyperparameter that quantifies regularity. We prove that both methods we consider succeed
Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.
2015-12-01
Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the
Czech Academy of Sciences Publication Activity Database
Pecha, Petr; Šmídl, Václav
2016-01-01
Roč. 164, č. 1 (2016), s. 377-394 ISSN 0265-931X R&D Projects: GA MŠk(CZ) 7F14287; GA MV VG20102013018 Institutional support: RVO:67985556 Keywords : Inverse modelling * recursive radioactive plume tracking * Improvement of population protection * monitoring network capability Subject RIV: AQ - Safety, Health Protection, Human - Machine Impact factor: 2.310, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/pecha-0460631.pdf
Czech Academy of Sciences Publication Activity Database
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Šindelářová, Kateřina; Hýža, M.; Stohl, A.
2017-01-01
Roč. 17, č. 20 (2017), s. 12677-12696 ISSN 1680-7316 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Bayesian inverse modeling * iodine-131 * consequences of the iodine release Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 5.318, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/tichy-0480506.pdf
Directory of Open Access Journals (Sweden)
John D. Hedley
2017-11-01
Full Text Available The capability for mapping two species of seagrass, Thalassia testudinium and Syringodium filiforme, by remote sensing using a physics based model inversion method was investigated. The model was based on a three-dimensional canopy model combined with a model for the overlying water column. The model included uncertainty propagation based on variation in leaf reflectances, canopy structure, water column properties, and the air-water interface. The uncertainty propagation enabled both a-priori predictive sensitivity analysis of potential capability and the generation of per-pixel error bars when applied to imagery. A primary aim of the work was to compare the sensitivity analysis to results achieved in a practical application using airborne hyperspectral data, to gain insight on the validity of sensitivity analyses in general. Results showed that while the sensitivity analysis predicted a weak but positive discrimination capability for species, in a practical application the relevant spectral differences were extremely small compared to discrepancies in the radiometric alignment of the model with the imagery—even though this alignment was very good. Complex interactions between spectral matching and uncertainty propagation also introduced biases. Ability to discriminate LAI was good, and comparable to previously published methods using different approaches. The main limitation in this respect was spatial alignment with the imagery with in situ data, which was heterogeneous on scales of a few meters. The results provide insight on the limitations of physics based inversion methods and seagrass mapping in general. Complex models can degrade unpredictably when radiometric alignment of the model and imagery is not perfect and incorporating uncertainties can have non-intuitive impacts on method performance. Sensitivity analyses are upper bounds to practical capability, incorporating a term for potential systematic errors in radiometric alignment may
Hashimoto, Takashi; Iwamura, Yoshihiro
2016-05-01
AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor. Copyright © 2016 Elsevier Inc. All rights reserved.
Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles
Pasquier, Benoît; Holzer, Mark
2017-09-01
The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the
Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles
Directory of Open Access Journals (Sweden)
B. Pasquier
2017-09-01
Full Text Available The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr−1 (or, in carbon units, 10. 3 ± 0. 4
Hedland, D. A.; Degonia, P. K.
1974-01-01
The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.
Christen, Andreas; Johnson, Mark; Molodovskaya, Marina; Ketler, Rick; Nesic, Zoran; Crawford, Ben; Giometto, Marco; van der Laan, Mike
2013-04-01
The most important long-lived greenhouse gas (LLGHG) emitted during combustion of fuels is carbon dioxide (CO2), however also traces of the LLGHGs methane (CH4) and nitrous oxide (N2O) are released, the quantities of which depend largely on the conditions of the combustion process. Emission factors determine the mass of LLGHGs emitted per energy used (or kilometre driven for cars) and are key inputs for bottom-up emission modelling. Emission factors for CH4 are typically determined in the laboratory or on a test stand for a given combustion system using a small number of samples (vehicles, furnaces), yet associated with larger uncertainties when scaled to entire fleets. We propose an alternative, different approach - Can integrated emission factors be independently determined using direct micrometeorological flux measurements over an urban surface? If so, do emission factors determined from flux measurements (top-down) agree with up-scaled emission factors of relevant combustion systems (heating, vehicles) in the source area of the flux measurement? Direct flux