WorldWideScience

Sample records for previous glacial cycles

  1. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexi...

  2. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  3. Glacial Cycles Influence Marine Methane Hydrate Formation

    Science.gov (United States)

    Malinverno, A.; Cook, A. E.; Daigle, H.; Oryan, B.

    2018-01-01

    Methane hydrates in fine-grained continental slope sediments often occupy isolated depth intervals surrounded by hydrate-free sediments. As they are not connected to deep gas sources, these hydrate deposits have been interpreted as sourced by in situ microbial methane. We investigate here the hypothesis that these isolated hydrate accumulations form preferentially in sediments deposited during Pleistocene glacial lowstands that contain relatively large amounts of labile particulate organic carbon, leading to enhanced microbial methanogenesis. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent organic carbon deposition controlled by glacioeustatic sea level variations. In the model, hydrate forms in sediments with greater organic carbon content deposited during the penultimate glacial cycle ( 120-240 ka). The model predictions match hydrate-bearing intervals detected in three sites drilled on the northern Gulf of Mexico continental slope, supporting the hypothesis of hydrate formation driven by enhanced organic carbon burial during glacial lowstands.

  4. Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release

    Directory of Open Access Journals (Sweden)

    N. Zeng

    2007-01-01

    Full Text Available A mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can lead to quasi-100 ky glacial-interglacial cycles. A central process is the burial and preservation of organic carbon by icesheets which contributes to the observed glacial-interglacial CO2 change (the glacial burial hypothesis, Zeng, 2003. Allowing carbon cycle to interact with physical climate, here I further hypothesize that deglaciation can be triggered by the ejection of glacial burial carbon when a major icesheet grows to sufficiently large size after a prolonged glaciation so that subglacial transport becomes significant. Glacial inception may be initiated by CO2 drawdown due to a relaxation from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception may be the CO2 uptake by vegetation and soil regrowth in the previously ice-covered regions. When tested in a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced under certain parameter regimes self-sustaining glacial-interglacial cycles with durations of 93 ky, CO2 changes of 90 ppmv, temperature changes of 6°C. Since the 100 ky cycles can not be easily explained by the Milankovitch astronomical forcing alone, this carbon-climate-icesheet mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations. It is speculated that some glacial terminations may be triggered by this internal feedback while others by orbital forcing. Some observable consequences are highlighted that may support or falsify the theory.

  5. Testing Hypotheses About Glacial Cycles Against the Observational Record

    DEFF Research Database (Denmark)

    Kaufmann, Robert; Juselius, Katarina

    2013-01-01

    We estimate an identified cointegrated vector autoregression (CVAR) model of the climate system to test hypotheses about the physical mechanisms that may drive glacial cycles during the late Pleistocene. Results indicate that a permanent doubling of CO2 generates a 11.1oC rise in Antarctic temepr...

  6. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks

    Science.gov (United States)

    Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.; West, A. Joshua

    2017-08-01

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  7. Modelling last glacial cycle ice dynamics in the Alps

    Science.gov (United States)

    Seguinot, Julien; Jouvet, Guillaume; Huss, Matthias; Funk, Martin; Preusser, Frank

    2017-04-01

    The European Alps, cradle of pioneer glacial studies, are one of the regions where geological markers of past glaciations are most abundant and well-studied. Such conditions make the region ideal for testing numerical glacier models based on approximated ice flow physics against field-based reconstructions, and vice-versa. Here, we use the Parallel Ice Sheet Model (PISM) to model the entire last glacial cycle (120-0 ka) in the Alps, with a horizontal resolution of 1 km. Climate forcing is derived using present-day climate data from WorldClim and the ERA-Interim reanalysis, and time-dependent temperature offsets from multiple paleo-climate proxies, among which only the EPICA ice core record yields glacial extent during marine oxygen isotope stages 4 (69-62 ka) and 2 (34-18 ka) in agreement to geological reconstructions. Despite the low variability of this Antarctic-based climate forcing, our simulation depicts a highly dynamic ice cap, showing that alpine glaciers may have advanced many times over the foreland during the last glacial cycle. Cumulative basal sliding, a proxy for glacial erosion, is modelled to be highest in the deep valleys of the western Alps. Finally, the Last Glacial Maximum advance, often considered synchronous, is here modelled as a time-transgressive event, with some glacier lobes reaching their maximum as early as 27 ka, and some as late as 21 ka. Modelled ice thickness is about 900 m higher than observed trimline elevations, yet our simulation predicts little erosion at high elevation due to cold ice conditions.

  8. Stress evolution and fault stability during the Weichselian glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))

    2009-10-15

    In this report we examine how the waxing and waning of an ice sheet during a glacial cycle affects the state of stress in the Earth, and how those changes in stress influence the stability of faults. We focus on the stresses at repository depth in Forsmark and Oskarshamn, and on the stability field at seismogenic depth at the proposed repository sites and at the Paervie endglacial fault in northern Sweden. This study is a modelling study, where we use 3-dimensional ice and earth models to calculate the glacial isostatic adjustment (GIA), i.e. the response of the Earth to an ice load, examining both displacements and stresses. We use a flat-earth finite element approach, based on Wu with some modifications. The result presented here is a continuation of previous studies in 2 dimensions and complement those studies in assessing how the 3-dimensionality of the problem affects the conclusions. We use the Fennoscandian ice model of Naeslund, which is a dynamic ice sheet model based on climate reconstructions with constraints from geological observations. The ice model spans the entire Weichselian glaciation but we only use the last 68 kyr, which includes the 2 major periods of ice cover as depicted in this ice sheet reconstruction. For the GIA calculation we use a number of different earth models, both with flat horizontal layers and with various 3D structures of lithosphere thickness. We don't include lateral variations in the viscosity of the mantle. Comparing the current day rebound velocities predicted by our models with GPS observations from the BIFROST project, we note that in general, we can obtain a reasonable fit to the observations with our models, and that the results are rather sensitive to the assumed viscosity of the mantle. We find that the differences between data and model results, for all earth models, have common features which we interpret as due to the ice model. These observations are in agreement with numerous other GIA studies. Our flat

  9. Stress evolution and fault stability during the Weichselian glacial cycle

    International Nuclear Information System (INIS)

    Lund, Bjoern; Schmidt, Peter; Hieronymus, Christoph

    2009-01-01

    In this report we examine how the waxing and waning of an ice sheet during a glacial cycle affects the state of stress in the Earth, and how those changes in stress influence the stability of faults. We focus on the stresses at repository depth in Forsmark and Oskarshamn, and on the stability field at seismogenic depth at the proposed repository sites and at the Paervie endglacial fault in northern Sweden. This study is a modelling study, where we use three-dimensional ice and earth models to calculate the glacial isostatic adjustment (GIA), i.e. the response of the Earth to an ice load, examining both displacements and stresses. We use a flat-earth finite element approach, based on Wu with some modifications. The result presented here is a continuation of previous studies in two dimensions and complement those studies in assessing how the three-dimensionality of the problem affects the conclusions. We use the Fennoscandian ice model of Naeslund, which is a dynamic ice sheet model based on climate reconstructions with constraints from geological observations. The ice model spans the entire Weichselian glaciation but we only use the last 68 kyr, which includes the two major periods of ice cover as depicted in this ice sheet reconstruction. For the GIA calculation we use a number of different earth models, both with flat horizontal layers and with various 3D structures of lithosphere thickness. We do not include lateral variations in the viscosity of the mantle. Comparing the current day rebound velocities predicted by our models with GPS observations from the BIFROST project, we note that in general, we can obtain a reasonable fit to the observations with our models, and that the results are rather sensitive to the assumed viscosity of the mantle. We also find that the differences between data and model results, for all earth models, have common features which we interpret as due to the ice model. These observations are in agreement with numerous other GIA studies

  10. Glacial cycles drive variations in the production of oceanic crust.

    Science.gov (United States)

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2015-03-13

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. Copyright © 2015, American Association for the Advancement of Science.

  11. Sea-level variability over five glacial cycles.

    Science.gov (United States)

    Grant, K M; Rohling, E J; Ramsey, C Bronk; Cheng, H; Edwards, R L; Florindo, F; Heslop, D; Marra, F; Roberts, A P; Tamisiea, M E; Williams, F

    2014-09-25

    Research on global ice-volume changes during Pleistocene glacial cycles is hindered by a lack of detailed sea-level records for time intervals older than the last interglacial. Here we present the first robustly dated, continuous and highly resolved records of Red Sea sea level and rates of sea-level change over the last 500,000 years, based on tight synchronization to an Asian monsoon record. We observe maximum 'natural' (pre-anthropogenic forcing) sea-level rise rates below 2 m per century following periods with up to twice present-day ice volumes, and substantially higher rise rates for greater ice volumes. We also find that maximum sea-level rise rates were attained within 2 kyr of the onset of deglaciations, for 85% of such events. Finally, multivariate regressions of orbital parameters, sea-level and monsoon records suggest that major meltwater pulses account for millennial-scale variability and insolation-lagged responses in Asian monsoon records.

  12. Orbital control of western North America atmospheric circulation and climate over two glacial cycles.

    Science.gov (United States)

    Lachniet, Matthew S; Denniston, Rhawn F; Asmerom, Yemane; Polyak, Victor J

    2014-05-02

    The now arid Great Basin of western North America hosted expansive late Quaternary pluvial lakes, yet the climate forcings that sustained large ice age hydrologic variations remain controversial. Here we present a 175,000 year oxygen isotope record from precisely-dated speleothems that documents a previously unrecognized and highly sensitive link between Great Basin climate and orbital forcing. Our data match the phasing and amplitudes of 65°N summer insolation, including the classic saw-tooth pattern of global ice volume and on-time terminations. Together with the observation of cold conditions during the marine isotope substage 5d glacial inception, our data document a strong precessional-scale Milankovitch forcing of southwestern paleoclimate. Because the expansion of pluvial lakes was associated with cold glacial conditions, the reappearance of large lakes in the Great Basin is unlikely until ca. 55,000 years into the future as climate remains in a mild non-glacial state over the next half eccentricity cycle.

  13. Indian Ocean circulation and productivity during the last glacial cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Piotrowski, A.M.; Banakar, V.K.; Scrivner, A.E.; Elderfield, H.; Galy, A.; Dennis, A.

    Nd and δ 13 C records from the deep Cape Basin (Piotrowski et al., 2005; Piotrowski et al., 2008), suggesting that the δ 13 C of deep water in the deep South Atlantic changed independently of ocean circulation during glacial... isotopes can be interpreted as changes in deep-water δ 13 C composition independent of circulation, resulting from climate-dependant changes in either biological productivity, the pre-formed δ 13 C of a water mass by biological productivity, or air...

  14. Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles.

    Science.gov (United States)

    Lo, Li; Chang, Sheng-Pu; Wei, Kuo-Yen; Lee, Shih-Yu; Ou, Tsong-Hua; Chen, Yi-Chi; Chuang, Chih-Kai; Mii, Horng-Sheng; Burr, George S; Chen, Min-Te; Tung, Ying-Hung; Tsai, Meng-Chieh; Hodell, David A; Shen, Chuan-Chou

    2017-07-04

    The paleoclimatic sensitivity to atmospheric greenhouse gases (GHGs) has recently been suggested to be nonlinear, however a GHG threshold value associated with deglaciation remains uncertain. Here, we combine a new sea surface temperature record spanning the last 360,000 years from the southern Western Pacific Warm Pool with records from five previous studies in the equatorial Pacific to document the nonlinear relationship between climatic sensitivity and GHG levels over the past four glacial/interglacial cycles. The sensitivity of the responses to GHG concentrations rises dramatically by a factor of 2-4 at atmospheric CO 2 levels of >220 ppm. Our results suggest that the equatorial Pacific acts as a nonlinear amplifier that allows global climate to transition from deglacial to full interglacial conditions once atmospheric CO 2 levels reach threshold levels.

  15. Application of sediment core modelling to interpreting the glacial-interglacial record of Southern Ocean silica cycling

    Directory of Open Access Journals (Sweden)

    A. Ridgwell

    2007-07-01

    Full Text Available Sediments from the Southern Ocean reveal a meridional divide in biogeochemical cycling response to the glacial-interglacial cycles of the late Neogene. South of the present-day position of the Antarctic Polar Front in the Atlantic sector of the Southern Ocean, biogenic opal is generally much more abundant in sediments during interglacials compared to glacials. To the north, an anti-phased relationship is observed, with maximum opal abundance instead occurring during glacials. This antagonistic response of sedimentary properties provides an important model validation target for testing hypotheses of glacial-interglacial change against, particularly for understanding the causes of the concurrent variability in atmospheric CO2. Here, I illustrate a time-dependent modelling approach to helping understand climates of the past by means of the mechanistic simulation of marine sediment core records. I find that a close match between model-predicted and observed down-core changes in sedimentary opal content can be achieved when changes in seasonal sea-ice extent are imposed, whereas the predicted sedimentary response to iron fertilization on its own is not consistent with sedimentary observations. The results of this sediment record model-data comparison supports previous inferences that the changing cryosphere is the primary driver of the striking features exhibited by the paleoceanographic record of this region.

  16. Glacial-Interglacial, Orbital and Millennial-Scale Climate Variability for the Last Glacial Cycle at Shackleton Site U1385 based on Dinoflagellate Cysts

    Science.gov (United States)

    Datema, M.

    2015-12-01

    The Shackleton Site (IODP Expedition 339 Site U1385), located off the West-Portuguese Margin, preserves a continuous high-fidelity record of millennial-scale climate variability for the last several glacial cycles (~1.4 Myr) that can be correlated precisely to patterns observed in polar ice cores. In addition, rapid delivery of terrestrial material to the deep-sea environment allows the correlation of these marine records to European terrestrial climate records. This unique marine-ice-terrestrial linkage makes the Shackleton Site the ideal reference section for studying Quaternary abrupt climate change. The main objective of studying Site U1385 is to establish a marine reference section of Pleistocene climate change. We generated (sub)millennial-scale (~600 year interval) dinoflagellate cyst (dinocyst) assemblage records from Shackleton Site U1385 (IODP Expedition 339) to reconstruct sea surface temperature (SST) and productivity/upwelling over the last 152 kyrs. In addition, our approach allows for detailed land-sea correlations, because we also counted assemblages of pollen and spores from higher plants. Dinocyst SST and upwelling proxies, as well as warm/cold pollen proxies from Site U1385 show glacial-interglacial, orbital and stadial-interstadial climate variability and correlate very well to Uk'37, planktic foraminifer δ18O and Ca/Ti proxies of previously drilled Shackleton Sites and Greenland Ice Core δ18O. The palynological proxies capture (almost) all Dansgaard-Oeschger events of the last glacial cycle, also before ~70 ka, where millennial-scale variability is overprinted by precession. We compare the performance and results of the palynology of Site U1385 to proxies of previously drilled Shackleton Sites and conclude that palynology strengthens the potential of this site to form a multi-proxy reference section for millennial scale climate variability across the Pleistocene-Holocene. Finally, we will present a long-term paleoceanographic perspective down

  17. Initiation age and incision rates of inner gorges: Do they record multiple glacial-interglacial cycles?

    Science.gov (United States)

    Delunel, Romain; Casagrande, Jan; Schlunegger, Fritz; Akçar, Naki; Kubik, Peter W.

    2015-04-01

    Inner gorges represent some of the most conspicuous landforms in the European Alps. They form narrow and deep active-channel incisions that link hanging tributaries with trunk valleys in glacially-conditioned environments. Despite abundant research carried out on these objects, both their origin and evolution have remained unclear. In particular, the age of initiation, the rate of incision, and the respective contribution of fluvial and subglacial processes in the evolution of inner gorges have still been a matter of scientific debate. Indeed, answering these questions has been complicated by the lack of appropriate quantitative methods and/or suitable sampling strategies for studying inner gorges. Here, we report 10Be concentrations measured in alluvial sediments that have been collected along the main stream of a ~20-km2-catchment in the Swiss foreland (Central European Alps). This catchment hosts a ca. 100-m-deep and 2-km-long inner gorge that has been cut mainly in glacial till. Catchment wide denudation rates inferred from 10Be analyses (n = 15) vary from ~120 to 650 mm/ka and show a general downstream increasing trend. Additional field observations and GIS analyses reveal that the denudation rates within the catchment increase from the headwaters, characterized by relict glacial/periglacial landscapes, to the downstream end of the basin where the inner gorge has been formed. Using a 10Be-based sediment budget approach and the delineation of topographic domains from a 2-m-resolution LIDAR, we provide an estimate of erosion rates within the gorge that are higher than 2.5 m/ka and can reach up to ~ 7 m/ka. Combining these estimated erosion rates with the reconstruction of eroded volumes within the gorge, we obtain a rough initiation age in the early Holocene, in general agreement with previous studies reporting a postglacial origin for the inner gorges. Our results therefore appear contradictory with recent findings arguing for a gradual formation of inner

  18. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust

  19. Deep Arctic Ocean warming during the last glacial cycle

    Science.gov (United States)

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  20. A conceptual model for glacial cycles and the middle Pleistocene transition

    Science.gov (United States)

    Daruka, István; Ditlevsen, Peter D.

    2016-01-01

    Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the middle Pleistocene transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time-scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and a climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity

  1. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    Science.gov (United States)

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-08

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere

  2. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Science.gov (United States)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  3. The Importance of Snow Albedo for Ice Sheet Evolution over the Last Glacial Cycle

    Science.gov (United States)

    Ganopolski, A.; Willeit, M.

    2017-12-01

    The surface energy and mass balance of ice sheets strongly depends on the amount of solar radiation absorbed at the surface, which is mainly controlled by the albedo of snow and ice. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the representation of snow albedo in the model. It is well known that the albedo of snow depends strongly on the snow grain size and the content of light absorbing impurities. Excluding either the snow aging effect or the dust darkening effect on snow albedo leads to an excessive ice build-up during glacial times and consequently to a failure in simulating deglaciation. While the effect of snow grain growth on snow albedo is well constrained, the albedo reduction due to the presence of dust in snow is much more uncertain, because the light absorbing properties of dust vary widely as a function of dust composition. We also show that assuming slightly different optical properties of dust leads to very different ice sheet and climate evolutions in the model. Conversely, ice sheet evolution is less sensitive to the choice of ice albedo in the model. We conclude that a proper representation of snow albedo is a fundamental prerequisite for a successful simulation of glacial cycles.

  4. The last glacial cycle: transient simulations with an AOGCM

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robin S. [University of Reading, NCAS-Climate, Department of Meteorology, Reading (United Kingdom); Gregory, Jonathan [University of Reading, NCAS-Climate, Department of Meteorology, Reading (United Kingdom); Met Office Hadley Centre, Exeter (United Kingdom)

    2012-04-15

    A number of transient climate runs simulating the last 120 kyr have been carried out using FAMOUS, a fast atmosphere-ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12 kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth's orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic meridional overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10 kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice

  5. Exploring the data constrained phase space of the last Antarctic glacial cycle

    Science.gov (United States)

    Lecavalier, Benoit; Tarasov, Lev

    2017-04-01

    The evolution of the Antarctic Ice Sheet over the last two glacial cycles is studied using the Glacial Systems Model (GSM). Glaciological modelling is an effective tool to generate continental-scale reconstructions over glacial cycles, but the models depend on parameterizations to account for the deficiencies (e.g., missing physics, unresolved sub-grid processes, uncertain boundary conditions) inherent in any numerical model. These parameters, considered together, form a parameter phase space from which sets of parameters can be sampled; each set corresponds to an ice sheet reconstruction. The GSM has been updated with a number of recent developments: hybrid SIA-SSA physics, Schoof grounding line parameterization, broadened degrees of freedom in the climate forcing, sub-shelf melt explicitly dependent on ocean temperatures, improved hydrofracturing, cliff failure at the margins, basal topographic uncertainties, impact of basal drag roughness and subgrid statistics, and first order geoidal corrections in the coupled glacial isostatic adjustment component. Parametric uncertainties are defined in the GSM using >36 ensemble parameters. Prior to conducting a full Bayesian calibration, one must first validate the ability of the GSM to simulate a broad range of responses. We attempt this by latin hypercube sampling of the parameter phase space and comparing the model predictions against our constraint database consisting of past elevation, extent and relative sea level observations and the present day geometry. We document the capability of the GSM to envelope the observational constraints given the parametric uncertainties and discuss the implications for the evolution of the Antarctic Ice Sheet.

  6. Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity.

    Science.gov (United States)

    Muller, R A; MacDonald, G J

    1997-08-05

    Spectral analysis of climate data shows a strong narrow peak with period approximately 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth's orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.

  7. Periodicity in a Conceptual Model of Glacial Cycles in the Absence of Milankovitch Forcing

    Science.gov (United States)

    Hahn, J.; Walsh, J.; Widiasih, E.; McGehee, R.

    2015-12-01

    Previously, McGehee and Widiasih coupled Budyko's Energy Balance Model with dynamics of a latitudinal ice-line incorporating the albedo feedback effect. They reduced this model to a two-dimensional equation of global mean temperature and a latitudinal ice-line. With this conceptual model, we now include dynamics of the ablation and accumulation of ice, to form a three-dimensional system that partitions the regions of the Earth latitudinally into an accumulation zone, ablation zone, and ice-free zone. Motivated by the findings of Abe-Ouchi et al that the fast retreat of ice-sheets is due to an increased rate of ablation via the effects of delayed isostatic rebound, we incorporate a simple switching mechanism to the model which increases the rate of ablation during periods of glacial retreat. This forms a discontinuous system of the Earth's temperature and ice-volume in which we find a stable periodic orbit. This can be interpreted as a intrinsic cycling of the Earth's climate in the absence of Milankovitch forcing.

  8. Spurious Additional Warming Reconstructed From Borehole Temperatures Corrected for the Effect of the Last Glacial Cycle

    Science.gov (United States)

    Šafanda, Jan

    2018-03-01

    Reconstructions of past ground surface temperature changes from temperature logs conducted in several hundred meter deep boreholes have proved to be a valuable independent source of information on climate variations over the last millennium. The reconstruction techniques have been evolving for more than two decades to extract optimally the climate signal of the last millennium contained in the temperature logs of different length performed in sites with different histories of the Last Glacial Cycle. This paper analyzes the method of the Last Glacial Cycle thermal effect removal from such borehole temperature profiles used by Beltrami et al. (2017, https://doi.org/10.1002/2016GL071317) in reconstructing the last 500 year history. I show that the reported results of additional warming in this period reconstructed from the corrected borehole data for North America are an artifact generated by the correction.