measurements of CH4 were carried out between February and May, 2012 over a relatively densely populated, urban surface in Vancouver, Canada by means of eddy covariance (EC). The EC-system consisted of an ultrasonic anemometer (CSAT-3, Campbell Scientific Inc.) and two open-path infrared gas analyzers (Li7500 and Li7700, Licor Inc.) on a tower at 30m above the surface. The source area of the EC system is characterised by a relative homogeneous morphometry (5.3m average building height), but spatially and temporally varying emission sources, including two major intersecting arterial roads (70.000 cars drive through the 50% source area per day) and seasonal heating in predominantly single-family houses (natural gas). An inverse dispersion model (turbulent source area model), validated against large eddy simulations (LES) of the urban roughness sublayer, allows the determination of the spatial area that
Directory of Open Access Journals (Sweden)
Hansheng Wang
2015-05-01
Full Text Available We use the average crustal structure of the CRUST1.0 model for the Tibetan Plateau to establish a realistic earth model termed as TC1P, and data from the Global Land Data Assimilation System (GLDAS hydrology model and Gravity Recovery and Climate Experiment (GRACE data, to generate the hydrology signals assumed in this study. Modeling of surface radial displacements and gravity variation is performed using both TC1P and the global Preliminary Reference Earth Model (PREM. Furthermore, inversions of the hydrology signals based on simulated Global Positioning System (GPS and GRACE data are performed using PREM. Results show that crust in TC1P is harder and softer than that in PREM above and below a depth of 15 km, respectively, causing larger differences in the computed load Love numbers and loading Green's functions. When annual hydrology signals are assumed, the differences of the radial displacements are found to be as large as approximately 0.6 mm for the truncated degree of 180; while for hydrology-trend signals the differences are very small. When annual hydrology signals and the trends are assumed, the differences in the surface gravity variation are very small. It is considered that TC1P can be used to efficiently remove the hydrological effects on the monitoring of crustal movement. It was also found that when PREM is used inappropriately, the inversion of the hydrology signals from simulated annual GPS signals can only recover approximately 88.0% of the annual hydrology signals for the truncated degree of 180, and the inversion of hydrology signals from the simulated trend GPS signals can recover approximately 92.5% for the truncated degree of 90. However, when using the simulated GRACE data, it is possible to recover almost 100%. Therefore, in future, the TC1P model can be used in the inversions of hydrology signals based on GPS network data. PREM is also valid for use with inversions of hydrology signals from GRACE data at resolutions
Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.
2011-12-01
High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve
International Nuclear Information System (INIS)
Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle
2017-01-01
Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4 m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.
Energy Technology Data Exchange (ETDEWEB)
Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Grana, Dario [Department of Geology and Geophysics, University of Wyoming, Laramie (United States); Santos, Marcio; Figueiredo, Wagner [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Roisenberg, Mauro [Informatic and Statistics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Schwedersky Neto, Guenther [Petrobras Research Center, Rio de Janeiro (Brazil)
2017-05-01
We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well data multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.
Wu, Zedong
2017-07-04
Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.
How Much Do You Trust Me? Learning a Case-Based Model of Inverse Trust
2014-10-01
metric does not take into account factors of the robot’s behavior that increase trust. The inverse trust metric we use is based on the number of times the...sets contain identical behav- iors. To account for this, the similarity function looks at the overlap between the two sets and ignores behaviors that...155–156 5. Jian, J.Y., Bisantz, A.M., Drury , C.G.: Foundations for an empirically determined scale of trust in automated systems. International
Energy Technology Data Exchange (ETDEWEB)
Granier, C.; Petron, G. [Institut Pierre Simon Laplace (IPSL), Service d' Aeronomie, 75 - Paris (France); Ciais, Ph.; Bousquet, Ph. [Institut Pierre Simon Laplace (IPSL), Lab. des Sciences du Climat et de l' Environnement, 75 - Paris (France)
2007-07-01
In the framework of this work, inverse methods have been developed and applied for two types of applications: climatological observations to optimize the monthly average of the observed compounds; the distribution of the carbon monoxide. The report presents the experimental methodologies, the used simulation and the results. (A.L.B.)