  9. The vegetation history of the last glacial-interglacial cycle in eastern New South Wales, Australia

    Science.gov (United States)

    Williams, N. J.; Harle, K. J.; Gale, S. J.; Heijnis, H.

    2006-10-01

    We present a reconstruction of the vegetation history of the last glacial-interglacial cycle (ca. 75 k cal. yr BP-present) at Redhead Lagoon, an enclosed lake basin in coastal, eastern New South Wales, Australia. The sequence of vegetation change at the site is broadly comparable with the pattern of climatically induced changes observed in many other pollen records in southeast Australia. Open woodland-herbland and woodland-forest communities correspond with glacial and interglacial periods respectively, with an additional change towards a more open understorey vegetation assemblage over the last 40 000 yr. The driest conditions appear to have occurred during the height of the last glacial (some time between 30 and 20 k cal. yr BP). This is consistent with other records from southeast Australia, and provides support for a poleward shift in the subtropical anticyclone belt and, less certainly, for the thesis that the Southern Hemisphere westerlies intensified during this period. In marked contrast to most sites in southeast Australia, Casuarinaceae dominates the pollen record through the height of the last glacial period and into the Holocene. The postglacial climatic amelioration is accompanied by the general reappearance of tree pollen in the record, by the disappearance of several open and disturbed environment indicator taxa, by increases in organic sediment deposition and pollen taxon diversity, and by higher water balances. While climate appears to have been the major control on patterns of vegetation change at this site throughout most of the last glacial-interglacial cycle, changes in depositional environment and hydrology have also played a role. Significantly, substantial increases in the rate and magnitude of many indicators of environmental disturbance since European settlement suggest that humans are now the most important mechanism for environmental change. Copyright

  10. Impact of brine-induced stratification on the glacial carbon cycle

    Directory of Open Access Journals (Sweden)

    N. Bouttes

    2010-09-01

    Full Text Available During the cold period of the Last Glacial Maximum (LGM, about 21 000 years ago atmospheric CO2 was around 190 ppm, much lower than the pre-industrial concentration of 280 ppm. The causes of this substantial drop remain partially unresolved, despite intense research. Understanding the origin of reduced atmospheric CO2 during glacial times is crucial to comprehend the evolution of the different carbon reservoirs within the Earth system (atmosphere, terrestrial biosphere and ocean. In this context, the ocean is believed to play a major role as it can store large amounts of carbon, especially in the abyss, which is a carbon reservoir that is thought to have expanded during glacial times. To create this larger reservoir, one possible mechanism is to produce very dense glacial waters, thereby stratifying the deep ocean and reducing the carbon exchange between the deep and upper ocean. The existence of such very dense waters has been inferred in the LGM deep Atlantic from sediment pore water salinity and δ18O inferred temperature. Based on these observations, we study the impact of a brine mechanism on the glacial carbon cycle. This mechanism relies on the formation and rapid sinking of brines, very salty water released during sea ice formation, which brings salty dense water down to the bottom of the ocean. It provides two major features: a direct link from the surface to the deep ocean along with an efficient way of setting a strong stratification. We show with the CLIMBER-2 carbon-climate model that such a brine mechanism can account for a significant decrease in atmospheric CO2 and contribute to the glacial-interglacial change. This mechanism can be amplified by low vertical diffusion resulting from the brine-induced stratification. The modeled glacial distribution of oceanic δ13C as well as the deep ocean salinity are substantially improved and better agree with reconstructions from

  11. Bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles

    DEFF Research Database (Denmark)

    Ditlevsen, Peter

    2009-01-01

    history. It indicates the dynamical origin of the mid-Pleistocene transition from the "41 ka world'' to the "100 ka world.'' The dominant forcing in the latter is still the 41 ka obliquity cycle, but the bifurcation structure of the climate system is changed. The model suggests that transitions between...... to account for the glacial cycles. Here an empirical model of the nonlinear response is presented. From the model it is possible to assess the role of stochastic noise in comparison to the deterministic orbital forcing of the ice ages. The model is based on the bifurcation structure derived from the climate...

  12. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle

    Directory of Open Access Journals (Sweden)

    S. Bonelli

    2009-07-01

    Full Text Available A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets.
    A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.

  13. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle

    Science.gov (United States)

    Carrasco, Rosa M.; Pedraza, Javier; Domínguez-Villar, David; Willenbring, Jane K.; Villa, Javier

    2015-12-01

    The Cuerpo de Hombre paleoglacier occupies the upper sector of the Cuerpo de Hombre river basin, located on the northwest slope of the Sierra de Béjar Mountains (Iberian Central System). At the stage of the maximum ice extent during the last glacial cycle, this paleoglacier was one of the longest tongues emerging from the Sierra de Béjar plateau glacier. The study of the morphostratigraphic succession and the geometric and genetic relations between the geomorphological indicators of this paleoglacier has revealed its evolutionary sequence during the last glacial cycle. The comparison between this sequence and the one previously established by a regional evolutionary pattern shows that although they both coincide in general terms, some stages/substages of this pattern must be corrected or more clearly defined. The absolute chronology of the different stages was obtained using terrestrial cosmogenic nuclides (10Be). The maximum ice extent of Cuerpo de Hombre paleoglacier has been dated to ∼25.0 ka (MIS2 and concurrent with the LGM). This chronology coincides with date obtained for other paleoglaciers in the Iberian Central System, but is slightly more modern than the regional chronology estimated as most likely for the maximum ice extent in these areas. Subsequent to reaching the maximum extent, the glacier had a retreat (minimum age ∼20.6 ka), followed by another stage of expansion or readvance, after which it stabilised until the start of the deglaciation stage (∼17.8 ka). In all previous work, the deglaciation stages in the Iberian Central System have been described as one continuous recession process. However, in the Cuerpo de Hombre paleoglacier, all the data point to stabilisations of considerable magnitude, and particularly to another stage of readvance of the glacier. Based on its chronology (minimum age ∼11.1 ka) and its evolutionary significance, this new readvance has been correlated with the Older Dryas stadial. Finally, the evolutionary context

  14. Terrigenous biomarker record off Morocco over the last five glacial cycles

    Science.gov (United States)

    Rostek, Frauke; Bard, Edouard; Nave, Silvia

    2013-04-01

    We present a record of terrigenous biomarkers - long chain n-alkanes - supplied to Moroccan coastal sediments over the past 500 kyr representing the last five glacial-interglacial cycles (MD08-3178, 31°17.09'N/11°29.20'W, 2184 m water depth). The eolian n-alkane supply along the eastern margin off the coast of NW Africa originates mainly from the Atlas Mountain region and the Moroccan coastal plain and partly from the northern Sahara. The new geochemical profiles record changes in vegetation cover, wind strength and fluvial transport from the Atlas Mountains. Marine biological productivity proxies and n-alkane concentrations increase during glacial periods suggesting that stronger winds induce upwelling in the ocean and transport hydrocarbons from the continent. Chain-length distribution of n-alkanes points to variations in the relative input of terrestrial C3 and C4 plants. These variations are clearly paced by glacial cycles due to orbital variations as illustrated by their correlation with the alkenone sea surface temperature record measured on the same core (see companion poster by Nave et al.). The relative abundance of C3 plants is seen to be higher during glacial periods whereas the abundance of C4 plants is higher during warmer interglacial periods. Our results suggest that important vegetation changes have occurred in this part of NW Africa during the last 500 kyr. These changes could be due to latitudinal migrations of vegetation belts, with plants adapted to a more humid Mediterranean climate in the north contrasting with arid Saharan vegetation in the south. In addition, the observed changes may also be related to relative changes of source regions of n-alkanes due to wind strength variations.

  15. Automated reconstruction of drainage basins and water discharge to the sea through glacial cycles

    Science.gov (United States)

    Wickert, Andrew

    2015-04-01

    Over glacial cycles, ice masses and their geophysical impacts on surface topography dramatically changed drainage patterns and river discharges. These changes impacted meltwater discharge to the ocean, geomorphology, and climate. As the river systems'the threads that tied the ice sheets to the sea'were stretched, severed, and rearranged during deglaciation, they also shrank and swelled with the pulse of meltwater inputs and proglacial lake dynamics. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges. I automate these calculations within GRASS GIS to take advantage of rapid solution techniques for drainage networks in an open-source and compute-cluster-ready environment. I combine modern topography and bathymetry with ice sheet reconstructions from the last glacial cycle and a global glacial isostatic adjustment model to build digital elevation models of the past Earth surface. I then sum ice sheet mass balance with computed precipitation and evapotranspiration from a paleoclimate general circulation model to produce grids of water input. I combine these topographic and hydrologic inputs to compute past river networks and discharges through time. These paleodrainage reconstructions connect ice sheets, sea level, and climate models to fluvial systems, which in turn generate measurable terrace and sedimentary records as they carry physical, compositional, and isotopic signatures of ice sheet melt and landscape change through their channels and to the sea. Therefore, this work provides a self-consistent paleogeographic framework within which models and geologic records may be quantitatively compared to build new insights into past glacial systems.

  16. From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)

    Science.gov (United States)

    Brücher, Tim; Latif, Mojib

    2017-04-01

    We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes

  17. Early human-plant interactions based on palaeovegetation simulations of Africa over glacial-interglacial cycles

    Science.gov (United States)

    Cowling, S. A.; Cox, P. M.; Jones, C. D.; Maslin, M. A.; Spall, S. A.

    2003-04-01

    A greater understanding of African palaeovegetation environments over the Pleistocene (1.6 Mya) is important for evaluating potential catalysts underlying the anatomical, social and demographic changes observed in early human populations. We used a state-of-the-art fully-coupled earth system model (HADLEY-GCM3) to simulate typical glacial and interglacial environments likely encountered by late-Pleistocene humans. Our simulations indicate that tropical broadleaf forests of central Africa were not severely restricted by expanding grasslands during the last glacial maximum, although the carbon content of stem and density of leaf components were substantially reduced. We interpret a natural eastern migration corridor between southern Africa and the Rift Valley based on simulations of a no-analogue vegetation assemblage characterised by a unique combination of grass and low density forest. We postulate that early human populations in southern Africa were isolated from northern groups during warm interglacials, and that trans-African migration was facilitated during glacial cycles via a more openly forested eastern corridor.

  18. Simulation of the European ice sheet through the last glacial cycle and prediction of future glaciation

    International Nuclear Information System (INIS)

    Boulton, G.S.; Payne, A.

    1992-12-01

    Global climates of the recent past appear to correlate with patterns of variation in the earths orbit round the sun. As such orbital changes can be predicted into the future, it is argued that the pattern of natural long-term future change can also be estimated. From this, future trends of glaciation can be inferred. The physical and mathematical basis of a time-dependent, thermo mechanically coupled, three dimensional ice sheet model is described. The model is driven by changes in the equilibrium line altitude (ELA) on its surface. This causes flexure of the underlying lithosphere. The model is tuned to the maximum extension of the last (Weichselian) ice sheet and driven by an ELA fluctuation which reflects the NE Atlantic sea surface temperature fluctuation pattern during the last glacial cycle in such a way that the model reproduces the ice sheet margin at the glacial maximum. The distribution of internal ice sheet velocity, temperature, basal melting rate and sub glacial permafrost penetration are all computed. The model is then tested against its predictions of the areal pattern of ice sheet expansion and decay, the pattern of crustal flexure and relative sea level change, and the distribution of till produced by the last European ice sheet. The tested model is then driven by predictions of future climate change to produce simulations of future ice sheet glaciation in northern Europe

  19. Paleoclimate modeling of the Amazonian glacial cycles using the new version of the LMD Global Climate Model

    Science.gov (United States)

    Madeleine, J.; Forget, F.; Head, J. W.; Millour, E.; Spiga, A.; Colaitis, A.; Montabone, L.; Montmessin, F.; Maattanen, A. E.

    2011-12-01

    assess the role of these new processes in Amazonian glacial cycles. For example, the figure below represents the net annual accumulation rate of water-ice (shaded colors) under paleoclimate conditions (35° obliquity, perihelion during southern summer, dusty conditions) along with the geological evidence for past glaciation (in black), as simulated by the previous version of the GCM. The new version is expected to give different results, and will help us better understand the origin of glacial features, including those which age and location remain unexplained.

  20. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  1. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    Directory of Open Access Journals (Sweden)

    E. Bauer

    2014-07-01

    Full Text Available Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial–interglacial climate changes.

  2. Dynamical systems analysis of the Maasch-Saltzman model for glacial cycles

    Science.gov (United States)

    Engler, Hans; Kaper, Hans G.; Kaper, Tasso J.; Vo, Theodore

    2017-11-01

    This article is concerned with the internal dynamics of a conceptual model proposed by Maasch and Saltzman (1990) to explain central features of the glacial cycles observed in the climate record of the Pleistocene Epoch. It is shown that, in most parameter regimes, the long-term system dynamics occur on certain intrinsic two-dimensional invariant manifolds in the three-dimensional state space. These invariant manifolds are slow manifolds when the characteristic time scales for the total global ice mass and the volume of the North Atlantic Deep Water are well separated, and they are center manifolds when these characteristic time scales are comparable. In both cases, the reduced dynamics on these manifolds are governed by Bogdanov-Takens singularities, and the bifurcation curves associated to these singularities organize the parameter regions in which the model exhibits glacial cycles. In addition, knowledge of the reduced systems and their bifurcations is useful for understanding the effects of slowly varying parameters, which cause passage through Hopf bifurcations, and of orbital (Milankovitch) forcing. Both are central to the mechanism proposed by Maasch and Saltzman for the mid-Pleistocene transition in their model.

  3. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle

    Science.gov (United States)

    Ren, Haojia; Sigman, Daniel M.; Martínez-García, Alfredo; Anderson, Robert F.; Chen, Min-Te; Ravelo, Ana Christina; Straub, Marietta; Wong, George T. F.; Haug, Gerald H.

    2017-08-01

    The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen (“fixed N”) from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N2 fixation covaried with sea level. The N2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N—a “sluggish” ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.

  4. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle.

    Science.gov (United States)

    Ren, Haojia; Sigman, Daniel M; Martínez-García, Alfredo; Anderson, Robert F; Chen, Min-Te; Ravelo, Ana Christina; Straub, Marietta; Wong, George T F; Haug, Gerald H

    2017-08-15

    The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N 2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen ("fixed N") from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N 2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N 2 fixation covaried with sea level. The N 2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N-a "sluggish" ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.

  5. Loess deposits in Beijing and their paleoclimatic implications during the last interglacial-glacial cycle

    Science.gov (United States)

    Tian, Shengchen; Sun, Jimin; Gong, Zhijun

    2017-12-01

    Loess-paleosol sequences are important terrestrial paleoclimatic archives in the semi-arid region of north-central China. Compared with the numerous studies on the loess of the Chinese Loess Plateau, the eolian deposits, near Beijing, have not been well studied. A new loess section in the northeast suburb of Beijing provides an opportunity for reconstructing paleoenvironmental changes in this region. An optically stimulated luminescence (OSL) chronology yields ages of 145.1 to 20.5 ka, demonstrating that the loess deposits accumulated during the last interglacial-glacial cycle. High-resolution climatic proxies, including color-index, particle size and magnetic parameters, reveal orbital-scale climatic cycles, corresponding to marine oxygen isotope stages (MIS) 6 to MIS 2. In contrast to the loess deposits of the central Loess Plateau, loess near Beijing is a mixture of distal dust materials from gobi and sand deserts in the arid part of northwestern China and proximal, local alluvial sediments. Climatic change in Beijing during the last interglacial-glacial cycle was controlled primarily by the changing strength of the East Asian monsoon. Paleosols developed during the last interglacial complex (between 144.0 and 73.0 ka) and the interstadial of the last glaciation (between 44.6 and 36.2 ka), being associated with an enhanced summer monsoon in response to increased low-latitude insolation and a weakened Siberia High. Loess accumulation occurred during cold-dry stages of the last glaciation, in response to the intensified winter monsoon driven by the strengthened Siberia High and its longer residence time.

  6. Evolution of the Northern Rockweed, Fucus distichus, in a Regime of Glacial Cycling: Implications for Benthic Algal Phylogenetics.

    Directory of Open Access Journals (Sweden)

    Haywood Dail Laughinghouse

    Full Text Available Northern hemisphere rockweeds (Fucus are thought to have evolved in the North Pacific and then spread to the North Atlantic following the opening of the Bering Strait. They have dispersed and widely speciated in the North Atlantic and its tributary seas. Fucus distichus is likely near the ancestral member of this genus, and studies have shown that there are several species/subspecies in this complex (i.e. F. evanescens and F. gardneri. We used phylogenetic and haplotype analyses to test the phylogenetic relationships and biogeography of F. distichus. Our data and subsequent analyses demonstrate that, unlike previous studies that lacked samples from an extensive geographical area of the Arctic and Subarctic, there is a distinct Arctic haplotype that is the source of subspecies in both the North Pacific and North Atlantic. Fucus distichus occupies a low tide zone habitat, and in Arctic/Subarctic regions it is adapted to the severe stress of sea ice coverage and disturbance during many months per year. We hypothesize that the very large geographic area of Arctic and Subarctic rocky shores available to this species during interglacials, supported by large Arctic/Subarctic fringe areas as well as unglaciated refugia during glacial cycles, provided a robust population and gene pool (described by the Thermogeographic Model. This gene pool dilutes that of the more fragmented and area-limited Temperate/Boreal area populations when they are brought together during glacial cycles. We suggest that similar subspecies complexes for a variety of Arctic/Subarctic shore biota should be examined further in this context, rather than arbitrarily being split up into numerous species.

  7. Repeated Storage of Respired Carbon in the Equatorial Pacific Ocean Over the Last Three Glacial Cycles

    Science.gov (United States)

    Jacobel, A. W.; McManus, J. F.; Anderson, R. F.; Winckler, G.

    2017-12-01

    As the largest reservoir of carbon actively exchanging with the atmosphere on glacial-interglacial timescales, the deep ocean has been implicated as the likely location of carbon dioxide sequestration during Pleistocene glaciations. Despite strong theoretical underpinnings for this expectation, it has been challenging to identify unequivocal evidence for respired carbon storage in the paleoceanographic record. Data on the rate of ocean ventilation derived from paired planktonic-benthic foraminifera radiocarbon ages conflict across the equatorial Pacific, and different proxy reconstructions contradict one another about the depth and origin of the watermass containing the respired carbon. Because any change in the storage of respiratory carbon must be accompanied by corresponding changes in dissolved oxygen concentrations, proxy data reflecting bottom water oxygenation are of value in addressing these apparent inconsistencies. We present new records of the redox sensitive metal uranium from the central equatorial Pacific to qualitatively identify intervals associated with respiratory carbon storage over the past 350 kyr. Our data reveal periods of deep ocean authigenic uranium deposition in association with each of the last three glacial maxima. Equatorial Pacific export productivity data show intervals with abundant authigenic uranium are not associated with local productivity increases, indicating episodic precipitation of authigenic uranium does not directly reflect increases in situ microbial respiration, but rather occurs in response to basin-wide decreases in deep water oxygen concentrations. We combine our new data with previously published results to propose a picture of glacial carbon storage and equatorial Pacific watermass structure that is internally consistent. We conclude that respired carbon storage in the Pacific was a persistent feature of Pleistocene glaciations.

  8. Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles

    Science.gov (United States)

    Pogge von Strandmann, Philip A. E.; Vaks, Anton; Bar-Matthews, Miryam; Ayalon, Avner; Jacob, Ezekiel; Henderson, Gideon M.

    2017-07-01

    Terrestrial chemical weathering of silicate minerals is a fundamental component of the global cycle of carbon and other elements. Past changes in temperature, rainfall, ice cover, sea-level and physical erosion are thought to affect weathering but the relative impact of these controls through time remains poorly constrained. This problem could be addressed if the nature of past weathering could be constrained at individual sites. In this study, we investigate the use of speleothems as local recorders of the silicate weathering proxy, Li isotopes. We analysed δ7 Li and [Li] in speleothems that formed during the past 200 ka in two well-studied Israeli caves (Soreq and Tzavoa), as well as in the overlying soils and rocks. Leaching and mass balance of these soils and rocks show that Li is dominantly sourced from weathering of the overlying aeolian silicate soils. Speleothem δ7 Li values are ubiquitously higher during glacials (∼23‰) than during interglacials (∼10‰), implying more congruent silicate weathering during interglacials (where ;congruent; means a high ratio of primary mineral dissolution to secondary mineral formation). These records provide information on the processes controlling weathering in Israel. Consideration of possible processes causing this change of weathering congruency indicates a primary role for temperature, with higher temperatures causing more congruent weathering (lower δ7Lispeleo). The strong relationship observed between speleothem δ7 Li and climate at these locations suggests that Li isotopes may be a powerful tool with which to understand the local controls on weathering at other sites, and could be used to assess the distribution of weathering changes accompanying climate change, such as that of Pleistocene glacial cycles.

  9. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2010-04-01

    Full Text Available A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.

  10. Global ice volume variations through the last glacial cycle simulated by a 3-D ice-dynamical model

    NARCIS (Netherlands)

    Bintanja, R.; Wal, R.S.W. van de; Oerlemans, J.

    2002-01-01

    A coupled ice sheet—ice shelf—bedrock model was run at 20km resolution to simulate the evolution of global ice cover during the last glacial cycle. The mass balance model uses monthly mean temperature and precipitation as input and incorporates the albedo—mass balance feedback. The model is forced

  11. Reconstructing the Glacial Cycle of the Last 150 ka in the Southern Bay of Bengal

    Science.gov (United States)

    Holmes, B.; Dekens, P.; Weber, M. E.; Lantzsch, H.; Reilly, B. T.; Das, S. K.; Martos, Y. M.; Williams, T.

    2017-12-01

    tropical ocean conditions, monsoon strength, and glacial cycles.