Directory of Open Access Journals (Sweden)
D. Brunner
2017-09-01
Full Text Available Hydrofluorocarbons (HFCs are used in a range of industrial applications and have largely replaced previously used gases (CFCs and HCFCs. HFCs are not ozone-depleting but have large global warming potentials and are, therefore, reported to the United Nations Framework Convention on Climate Change (UNFCCC. Here, we use four independent inverse models to estimate European emissions of the two HFCs contributing the most to global warming (HFC-134a and HFC-125 and of SF6 for the year 2011. Using an ensemble of inverse models offers the possibility to better understand systematic uncertainties in inversions. All systems relied on the same measurement time series from Jungfraujoch (Switzerland, Mace Head (Ireland, and Monte Cimone (Italy and the same a priori estimates of the emissions, but differed in terms of the Lagrangian transport model (FLEXPART, NAME, inversion method (Bayesian, extended Kalman filter, treatment of baseline mole fractions, spatial gridding, and a priori uncertainties. The model systems were compared with respect to the ability to reproduce the measurement time series, the spatial distribution of the posterior emissions, uncertainty reductions, and total emissions estimated for selected countries. All systems were able to reproduce the measurement time series very well, with prior correlations between 0.5 and 0.9 and posterior correlations being higher by 0.05 to 0.1. For HFC-125, all models estimated higher emissions from Spain + Portugal than reported to UNFCCC (median higher by 390 % though with a large scatter between individual estimates. Estimates for Germany (+140 % and Ireland (+850 % were also considerably higher than UNFCCC, whereas the estimates for France and the UK were consistent with the national reports. In contrast to HFC-125, HFC-134a emissions from Spain + Portugal were broadly consistent with UNFCCC, and emissions from Germany were only 30 % higher. The data suggest that the UK over
Brunner, Dominik; Arnold, Tim; Henne, Stephan; Manning, Alistair; Thompson, Rona L.; Maione, Michela; O'Doherty, Simon; Reimann, Stefan
2017-09-01
Hydrofluorocarbons (HFCs) are used in a range of industrial applications and have largely replaced previously used gases (CFCs and HCFCs). HFCs are not ozone-depleting but have large global warming potentials and are, therefore, reported to the United Nations Framework Convention on Climate Change (UNFCCC). Here, we use four independent inverse models to estimate European emissions of the two HFCs contributing the most to global warming (HFC-134a and HFC-125) and of SF6 for the year 2011. Using an ensemble of inverse models offers the possibility to better understand systematic uncertainties in inversions. All systems relied on the same measurement time series from Jungfraujoch (Switzerland), Mace Head (Ireland), and Monte Cimone (Italy) and the same a priori estimates of the emissions, but differed in terms of the Lagrangian transport model (FLEXPART, NAME), inversion method (Bayesian, extended Kalman filter), treatment of baseline mole fractions, spatial gridding, and a priori uncertainties. The model systems were compared with respect to the ability to reproduce the measurement time series, the spatial distribution of the posterior emissions, uncertainty reductions, and total emissions estimated for selected countries. All systems were able to reproduce the measurement time series very well, with prior correlations between 0.5 and 0.9 and posterior correlations being higher by 0.05 to 0.1. For HFC-125, all models estimated higher emissions from Spain + Portugal than reported to UNFCCC (median higher by 390 %) though with a large scatter between individual estimates. Estimates for Germany (+140 %) and Ireland (+850 %) were also considerably higher than UNFCCC, whereas the estimates for France and the UK were consistent with the national reports. In contrast to HFC-125, HFC-134a emissions from Spain + Portugal were broadly consistent with UNFCCC, and emissions from Germany were only 30 % higher. The data suggest that the UK over-reports its HFC-134a emissions to
Inverse modeling of groundwater flow in the semiarid evaporitic closed basin of Los Monegros, Spain
Samper-Calvete, F. J.; García-Vera, M. A.
Only minor attention has been given in the past to the study of closed-basin hydrogeology in evaporitic environments, because these basins usually contain poor-quality groundwater. The motivation for hydrogeological research in the Los Monegros area in northeastern Spain was the approval in 1986 of a large irrigation project in the Ebre River basin. The irrigation of 60,000 ha is planned, partly in an evaporitic closed basin containing playa lakes. The project has given rise to environmental concerns. The evaluation of the hydrologic impacts of irrigation requires quantifying properly the hydrogeology of the area. With the available information, a conceptual hydrogeological model was formulated that identifies two main aquifers connected through a leaky aquitard. On the basis of the conceptual model, a numerical model was calibrated under steady-state conditions using the method of maximum-likelihood automatic parameter estimation (Carrera and Neuman, 1986a). The calibrated model reproduces the measured hydraulic heads fairly well and is consistent with independent information on groundwater discharge. By the solution of the inverse problem, reliable parameter estimates were obtained. It is concluded that anisotropy plays a major role in some parts of the lower aquifer. The geometric average of model conductivity is almost two orders of magnitude larger than the average conductivity derived from small-scale field tests. This scale effect in hydraulic conductivity is consistent with the findings of Neuman (1994) and Sánchez-Vila et al. (1996). Résumé Dans le passé, on s'est peu intéresséà l'hydrogéologie des bassins fermés en milieu évaporitique, parce que ces bassins possèdent en général de l'eau souterraine de qualité médiocre. L'intérêt porté aux recherches hydrogéologiques dans la région de Los Monegros, dans le nord-est de l'Espagne est dûà l'approbation en 1986 d'un vaste projet d'irrigation dans le bassin de l'Ebre. L'irrigation de 60000