  12. Stability of the accumulation pattern around Dome C over the last glacial cycle

    Science.gov (United States)

    Cavitte, Marie; Parrenin, Frédéric; Ritz, Catherine; Blankenship, Donald; Young, Duncan; Frezzotti, Massimo; Roberts, Jason; van Ommen, Tas

    2017-04-01

    The "Candidate A" region, just to the south of Dome C, is one of the climate community's targets for retrieving "old ice", aiming for an ice core bottom age of 1.5 million-years. The region lies along the divide that separates the Byrd and Totten glacier catchments, and thus its position could be sensitive to differential behavior of those two systems. In the winter of 15/16, the University of Texas at Austin Institute for Geophysics (UTIG) collected a detailed airborne radar survey known as OIA (Old Ice A) (Young et al., in review). Seventeen internal radar reflections are mapped through this survey, encompassing both sides of the divide, spanning the last three glacial cycles, from 38 ka and 366 kyrs. Dates are obtained where the internal reflections intersect the EPICA Dome C ice core and the AICC20112 age-depth chronology can be transferred to each individual reflection. These internal reflections are easily traced in the OIA survey for several reasons: (1) Candidate A is a region of relatively stable ice, close to the ice divide, so very little horizontal flow has occurred and the radar reflections exhibit near-horizontal stratigraphy, (2) the gridded geometry of the survey design implies a high number of crossovers which allow regular checks on the accuracy of the reflection mapping, and supports the isochronal character of the reflections. Older airborne UTIG radar surveys in the region augment the dataset to provide constraints further away from the divide, and the same set of isochrones are traced throughout (previously published in Cavitte et al., 2016). We use a 1D inverse model (Parrenin et al., in prep) to reconstruct the patterns of paleo-accumulation through time all the way back to the penultimate interglacial (127 kyr). To do this, we first fit the isochrones' geometries and ages to invert for the steady-state accumulation rate, the basal melting rate and the p exponent in the Lliboutry flow formulation. We then reconstruct paleo-accumulation rates

  13. A modern interpretation of the history of the Pleistocene glacial cycles

    Directory of Open Access Journals (Sweden)

    V. M. Kotlyakov

    2015-01-01

    Full Text Available One of the, Glaciological descriptions of Greenland and Antarctica were among the most outstanding events in the geographical investigations of the Earth, made in the 20th century. They have shown that glaciations, traces of which were found in Europe and North America in the first half of the 19th century, waxed and waned during the Pleistocene repeatedly and were synchronous with the expansions and reductions of the Antarctic ice sheet. Further analyses of the sea-bed sediments confirmed the fact of such synchronicity, and revealed that the durations of the Pleistocene glacial cycles (on the order of one hundred thousand years were significantly longer then approximately forty thousand years alternations of the warm and cold climate conditions during the preceding Pliocene. In this paper, using wavelets, and methods of the theory of the nonlinear dynamical systems, patterns of the Pleistocene’s and Pliocene’s cyclic variations of climate are compared with each other, to understand the mechanisms which can be responsible for their excitation and evolution. 

  14. The last glacial cycle and palaeolake synchrony in the southern bolivian Altiplano: Cerro Azanaques case study

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available SYNCHRONISME ENTRE LE DERNIER CYCLE GLACIAIRE ET L'EXTENSION DES PALÉOLACS DANS LE SUD DE L'ALTIPLANO BOLIVIEN : EXEMPLE DU CERRO AZANAQUES. Dans la Cordillère Orientale, au niveau du Cerro Azanaques (18°S, Bolivie, des moraines, des sédiments glaciaires, des rivages paléolacustres, des deltas et des stromatolites qui se sont préservés, révèlent des conditions climatiques fortement différentes dans le passé. La culmination de la dernière avancée du glacier Lijunimani a été datée par la méthode du radiocarbone à 13 000 ans BP à partir de sédiments glaciaires ayant remanié un horizon organique de tourbe. La cartographie de cette diacmitite argileuse particulière révèle un delta en forme de cône bordé par un glacier cela montre que les glaciers et les anciens systèmes lacustres font partie d'un processus d'expansion simultanée. L'étude stratigraphique détaillée réalisée au Cerro Azanaques fournit de fortes évidences allant dans le sens d'une réponse commune des glaciers et des lacs à un signal piloté par un changement climatique les lacs ne sont donc pas le simple résultat de la fonte des glaciers des cordillères. SINCRONISMO ENTRE EL ÚLTIMO CICLO GLACIAL Y LA EXTENSIÓN DE LOS PALEOLAGOS EN EL SUR DEL ALTIPLANO BOLIVIANO: CASO DEL CERRO AZANAQUES. En la Cordillera Oriental, a la altura del Cerro Azanaques (18º S, Bolivia aparecen preservadas morrenas y sedimentos glaciares, líneas de costa paleolacustres, deltas y estromatolitos, lo que revela condiciones climáticas pasadas significativamente diferentes. La culminación del último avance del glaciar Lijunimani ha sido fechada mediante radiocarbono a 13 000 años BP a partir de sedimentos glaciares que han desplazado un horizonte orgánico de turba. La cartografía de esta particular diamictita arcillosa revela un delta en forma de abanico con hielo en sus márgenes lo que indica que los glaciares y los sistemas paleolacustres sufrieron un proceso

  15. Ice-sheet modelling characteristics in sea-level-based temperature reconstructions over the last glacial cycle

    OpenAIRE

    Wilschut, F.; Bintanja, R.; van de Wal, R.S.W.

    2006-01-01

    A widely used method for investigating palaeotemperatures is to analyze local proxy records (e.g. ice cores or deep-sea sediment cores). The interpretation of these records is often not straightforward, and global or hemispheric means cannot be deduced from local estimates because of large spatial variability. Using a different approach, temperature changes over the last glacial cycle can be estimated from sea-level observations by applying an inverse method to an ice-sheet model. In order to...

  16. A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles.

    Science.gov (United States)

    Colwell, Robert K; Rangel, Thiago F

    2010-11-27

    Quaternary glacial-interglacial cycles repeatedly forced thermal zones up and down the slopes of mountains, at all latitudes. Although no one doubts that these temperature cycles have left their signature on contemporary patterns of geography and phylogeny, the relative roles of ecology and evolution are not well understood, especially for the tropics. To explore key mechanisms and their interactions in the context of chance events, we constructed a geographical range-based, stochastic simulation model that incorporates speciation, anagenetic evolution, niche conservatism, range shifts and extinctions under late Quaternary temperature cycles along tropical elevational gradients. In the model, elevational patterns of species richness arise from the differential survival of founder lineages, consolidated by speciation and the inheritance of thermal niche characteristics. The model yields a surprisingly rich variety of realistic patterns of phylogeny and biogeography, including close matches to a variety of contemporary elevational richness profiles from an elevational transect in Costa Rica. Mountaintop extinctions during interglacials and lowland extinctions at glacial maxima favour mid-elevation lineages, especially under the constraints of niche conservatism. Asymmetry in temperature (greater duration of glacial than of interglacial episodes) and in lateral area (greater land area at low than at high elevations) have opposing effects on lowland extinctions and the elevational pattern of species richness in the model--and perhaps in nature, as well.

  17. Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Science.gov (United States)

    Brown, Kyle S.; Oestmo, Simen; Pereira, Telmo; Ranhorn, Kathryn L.; Schoville, Benjamin J.; Marean, Curtis W.

    2017-01-01

    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5–6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, ‘place provisioning’, longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS

  18. Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa.

    Directory of Open Access Journals (Sweden)

    Jayne Wilkins

    Full Text Available There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6, Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist

  19. Influence of Pleistocene glacial/interglacial cycles on the genetic structure of the mistletoe cactus Rhipsalis baccifera (Cactaceae) in Mesoamerica.

    Science.gov (United States)

    Ornelas, Juan Francisco; Rodríguez-Gómez, Flor

    2015-01-01

    Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Genetic and morphological diversity in Armeria (Plumbaginaceae is shaped by glacial cycles in Mediterranean refugia

    Directory of Open Access Journals (Sweden)

    Nieto Feliner, Gonzalo

    2011-12-01

    Full Text Available Little is known of the direct effects of Quaternary glaciationdeglaciation cycles in plants within southern European refugia. This study, centered in the Sierra Nevada (S Spain, used RAPD and morphometric data from 36 populations of Armeria (Plumbaginaceae from five taxa belonging to three species that are endemic to that region: A. filicaulis subsp. nevadensis, A. fili caulis subsp. trevenqueana, A. filicaulis subsp. alfacarensis, A. splendens, and A. villosa subsp. bernisii. The results based on genetic analyses at the population level (AMOVA, genetic diversity, genetic distance and genetic and morphological analyses at individual level (haplotype phenetic distance, PCO, morphometrics indicate that: (1 genetic diversity decreases with altitude, probably as a result of the postglacial recolonization processes, except in some secondary contact zones between taxa; (2 gene flow among interspecific populations, most likely facilitated by contraction of vegetation belts, led to the formation of hybrid taxa; (3 genetic distances among populations provide a useful basis for studying scenarios with frequent interspecific gene-flow since it allows distinguishing eventual cases of introgression from hybridogenous taxa.Poco se sabe de los efectos directos de los ciclos de glaciacióndeglaciación del Cuaternario sobre las plantas de los refugios glaciales del S de Europa. En el presente estudio, centrado en Sierra Nevada (S de España, hemos empleado RAPD y datos morfométricos de 36 poblaciones de Armeria (Plumbaginaceae de cinco táxones pertenecientes a tres especies endémicas de esa región: A. filicaulis subsp. nevadensis, A. filicaulis subsp. trevenqueana, A. filicaulis subsp. alfacarensis, A. splendens y A. villosa subsp. bernisii. Los resultados basados en el análisis genético a nivel poblacional (AMOVA, diversidad genética, distancia genética y los análisis genéticos y morfológicos a nivel individual (distancia fenética genotipo haploide

  1. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle

    Science.gov (United States)

    Buchanan, Pearse J.; Matear, Richard J.; Lenton, Andrew; Phipps, Steven J.; Chase, Zanna; Etheridge, David M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon-Ocean-Atmosphere-Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267 Pg C in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation ( > 100 mmol O2 m-3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317 Pg C) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194 ± 2 and 330 ± 400 Pg C, respectively). Assuming an LGM-PI difference of 95 ppm pCO2, we find that 55 ppm can be attributed to the biological pump, 28 ppm to circulation changes and the remaining 12 ppm to solubility. The biogeochemical

  2. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    Science.gov (United States)

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  3. A palaeoclimate investigation of the lacustrine sediments from Chew Bahir in Ethiopia spanning multiple glacial-interglacial cycles

    Science.gov (United States)

    Leng, Melanie; Dean, Jonathan; Asrat, Asfawossen; Chapot, Melissa; Cohen, Andrew; Deino, Alan; Foerster, Verena; Lamb, Henry; Roberts, Helen; Schäbitz, Frank; Trauth, Martin; Viehberg, Finn

    2017-04-01

    There are few long, continuous, terrestrial Pleistocene records from eastern Africa, therefore it has been difficult to establish the relative influences of different climate forcings on the region's hydroclimate and to understand the climatic conditions at the time of anatomically modern human origin and dispersal out of Africa. To address these gaps in our knowledge, we have cored lake sediments from Chew Bahir in southern Ethiopia, close to the site of the oldest-known anatomically modern human fossils at Omo-Kibish. Several dating techniques are being employed and preliminary results suggest that the record covers the past 500-550ka. Several proxy records are being produced; here we use the oxygen and carbon isotope composition of endogenic calcite to reconstruct changes in hydroclimate. The data suggest significant fluctuations in water balance, with seemingly more evaporative conditions during glacial periods and less evaporative conditions during interglacials. The sawtooth structure of the isotope data through glacial-interglacial cycles suggests a strong linkage between high latitude forcing and Ethiopian hydroclimate fluctuations. We make inferences about the possible correlation between climate and the dispersal of anatomically modern humans out of Africa.

  4. Groundwater chemistry around a repository for spent nuclear fuel over a glacial cycle. Evaluation for SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Auque, L.F.; Gimeno, M.J.; Gomez, J.B. [University of Zaragoza (Spain); Puigdomenech, I. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Smellie, J. [Conterra AB, Uppsala (Sweden); Tullborg, E.L. [Terralogica AB, Graabo (Sweden)

    2007-12-15

    The chemical composition of groundwater in the rock volume surrounding a spent nuclear fuel repository is of importance to many factors that affect repository performance. The geochemical characteristics of present-day Swedish groundwater systems are governed by successive mixing events of several waters during the post-glacial evolution of the sites. The expected development of groundwaters at two Swedish sites - Forsmark and Laxemar - during a glacial cycle has been evaluated within the SR-Can project, and the results are presented in this report. For the temperate period following repository closure, an approach is proposed here to investigate the spatial and temporal evolution of groundwater geochemistry by coupling hydrogeological and geochemical models in a sequential way. The procedure combines hydrogeological results obtained with CONNECTFLOW within the SR-Can project with a mixing and reaction path simulation using PHREEQC. The hydrological results contain mixing proportions of four component waters (a deep brine, glacial meltwater, marine water, and meteoric infiltration) at each time step and at every node of the D regional model domain. In this work the mixing fractions are fed into PHREEQC using software developed to build formatted input files and to extract the information from output files for subsequent plotting and analysis. The geochemical calculations included both chemical mixing and equilibrium reactions with selected minerals: calcite, chalcedony and an Fe(III) oxy-hydroxide. Results for the Forsmark and Laxemar sites are graphically presented as histograms and box-and-whisker plots. Cross sections, where each node is colour-coded with respect to an important variable (pH, Eh or concentrations of main elements), are used to visualize the future evolution of the site. Sensitivity analyses are made to evaluate the effects of the different reactions and/or assumptions. The results reflect the progressive inflow of meteoric waters into the sites

  5. Land-sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing

    Science.gov (United States)

    Donders, Timme H.; van Helmond, Niels A. G. M.; Verreussel, Roel; Munsterman, Dirk; ten Veen, Johan; Speijer, Robert P.; Weijers, Johan W. H.; Sangiorgi, Francesca; Peterse, Francien; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Lourens, Lucas; Kuhlmann, Gesa; Brinkhuis, Henk

    2018-03-01

    We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (˜ 2.6-1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial-interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm-cold alterations are

  6. The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations

    NARCIS (Netherlands)

    van der Wal, W.; Ijpelaar, Thijs

    2017-01-01

    Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the

  7. Polypedogenic case of loess overlying red clay as a response to the Last Glacial-Interglacial cycle in mid-subtropical Southeast China

    Science.gov (United States)

    Hu, Xue-Feng; Du, Yan; Liu, Xiang-Jun; Zhang, Gan-Lin; Jiang, Ying; Xue, Yong

    2015-03-01

    To study the paleoclimatic implications of the loess-like Yellow-brown Earth (YBE) overlying red clay (RC) along the Yangtze River, mid-subtropical Southeast China, four YBE-RC profiles in southern Anhui Province were investigated. Grain-size and geochemical characteristics indicated that the YBE is homologous to the aeolian Xiashu Loess; and the underlying RC, sub-divided into uniform RC (URC) and reticulate RC (RRC), is more intensively weathered but also exhibits aeolian dust characteristics. Optically stimulated luminescence (OSL) dating indicated that the YBE was formed during the Last Glacial, the RRC mainly during the Last Interglacial, and the URC during the transitional period between the YBE and RC. The YBE-RC transition reflects a significant paleoclimatic change in mid-subtropical China during the Last Glacial-Interglacial cycle. Sub-events of the Last Glacial, correlated with the marine isotopic stages (MIS) 2 and 3, can be identified within the YBE; however, those of the Last Interglacial, potential correlated with MIS 5a-5e, cannot be identified within the RRC possibly due to paleoclimatic overprinting. The rubification had been replaced by loess deposition along the Yangtze River since the early Last Glacial. With both highly weathered and aeolian-dust characteristics, the underlying RRC may indicate paleoclimatic instability given the multiple alternations between loess deposition and rubification of the Last Interglacial. The climatic change during the Last Glacial-Interglacial cycle significantly influenced the pedogenesis and made soil diversified in the study areas.

  8. Modeling the oxygen-isotopic composition of the North American Ice Sheet and its effect on the isotopic composition of the ocean during the last glacial cycle

    NARCIS (Netherlands)

    Sima, A.; Paul, A.; Schulz, M.; Oerlemans, J.

    2006-01-01

    We used a 2.5-dimensional thermomechanical icesheet model including the oxygen-isotope ratio 18O/16O as a passive tracer to simulate the isotopic composition (d18O) of the North American Ice Sheet (NAIS) during the last glacial cycle. This model allowed us to estimate the NAIS contribution to the

  9. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    OpenAIRE

    Mills, SC; Barrows, TT; Telfer, MW; Fifield, LK

    2017-01-01

    publisher: Elsevier articletitle: The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa journaltitle: Geomorphology articlelink: http://dx.doi.org/10.1016/j.geomorph.2016.11.011 content_type: article copyright: Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

  10. The Last Glacial cycle in SW Balkans: an interdisciplinary study at Lake Prespa

    Science.gov (United States)

    Panagiotopoulos, K.; Boehm, A.; Schaebitz, F.; Wagner, B.

    2012-12-01

    The transboundary Lake Prespa (AL/FYROM/GR) has been recognized as a conservation priority wetland. The catchment area has a remarkably diverse flora that points to its refugial properties. Lake sediments retrieved from a distal core location were investigated using sedimentological, geochemical, physical, palynological and stable isotope analyses. Based on tephrochronology, radiocarbon and ESR dating, the age model suggests that the basal part of core Co1215 reaches back to 92 ka cal BP. Here we present the response of this mid-altitude site (849 m a.s.l.) to climate oscillations during this interval and assess its sensitivity to millennial-scale variability. Periods of pronounced phytoplankton blooms (inferred from green algae and dinoflagellate concentrations) suggest that the trophic state and lake levels underwent substantial fluctuations. Calcite precipitation occurred in MIS 5 and MIS 1 and was synchronous to periods of increased primary production (terrestrial and/or lacustrine), while siderite peaks were confined to the glacial. Forest dynamics, cover and density are discussed in an altitudinal context and the existence of temperate tree refugia is examined. This project is part of the Collaborative Research Center 806: "Our way to Europe; Culture-Environment Interaction and Human Mobility in the Late Quaternary".

  11. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    International Nuclear Information System (INIS)

    Lund, Bjoern

    2006-06-01

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a glacial cycle. The

  12. Do Pleistocene Glacial-Interglacial Cycles Control Methane Hydrate Formation? An Example from Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.

    2017-12-01

    Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.

  13. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle

    Directory of Open Access Journals (Sweden)

    D. Baggenstos

    2017-07-01

    Full Text Available Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice and assess the completeness of the stratigraphic section. Using δ18O of O2 and methane concentrations, we unambiguously identify ice from the last glacial cycle, covering every climate interval from the early Holocene to the penultimate interglacial. A high-resolution transect reveals the last deglaciation and the Last Glacial Maximum (LGM in detail. We observe large-scale deformation in the form of folding, but individual stratigraphic layers do not appear to have undergone irregular thinning. Rather, it appears that the entire LGM–deglaciation sequence has been transported from the interior of the ice sheet to the surface of Taylor Glacier relatively undisturbed. We present an age model that builds the foundation for gas studies on Taylor Glacier. A comparison with the Taylor Dome ice core confirms that the section we studied on Taylor Glacier is better suited for paleo-climate reconstructions of the LGM due to higher accumulation rates.

  14. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  15. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    International Nuclear Information System (INIS)

    Sidborn, Magnus; Sandstroem, Bjoern; Tullborg, Eva-Lena; Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge; Hallbeck, Lotta; Pedersen, Karsten

    2010-11-01

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  16. Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum

    Science.gov (United States)

    Lowry, D. P.; Morrill, C.

    2011-12-01

    Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region

  17. Reconstruction of the North Atlantic end-member of the Atlantic Meridional Overturning Circulation over glacial-interglacial cycles

    Science.gov (United States)

    Kim, J.; Seguí, M. J.; Knudson, K. P.; Yehudai, M.; Goldstein, S. L.; Pena, L. D.; Basak, C.; Ferretti, P.

    2017-12-01

    North Atlantic Deep Water (NADW) represents the major water mass that drives the Atlantic Meridional Ocean Circulation (AMOC), which undergoes substantial reorganization with changing climate. In order to understand its impact on ocean circulation and climate through time, it is necessary to constrain its composition. We report Nd isotope ratios of Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.00N 32.96W, 3427m), in the present-day core of NADW, and ODP 1063 (33.68N 57.62W, 4585m), on the deep abyssal plain at the interface between NADW and Antarctic Bottom Water. We provide a new North Atlantic paleocirculation record covering 2 Ma. At Site 607 interglacial ɛNd-values are consistently similar to present-day NADW (ɛNd -13.5), with median ɛNd-values of -14.3 in the Early Pleistocene and -13.8 in the Late Pleistocene. Glacial ɛNd-values are higher by 1 ɛNd-unit in the Early Pleistocene, and 1.5-2 ɛNd-units in the Late Pleistocene. Site 1063 shows much greater variability, with ɛNd ranging from -10 to -26. We interpret the North Atlantic AMOC source as represented by the Site 607 interglacial ɛNd-values, which has remained nearly stable throughout the entire period. The higher glacial ɛNd-values reflect incursions of some southern-sourced waters to Site 607, which is supported by coeval shifts to lower benthic foraminiferal d13C. In contrast, the Site 1063 ɛNd-values do not appear to reflect the AMOC end-member, and likely reflects local effects from a bottom source. A period of greatly disrupted ocean circulation marks 950-850 Ma, which may have been triggered by enhanced ice growth in the Northern Hemisphere that began around 1.2 Ma, as suggested by possible input events of Nd from the surrounding cratons into the North Atlantic observed in Site 607. Interglacial AMOC only recovers to the previously observed vigor over 200 ka following the disruption, whereas further intensified SSW incursion into the deep North Atlantic come to

  18. Land–sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing

    Directory of Open Access Journals (Sweden)

    T. H. Donders

    2018-03-01

    Full Text Available We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (∼ 2.6–1.8 Ma multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial–interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST, vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct

  19. Comment on "Glacial cycles drive variations in the production of oceanic crust".

    Science.gov (United States)

    Goff, John A

    2015-09-04

    Crowley et al. (Reports, 13 March 2015, p. 1237) propose that abyssal hill topography can be generated by variations in volcanism at mid-ocean ridges modulated by Milankovitch cycle-driven changes in sea level. Published values for abyssal hill characteristic widths versus spreading rate do not generally support this hypothesis. I argue that abyssal hills are primarily fault-generated rather than volcanically generated features. Copyright © 2015, American Association for the Advancement of Science.

  20. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A.; Piotrowski, A.M.; Banakar, V.K.

    Sample Preparation System attached to a VG SIRA or VG PRISM mass spectrometer. Each run of 30 samples was accompanied by 10 reference carbonates and 2 control samples. The results are reported with reference to the international standard Vienna Pee... of ~0.7‰ (Figure 5c), approximately twice as large as the deglacial whole-ocean change related to carbon budget reorganisation [Tagliabue et al., 2009], indicating additional controls such as from water mass sourcing or nutrient cycling. Both...

  1. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw.

    Science.gov (United States)

    Bereiter, Bernhard; Lüthi, Dieter; Siegrist, Michael; Schüpbach, Simon; Stocker, Thomas F; Fischer, Hubertus

    2012-06-19

    Important elements of natural climate variations during the last ice age are abrupt temperature increases over Greenland and related warming and cooling periods over Antarctica. Records from Antarctic ice cores have shown that the global carbon cycle also plays a role in these changes. The available data shows that atmospheric CO(2) follows closely temperatures reconstructed from Antarctic ice cores during these variations. Here, we present new high-resolution CO(2) data from Antarctic ice cores, which cover the period between 115,000 and 38,000 y before present. Our measurements show that also smaller Antarctic warming events have an imprint in CO(2) concentrations. Moreover, they indicate that during Marine Isotope Stage (MIS) 5, the peak of millennial CO(2) variations lags the onset of Dansgaard/Oeschger warmings by 250 ± 190 y. During MIS 3, this lag increases significantly to 870 ± 90 y. Considerations of the ocean circulation suggest that the millennial variability associated with the Atlantic Meridional Overturning Circulation (AMOC) undergoes a mode change from MIS 5 to MIS 4 and 3. Ocean carbon inventory estimates imply that during MIS 3 additional carbon is derived from an extended mass of carbon-enriched Antarctic Bottom Water. The absence of such a carbon-enriched water mass in the North Atlantic during MIS 5 can explain the smaller amount of carbon released to the atmosphere after the Antarctic temperature maximum and, hence, the shorter lag. Our new data provides further constraints for transient coupled carbon cycle-climate simulations during the entire last glacial cycle.

  2. Insolation forcing of coccolithophore productivity in the western tropical Indian Ocean over the last two glacial-interglacial cycles

    Science.gov (United States)

    Tangunan, Deborah; Baumann, Karl-Heinz; Pätzold, Jürgen; Henrich, Rüdiger; Kucera, Michal; De Pol-Holz, Ricardo; Groeneveld, Jeroen

    2017-07-01

    We present a new coccolithophore productivity reconstruction spanning the last 300 ka in core GeoB12613-1 retrieved from the western tropical Indian Ocean (IO), an area that mainly derives its warm and oligotrophic surface waters from the eastern IO. Application of a calibrated assemblage-based productivity index indicates a reduction in estimated primary productivity (EPP) from 300 ka to the present, with reconstructed EPP values ranging from 91 to 246 g C/m2/yr. Coccolithophore assemblages and coccolith fraction Sr/Ca indicate three main phases of productivity change, with major changes at 160 and 46 ka. The productivity and water-column stratification records show both dominant precession and obliquity periodicities, which appear to control the paleoproductivity in the study area over the last two glacial-interglacial cycles. Shallowing of the thermocline due to strengthening of the trade winds in response to insolation maxima resulted to peaks in EPP. Comparison with the eastern IO productivity and stratification coccolithophore data reveals good correspondence with our records, indicating a strong tropical Pacific influence in our study area. Both of these records show high productivity from 300 to 160 ka, interpreted to be due to stronger Walker Circulation while the declining productivity from 160 ka to the present day is a consequence of its weakening intensity.

  3. Sources and fates of silicon in the ocean: the role of diatoms in the climate and glacial cycles

    Directory of Open Access Journals (Sweden)

    R. C. Dugdale

    2001-12-01

    Full Text Available Diatoms with their fast growth rates and obligate requirement for Si have a unique relationship to the oceanic Si cycle with the potential for controlling the nutrient and CO2 environment of large important areas of the ocean. The new production of diatoms based on both new nitrogen and Si sources is described using a Si-pump based upon the differential regeneration of the two elements. This approach, applied to the eastern equatorial Pacific, showed diatoms to respond as in a Si-limited chemostat, to the low source Si(OH4 in the Equatorial UnderCurrent. Increased Si(OH4 results in increased diatom productivity, suppression of non-diatom populations and decreased surface pCO2. The deficiency in source concentrations of Si(OH4 results from low Si(OH4:NO3 water originating in the vicinity of the Antarctic Polar Front, a consequence of the extraordinary trapping of Si by the Southern Ocean. In glacial periods this trapping is reduced several fold and likely results in increased Si(OH4 export to the north, and increased Si(OH4 production and deposition at the equatorial Pacific which can be expected to reduce surface pCO2. The connections between the eastern equatorial Pacific export production and Southern Ocean Si trapping may provide a major biogeochemical feedback system with implications for contemporary and paleoclimatology.

  4. Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity

    Science.gov (United States)

    Muller, Richard A.; MacDonald, Gordon J.

    1997-01-01

    Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741

  5. Significant Impact of Glacial Meltwater on the Pelagic Carbon Cycle in a High Arctic Greenland Fjord

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Bruhn, Annette; Sejr, Mikael Kristian

    2014-01-01

    , Carbon cycling in the water column was greatly influenced by meltwater from the GIC in summer 2011. Young Sound is a high arctic fjord (ca. 74° N) ca. 80 km long and 1 – 7 km wide ice free conditions from mid July to mid October. Meltwater was mainly delivered to the inner parts of the fjord creating...... significantly affected pelagic carbon turnover: Primary production was low, 20-45 mg C m-2 d-1, in the more turbid inner half of the fjord increasing ten-fold to around 350 mg C m-2 d-1 in the Greenland Sea. Community respiration was measured at fewer stations but showed a clear effect of the freshwater input...

  6. The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations

    Science.gov (United States)

    van der Wal, Wouter; IJpelaar, Thijs

    2017-09-01

    Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the

  7. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge

    Science.gov (United States)

    Lucchi, M. Ricci

    2008-12-01

    Pollen analysis of the pre-Last Glacial Maximum succession of a 105 m-long continuous core from Tirrenia (Tuscany) provides evidence for the existence of an area of relatively high ecological stability where the effects of climate change were mitigated. The chronological framework of the vegetation record, spanning the Last Interglacial-Glacial cycle, was established by (i) AMS 14C dating, (ii) correlation with well-dated pollen sequences, and (iii) local stratigraphical constraints. A high lithological and sedimentological variability, with facies associations changing from fluvial to alluvial and coastal plain, enhances the palaeoenvironmental control on pollen distribution, thus helping to discriminate the impact of local factors on vegetation history. The most remarkable evidence, however, is represented by the continuous record of temperate trees throughout the whole glacial period, which provides useful indications on the location and nature of cold stage refugia. Most of the vegetation changes recorded in the core can be compared to the vegetation history of the Last Interglacial-Glacial cycle from southern Europe as a whole. In addition, local geographic and environmental features account for a more complex and varied floristic composition. Only the last phase of the Penultimate Glacial (MIS6), which was characterized by the diffusion of an arid steppe tundra, is recorded at the base of the core. The subsequent Last Interglacial (MIS5e) interval shows a poor and scattered pollen content due to the instability of the sedimentary environment. Nevertheless, it provides evidence of both global and local controls on vegetation dynamics, as indicated by the initial expansion of thermophilous forests and the remarkably late diffusion of conifers ( Pinus-Abies-Picea forests), respectively. Similarly, the transition to the Last Glacial (MIS5b and 5a in the core) is characterized by a reduced vegetation response to the typical stadial/interstadial climate variability

  8. The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations

    Directory of Open Access Journals (Sweden)

    W. van der Wal

    2017-09-01

    Full Text Available Models for glacial isostatic adjustment (GIA routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013. Sediment displacement estimates are estimated in two different ways: (i from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux and (ii from output of a coupled ice–sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models

  9. Interglacial-glacial cycles recorded in the deposit sequence at Kruzhyky on the Dniester River (East Carpathian Foreland)

    Science.gov (United States)

    Łanczont, Maria; Boguckyj, Aandrij; Mroczek, Przemysław; Zieliński, Paweł; Jacyszyn, Andrij; Pidek, Agnieszka I.; Urban, Danuta; Kulesza, Piotr; Hołub, Beata

    2010-01-01

    horizontal stratification and silts with horizontal or flaser lamination; single small-scale lithofacies of sands with trough cross-stratification occur in places; single gravel grains are numerous. Two deformation horizons are found: the higher one is characterized by the occurrence of folds and flexure deflections, and the lower one-involution structures and casts of ice wedges/fissures. This complex is probably the result of deposition on the distal part of flat, periodically inundated fluvioglacial fan connected with advancing ice sheet. 4. Ablation complex-sandy or sandy-silty diamicton occurring as isolated inserts, lenses or tongues. Its lower boundary is sharp, erosional and uneven (concave). This complex represents flows of supraglacial tills, which strongly deformed the deposits of the underlying complex 3. 5. Aeolian complex-silty (loess) and sandy-silty (Table 1) deposits with distinct traces of intensive, postsedimentary alterations of pedogenesis of different ages (Tables 1 and 2). It is composed of two soil units separated by thin, primary loess layer: a) older, well-developed paleosol with several pedofeatures very typical of the Sokal (Mazovian) soil; b) younger unit developed as pedocomplex consisting of two mature soils, the upper of which ("modern" neosol) is formed in the top of relict and exhumed paleosol. The described paleosols should be recognized as at least two soils of different ages and of interglacial rank, developed in periglacial loess-like deposits. The Kruzhyky profile is unique in the Dniester River valley. On account of its situation, it supplements the former information about the terrace 5 structure, which has been determined in detail in the Halyč site. And what is most important, it is the only site on the terrace 5 where glacial deposits were found. Lithofacial analysis carried out in the profile enables us to reconstruct the following events reflecting interglacial-glacial cycles: 1. The lowest, gravelly-sandy unit indicates the

  10. A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes

    Directory of Open Access Journals (Sweden)

    Christopher J. Somes

    2017-05-01

    Full Text Available Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity, and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17–62% and 35–69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is nitrogen fixation, which decreases by 25–65% in the model during the LGM mainly in response to reduced N-loss, due to the lack of observations in the open ocean most

  11. Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles

    Directory of Open Access Journals (Sweden)

    M. H. M. Groot

    2011-03-01

    Full Text Available Here we developed a composite pollen-based record of altitudinal vegetation changes from Lake Fúquene (5° N in Colombia at 2540 m elevation. We quantitatively calibrated Arboreal Pollen percentages (AP% into mean annual temperature (MAT changes with an unprecedented ~60-year resolution over the past 284 000 years. An age model for the AP% record was constructed using frequency analysis in the depth domain and tuning of the distinct obliquity-related variations to the latest marine oxygen isotope stacked record. The reconstructed MAT record largely concurs with the ~100 and 41-kyr (obliquity paced glacial cycles and is superimposed by extreme changes of up to 7 to 10° Celsius within a few hundred years at the major glacial terminations and during marine isotope stage 3, suggesting an unprecedented North Atlantic – equatorial link. Using intermediate complexity transient climate modelling experiments, we demonstrate that ice volume and greenhouse gasses are the major forcing agents causing the orbital-related MAT changes, while direct precession-induced insolation changes had no significant impact on the high mountain vegetation during the last two glacial cycles.

  12. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle

    Science.gov (United States)

    Prothero, Donald R.; Syverson, Valerie J.; Raymond, Kristina R.; Madan, Meena; Molina, Sarah; Fragomeni, Ashley; DeSantis, Sylvana; Sutyagina, Anastasiya; Gage, Gina L.

    2012-11-01

    Conventional neo-Darwinian theory views organisms as infinitely sensitive and responsive to their environments, and considers them able to readily change size or shape when they adapt to selective pressures. Yet since 1863 it has been well known that Pleistocene animals and plants do not show much morphological change or speciation in response to the glacial-interglacial climate cycles. We tested this hypothesis with all of the common birds (condors, golden and bald eagles, turkeys, caracaras) and mammals (dire wolves, saber-toothed cats, giant lions, horses, camels, bison, and ground sloths) from Rancho La Brea tar pits in Los Angeles, California, which preserves large samples of many bones from many well-dated pits spanning the 35,000 years of the Last Glacial-Interglacial cycle. Pollen evidence showed the climate changed from chaparral/oaks 35,000 years ago to snowy piñon-juniper forests at the peak glacial 20,000 years ago, then back to the modern chaparral since the glacial-interglacial transition. Based on Bergmann's rule, we would expect peak glacial specimens to have larger body sizes, and based on Allen's rule, peak glacial samples should have shorter and more robust limbs. Yet statistical analysis (ANOVA for parametric samples; Kruskal-Wallis test for non-parametric samples) showed that none of the Pleistocene pit samples is statistically distinct from the rest, indicating complete stasis from 35 ka to 9 ka. The sole exception was the Pit 13 sample of dire wolves (16 ka), which was significantly smaller than the rest, but this did not occur in response to climate change. We also performed a time series analysis of the pit samples. None showed directional change; all were either static or showed a random walk. Thus, the data show that birds and mammals at Rancho La Brea show complete stasis and were unresponsive to the major climate change that occurred at 20 ka, consistent with other studies of Pleistocene animals and plants. Most explanations for such

  13. Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum.

    Science.gov (United States)

    Völker, Christoph; Köhler, Peter

    2013-12-01

    We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric p CO 2 of less than 10 μatm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO 2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO 2 rise and Antarctic temperature during deglaciation suggested by the ice core data.

  14. New chronological data for the timing of the Saalian- and Elsterian glacial cycle in Europe - studies on a key site within the type area

    Science.gov (United States)

    Lauer, Tobias; Weiß, Marcel; Wansa, Stefan

    2017-04-01

    The type area for the Elsterian- and Saalian glacial cycles is located in central Germany (Saxony, Saxony-Anhalt and Thuringia) where the gravel deposits of the rivers Saale- and Elster interfinger with tills and meltwater deposits of both glacial cycles in proximity to the maximum extensions of the Middle-Pleistocene Scandinavian ice-sheets in Central Europe. The Elsterian- and Saalian glacial cycles, including the corresponding interglacial periods are also correlated with first human appearance in the area (see Haidle and Pawlik 2010). Nevertheless, the timing of these glacial cycles is still unclear due to a lack of resilient chronological data on sediments representing the advance- and retreat of the glaciers. The Elsterian is defined to be terminated by the Holsteinian, but for the latter, a correlation to MIS 9 or 11 is still a matter of debate (e. g. Sirocko et al. 2006; Nitychoruk et al. 2007). Consequently, a correlation of the Elsterian to MIS 10 or 12 is possible. Within the last decades, new luminescence dating techniques such as pIRIR-luminescence protocols or infrared-radiofluorescence dating made it possible to extent the datable age range and hence, it is now possible to establish reliable chronologies also for deposits beyond the last glacial-/interglacial cycle. In the present study, we dated the quaternary sequence of Uichteritz (close to the Saale-river near Weissenfels, Saxony-Anhalt) using luminescence and infrared-radiofluorescence dating. The base of the quaternary layers consists of Elsterian sediments pre-dating the first Elsterian ice advance. This is evidenced mainly by the lithology, especially the absence of Nordic components in the composition of the gravel. Additionally, remains of the advancing Saalian ice sheet, represented by fluvial sediments from the Middle-Pleistocene river Saale, as well as till, glaciofluvial and glaciolacustrine sediments, cover the Elsterian succession. The upper part of the fluvial Elsterian sediments

  15. Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory

    NARCIS (Netherlands)

    Lourens, L.J.; Becker, J.; Bintanja, R.; Hilgen, F.J.; Tuenter, E.; Wal, R.S.W. van de; Ziegler, M.

    2010-01-01

    Constraints are given for the geometry and time lags of the prominent obliquity-paced glacial stages 100, 98 and 96, which mark a major phase in Northern Hemisphere (NH) glaciations during the late Pliocene (2.56–2.4 Ma ago). For this purpose a high-resolution benthic δ18O record was constructed

  16. Periodic isolation of the southern coastal plain of South Africa and the evolution of modern humans over late Quaternary glacial to interglacial cycles

    Science.gov (United States)

    Compton, J. S.

    2012-04-01

    Humans evolved in Africa, but where in Africa and by what mechanisms remain unclear. The evolution of modern humans over the last million years is associated with the onset of major global climate fluctuations, glacial to interglacial cycles, related to the build up and melting of large ice sheets in the Northern Hemisphere. During interglacial periods, such as today, warm and wet climates favored human expansion but during cold and dry glacial periods conditions were harsh and habitats fragmented. These large climate fluctuations periodically expanded and contracted African ecosystems and led to human migrations to more hospitable glacial refugia. Periodic isolation of relatively small numbers of humans may have allowed for their rapid evolutionary divergence from the rest of Africa. During climate transitions these divergent groups may have then dispersed and interbred with other groups (hybridization). Two areas at the opposite ends of Africa stand out as regions that were periodically isolated from the rest of Africa: North Africa (the Maghreb) and the southern coastal plain (SCP) of South Africa. The Maghreb is isolated by the Sahara Desert which periodically greens and is reconnected to the rest of Africa during the transition from glacial to interglacial periods. The SCP of South Africa is isolated from the rest of Africa by the rugged mountains of the Cape Fold Belt associated with inedible vegetation and dry climates to the north. The SCP is periodically opened when sea level falls by up to 130 m during glacial maxima to expose the present day submerged inner continental shelf. A five-fold expansion of the SCP receiving more rainfall in glacial periods may have served as a refuge to humans and large migratory herds. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to

  17. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    International Nuclear Information System (INIS)

    Makhlouf, Ali; Serradj, Tayeb; Cheniti, Hamza

    2015-01-01

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10 3 MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO 2 eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10 −6 t NMVOC eq and 259.3 × 10 −6 t SO 2 eq respectively

  18. The indicative significance of the tropical Pacific precipitation for the evolution of ITCZ over the last four glacial/interglacial cycles

    Science.gov (United States)

    Zhang, Shuai; Qi, Yiquan; Li, Tiegang; Chang, Fengming; Yu, Zhoufei

    2017-04-01

    Multiple planktonic foraminiferal calcite Mg/Ca and δ18O were studied to reconstruct the high-resolution records of sea water δ18O in the sediment core KX97322-4, which was recovered from the Ontong-Java Plateau in the western equatorial Pacific (WEP), the core region of the western Pacific warm pool (WPWP). By combining the two proxies together, we obtained the upper water temperature and salinity over the last four glacial/interglacial cycles. We also removed the influence from global ice volume change to salinity to reconstruct the local precipitation history. By comparing SST records of the WEP with the Eastern Equatorial Pacific since MIS 10, we find that the tropical Pacific was more likely in the phase of El Niño-like during Terminations and warming stage in glacial. Meanwhile, the mean position of the intertropical convergence zone (ITCZ) was moving northward and more water vapor and heat were taken to middle and high latitude regions. By comparing precipitation records of multi-position in the WPWP with the East Asian summer monsoon (EASM) records, we find that the tropical Pacific hydrological variation was associated with the ITCZ changes and even could impact EASM precipitation. When the isolation became stronger, the globe was warming and evaporation-precipitation ratio in the WEP enhanced, the ITCZ with more moisture shifted from the tropical areas to the temperate latitude, then East Asia precipitation was strengthened. While the situation would reverse when the solar radiation decreased. During the processes, the zonal thermal state would adjust the extent of the ITCZ variation. Our finding provides further evidence for the relationship between the WPWP hydrological status and the EASM precipitation, the tropical Pacific zonal thermal state and the ITCZ change during the last four glacial/interglacial cycles.

  19. Deep-sea benthic response to rapid climatic oscillations of the last glacial cycle in the SE Bay of Biscay

    Science.gov (United States)

    Rodriguez-Lazaro, J.; Pascual, A.; Cacho, I.; Varela, Z.; Pena, L. D.

    2017-12-01

    Paleoclimatic evolution of the last 140 ka (Marine Isotopic Stages MIS 1 to MIS 5) in the South Bay of Biscay has been studied by considering microfossil changes in sediment samples of deep core PP10-17. This core was retrieved at 2882 m water depth (mwd) in the Landas Plateau and is formed by 1792 cm of clay-silt continuously deposited sediment. For this study, a total of 114 samples have been examined, yielding approximately 60 thousands of specimens of foraminifers (181 benthic species, BF) and ostracods (70 spp.). Reconstruction of the benthic response is based on the main foraminifer and ostracod species by considering their oxic/anoxic character as well as other ecological features of the assemblages. Detailed quantification of microfossils (planktonic and benthic foraminifers, ostracods) together with grain size analyses and magnetic susceptibility of the sediments allow us to characterize many of the climatic events registered in this core. Based on a robust chronostratigraphy by correlation with reference core MD95-2002 and Greenland ice core records (GICC05modelext), we are able to characterize a detailed response of benthic environments to cooling/warming, oxygen-content and productivity cycles in the region. MIS 5 has been characterized by oscillations of the planktonic/benthic foraminifer ratio (Oceanity index, OI; 60-90%); this index was higher (90-100%) and stable through the MIS 4-MIS 3 intervals. We found BF species indicators of different climatic-related events. Thus, MIS 5a, c, e interstadials are evidenced by Bulimina gibba and B. aculeata while the stadials MIS 5b, d are shown by the occurrence of Melonis pompilioides. Heinrich events, with massive iceberg discharges into the N Atlantic Ocean, are indicated by presence of Globobulimina affinis, particularly during the MIS 4 to MIS 2 interval. The beginning of MIS 4 is indicated by the appearance of new species of BF and an increase of Cassidulina laevigata. Krithe spp. and C. laevigata are

  20. Life cycle assessment of nuclear-based hydrogen production using thermochemical water decomposition: extension of previous work and future needs

    International Nuclear Information System (INIS)

    Lubis, L.I.; Dincer, I.; Rosen, M.A.