Directory of Open Access Journals (Sweden)
Xiufang Lin
2016-08-01
Full Text Available Magnetorheological dampers have become prominent semi-active control devices for vibration mitigation of structures which are subjected to severe loads. However, the damping force cannot be controlled directly due to the inherent nonlinear characteristics of the magnetorheological dampers. Therefore, for fully exploiting the capabilities of the magnetorheological dampers, one of the challenging aspects is to develop an accurate inverse model which can appropriately predict the input voltage to control the damping force. In this article, a hybrid modeling strategy combining shuffled frog-leaping algorithm and adaptive-network-based fuzzy inference system is proposed to model the inverse dynamic characteristics of the magnetorheological dampers for improving the modeling accuracy. The shuffled frog-leaping algorithm is employed to optimize the premise parameters of the adaptive-network-based fuzzy inference system while the consequent parameters are tuned by a least square estimation method, here known as shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach. To evaluate the effectiveness of the proposed approach, the inverse modeling results based on the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach are compared with those based on the adaptive-network-based fuzzy inference system and genetic algorithm–based adaptive-network-based fuzzy inference system approaches. Analysis of variance test is carried out to statistically compare the performance of the proposed methods and the results demonstrate that the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system strategy outperforms the other two methods in terms of modeling (training accuracy and checking accuracy.
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate
2017-04-01
Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials
Giassi, Pedro; Okida, Sergio; Oliveira, Maurício G; Moraes, Raimes
2013-11-01
Short-term cardiovascular regulation mediated by the sympathetic and parasympathetic branches of the autonomic nervous system has been investigated by multivariate autoregressive (MVAR) modeling, providing insightful analysis. MVAR models employ, as inputs, heart rate (HR), systolic blood pressure (SBP) and respiratory waveforms. ECG (from which HR series is obtained) and respiratory flow waveform (RFW) can be easily sampled from the patients. Nevertheless, the available methods for acquisition of beat-to-beat SBP measurements during exams hamper the wider use of MVAR models in clinical research. Recent studies show an inverse correlation between pulse wave transit time (PWTT) series and SBP fluctuations. PWTT is the time interval between the ECG R-wave peak and photoplethysmography waveform (PPG) base point within the same cardiac cycle. This study investigates the feasibility of using inverse PWTT (IPWTT) series as an alternative input to SBP for MVAR modeling of the cardiovascular regulation. For that, HR, RFW, and IPWTT series acquired from volunteers during postural changes and autonomic blockade were used as input of MVAR models. Obtained results show that IPWTT series can be used as input of MVAR models, replacing SBP measurements in order to overcome practical difficulties related to the continuous sampling of the SBP during clinical exams.
Adam rumbalifar; I. g. n. Agung; Burhanuddin tola.
2018-01-01
This research aims to study the influence of the assessment model and method toward the science learning achievement by controlling the students? previous knowledge of mathematics. This study was conducted at SMP East Seram district with the population of 295 students. This study applied a quasi-experimental method with 2 X 2 factorial design using the ANCOVA model. The findings after controlling the students\\' previous knowledge of mathematics show that the science learning achievement of th...
Directory of Open Access Journals (Sweden)
Yi-Bo Li
2018-01-01
Full Text Available The accurate estimation of soil hydraulic parameters (θs, α, n, and Ks of the van Genuchten–Mualem model has attracted considerable attention. In this study, we proposed a new two-step inversion method, which first estimated the hydraulic parameter θs using objective function by the final water content, and subsequently estimated the soil hydraulic parameters α, n, and Ks, using a vector-evaluated genetic algorithm and particle swarm optimization (VEGA-PSO method based on objective functions by cumulative infiltration and infiltration rate. The parameters were inversely estimated for four types of soils (sand, loam, silt, and clay under an in silico experiment simulating the tension disc infiltration at three initial water content levels. The results indicated that the method is excellent and robust. Because the objective function had multilocal minima in a tiny range near the true values, inverse estimation of the hydraulic parameters was difficult; however, the estimated soil water retention curves and hydraulic conductivity curves were nearly identical to the true curves. In addition, the proposed method was able to estimate the hydraulic parameters accurately despite substantial measurement errors in initial water content, final water content, and cumulative infiltration, proving that the method was feasible and practical for field application.