    2008-01-01

    An extension of a previous Life Cycle Assessment (LCA) of nuclear-based hydrogen production using thermochemical water decomposition is reported. The copper-chlorine thermochemical cycle is considered, and the environmental impacts of the nuclear and thermochemical plants are assessed, while future needs are identified. Environmental impacts are investigated using CML 2001 impact categories. The nuclear fuel cycle and construction of the hydrogen plant contribute significantly to total environmental impacts. The environmental impacts for the operation of the thermochemical hydrogen production plant contribute much less. Changes in the inventory of chemicals needed in the thermochemical plant do not affect significantly the total impacts. Improvement analysis suggests the development of more sustainable processes, particularly in the nuclear plant. Other important and necessary future extensions of the research reported are also provided. (author)

  1. Endogenic carbonate sedimentation in Bear Lake, Utah and Idaho, over the last two glacial-interglacial cycles

    Science.gov (United States)

    Dean, W.E.

    2009-01-01

    that is at least 50 yr old, and probably older. Apparently, the microbialite mound also stopped forming aragonite cement sometime after Bear River diversion. Because of reworking of old aragonite, the bulk mineralogy of carbonate in bottom sediments has not changed very much since the diversion. However, the diversion is marked by very distinct changes in the chemical and isotopic composition of the bulk carbonate. After the last glacial interval (LGI), a large amount of endogenic carbonate began to precipitate in Bear Lake when the Pacific moisture that filled the large pluvial lakes of the Great Basin during the LGI diminished, and Bear River apparently abandoned Bear Lake. At first, the carbonate that formed was low-Mg calcite, but ???11,000 years ago, salinity and Mg2+:Ca2+ thresholds must have been crossed because the amount of aragonite gradually increased. Aragonite is the dominant carbonate mineral that has accumulated in the lake for the past 7000 years, with the addition of high-Mg calcite after the diversion of Bear River into the lake at the beginning of the twentieth century. Copyright ?? 2009 The Geological Society of America.

  2. Rapid bottom-water circulation changes during the last glacial cycle in the coastal low-latitude NE Atlantic

    NARCIS (Netherlands)

    Gallego-Torres, D.; Romero, O.E.; Martínez-Ruiz, F.; Kim, J.-H.; Donner, B.; Ortega-Huertas, M.

    2014-01-01

    Previous paleoceanographic studies along the NW African margin focused on the dynamics of surface and intermediate waters, whereas little attention has been devoted to deep-water masses. Currently, these deep waters consist mainly of North Atlantic Deep Waters as part of the Atlantic Meridional

  3. Bifacial Elements in Continental Northwestern Europe during the Last Glacial Cycle (MIS5d-3: The Relationship between Mousterian, Micoquian and ‘Mixed’ Assemblages.

    Directory of Open Access Journals (Sweden)

    Karen Reubens

    2007-11-01

    Full Text Available Based on the different bifacial elements that occur in the last glacial cycle it is established that at least three technocomplexes can be distinguished in continental northwestern Europe: Mousterian of Acheulean Tradition (small, symmetric, cordiform and triangular handaxes, Micoquian or 'Keilmessergruppe' (asymmetric bifacial elements, often with backing and noncovering retouched and a leaf point industry. Moreover, the analyses show that some lithic assemblages in continental northwestern Europe do not fit into this current framework of Middle Palaeolithic industries. More specifically assemblages that contain a contemporary presence of Micoquian and Mousterian bifacial elements occur regularly, leaving a typological dilemma to assign them to one of these two technocomplexes. This leads to the question: do Micoquian and Mousterian industries represent behaviourally discrete entities and how do ‘mixed’ assemblages fit into this? After exploring the techno-typological characteristics of these ‘mixed’ assemblages, possible reasons for the variability in bifacial elements and the causes for the occurrence of mixed assemblages, including the relationship between the Micoquian and Mousterian, are presented. Interpreting this phenomenon is preliminary since the evidence is coarse-grained due to many old excavations and a lack of chronostratigraphic information. Most likely the mixed occurrences can be explained in relation to population migrations caused by climate change.

  4. Radiolarian artificial neural network based paleo sea surface water temperature and salinity changes during the last glacial cycle in the Timor Sea, Indian Ocean

    Science.gov (United States)

    Gupta, S. M.; Malmgren, B. A.

    2015-12-01

    The western Pacific water enters into the Timor Sea (tropical Indian Ocean) by the thermohaline conveyor belt, and this region is under the influence of the SW monsoon. The higher precipitation during the monsoon rains lower the surface salinity in the north-eastern Indian Ocean towards the Bay of Bengal; whereas, the Arabian Sea remains highly saline due to higher evaporation in the region surrounding Arabian deserts. The salinity contrast in the northern Indian Ocean is very unique, and the radiolarian micro-zooplanktons living in the surface water serve a very good proxy for the monsoonal changes in the surface sea-water temperature (SST) and salinity in the geological past. We studied radiolarian faunal variation in the core MD01-2378, located at ~13oS and ~121oE (1783 m water depth), at the inlet of the thermohaline circulation into the Timor Sea. We applied the modern radiolarian based artificial neural networks (ANNs) (Gupta and Malmgren, 2009) to derive the SST and salinity during August-October for the last 140 ka (the full last glacial cycle). Based on the mean estimates of the 10 ANNs, the root mean square error in prediction (RMSEP) for SST is ~1.4oC with correlation between observed and estimated values r=0.98 (Gupta and Malmgren, 2009). Similarly, the RMSEP is 0.3 psu (r=0.94) for the salinity estimates. We derived paleo-SSTs and salinity values using modern radiolarian ANNs and the fossil radiolarian data generated from the core for the last 140-ka (Fig.1). The age model of the core is based on δ18O benthic oxygen isotope stratigraphy and 21 AMS 14C ages up to ~30-ka (Holbourn et al., 2005). Paleo SST-summer varied between 22-28.5oC, and it is in very good agreement with the δ18O benthic record of Holbourn et al. (2005) defining the Last Glacial Maximum (~24 ka) and the Eemian (~125 ka) stages. The salinity fluctuated between 34-35 psu, and compared well with oxygen isotope record representing the LGM and Eemian periods. We gratefully acknowledge

  5. Post-glacial inflation-deflation cycles, tilting, and faulting in the Yellowstone Caldera based on Yellowstone Lake shorelines

    Science.gov (United States)

    Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.

    2002-01-01

    by a ~5 m rise in lake level to S2. The lowest generally recognizable shoreline is S2. It is ~5 m above datum (3 m above S1) and is ~8 ka, as dated on both sides of the outlet. Yellowstone Lake and the river near Fishing Bridge were 5-6 m below their present level about 3-4 ka, as indicated by 14C ages from submerged beach deposits, drowned valleys, and submerged Yellowstone River gravels. Thus, the lake in the outlet region has been below or near its present level for about half the time since a 1 km-thick icecap melted from the Yellowstone Lake basin about 16 ka. The amplitude of two rises in lake and river level can be estimated based on the altitude of Le Hardys Rapids, indicators of former lake and river levels, and reconstruction of the river gradient from the outlet to Le Hardys Rapids. Both between ~9.5 ka and ~8.5 ka, and after ~3 ka, Le Hardys Rapids (LHR) was uplifted about 8 meters above the outlet, suggesting a cyclic deformation process. Older possible rises in lake level are suggested by locations where the ~10.7 ka S4 truncates older shorelines, and valleys truncated by the ~12.6 ka S5 shoreline. Using these controls, a plot of lake level through time shows 5-7 millennial-scale oscillations since 14.5 ka. Major cycles of inflation and deflation are thousands of years long. Le Hardys Rapids has twice been uplifted ~8 m relative to the lake outlet. These two locations span only the central 25% of the historic caldera doming, so that if we use historic doming as a model, total projected uplift would be ~32 m. This ?heavy breathing? of the central part of the Yellowstone caldera may reflect a combination of several possible processes: magmatic inflation, tectonic stretching and deflation, and hydrothermal fluid sealing and inflation followed by cracking of the seal, pressure release, and deflation. Over the entire postglacial period, subsidence has balanced or slightly exceeded uplift as shown by older shorelines that descend towards the caldera axis. We

  6. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles

    Science.gov (United States)

    Malakhova, Valentina V.; Eliseev, Alexey V.

    2017-10-01

    Climate warming may lead to degradation of the subsea permafrost developed during Pleistocene glaciations and release methane from the hydrates, which are stored in this permafrost. It is important to quantify time scales at which this release is plausible. While, in principle, such time scale might be inferred from paleoarchives, this is hampered by considerable uncertainty associated with paleodata. In the present paper, to reduce such uncertainty, one-dimensional simulations with a model for thermal state of subsea sediments forced by the data obtained from the ice core reconstructions are performed. It is shown that heat propagates in the sediments with a time scale of ∼ 10-20 kyr. This time scale is longer than the present interglacial and is determined by the time needed for heat penetration in the unfrozen part of thick sediments. We highlight also that timings of shelf exposure during oceanic regressions and flooding during transgressions are important for simulating thermal state of the sediments and methane hydrates stability zone (HSZ). These timings should be resolved with respect to the contemporary shelf depth (SD). During glacial cycles, the temperature at the top of the sediments is a major driver for moving the HSZ vertical boundaries irrespective of SD. In turn, pressure due to oceanic water is additionally important for SD ≥ 50 m. Thus, oceanic transgressions and regressions do not instantly determine onsets of HSZ and/or its disappearance. Finally, impact of initial conditions in the subsea sediments is lost after ∼ 100 kyr. Our results are moderately sensitive to intensity of geothermal heat flux.

  7. Glacial seismology

    Science.gov (United States)

    Aster, R. C.; Winberry, J. P.

    2017-12-01

    Seismic source and wave propagation studies contribute to understanding structure, transport, fracture mechanics, mass balance, and other processes within glaciers and surrounding environments. Glaciogenic seismic waves readily couple with the bulk Earth, and can be recorded by seismographs deployed at local to global ranges. Although the fracturing, ablating, melting, and/or highly irregular environment of active glaciers can be highly unstable and hazardous, informative seismic measurements can commonly be made at stable proximal ice or rock sites. Seismology also contributes more broadly to emerging studies of elastic and gravity wave coupling between the atmosphere, oceans, solid Earth, and cryosphere, and recent scientific and technical advances have produced glaciological/seismological collaborations across a broad range of scales and processes. This importantly includes improved insight into the responses of cryospheric systems to changing climate and other environmental conditions. Here, we review relevant fundamental physics and glaciology, and provide a broad review of the current state of glacial seismology and its rapidly evolving future directions.

  8. A multi-nuclide approach to quantify long-term erosion rates and exposure history through multiple glacial-interglacial cycles

    DEFF Research Database (Denmark)

    Strunk, Astrid; Larsen, Nicolaj Krog; Knudsen, Mads Faurschou

    possible to resolve the complex pattern of exposure history under a fluctuating ice sheet. In this study, we quantify long-term erosion rates along with durations of multiple exposure periods in West Greenland by applying a novel Markov Chain Monte Carlo (MCMC) inversion approach to existing 10Be and 26Al......) interglacial periods characterized by zero shielding due to overlying ice and a uniform interglacial erosion rate, and ii) glacial periods characterized by 100 % shielding and a uniform glacial erosion rate. We incorporate the exposure/burial history in the model framework by applying a threshold value...... to the global marine benthic d18O record and include the threshold value as a free model parameter, hereby taking into account global changes in climate. The other free parameters include the glacial and interglacial erosion rates as well as the timing of the Holocene deglaciation. The model essentially...

  9. Glacial isostatic stress shadowing by the Antarctic ice sheet

    Science.gov (United States)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  10. Radiation belt electron dynamics at low L (<4): Van Allen Probes era versus previous two solar cycles

    Science.gov (United States)

    Li, X.; Baker, D. N.; Zhao, H.; Zhang, K.; Jaynes, A. N.; Schiller, Q.; Kanekal, S. G.; Blake, J. B.; Temerin, M.

    2017-05-01

    Long-term (>2 solar cycles) measurements reveal that MeV electron fluxes, solar wind speed, and geomagnetic activity have been extremely low during this current solar cycle, including years before and during the Van Allen Probes era. This study examines solar wind speed, the geomagnetic storm index (Dst), >2 MeV electrons at geostationary orbit, and 2 MeV electrons across various L shells measured by Solar Anomalous Magnetospheric Particle Explorer in low Earth orbit (LEO) and by the Van Allen Probes/Relativistic Electron and Proton Telescope (REPT) in a geotransfer-like orbit; the latter measurements are normalized to LEO based on comparison with Colorado Student Space Weather Experiment/Relativistic Electron and Proton Telescope integrated little experiment (REPTile) measurements in LEO. The average ratio of REPTile/REPT varies in a systematic manner with L, 16% at L = 2.7, decreasing with L and reaching 0.7% at L = 4.7, and increasing again with L though with greater uncertainty. We show that there have been no 2 MeV electron enhancements inside L 2.6 since 2006, prior to which numerous penetrations of 2 MeV electrons into L periods of stronger solar wind conditions (in terms of high-speed solar wind, magnitude of interplanetary magnetic field, B, and a sustained southward Bz) and thus stronger geomagnetic activity. We conclude that results from the Van Allen Probes, which have been providing the finest measurements but in operation during a quiet solar activity period, may not be representative of radiation belt dynamics, particularly for the inner edge of the outer belt, during other solar cycle phases.

  11. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle

    Science.gov (United States)

    Schüler, Lisa; Hemp, Andreas; Zech, Wolfgang; Behling, Hermann

    2012-04-01

    The pollen, charcoal and sedimentological record from the Maundi crater, located at 2780 m elevation on the south-eastern slope of Mt Kilimanjaro, is one of the longest terrestrial records in equatorial East Africa, giving an interesting insight into the vegetation and climate dynamics back to the early last Glacial period. Our sediment record has a reliable chronology until 42 ka BP. An extrapolation of the age-depth model, as well as matching with other palaeo-records from tropical East Africa, suggest a total age of about 90 ka BP at the bottom of the record. During the last Glacial the distribution as well as the composition of the vegetation belts classified as colline savanna, submontane woodland, montane forest, ericaceous belt, and alpine vegetation changed. The early last Glacial is characterized by high amounts of Poaceae and Asteraceae pollen suggesting a climatically dry but stable phase. Based on the absence of pollen grains in samples deposited around 70 ka BP, we assume the occurrence of distinct drought periods. During the pre-LGM (Last Glacial Maximum) a higher taxa diversity of the ericaceous and montane zone is recorded and suggests a spread of forest and shrub vegetation, thus indicating a more humid period. The taxa diversity increases steadily during the recorded time span. The decent of vegetation zones indicate dry and cold conditions during the LGM and seem to have been detrimental for many taxa, especially those of the forest vegetation; however, the early last Glacial seems to have been markedly drier than the LGM. The reappearance of most of the taxa (most importantly Alchemilla, Araliaceae, Dodonea, Hagenia, Ilex, Myrsine, Moraceae, Piperaceae) during the deglacial and Holocene period suggest a shift into humid conditions. An increase in ferns and the decrease in grasses during the Holocene also indicate increasing humidity. Fire played an important role in controlling the development and elevation of the ericaceous zone and the tree

  12. Does local endometrial injury in the nontransfer cycle improve the IVF-ET outcome in the subsequent cycle in patients with previous unsuccessful IVF? A randomized controlled pilot study

    Directory of Open Access Journals (Sweden)

    Sachin A Narvekar

    2010-01-01

    Full Text Available Background: Management of repeated implantation failure despite transfer of good-quality embryos still remains a dilemma for ART specialists. Scrapping of endometrium in the nontransfer cycle has been shown to improve the pregnancy rate in the subsequent IVF/ET cycle in recent studies. Aim: The objective of this randomized controlled trial (RCT was to determine whether endometrial injury caused by Pipelle sampling in the nontransfer cycle could improve the probability of pregnancy in the subsequent IVF cycle in patients who had previous failed IVF outcome. Setting: Tertiary assisted conception center. Design: Randomized controlled study. Materials and Methods: 100 eligible patients with previous failed IVF despite transfer of good-quality embryos were randomly allocated to the intervention group and control groups. In the intervention group, Pipelle endometrial sampling was done twice: One in the follicular phase and again in the luteal phase in the cycle preceding the embryo transfer cycle. Outcome Measure: The primary outcome measure was live birth rate. The secondary outcome measures were implantation and clinical pregnancy rates. Results: The live birth rate was significantly higher in the intervention group compared to control group (22.4% and 9.8% P = 0.04. The clinical pregnancy rate in the intervention group was 32.7%, while that in the control group was 13.7%, which was also statistically significant ( P = 0.01. The implantation rate was significantly higher in the intervention group as compared to controls (13.07% vs 7.1% P = 0.04. Conclusions: Endometrial injury in nontransfer cycle improves the live birth rate,clinical pregnancy and implantation rates in the subsequent IVF-ET cycle in patients with previous unsuccessful IVF cycles.

  13. Concurrent and opposed environmental trends during the last glacial cycle between the Carpathian Basin and the Black Sea coast: evidence from high resolution enviromagnetic loess records

    Science.gov (United States)

    Hambach, Ulrich; Zeeden, Christian; Veres, Daniel; Obreht, Igor; Bösken, Janina; Marković, Slobodan B.; Eckmeier, Eileen; Fischer, Peter; Lehmkuhl, Frank

    2015-04-01

    Danube Basin near to the Black Sea (Urluia quarry, Dobrogea, Romania). In order to investigate the potential of Danubian loess in recording millennial-scale palaeoclimate variability, a 22 m deep drill-core from the Titel loess plateau and a more than 15 metres thick LPSS from the Urluia quarry were contiguously sampled. Both sides provide improved insight into past climate evolution of the regions down to MIS 6. The presentation will focus on the down-core/down-section variability of χ and χfd as environmental proxy parameters. Based on these mineral magnetic proxies we can already draw the following conclusions: 1) The dust accumulation rates in both regions were relatively constant over the past c. 130 kyrs, even during full interglacial conditions. 2) In the studied sections, the pedo-complex S1 represents ± the Eemian and not the entire MIS 5, as previously assumed. 3) There are a lot of similarities between the mineral magnetic records of the Titel-Plateau (Vojvodina, South Carpathian Basin) and the Urluia quarry (Dobrogea, Lower Danube Basin) and also between these records and those from the Chinese Loess Plateau, but also fundamental differences. 4) During the early glacial (end of MIS5) we find no evidence for soil formation in the South Carpathian Basin whereas in the Dobrogea near to the Black Sea coast embryonic soils developed. On the contrary, during the younger part of MIS 3 (≤ 40 ka) near to the Black Sea coast soil humidity sharply decreased towards the LGM whereas in the South Carpathian Basin the mineral magnetic proxies indicate a relative maximum in pedogenesis/soil humidity. Sedimentological, geochemical, geochronological and palaeomagnetic investigations are in progress. They will provide further high quality data sets leading to an improved understanding of the Late Pleistocene environmental evolution in the Danube Basin.

  14. Hormonal Cycle and Contraceptive Effects on Amygdala and Salience Resting-State Networks in Women with Previous Affective Side Effects on the Pill.

    Science.gov (United States)

    Engman, Jonas; Sundström Poromaa, Inger; Moby, Lena; Wikström, Johan; Fredrikson, Mats; Gingnell, Malin

    2018-02-01

    The mechanisms linking ovarian hormones to negative affect are poorly characterized, but important clues may come from the examination of the brain's intrinsic organization. Here, we studied the effects of both the menstrual cycle and oral contraceptives (OCs) on amygdala and salience network resting-state functional connectivity using a double-blind, randomized, and placebo-controlled design. Hormone levels, depressive symptoms, and resting-state functional connectivity were measured in 35 healthy women (24.9±4.2 years) who had previously experienced OC-related negative affect. All participants were examined in the follicular phase of a baseline cycle and in the third week of the subsequent cycle during treatment with either a combined OC (30 μg ethinyl estradiol/0.15 mg levonorgestrel) or placebo. The latter time point targeted the midluteal phase in placebo users and steady-state ethinyl estradiol and levonorgestrel concentrations in OC users. Amygdala and salience network connectivity generally increased with both higher endogenous and synthetic hormone levels, although amygdala-parietal cortical connectivity decreased in OC users. When in the luteal phase, the naturally cycling placebo users demonstrated higher connectivity in both networks compared with the women receiving OCs. Our results support a causal link between the exogenous administration of synthetic hormones and amygdala and salience network connectivity. Furthermore, they suggest a similar, potentially stronger, association between the natural hormonal variations across the menstrual cycle and intrinsic network connectivity.

  15. Post-Glacial Climate Forcing of Surface Processes in the Ganges-Brahmaputra Basin and Implications for the Global Carbon Cycle

    Science.gov (United States)

    Hein, C. J.; Galy, V.; France-Lanord, C.; Galy, A.; Kudrass, H. R.; Peucker-Ehrenbrink, B.

    2016-12-01

    Silicate weathering coupled with carbonate precipitation and organic carbon (OC) burial in marine sediments are the primary mechanisms sequestering atmospheric CO2 over a range of timescales. The efficiency of both processes has long been mechanistically linked to climate: increased atmospheric CO2 sequestration under warm/wet conditions acts as a negative feedback, thereby contributing to global climate regulation. Over glacial-interglacial timescales, climate has been proposed to control the export rate of terrestrial silicate weathering products and terrestrial OC to river-dominated margins, as well as the rates of chemical weathering (i.e., the efficiency of carbon sequestration). Focused on the Ganges-Brahmaputra drainage basin, this study quantifies the relative role of climate change in the efficiency of silicate weathering and OC burial following the last glacial maximum. Stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the Bengal Fan channel-levee system capture variations in the strength of the Indian summer monsoon and vegetation dynamics. Specifically, a 40‰ shift in δD and a 4‰ shift in both bulk OC and plant wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlate well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes coincided with a focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, OC loading, and thus carbon burial efficiency, in the Bengal Fan remained constant through time, demonstrating the primacy of physical erosion and climate-driven sediment export in marine OC sequestration. In contrast, a gradual increase in K/Si* and Ca/Si, and decrease in H2O+/Si*, throughout the study period may demonstrate the

  16. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    Science.gov (United States)

    Mills, S. C.; Barrows, T. T.; Telfer, M. W.; Fifield, L. K.

    2017-02-01

    Southern Africa is located in a unique setting for investigating past cold climate geomorphology over glacial-interglacial timescales. It lies at the junction of three of the world's major oceans and is affected by subtropical and temperate circulation systems, therefore recording changes in Southern Hemisphere circulation patterns. Cold climate landforms are very sensitive to changes in climate and thus provide an opportunity to investigate past changes in this region. The proposed existence of glaciers in the high Eastern Cape Drakensberg mountains, together with possible rock glaciers, has led to the suggestion that temperatures in this region were as much as 10-17 °C lower than present. Such large temperature depressions are inconsistent with many other palaeoclimatic proxies in Southern Africa. This paper presents new field observations and cosmogenic nuclide exposure ages from putative cold climate landforms. We discuss alternative interpretations for the formation of the landforms and confirm that glaciers were absent in the Eastern Cape Drakensberg during the last glaciation. However, we find widespread evidence for periglacial activity down to an elevation of 1700 m asl, as illustrated by extensive solifluction deposits, blockstreams, and stone garlands. These periglacial deposits suggest that the climate was significantly colder ( 6 °C) during the Last Glacial Maximum, in keeping with other climate proxy records from the region, but not cold enough to initiate or sustain glaciers or rock glaciers.

  17. The amount of glacial erosion of the bedrock

    International Nuclear Information System (INIS)

    Paasse, Tore

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m

  18. The amount of glacial erosion of the bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, Tore [Geological Survey of Sweden, Uppsala (Sweden)

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m.

  19. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    International Nuclear Information System (INIS)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko; Christensen, Frans; Baun, Anders; Olsen, Stig I.

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key “lessons learned” from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches for using these methods together for NM: “LC-based RA” (traditional RA applied in a life-cycle perspective) and “RA-complemented LCA” (conventional LCA supplemented by RA in specific life-cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods for NM-risk research efforts to date as the former is rather a continuation of normal RA according to standard assessment procedures (e.g., REACH). Both these approaches along with recommendations for using LCA and RA together for NM are similar to those made previously for chemicals, and thus, there does not appear to be much progress made specific for NM. We have identified one issue in particular that may be specific for NM when applying LCA and RA at this time: the need to establish proper dose metrics within both methods.

  20. DECOVALEX III/BENCHPAR PROJECTS. The Thermal-Hydro-Mechanical Responses to a Glacial Cycle and their Potential Implications for Deep Geological Disposal of Nuclear Fuel Waste in a Fractured Crystalline Rock Mass. Report of BMT3/WP4

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Stanchell, F.W. [Atomic Energy of Canada Ltd, Toronto (Canada); Christiansson, R. [Swedish Nuclear Fuel and Waste Management Co., Figeholm (Sweden); Boulton, G.S. [Univ. of Edinburgh (United Kingdom). School of GeoSciences; Eriksson, L.O.; Vistrand, P.; Wallroth, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Geology; Hartikainen, J. [Helsinki Univ. of Technology (Finland). Inst. of Mathematics; Jensen, M.R. [0ntario Power Generation, Toronto (Canada); Mas lvars, D. [Royal Inst. of Technology, Stockholm (Sweden). Land and Water Resources engineering

    2005-02-15

    A number of studies related to past and on-going deep repository performance assessments have identified glaciation/deglaciation as major future events in the next few hundred thousand years capable of causing significant impact on the long term performance of the repository system. Benchmark Test 3 (BMT3) of the international DECOVALEX III project has been designed to provide an illustrative example that explores the mechanical and hydraulic response of a fractured crystalline rock mass to a period of glaciation. The primary purpose of this numerical study is to investigate whether transient events associated with a glacial cycle could significantly influence the performance of a deep geological repository in a crystalline shield setting. A conceptual site-scale (tens of kilometres) hydro-mechanical (HM) model was assembled based primarily on site-specific litho-structural, hydrogeological and geomechanical data from the Whiteshell Research Area in the Canadian Shield, with simplification and generalization. Continental glaciological modelling of the Laurentide ice sheet through the last glacial cycle lasting approximately 100,000 years suggests that this site was glaciated at about 60 ka and between about 22.5 ka and 11 ka before present with maximum ice sheet thickness reaching 2,500 m and maximum basal water pressure head reaching 2000 m. The ice-sheet/drainage model was scaled down to generate spatially and temporally variable hydraulic and mechanical glaciated surface boundary conditions for site-scale subsurface HM modelling and permafrost modelling. Under extreme periglacial conditions permafrost was able to develop down to the assumed 500-m repository horizon. Two- and three-dimensional coupled HM finite-element simulations indicate: during ice-sheet advance there is rapid rise in hydraulic head, high transient hydraulic gradients and high groundwater velocities 2-3 orders of magnitude higher than under nonglacial conditions; surface water recharges deeper

  1. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Laurent, Alexis; Miseljic, Mirko

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance...... on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis...... of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key ‘‘lessons learned’’ from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches...

  2. Glacial Age Correlations and Pedogenesis Rates at Long Valley, Costilla Masif, Northern New Mexico

    Science.gov (United States)

    Feldman, A. D.

    2017-12-01

    New Mexico represents the southernmost extent of glacial activity in the United States. As such an enhanced understanding of glacial climate cycles in the region as expressed through the relict landscapes they leave behind can enhance our understanding of the evolution of high altitude landscapes and soils throughout the Quaternary period. The Sangre De Cristo mountain range in northern New Mexico exhibits some of the southernmost expansion of glacial activity in the Southwest during the Quaternary; yet the range has had only limited correlation of its glacial chronology performed to date. In this study a detailed investigation into soil pedogenesis on relict moraine features is used to fit the Long Valley glacial sequence extending eastward from the Costilla Masif into the established Rocky Mountain glacial chronology. Analyzed soil development characteristics are particle size, organic carbon, and iron oxide distributions including total iron, ferric iron, ferrous iron, citrate dithionite, hydroxylamine for amorphous ferrihydrite, and pyrophosphate for organically bound iron. In addition, soils developement will be analyzed in situ for computation of a modified Harden soil profile development index. A secondary purpose of the study is to establish better constraints on the rates of soil pedogenesis in these high altitude glacial features. Soil profile developement and pedogenesis rates will be compared with previously published data from areas both further south in the Sangre De Cristo's as well as throughout the more northern sections of the Rocky Mountains to correlate moraine ages as well as to constrain how the particular climate of the Long Valley has affected soil development during the Quaternary.

  3. Fire regimes during the last glacial

    Science.gov (United States)

    Daniau, A.; Harrison, S. P.; Bartlein, P. J.

    2009-12-01

    Fire regimes during the last glacial A.-L. Daniau (1), S.P. Harrison (1) and P.J. Bartlein (2) (1) School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK (2) Department of Geography, University of Oregon, Eugene, OR 97403, USA Sedimentary charcoal records document changes in fire regime. We have identified 67 sites which have records for some part of the last glacial and have used the 30 of these sites with better-than millennial-resolution to analyse changes in global fire regimes. Fire was consistently lower during the glacial than during the Eemian and Holocene. Within the glacial, Marine Isotope Stage (MIS) 3 is characterised globally by more fire than MIS 2. The signal for MIS 4 is less clear: there is more fire in the northern hemisphere and less fire in the southern hemisphere than during MIS 2 and 3. The records, most particularly records from the northern extratropics, show millennial-scale variability in fire regimes corresponding to the rapid climate changes associated with Dansgaard-Oeschger (D-O) cycles. Most of the D-O cycles during the last glacial and all of the Heinrich Stadials are apparent in the composite global record of the high-resolution sites: fire increases during D-O warming events and decreases during intervals of cooling. Our analyses show that fire regimes show a lagged response to rapid climate changes of ca 100-200 years in the case of D-O warming events, ca 0-100 years in the case of D-O cooling events and ca 200 years in the case of Heinrich Stadials. The strong climatic variability experienced during the glacial resulted in important changes in fire regimes even though the base level of biomass burning was less than today.

  4. In and out of glacial extremes by way of dust-climate feedbacks.

    Science.gov (United States)

    Shaffer, Gary; Lambert, Fabrice

    2018-02-27

    Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial-interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust-climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust-climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial-interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust-climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO 2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial-interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles. Copyright © 2018 the Author(s). Published by PNAS.

  5. Glacial--interglacial stability of ocean pH inferred from foraminifer dissolution rates.

    Science.gov (United States)

    Anderson, David M; Archer, David

    2002-03-07

    The pH of the ocean is controlled by the chemistry of calcium carbonate. This system in turn plays a large role in regulating the CO2 concentration of the atmosphere on timescales of thousands of years and longer. Reconstructions of ocean pH and carbonate-ion concentration are therefore needed to understand the ocean's role in the global carbon cycle. During the Last Glacial Maximum (LGM), the pH of the whole ocean is thought to have been significantly more basic, as inferred from the isotopic composition of boron incorporated into calcium carbonate shells, which would partially explain the lower atmospheric CO2 concentration at that time. Here we reconstruct carbonate-ion concentration--and hence pH--of the glacial oceans, using the extent of calcium carbonate dissolution observed in foraminifer faunal assemblages as compiled in the extensive global CLIMAP data set. We observe decreased carbonate-ion concentrations in the glacial Atlantic Ocean, by roughly 20 micromolkg-1, while little change occurred in the Indian and Pacific oceans relative to today. In the Pacific Ocean, a small (5 micromolkg-1) increase occurred below 3,000m. This rearrangement of ocean pH may be due to changing ocean circulation from glacial to present times, but overall we see no evidence for a shift in the whole-ocean pH as previously inferred from boron isotopes.

  6. Alaska Harbor Seal Glacial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Floating glacial ice serves as a haul-out substrate for a significant number (10-15%) of Alaskan harbor seals, and thus surveying tidewater glacial fjords is an...

  7. Contrasting scaling properties of interglacial and glacial climates.

    Science.gov (United States)

    Shao, Zhi-Gang; Ditlevsen, Peter D

    2016-03-16

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles.

  8. Glacial-interglacial atmospheric CO2 change: a possible

    Directory of Open Access Journals (Sweden)

    L. C. Skinner

    2009-09-01

    Full Text Available So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates. Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW, filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.

  9. Obliquity pacing of the late Pleistocene glacial terminations.

    Science.gov (United States)

    Huybers, Peter; Wunsch, Carl

    2005-03-24

    The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past approximately 700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (approximately 40,000 yr; approximately 40 kyr), orbital eccentricity (approximately 100 kyr) and precessional (approximately 20 kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing.

  10. Combined Effects of Atmospheric and Seafloor Iron Fluxes to the Glacial Ocean

    Science.gov (United States)

    Muglia, Juan; Somes, Christopher J.; Nickelsen, Levin; Schmittner, Andreas

    2017-11-01

    Changes in the ocean iron cycle could help explain the low atmospheric CO2 during the Last Glacial Maximum (LGM). Previous modeling studies have mostly considered changes in aeolian iron fluxes, although it is known that sedimentary and hydrothermal fluxes are important iron sources for today's ocean. Here we explore effects of preindustrial-to-LGM changes in atmospheric dust, sedimentary, and hydrothermal fluxes on the ocean's iron and carbon cycles in a global coupled biogeochemical-circulation model. Considering variable atmospheric iron solubility decreases LGM surface soluble iron fluxes compared with assuming constant solubility. This limits potential increases in productivity and export production due to surface iron fertilization, lowering atmospheric CO2 by only 4 ppm. The effect is countered by a decrease in sedimentary flux due to lower sea level, which increases CO2 by 15 ppm. Assuming a 10 times higher iron dust solubility in the Southern Ocean, combined with changes in sedimentary flux, we obtain an atmospheric CO2 reduction of 13 ppm. The high uncertainty in the iron fluxes does not allow us to determine the net direction and magnitude of variations in atmospheric CO2 due to changes in the iron cycle. Our model does not account for changes to iron-binding ligand concentrations that could modify the results. We conclude that when evaluating glacial-interglacial changes in the ocean iron cycle, not only surface but also seafloor fluxes must be taken into account.

  11. Glacial sequence stratigraphy reveal the Weichselian glacial history of the SE sector of the Eurasian Ice Sheet

    Science.gov (United States)

    Räsänen, Matti

    2016-04-01

    Reconstructions of the last Weichselian glacial cycle 117,000-11,700 years (kyr) ago propose that S Finland, adjacent Russia and the Baltic countries in the SE sector of the Eurasian Ice Sheet (EIS), were glaciated during the Middle Weichselian time [marine isotope stage (MIS) 4, 71-57 kyr ago] and that this glaciation was preceded in S Finland by an Early Weichselian interstadial (MIS 5c, 105-93 kyr ago) with pine forest. Here glacial sequence stratigraphy (Powell and Cooper 2002) is applied to isolated Late Pleistocene onshore outcrop sections in S Finland. The analysed sedimentary records have traditionally been investigated, interpreted and published separately by different authors without an attempt to a methodologically more systematic survey. By putting new field data and old observations into a regional sequence stratigraphic framework it is shown how previously unnoticed regularities can be found in the lithofacies and fossil successions. It is shown that the proposed Middle Weichselian glaciation or the pine dominated interstadial did not take place at all (Räsänen et al. 2015). The one Late Weichselian glaciation (MIS 2, 29-11 kyr ago) at the SE sector of EIS was preceded in S Finland by a nearly 90 kyr long still poorly known non-glacial period, featuring tundra with permafrost and probably birch forest. The new Middle Weichselian paleoenvironmental scenario revises the configuration and hydrology of the S part of EIS and gives new setting for the evolution of Scandinavian biota. References Powell, R. D., and Cooper, J. M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J. A., and Cofaig, C. Ó. eds., Glacier-Influenced Sedimentation on High-Latitude Continental Margins: The Geological Society of London, London, Geological Society London, Special Publication v. 203, p. 215-244. Räsänen, M.E., Huitti, J.V., Bhattarai, S. Harvey, J. and Huttunen, S. 2015, The SE sector of the Middle

  12. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: The loess-palaeosol sequence of Dolní Věstonice (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Antoine, P.; Rousseau, D.-D.; Degeai, J.-P.; Moine, O.; Lagroix, F.; Kreutzer, S.; Fuchs, M.; Hatté, Ch.; Gauthier, C.; Svoboda, J.; Lisá, Lenka

    2013-01-01

    Roč. 67, 1 May (2013), s. 17-38 ISSN 0277-3791 Institutional support: RVO:67985831 Keywords : loess palaeosol * Weichselian * Early-glacial * grain size * palaeopedology * OSL * organic carbon * environmental magnetism * malacology Subject RIV: DB - Geology ; Mineralogy Impact factor: 4.571, year: 2013

  13. Glacial Chemical Alteration of Mars-Like Bedrock

    Science.gov (United States)

    Rutledge, A. M.; Horgan, B. H. N.; Havig, J. R.; Rampe, E. B.; Scudder, N.; Hamilton, T.

    2017-12-01

    Mars is understood to have had a widespread and long-lived cryosphere, including glaciers and ice sheets, possibly since the Noachian. However, the contribution of glaciers to the observed alteration mineralogy of Mars is unclear. To characterize this alteration, water and rock samples were collected from glaciated volcanic bedrock of a range of compositions in the Cascade Volcanic Arc, USA: Mount Hood (silicic), Mount Adams (intermediate), North Sister (mafic), and Middle Sister (most mafic). We analyzed glacial meltwater using field meters (pH, temperature), portable spectrophotometry (dissolved silica), and ion chromatography (major ions). We analyzed proglacial rock coatings and sediments using scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Water samples are dominated by dissolved silica across a range of pH values, and dissolved silica increases significantly at more mafic sites. Rock coatings associated with glacial striations on mafic terrains include a major poorly crystalline silica component, as do proglacial sediments. This field study demonstrates that silica cycling is the dominant alteration process at glaciated volcanics, and more mafic glaciovolcanic sites have higher concentrations of dissolved silica compared to more felsic glaciovolcanic sites. Though basalts have lower silica content than more felsic volcanic rocks, they are more susceptible to silica mobility. On Mars, widespread poorly crystalline, high silica deposits have been modeled in Nothern Acidalia and Gusev Crater, and hydrated silica deposits have been identified in Nili Fossae and elsewhere. We hypothesize that these phases may be indicators of a cold climate regime on early Mars such as one dominated by large regional ice sheets. Cryosphere-driven silica cycling on low-carbonate, mafic rocks may be more important than previously thought on Mars.

  14. Geological constraints on Earth system sensitivity to CO2 during glacial and non-glacial times

    Science.gov (United States)

    Royer, D. L.; Park, J. J.; Pagani, M.; Beerling, D. J.

    2011-12-01

    Earth system climate sensitivity (ESS) is the long-term (>103 yr) response of global surface temperature to doubled CO2 that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for many centuries, even if anthropogenic greenhouse-gas emissions drop to zero. We report ESS estimates for the last 420 Myr of Earth history of 3 °C or higher during many non-glacial times and ~6-8 °C during glacial times. Analyses include both direct comparison of CO2 and temperature records, and fitting Berner's long-term carbon cycle model GEOCARBSULFvolc to proxy CO2 records while using ESS as a tunable parameter (Park & Royer, 2011, American Journal of Science 311: 1-26). Our ESS estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (~3 °C). Our two-fold amplification during glacial times is probably caused by long-term continental ice-sheet dynamics, a mechanism consistent with other studies. Even for non-glacial times, climate models do not capture the full suite of positive climate feedbacks. These absent feedbacks may be related to clouds, trace greenhouse gases, seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric greenhouse gases.

  15. On the potential role of marine calcifiers in glacial-interglacial dynamics

    NARCIS (Netherlands)

    Omta, A.W.; Voorn, van G.A.K.; Rickaby, R.E.M.; Follows, M.J.

    2013-01-01

    [1] Ice core measurements have revealed a highly asymmetric cycle in Antarctic temperature and atmospheric CO2 over the last 800 kyr. Both CO2 and temperature decrease over 100 kyr going into a glacial period and then rise steeply over less than 10 kyr at the end of a glacial period. There does not

  16. Glacial Features (Point) - Quad 168 (EPPING, NH)

    Data.gov (United States)

    University of New Hampshire — The Glacial Features (Point) layer describes point features associated with surficial geology. These glacial features include, but are not limited to, delta forsets,...

  17. Increased risk of glacial mudflows origin in Kabardino-Balkaria in the recent period

    Directory of Open Access Journals (Sweden)

    I. V. Malneva

    2013-01-01

    Full Text Available The paper deals with probability of glacial mudflow formation during the nearest years in the highland of Central Caucasus where the most mudflow-hazardous rivers are concentrated: Gerhozhansu, Adylsu, Adyrsu and others. It is established on the basis of calculated multi-year air temperatures during summer period that in June–August of 2012–2013 considerable increase and can intensify the activity of glacial mudflows. We estimate the tendency in mudflow activity using the analysis of multi-year regime of atmospheric circulation, the types of which determine mudflow-hazardous weather on a given territory (e.g. 12a, 13s, etc. according to the classification of B.L. Dzerdzeevsky. The duration of these types is presently sufficiently long and will remain the same during the nearest years. Due to the above-mentioned weather situation and availability of sufficient amounts of loose-clastic rock material on the territory of Kabardino-Balkaria, an increase of mudflow hazard is possible. So, in 2011 the glacial-flash mudflows happened in the basins of the rivers Cherek Balkarsky, Chegem, Baksan. In all these cases the weather corresponded to the type of ECM 13s. In 2013 the increase in duration of the above-mentioned ECM and mudflow activity can be connected with maximum of the solar cycle. During the previous maximum in 2000 the catastrophic mudflow happened on the river Gerhonzhansu; the town Tyrnyauz have been highly destructed.

  18. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    Science.gov (United States)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment

  19. Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: a prospective, longitudinal, cohort study.

    Science.gov (United States)

    Unfer, Vittorio; Raffone, Emanuela; Rizzo, Piero; Buffo, Silvia

    2011-11-01

    Several factors can affect oocyte quality and therefore pregnancy outcome in assisted reproductive technology (ART) cycles. Recently, a number of studies have shown that the presence of several compounds in the follicular fluid positively correlates with oocyte quality and maturation (i.e., myo-inositol and melatonin). In the present study, we aim to evaluate the pregnancy outcomes after the administration of myo-inositol combined with melatonin in women who failed to conceive in previous in vitro fertilization (IVF) cycles due to poor oocyte quality. Forty-six women were treated with 4 g/day myo-inositol and 3 mg/day melatonin (inofolic® and inofolic® Plus, Lo.Lipharma, Rome) for 3 months and then underwent a new IVF cycle. After treatment, the number of mature oocytes, the fertilization rate, the number of both, total and top-quality embryos transferred were statistically higher compared to the previous IVF cycle, while there was no difference in the number of retrieved oocyte. After treatment, a total of 13 pregnancies occurred, 9 of them were confirmed echographically; four evolved in spontaneous abortion. The treatment with myo-inositol and melatonin improves ovarian stimulation protocols and pregnancy outcomes in infertile women with poor oocyte quality.

  20. In and out of glacial extremes by way of dust‑climate feedbacks

    Science.gov (United States)

    Shaffer, Gary; Lambert, Fabrice

    2018-03-01

    Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial‑interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust‑climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust‑climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial‑interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust‑climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial‑interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles.