Philip, Sajeev; Johnson, Matthew S.
2018-01-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.
International Nuclear Information System (INIS)
Koohkan, Mohammad Reza
2012-01-01
Data assimilation in geophysical sciences aims at optimally estimating the state of the system or some parameters of the system's physical model. To do so, data assimilation needs three types of information: observations and background information, a physical/numerical model, and some statistical description that prescribes uncertainties to each component of the system. In my dissertation, new methodologies of data assimilation are used in atmospheric chemistry and physics: the joint use of a 4D-Var with a sub-grid statistical model to consistently account for representativeness errors, accounting for multiple scale in the BLUE estimation principle, and a better estimation of prior errors using objective estimation of hyper-parameters. These three approaches will be specifically applied to inverse modelling problems focusing on the emission fields of tracers or pollutants. First, in order to estimate the emission inventories of carbon monoxide over France, in-situ stations which are impacted by the representativeness errors are used. A sub-grid model is introduced and coupled with a 4D-Var to reduce the representativeness error. Indeed, the results of inverse modelling showed that the 4D-Var routine was not fit to handle the representativeness issues. The coupled data assimilation system led to a much better representation of the CO concentration variability, with a significant improvement of statistical indicators, and more consistent estimation of the CO emission inventory. Second, the evaluation of the potential of the IMS (International Monitoring System) radionuclide network is performed for the inversion of an accidental source. In order to assess the performance of the global network, a multi-scale adaptive grid is optimised using a criterion based on degrees of freedom for the signal (DFS). The results show that several specific regions remain poorly observed by the IMS network. Finally, the inversion of the surface fluxes of Volatile Organic Compounds
Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.
2013-12-01
Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a
Boren, E. J.; Boschetti, L.; Johnson, D.
2017-12-01
Water plays a critical role in all plant physiological processes, including transpiration, photosynthesis, nutrient transportation, and maintenance of proper plant cell functions. Deficits in water content cause drought-induced stress conditions, such as constrained plant growth and cellular metabolism, while overabundance of water cause anoxic conditions which limit plant physiological processes and promote disease. Vegetation water content maps can provide agricultural producers key knowledge for improving production capacity and resiliency in agricultural systems while facilitating the ability to pinpoint, monitor, and resolve water scarcity issues. Radiative transfer model (RTM) inversion has been successfully applied to remotely sensed data to retrieve biophysical and canopy parameter estimates, including water content. The successful launch of the Landsat 8 Operational Land Imager (OLI) in 2012, Sentinel 2A Multispectral Instrument (MSI) in 2015, followed by Sentinel 2B in 2017, the systematic acquisition schedule and free data distribution policy provide the opportunity for water content estimation at a spatial and temporal scale that can meet the demands of potential operational users: combined, these polar-orbiting systems provide 10 m to 30 m multi-spectral global coverage up to every 3 days. The goal of the present research is to prototype the generation of a cropland canopy water content product, obtained from the newly developed Landsat 8 and Sentinel 2 atmospherically corrected HLS product, through the inversion of the leaf and canopy model PROSAIL5B. We assess the impact of a novel spatial and temporal stratification, where some parameters of the model are constrained by crop type and phenological phase, based on ancillary biophysical data, collected from various crop species grown in a controlled setting and under different water stress conditions. Canopy-level data, collected coincidently with satellite overpasses during four summer field campaigns
Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.
2005-01-01
The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.
International Nuclear Information System (INIS)
Napolitani, P.; Tassan-Got, L.; Bernas, M.; Armbruster, P.
2003-04-01
Secondary reactions induced by relativistic beams in inverse kinematics in a thick target are relevant in several fields of experimental physics and technology, like secondary radioactive beams, production of exotic nuclei close to the proton drip line, and cross-section measurements for applications of spallation reactions for energy production and incineration of nuclear wastes. A general mathematical formulation is presented and successively applied as a tool to disentangle the primary reaction yields from the secondary production in the measurement of fission of a 238 U projectile impinging on a proton target at the energy of 1 A GeV. (orig.)
Identification of polymorphic inversions from genotypes
Directory of Open Access Journals (Sweden)
Cáceres Alejandro
2012-02-01
Full Text Available Abstract Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data 1, utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS. Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model 2. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU and Yoruba (YRI HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions
Miles, Luke F; Frelich, Matthew J; Gould, Jon C; Dua, Kulwinder S; Jensen, Eric S; Kastenmeier, Andrew S
2015-10-01
We sought to evaluate the feasibility, safety, and difficulty of performing the per-oral endoscopic m