  1. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  2. Glacial History of a Modern Invader: Phylogeography and Species Distribution Modelling of the Asian Tiger Mosquito Aedes albopictus

    Science.gov (United States)

    Porretta, Daniele; Mastrantonio, Valentina; Bellini, Romeo; Somboon, Pradya; Urbanelli, Sandra

    2012-01-01

    Background The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. Methodology/Principal Findings We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. Conclusions/Significance Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota

  3. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range

    Science.gov (United States)

    Dong, Guocheng; Zhou, Weijian; Yi, Chaolu; Fu, Yunchong; Zhang, Li; Li, Ming

    2018-04-01

    Mountain glaciers are sensitive to climate change, and can provide valuable information for inferring former climates on the Tibetan Plateau (TP). The increasing glacial chronologies indicate that the timing of the local Last Glacial Maximum (LGM) recorded across the TP is asynchronous, implying different local influences of the mid-latitude westerlies and Asian Summer Monsoon in triggering glacier advances. However, the well-dated sites are still too few, especially in the transition zone between regions controlled by the two climate systems. Here we present detailed last glacial chronologies for the Mount Jaggang area, in the Xainza range, central Tibet, with forty-three apparent 10Be exposure-ages ranging from 12.4 ± 0.8 ka to 61.9 ± 3.8 ka. These exposure-ages indicate that at least seven glacial episodes occurred during the last glacial cycle east of Mount Jaggang. These include: a local LGM that occurred at ∼61.9 ± 3.8 ka, possibly corresponding to Marine Isotope Stage 4 (MIS 4); subsequent glacial advances at ∼43.2 ± 2.6 ka and ∼35.1 ± 2.1 ka during MIS 3; one glacial re-advance/standstill at MIS3/2 transition (∼29.8 ± 1.8 ka); and three glacial re-advances/standstills that occurred following MIS 3 at ∼27.9 ± 1.7 ka, ∼21.8 ± 1.3 ka, and ∼15.1 ± 0.9 ka. The timing of these glacial activities is roughly in agreement with North Atlantic millennial-scale climate oscillations (Heinrich events), suggesting the potential correlations between these abrupt climate changes and glacial fluctuations in the Mount Jaggang area. The successively reduced glacial extent might have resulted from an overall decrease in Asian Summer Monsoon intensity over this timeframe.

  4. Role of Southern Ocean stratification in glacial atmospheric CO2 reduction evaluated by a three-dimensional ocean general circulation model

    Science.gov (United States)

    Kobayashi, Hidetaka; Abe-Ouchi, Ayako; Oka, Akira

    2015-09-01

    Atmospheric carbon dioxide (CO2) concentration during glacial periods is known to be considerably lower than during interglacial periods. However, previous studies using an ocean general circulation model (OGCM) fail to reproduce this. Paleoclimate proxy data of the Last Glacial Maximum indicate high salinity (>37.0 practical salinity unit) and long water mass residence time (>3000 years) in the Southern Ocean, suggesting that salinity stratification was enhanced and more carbon was stored there. Reproducibility of salinity and water mass age is considered insufficient in previous OGCMs, which might affect the reproducibility of atmospheric CO2 concentration. This study investigated the role of increased stratification of the Southern Ocean in the glacial CO2 variation using an OGCM. We found that deep water formation in East Antarctica is required to explain high salinity in South Atlantic. Saltier deep Southern Ocean resulted in increased atmospheric CO2 concentration against previous estimates. This is partly due to increased volume transport of Antarctic Bottom Water and associated decrease in the water mass age of the deep Pacific Ocean. On the other hand, weakening of vertical mixing contributed to increase of the vertical gradient of dissolved inorganic carbon and decrease of atmospheric CO2 concentration. However, we show that it is unable to explain all of the glacial CO2 variations by the contribution of the Southern Ocean. Our findings indicate that detailed understanding of the impact of enhanced stratification in the Southern Ocean on the Pacific Ocean might be crucial to understanding the mechanisms behind the glacial-interglacial ocean carbon cycle variations.

  5. Modeling glacial climates

    Science.gov (United States)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  6. Effect of Administration of Single Dose GnRH Agonist in Luteal Phase on Outcome of ICSI-ET Cycles in Women with Previous History of IVF/ICSI Failure: A Randomized Controlled Trial

    Science.gov (United States)

    Zafardoust, Simin; Jeddi-Tehrani, Mahmood; Akhondi, Mohammad Mehdi; Sadeghi, Mohammad Reza; Kamali, Koroush; Mokhtar, Sara; Badehnoosh, Bita; Arjmand-Teymouri, Fatemeh; Fatemi, Farnaz; Mohammadzadeh, Afsaneh

    2015-01-01

    Background GnRH agonist administration in the luteal phase has been suggested to beneficially affect the outcome of intracytoplasmic sperm injection (ICSI) and embryo transfer (ET) cycles. This blind randomized controlled study evaluates the effect of GnRH (Gonadotropine Releasing Hormone) agonist administration on ICSI outcome in GnRH antagonist ovarian stimulation protocol in women with 2 or more previous IVF/ICSI-ET failures. Methods One hundred IVF failure women who underwent ICSI cycles and stimulated with GnRH antagonist ovarian stimulation protocol, were included in the study. Women were randomly assigned to intervention (received a single dose injection of GnRH agonist (0.1 mg of Decapeptil) subcutaneously 6 days after oocyte retrieval) and control (did not receive GnRH agonist) groups. Implantation and clinical pregnancy rates were the primary outcome measures. Results Although the age of women, the number of embryos transferred in the current cycle and the quality of the transferred embryos were similar in the two groups, there was a significantly higher rate of implantation (Mann Whitney test, p = 0.041) and pregnancy (32.6% vs. 12.5%, p = 0.030, OR = 3.3, 95%CI, 1.08 to 10.4) in the intervention group. Conclusion Our results suggested that, in addition to routine luteal phase support using progesterone, administration of 0.1 mg of Decapeptil 6 days after oocyte retrieval in women with previous history of 2 or more IVF/ICSI failures led to a significant improvement in implantation and pregnancy rates after ICSI following ovarian stimulation with GnRH antagonist protocol. PMID:25927026

  7. Glacial-interglacial changes in the surface water characteristics of ...

    Indian Academy of Sciences (India)

    Globigerinoides ruber) from a deep sea sediment core (GC-1) in the Andaman Sea show high glacial-to-Holocene 180 amplitude of 2.1% which is consistent with previously published records from this marginal basin and suggest increased ...

  8. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  9. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    Science.gov (United States)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  10. New glacial evidences at the Talacasto paleofjord (Paganzo basin, W-Argentina) and its implications for the paleogeography of the Gondwana margin

    Science.gov (United States)

    Aquino, Carolina Danielski; Milana, Juan Pablo; Faccini, Ubiratan Ferrucio

    2014-12-01

    The Talacasto paleovalley is situated in the Central Precordillera of San Juan, Argentina, where upper Carboniferous-Permian rocks (Paganzo Group) rest on Devonian sandstones of the Punta Negra Formation. This outcrop is an excellent example of a glacial valley-fill sequence that records at least two high-frequency cycles of the advance and retreat of a glacier into the valley. The paleocurrent analysis shows transport predominantly to the south, indicating that at this site the ice flow differs from the other nearby paleovalleys. Evidence of the glacial origin of this valley can be seen in the glacial striae on the valley's sides, as well as the U-shape of the valley, indicated by very steep locally overhanging valley walls. Deglaciation is indicated by a set of retransported conglomerates deposited in a shallow-water environment followed by a transgressive succession, which suggests eustatic rise due to meltwater input to the paleofjord. The complete sedimentary succession records distinct stages in the evolution of the valley-fill, represented by seven stratigraphical units. These units are identified based on facies associations and their interpreted depositional setting. Units 1 to 5 show one cycle of deglaciation and unit 6 marks the beginning of a new cycle of glacier advance which is characterized by different types of glacial deposits. All units show evidence of glacial influence such as dropstones and striated clasts, which indicates that the glaciers were always present in the valley or in adjacent areas during sedimentation. The Talacasto paleofjord provides good evidence of the Late Paleozoic Gondwana glaciation in western Argentina and examples of sedimentary successions which have been interpreted as being deposited by a confined wet-based glacier in advance and retreat cycles, with eventual release of icebergs into the basin. The outcrop is also a key for reconstructing the local glacial paleogeography, and it suggests a new interpretation that is

  11. A mechanism for dust-induced destabilization of glacial climates

    Directory of Open Access Journals (Sweden)

    B. F. Farrell

    2012-12-01

    Full Text Available Abrupt transitions between cold/dry stadial and warm/wet interstadial states occurred during glacial periods in the absence of any known external forcing. The climate record preserved in polar glaciers, mountain glaciers, and widespread cave deposits reveals that these events were global in extent with temporal distribution implying an underlying memoryless process with millennial time scale. Here a theory is advanced implicating feedback between atmospheric dust and the hydrological cycle in producing these abrupt transitions. Calculations are performed using a radiative-convective model that includes the interaction of aerosols with radiation to reveal the mechanism of this dust/precipitation interaction feedback process and a Langevin equation is used to illustrate glacial climate destabilization by this mechanism. This theory explains the observed abrupt, bimodal, and memoryless nature of these transitions as well as their intrinsic connection with the hydrological cycle.

  12. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  13. Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.

    2016-12-01

    An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.

  14. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    Science.gov (United States)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.

    2016-12-01

    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating

  15. Simulated Impact of Glacial Runoff on CO2 Uptake in the Gulf of Alaska

    Science.gov (United States)

    Pilcher, Darren J.; Siedlecki, Samantha A.; Hermann, Albert J.; Coyle, Kenneth O.; Mathis, Jeremy T.; Evans, Wiley

    2018-01-01

    The Gulf of Alaska (GOA) receives substantial summer freshwater runoff from glacial meltwater. The alkalinity of this runoff is highly dependent on the glacial source and can modify the coastal carbon cycle. We use a regional ocean biogeochemical model to simulate CO2 uptake in the GOA under different alkalinity-loading scenarios. The GOA is identified as a current net sink of carbon, though low-alkalinity tidewater glacial runoff suppresses summer coastal carbon uptake. Our model shows that increasing the alkalinity generates an increase in annual CO2 uptake of 1.9-2.7 TgC/yr. This transition is comparable to a projected change in glacial runoff composition (i.e., from tidewater to land-terminating) due to continued climate warming. Our results demonstrate an important local carbon-climate feedback that can significantly increase coastal carbon uptake via enhanced air-sea exchange, with potential implications to the coastal ecosystems in glaciated areas around the world.

  16. Phosphorus burial in the ocean over glacial-interglacial time scales

    Directory of Open Access Journals (Sweden)

    F. Tamburini

    2009-04-01

    Full Text Available The role of nutrients, such as phosphorus (P, and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to most recent ones that changes in the glacial ocean inventory of phosphorus were important but not influential if compared to other macronutrients, such as nitrate. Using new data coming from a selection of ODP sites, we analyzed the distribution of oceanic P sedimentary phases and calculate reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period at these sites. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR of reactive P show higher variability. If we extrapolate for the analyzed sites, we may assume that in general glacial burial fluxes of reactive P are lower than those during interglacial periods by about 8%, because the lack of burial of reactive P on the glacial shelf reduced in size, was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we evaluate their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 17–40% compared to interglacial stages. Variations in the distribution of sedimentary P phases at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations, which seems to point to P-richer waters at glacial terminations. All these findings would support the Shelf-Nutrient Hypothesis, which assumes that during glacial low stands nutrients are transferred from shallow sites

  17. Ice/Bedrock Feedbacks as a Principle Contributor to Glacial-Interglacial Oscillations

    Science.gov (United States)

    Kimmel, J.; Lee, K.; Jackson, C. H.

    2014-12-01

    Since the mid-Pleistocene, the oscillation between glacial and interglacial climate states occurs with a period of approximately 100 kyr. Each cycle is comprised of a slow glaciation with a subsequent rapid deglaciation. While the solar forcing is clearly an important driver for these transitions, the power spectrum of the solar forcing is quite different from the subsequent climate response and, in general, does not have a noticeable correlation with global ice volume. Instead, previous studies have shown that internal climate processes and their interactions (e.g., CO2, water vapor, isostatic bed response) play a significant role in producing these global climate cycles. The rapid retreat of large ice sheets at the start of an interglacial is often attributed to the interaction between surface and atmospheric processes. While calving is thought to amplify this retreat, it is not typically considered a principle driver of the ice sheet response. Our study investigates the potential for ice/bedrock feedbacks to be a principle contributor in shaping the glacial-interglacial climate oscillation -- particularly the rapid deglaciation that precedes an interglacial. The ice sheet model we develop includes a piecewise linear ice/bedrock feedback while atmospheric and surface processes are taken to be as simple as possible. Due to the long timescale of the bedrock response and the rapid mass loss due to calving, the model ice sheet exhibits rapid deglaciation from a stable maximum when it retreats through an overdeepening. However, ice sheet advance is also shown to be as rapid unless a more complex bedrock response is considered. In particular, we show that a forebulge created by the displacement of the mantle adds a new stable branch to the volume/equilibrium line bifurcation diagram that results in slower growth of the ice sheet during glaciation.

  18. Late glacial drainage systems along the northwestern margin of the Laurentide Ice Sheet

    Science.gov (United States)

    Lemmen, Donald S.; Duk-Rodkin, Alejandra; Bednarski, Jan M.

    The evolution of drainage systems along the retreating northwestern Laurentide Ice Sheet was complex. The interaction of ice-margin configuration, topography and glacioisostasy resulted in a network of meltwater rivers that variably overflowed to the Arctic and Pacific Oceans and to the Gulf of Mexico. Glacial lakes also changed dramatically in size and location during the period of deglaciation. At the last (and all time) glacial maximum, the ice sheet extended into the eastern Cordillera, blocking northward and eastward drainage to the Arctic Ocean. Some meltwater and most non-glacial runoff were diverted through the mountains to the Yukon River basin, into Alaska and the Pacific Ocean. Retreat from the glacial maximum prior to 21 ka BP allowed proglacial drainage from the western margin of the ice sheet to flow into the Beaufort Sea/Arctic Ocean. Deglaciation was rapid after about 13 ka BP, with the present route of the lower Mackenzie River established between 13 and 11.5 ka BP. Continued ice retreat led to significant southward expansion of the Mackenzie/Beaufort drainage basin at about 11.5 ka BP through drainage capture of glacial Lake Peace, which previously had drained southeastward into the Missouri River and to the Gulf of Mexico. Very rapid ice retreat between 10.5 and 10 ka BP allowed glacial lake McConnell to expand down-slope in contact with the ice margin. Numerous glacial lakes occurred along the northwestern margin of the ice sheet during the maximum and retreat phases. These include ice-dammed glacial Lake Old Crow, which occupied unglaciated terrain of the northern Yukon, and glacial Lake Peace, which utilized a number of outlets as it migrated eastward with the ice front along the Peace Valley. The largest glacial lakes in the region were the result of glacioisostatic depression reversing the regional drainage. The Mackenzie Phase of glacial Lake McConnell was the second largest Pleistocene lake in North America (> 215,000 km2). Late glacial

  19. Numerical model of the glacially-induced intraplate earthquakes and faults formation

    Science.gov (United States)

    Petrunin, Alexey; Schmeling, Harro

    2016-04-01

    According to the plate tectonics, main earthquakes are caused by moving lithospheric plates and are located mainly at plate boundaries. However, some of significant seismic events may be located far away from these active areas. The nature of the intraplate earthquakes remains unclear. It is assumed, that the triggering of seismicity in the eastern Canada and northern Europe might be a result of the glacier retreat during a glacial-interglacial cycle (GIC). Previous numerical models show that the impact of the glacial loading and following isostatic adjustment is able to trigger seismicity in pre-existing faults, especially during deglaciation stage. However this models do not explain strong glaciation-induced historical earthquakes (M5-M7). Moreover, numerous studies report connection of the location and age of major faults in the regions undergone by glaciation during last glacial maximum with the glacier dynamics. This probably imply that the GIC might be a reason for the fault system formation. Our numerical model provides analysis of the strain-stress evolution during the GIC using the finite volume approach realised in the numerical code Lapex 2.5D which is able to operate with large strains and visco-elasto-plastic rheology. To simulate self-organizing faults, the damage rheology model is implemented within the code that makes possible not only visualize faulting but also estimate energy release during the seismic cycle. The modeling domain includes two-layered crust, lithospheric mantle and the asthenosphere that makes possible simulating elasto-plastic response of the lithosphere to the glaciation-induced loading (unloading) and viscous isostatic adjustment. We have considered three scenarios for the model: horizontal extension, compression and fixed boundary conditions. Modeling results generally confirm suppressing seismic activity during glaciation phases whereas retreat of a glacier triggers earthquakes for several thousand years. Tip of the glacier

  20. Glacial Features (Point) - Quad 186 (HAMPTON, NH-MA)

    Data.gov (United States)

    University of New Hampshire — The Glacial Features (Point) layer describes point features associated with surficial geology. These glacial features include, but are not limited to, delta forsets,...

  1. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  2. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya

    Science.gov (United States)

    Finkel, Robert C.; Owen, Lewis A.; Barnard, Patrick L.; Caffee, Marc W.

    2003-06-01

    Moraine successions in glaciated valleys south of Mount Everest provide evidence for at least eight glacial advances during the late Quaternary. Cosmogenic radionuclide (CRN) surface exposure dating of moraine boulders defines the timing of each glacial advance and refines the previous glacial chronologies. The CRN data show that glaciation was most extensive during the early part of the last glacial (marine oxygen isotype stage [MIS] 3 and earlier), but limited during MIS 2 (the global Last Glacial Maximum) and the Holocene. A previously assumed Neoglacial advance is dated to 3.6 ± 0.3 ka and the CRN dates confirm a glacial advance ca. 1 ka. These results show that glaciations on the south side of Everest were not synchronous with the advance of Northern Hemisphere ice sheets, yet glaciations within the Himalaya, the world's highest mountain belt, were synchronous during the late Quaternary. The existence of glacial advances during times of increased insolation suggests that enhanced moisture delivered by an active south Asian summer monsoon is largely responsible for glacial advances in this part of the Himalaya. These data allow us to quantify the importance of global climate change and monsoon influence on glaciation in the Himalaya.

  3. The Arctic as a trigger for glacial terminations

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, D.G.; Pitman, W.C. III [Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences, Columbia University, 61 Route 9W, Palisades, NY 10964 (United States)

    2007-02-15

    We propose a hypothesis to explain the very abrupt terminations that end most of the glacial episodes. During the last glaciation, the buildup and southerly expansion of large continental ice-sheets in the Northern Hemisphere and extensive cover of sea ice in the N. Pacific and the N. Atlantic imposed a much more zonal climatic circulation system than exists today. We hypothesize that this, in combination with the frigid (dry) polar air led to a significant decrease in freshwater runoff into the Arctic Ocean. In addition the freshwater contribution of the fresher Pacific water was completely eliminated by the emergence of the Bering Strait (sill depth 50 m). As the Arctic freshwater input was depleted, regions of the Arctic Ocean lost surface stability and eventually overturned, bringing warmer deep water to the surface where it melted the overlying sea ice. This upwelled water was quickly cooled and sank as newly formed deep water. For sustained overturn events, such as might have occurred during the peak of very large glacial periods (i.e. the last glacial maximum), the voluminous deep water formed would eventually overflow into the Nordic Seas and North Atlantic necessitating an equally voluminous rate of return flow of warmer surface waters from the North Atlantic thus breaking down the Arctic's zonal isolation, melting the expansive NA sea ice cover and initiating oceanic heating of the atmosphere over the ice-sheets bordering the NA. We suggest that the combined effect of these overturn-induced events in concert with a Milankovitch warming cycle, was sufficient to drive the system to a termination. We elaborate on this proposed sequence of events, using the model for the formation of the Weddell Sea polynya as proposed by Martinson et al. (1981) and various, albeit sparse, data sets from the circum-Arctic region to apply and evaluate this hypothesis to the problem of glacial termination.

  4. PREVIOUS SECOND TRIMESTER ABORTION

    African Journals Online (AJOL)

    PNLC

    PREVIOUS SECOND TRIMESTER ABORTION: A risk factor for third trimester uterine rupture in three ... for accurate diagnosis of uterine rupture. KEY WORDS: Induced second trimester abortion - Previous uterine surgery - Uterine rupture. ..... scarred uterus during second trimester misoprostol- induced labour for a missed ...

  5. Effects of mantle rheologies on viscous heating induced by glacial isostatic adjustment

    NARCIS (Netherlands)

    Huang, Ping Ping; Wu, Patrick; van der Wal, W.

    2018-01-01

    It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's

  6. Lithologic composition and rock weathering potential of forested, glacial-till soils

    Science.gov (United States)

    Scott W. Bailey; James W. Hornbeck; James W. Hornbeck

    1992-01-01

    Describes methods for predicting lithologies present in soils developed on glacial till, and the potential weathering contributions from rock particles >2 mm in diameter. The methods are not quantitative in terms of providing weathering rates, but provide information that can further the understanding of forest nutrient cycles, and possibly assist with decisions...

  7. Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period.

    Science.gov (United States)

    Klages, Johann P; Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Smith, James A; Graham, Alastair G C; Nitsche, Frank O; Frederichs, Thomas; Jernas, Patrycja E; Gohl, Karsten; Wacker, Lukas

    2017-01-01

    Precise knowledge about the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM; c. 26.5-19 cal. ka BP) is important in order to 1) improve paleo-ice sheet reconstructions, 2) provide a robust empirical framework for calibrating paleo-ice sheet models, and 3) locate potential shelf refugia for Antarctic benthos during the last glacial period. However, reliable reconstructions are still lacking for many WAIS sectors, particularly for key areas on the outer continental shelf, where the LGM-ice sheet is assumed to have terminated. In many areas of the outer continental shelf around Antarctica, direct geological data for the presence or absence of grounded ice during the LGM is lacking because of post-LGM iceberg scouring. This also applies to most of the outer continental shelf in the Amundsen Sea. Here we present detailed marine geophysical and new geological data documenting a sequence of glaciomarine sediments up to ~12 m thick within the deep outer portion of Abbot Trough, a palaeo-ice stream trough on the outer shelf of the Amundsen Sea Embayment. The upper 2-3 meters of this sediment drape contain calcareous foraminifera of Holocene and (pre-)LGM age and, in combination with palaeomagnetic age constraints, indicate that continuous glaciomarine deposition persisted here since well before the LGM, possibly even since the last interglacial period. Our data therefore indicate that the LGM grounding line, whose exact location was previously uncertain, did not reach the shelf edge everywhere in the Amundsen Sea. The LGM grounding line position coincides with the crest of a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, an area of ≥6000 km2 remained free of grounded ice through the last glacial cycle, requiring the LGM grounding line position to be re-located in this sector, and suggesting a new site at which Antarctic shelf benthos may have survived the last glacial period.

  8. The Glacial-Interglacial Monsoon Recorded by Speleothems from Sulawesi, Indonesia

    Science.gov (United States)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Hellstrom, J. C.; Rifai, H.

    2015-12-01

    The Indo-Pacific Warm Pool is a primary source of heat and moisture to the global atmosphere and a key player in tropical and global climate variability. There is mounting evidence that atmospheric convection and oceanic processes in the tropics can modulate global climate on orbital and sub-orbital timescales. Glacial-interglacial cycles represent the largest natural climate changes over the last 800 kyr with each cycle terminated by rapid global warming and sea level rise. Our understanding of the role and response of tropical atmospheric convection during these periods of dramatic warming is limited. We present the first speleothem paleomonsoon record for southwest Sulawesi (5ºS, 119ºE), spanning two glacial-interglacial cycles, including glacial termination IV (~340 kyr BP) and both phases of termination III (~248 and ~220 kyr BP). This unique record is constructed from multiple stalagmites from two separate caves and is based on a multi-proxy approach (δ18O, δ13C, Mg/Ca, Sr/Ca) that provides insight into the mechanisms controlling Australian-Indonesian summer monsoon variability. Speleothem δ18O and trace element data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. Terminations IV, III, and I are each characterized by an abrupt 3‰ decrease in δ18O. Variability in δ18O leading-in to glacial terminations is also similar, and corresponds to October insolation. Prior to deglaciation, there is a distinct shift to higher δ18O that is synchronized with weak monsoon intervals in Chinese speleothem records. The remarkably consistent pattern among terminations implies that the response of tropical convection to changing background climates is well regulated. Furthermore, we find that speleothem δ13C leads δ18O by ~5 kyr during glacial terminations. The early decrease in speleothem δ13C may reflect the response of tropical vegetation to rising atmospheric CO2 and temperature, rather than regional changes in rainfall.

  9. Trace metal evidence for a poorly ventilated glacial Southern Ocean

    Science.gov (United States)

    Wagner, Meghan; Hendy, Ingrid L.

    2017-08-01

    Glacial benthic δ13C and Δ14C measurements from the Atlantic Ocean have been interpreted to indicate the existence of a poorly ventilated Southern Ocean with greater CO2 and nutrient contents compared to present. Enhanced storage of CO2 in the deep ocean predicts that oxygen concentrations should have declined at the same time-a prediction increasingly supported by evidence for oxygen depletion in the glacial Southern Ocean. Here we take a novel approach by using a suite of redox-sensitive trace metals (Ag, Cd, Re and Mo) to show that Southern Ocean sediments from two cores in the Atlantic sector were suboxic during and prior to deglaciation, implying changes to ocean circulation and/or elevated export production that significantly altered deep water chemistry. In the Cape Basin, enrichments of the authigenically deposited trace metal Re are comparable to those found in oxygen minimum zones, pointing to substantial decreases in oxygenation. Furthermore, trace metal results suggest potential spatial heterogeneity in the glacial Southern Ocean, and a more complicated oceanographic and oxygenation history than has previously been assumed.

  10. Glacial-interglacial productivity contrasts along the eastern Arabian Sea: Dominance of convective mixing over upwelling

    Directory of Open Access Journals (Sweden)

    Kumar Avinash

    2015-11-01

    The primary productivity along the southwestern continental margin of India seems to have been controlled principally by the upwelling during the southwest monsoon season that was weaker from MIS-4 to MIS-2, as relative to that during the MIS-1. In contrast, increased glacial productivity noticed in sediments deposited below the current oxygen minimum zone (OMZ along the north of the study area that can be linked to entrainment of nutrients through the intensified convective mixing of surface water during the northeast monsoon. The sequestration of greenhouse gases by the western continental margin of India was higher during glacial than interglacial cycles.

  11. Dynamics of ~100-kyr glacial cycles during the early Miocene

    NARCIS (Netherlands)

    Liebrand, D.; Lourens, L.J.; Boer, B. de; Wal, R.S.W. van de

    2010-01-01

    Here, we present high-resolution stable isotope records from ODP Site 1264 in the South-Eastern Atlantic Ocean, which resolve the latest Oligocene to early Miocene (23.7–18.9 Ma) climate changes. Using an inverse modelling technique, we decom- posed the oxygen isotope record into temperature and

  12. Eight glacial cycles from an Antarctic ice core

    NARCIS (Netherlands)

    Oerlemans, J.

    2004-01-01

    The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not

  13. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  14. Critical insolation-CO2 relation for diagnosing past and future glacial inception

    Science.gov (United States)

    Ganopolski, Andrey; Winkelmann, Ricarda; Schellnhuber, Hans Joachim

    2016-04-01

    Past rapid growth of Northern Hemisphere continental ice sheets, which terminated rather stable and warm climate periods, is generally attributed to reduced summer insolation in boreal latitudes (Milanković , 1941; Hays et al., 1976, Paillard, 1998). Yet pertinent summer insolation is near to its minimum at present (Berger and Loutre, 2002), and there are no signs of a new ice age (Kemp et al., 2011). This challenges our scientific understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception (Masson-Delmotte et al., 2013). Here we propose a fundamental functional relationship between boreal summer insolation and global CO2 concentration, which explains the beginning of the past eight glacial cycles and can anticipate future periods when glacial inception may occur again. Using a simulations ensemble generated by an Earth system model of intermediate complexity constrained by paleoclimatic data, we show that glacial inception was narrowly missed before the beginning of the Industrial Revolution. This can be explained by the combined effect of relatively high late-Holocene CO2 concentration and low orbital eccentricity of the Earth (Loutre and Berger, 2003). Additionally, our analysis shows that even in the absence of human perturbations no significant buildup of ice sheets would occur within the next several thousand years and that the current interglacial would likely last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1000 to 1500 GtC may already postpone the next glacial inception by at least 100,000 years (Archer and Ganopolski, 2005; Paillard, 2006). Our simulations demonstrate that under natural conditions alone the Earth system would be expected to stay in the delicate interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time.

  15. Critical insolation-CO2 relation for diagnosing past and future glacial inception.

    Science.gov (United States)

    Ganopolski, A; Winkelmann, R; Schellnhuber, H J

    2016-01-14

    The past rapid growth of Northern Hemisphere continental ice sheets, which terminated warm and stable climate periods, is generally attributed to reduced summer insolation in boreal latitudes. Yet such summer insolation is near to its minimum at present, and there are no signs of a new ice age. This challenges our understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception. Here we propose a critical functional relationship between boreal summer insolation and global carbon dioxide (CO2) concentration, which explains the beginning of the past eight glacial cycles and might anticipate future periods of glacial inception. Using an ensemble of simulations generated by an Earth system model of intermediate complexity constrained by palaeoclimatic data, we suggest that glacial inception was narrowly missed before the beginning of the Industrial Revolution. The missed inception can be accounted for by the combined effect of relatively high late-Holocene CO2 concentrations and the low orbital eccentricity of the Earth. Additionally, our analysis suggests that even in the absence of human perturbations no substantial build-up of ice sheets would occur within the next several thousand years and that the current interglacial would probably last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1,000 to 1,500 gigatonnes of carbon will postpone the next glacial inception by at least 100,000 years. Our simulations demonstrate that under natural conditions alone the Earth system would be expected to remain in the present delicately balanced interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time.

  16. Quaternary fluvial response to climate change in glacially influenced river systems

    Science.gov (United States)

    Cordier, Stéphane; Adamson, Kathryn; Delmas, Magali; Calvet, Marc; Harmand, Dominique

    2016-04-01

    Over the last few decades, many studies in Europe and other continents have focused on the fluvial response to climate forcing in unglaciated basins. However, glacial activity may have a profound impact on the behaviour of the fluvial systems located downstream. In comparison to ice-free basins, these systems are characterised by distinctive hydrological and sediment supply regimes. Over Quaternary timescales, the fluvial records are influenced by periglacial (in non-glaciated areas), proglacial, and paraglacial processes. Understanding the impacts of these processes on the formation and preservation of the Quaternary geomorphological and sedimentary archives is key for our understanding of glacial-fluvial interactions. We investigate the impact of Quaternary glacial activity on fluvial sediment transfer, deposition, and preservation. Using existing studies from across Europe, we create a database of glaciofluvial geomorphology, sedimentology, and geochronology. This is used to examine how glacial forcing of fluvial systems varies spatially in different basin settings, and temporally over successive Milankovitch cycles. In particular, we focus on the ways in which the primary glacial-fluvial depositional signal could be distinguished from periglacial and paraglacial reworking and redeposition.

  17. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  18. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Science.gov (United States)

    Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu

    2017-09-01

    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  19. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  20. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    Science.gov (United States)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  1. Sources of glacial moisture in Mesoamerica

    Science.gov (United States)

    Bradbury, J.P.

    1997-01-01

    Paleoclimatic records from Mesoamerica document the interplay between Atlantic and Pacific sources of precipitation during the last glacial stage and Holocene. Today, and throughout much of the Holocene, the entire region receives its principal moisture in the summer from an interaction of easterly trade winds with the equatorial calms. Glacial records from sites east of 95?? W in Guatemala, Florida, northern Venezuela and Colombia record dry conditions before 12 ka, however. West of 95?? W, glacial conditions were moister than in the Holocene. For example, pollen and diatom data show that Lake Pa??tzcuaro in the central Mexican highlands was cool, deep and fresh during this time and fossil pinyon needles in packrat middens in Chihuahua, Sonora, Arizona, and Texas indicate cooler glacial climates with increased winter precipitation. Cold Gulf of Mexico sea-surface temperatures and reduced strength of the equatorial calms can explain arid full and late glacial environments east of 95?? W whereas an intensified pattern of winter, westerly air flow dominated hydrologic balances as far south as 20?? N. Overall cooler temperatures may have increased effective moisture levels during dry summer months in both areas. ?? 1997 INQUA/ Elsevier Science Ltd.

  2. Glacial Ordovician new evidence in the Pakhuis Formation, South Africa : sedimentological investigation and palaeo-environnemental reconstruction

    Science.gov (United States)

    Portier, E.; Buoncristiani, Jf.; Deronzier, Jf.

    2009-04-01

    During the Late Ordovician (Hirnantian) an ice sheet covered a great part of the Gondwana. In Africa, several studies present the stratigraphy and the complexity of these glacial records. The different glacial landsystems correspond to several glacial cycles, related to rapid ice front oscillations and are grouped into two major ice-sheet advances, separated by a major ice sheet recession. The study was performed on three well outcropping Late Ordovician sections in South Africa. The Ordovician IV is described as the Pakhuis Rm, and is divided into three different lithological members (known as Sneekop, Oskop and Sternbras Mb) that could be related to two major glacial cycles. In the first cycle (pool the two first Mb), facies association indicate continental environment, with : massive sandy tillites with facetted and striated erratics, subaerial outwash plain to glaciolacustrine cross bedded sands and laminated silts. Near Clanwilliam, the outcrops exhibit a high lateral variability in facies and thickness, ranging from a few meters to several tens of meters. The second cycle is dominated by clear marine sedimentation and may be interpreted as a transgressive sequence, quite different from what occurred in North Gondwana. Typical facies define shoreface environment, and periglacial evidence such as dropstones at base are encountered, passing progressively to a clear offshore environment at top of the series, likely Silurian aged, and known as Cederberg fm. Two glacial pavements were also described. The most spectacular one was firstly described by Visser et al. 1974 and should be interpreted as an intra-formational glacial pavement, with striae indicating a flow from East to West. This pavement is overlying a newly discovered glacial floor which exhibits grooves, crescents marks, en echelon fractures, with the same E-W general orientation, and shaped as ‘roches moutonnées', which are typical evidences of glacial erosion on indurated substratum. Reconstructing

  3. Preformed Nitrate in the Glacial North Atlantic

    Science.gov (United States)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  4. Glacial stages and post-glacial environmental evolution in the Upper Garonne valley, Central Pyrenees.

    Science.gov (United States)

    Fernandes, M; Oliva, M; Palma, P; Ruiz-Fernández, J; Lopes, L

    2017-04-15

    The maximum glacial extent in the Central Pyrenees during the Last Glaciation is known to have occurred before the global Last Glacial Maximum, but the succession of cold events afterwards and their impact on the landscape are still relatively unknown. This study focuses on the environmental evolution in the upper valley of the Garonne River since the Last Glaciation. Geomorphological mapping allows analysis of the spatial distribution of inherited and current processes and landforms in the study area. The distribution of glacial records (moraines, till, erratic boulders, glacial thresholds) suggests the existence of four glacial stages, from the maximum expansion to the end of the glaciation. GIS modeling allows quantification of the Equilibrium Line Altitude, extent, thickness and volume of ice in each glacial stage. During the first stage, the Garonne glacier reached 460m in the Loures-Barousse-Barbazan basin, where it formed a piedmont glacier 88km from the head and extended over 960km 2 . At a second stage of glacier stabilization during the deglaciation process, the valley glaciers were 12-23km from the head until elevations of 1000-1850m, covering an area of 157km 2 . Glaciers during stage three remained isolated in the upper parts of the valley, at heights of 2050-2200m and 2.6-4.5km from the head, with a glacial surface of 16km 2 . In stage four, cirque glaciers were formed between 2260m and 2590m, with a length of 0.4-2km and a glacial area of 5.7km 2 . Also, the wide range of periglacial, slope, nival and alluvial landforms existing in the formerly glaciated environments allows reconstruction of the post-glacial environmental dynamics in the upper Garonne basin. Today, the highest lands are organized following three elevation belts: subnival (1500-1900m), nival (1900-2300m) and periglacial/cryonival (2300-2800m). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Should precise numerical dating overrule glacial geomorphology?

    Science.gov (United States)

    Winkler, Stefan

    2016-04-01

    Numerical age dating techniques, namely different types of terrestrial cosmogenic nuclide dating (TCND), have achieved an impressive progress in both laboratory precision and regional calibration models during the past few decades. It is now possible to apply precise TCND even to young landforms like Late Holocene moraines, a task seemed hardly achievable just about 15 years ago. An increasing number of studies provide very precise TCND ages for boulders from Late Holocene moraines enabling related reconstruction of glacier chronologies and the interpretation of these glacial landforms in a palaeoclimatological context. These studies may also solve previous controversies about different ages assigned to moraines obtained by different dating techniques, for example relative-age dating techniques or techniques combining relative-age dating with few fixed points derived from numerical age dating. There are a few cases, for example Mueller Glacier and nearby long debris-covered valley glacier in Aoraki/Mt.Cook National Park (Southern Alps, New Zealand), where the apparent "supremacy" of TCND-ages seem to overrule glacial geomorphological principles. Enabled by a comparatively high number of individual boulders precisely dated by TCND, moraine ridges on those glacier forelands have been primarily clustered on basis of these boulder ages rather than on their corresponding morphological position. To the extreme, segments of a particular moraine complex morphologically and sedimentologically proven to be formed during one event have become split and classified as two separate "moraines" on different parts of the glacier foreland. One ledge of another moraine complex contains 2 TCND-sampled boulders apparently representing two separate "moraines"-clusters of an age difference in the order of 1,500 years. Although recently criticism has been raised regarding the non-contested application of the arithmetic mean for calculation of TCND-ages for individual moraines, this

  6. Regional contributions of ocean iron fertilization to atmospheric CO2 changes during the last glacial termination

    Science.gov (United States)

    Opazo, N. E.; Lambert, F.

    2017-12-01

    Mineral dust aerosols affect climate directly by changing the radiative balance of the Earth, and indirectly by acting as cloud condensation nuclei and by affecting biogeochemical cycles. The impact on marine biogeochemical cycles is primarily through the supply of micronutrients such as iron to nutrient-limited regions of the oceans. Iron fertilization of High Nutrient Low Chlorophyll (HNLC) regions of the oceans is thought to have significantly affected the carbon cycle on glacial-interglacial scales and contributed about one fourth of the 80-100 ppm lowering of glacial atmospheric CO2 concentrations.In this study, we quantify the effect of global dust fluxes on atmospheric CO2 using the cGENIE model, an Earth System Model of Intermediate Complexity with emphasis on the carbon cycle. Global Holocene and Last Glacial Maximum (LGM) dust flux fields were obtained from both dust model simulations and reconstructions based on observational data. The analysis was performed in two stages. In the first instance, we produced 8 global intermediate dust flux fields between Holocene and LGM and simulated the atmospheric CO2 drawdown due to these 10 dust levels. In the second stage, we only changed dust flux levels in specific HNLC regions to isolate the effect of these ocean basins. We thus quantify the contribution of the South Atlantic, the South Pacific, the North Pacific, and the Central Pacific HNLC regions to the total atmospheric CO2 difference due to iron fertilization of the Earth's oceans.

  7. High altitude C(4) grasslands in the northern Andes: relicts from glacial conditions?

    Science.gov (United States)

    Boom, A; Mora, G; Cleef, A M.; Hooghiemstra, H

    2001-06-01

    The altitudinal vegetation distribution in the northern Andes during glacial time differed from the present-day conditions as a result of temperature and precipitation change. New evidence indicate that as a response to a reduced atmospheric partial CO(2) pressure (pCO(2)), the competitive balance between C(3) and C(4) plants have changed. Effects may have remained virtually undetected in pollen records, but can be observed using a stable carbon isotope analysis. Vegetation dominated by C(4) taxa, belonging to the families Cyperaceae (e.g. Bulbostylis and Cyperus) and Poaceae (e.g. Muhlenbergia, Paspalum and Sporobolus), may have been able to replace for a significant part the modern type C(3) taxa (e.g. species belonging to Carex, Rhynchospora, Aciachne, Agrostis, Calamagrostis, and Chusquea). Impact of reduced glacial atmospheric pCO(2) levels and lower glacial temperatures on the composition and the elevational distribution of the vegetation types is discussed. The present high Andean vegetation communities may differ from the glacial equivalents (non-modern analogue situation). We identified dry Sporobolus lasiophyllus tussock grassland and Arcytophyllum nitidum dwarfshrub paramo as the possible relict communities from glacial time. The effect on previous estimates of paleo-temperatures is estimated to be small.

  8. Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model

    Directory of Open Access Journals (Sweden)

    V Palastanga

    2013-02-01

    Full Text Available Increased transfer of particulate matter from continental shelves to the open ocean during glacials may have had a major impact on the biogeochemistry of the ocean. Here, we assess the response of the coupled oceanic cycles of oxygen, carbon, phosphorus, and iron to the input of particulate organic carbon and reactive phosphorus from shelves. We use a biogeochemical ocean model and specifically focus on the Last Glacial Maximum (LGM. When compared to an interglacial reference run, our glacial scenario with shelf input shows major increases in ocean productivity and phosphorus burial, while mean deep-water oxygen concentrations decline. There is a downward expansion of the oxygen minimum zones (OMZs in the Atlantic and Indian Ocean, while the extension of the OMZ in the Pacific is slightly reduced. Oxygen concentrations below 2000 m also decline but bottom waters do not become anoxic. The model simulations show when shelf input of particulate organic matter and particulate reactive P is considered, low oxygen areas in the glacial ocean expand, but concentrations are not low enough to generate wide scale changes in sediment biogeochemistry and sedimentary phosphorus recycling. Increased reactive phosphorus burial in the open ocean during the LGM in the model is related to dust input, notably over the southwest Atlantic and northwest Pacific, whereas input of material from shelves explains higher burial fluxes in continental slope and rise regions. Our model results are in qualitative agreement with available data and reproduce the strong spatial differences in the response of phosphorus burial to glacial-interglacial change. Our model results also highlight the need for additional sediment core records from all ocean basins to allow further insight into changes in phosphorus, carbon and oxygen dynamics in the ocean on glacial-interglacial timescales.

  9. Glacial isostatic uplift of the European Alps

    NARCIS (Netherlands)

    Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.

    2016-01-01

    Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially

  10. Glacial Lake Lind, Wisconsin and Minnesota

    Science.gov (United States)

    Johnson, M.D.; Addis, K.L.; Ferber, L.R.; Hemstad, C.B.; Meyer, G.N.; Komai, L.T.

    1999-01-01

    Glacial Lake Lind developed in the pre-late Wisconsinan St. Croix River valley, Minnesota and Wisconsin, and lasted more than 1000 yr during the retreat of the Superior lobe at the end of the Wisconsinan glaciation. Lake Lind sediment consists primarily of red varved silt and clay, but also includes mud-flow deposits, nearshore silt (penecontemporaneously deformed in places), nearshore rippled sand, and deltaic sand. Lake Lind varved red clay is not part of glacial Lake Grantsburg, as suggested by earlier authors, because the red varves are separated from overlying glacial Lake Grantsburg silt and clay by a unit of deltaic and fluvial sand. Furthermore, varve correlations indicate that the base of the red varves is younger to the north, showing that the basin expanded as the Superior lobe retreated and was not a lake basin dammed to the southwest by the advancing Grantsburg sublobe. Varve correlations indicate that the Superior lobe retreated at a rate of about 200 m/yr. Uniform winter-clay thickness throughout most of the varve couplets suggests thermal stratification in the lake with clay trapped in the epilimnion; some clay would exit the lake at the outlet prior to winter freeze. Zones of thicker winter-clay layers, in places associated with mud-flow layers, indicate outlet incision, lake-level fall, and shoreline erosion and resuspension of lake clay. The most likely outlet for glacial Lake Lind was in the southwest part of the lake near the present site of Minneapolis, Minnesota. Nearshore sediment indicates that the lake level of glacial Lake Lind was around 280 m. The elevation of the base of the Lake Lind sediments indicates water depth was 20 to 55 m. Evidence in the southern part of the lake basin suggests that the Superior lobe readvanced at least once during the early stages of glacial Lake Lind. Lake Lind ended not by drainage but by being filled in by prograding deltas and outwash plains composed of sand derived from the retreating Superior lobe. It

  11. Potential flood volume of Himalayan glacial lakes

    Directory of Open Access Journals (Sweden)

    K. Fujita

    2013-07-01

    Full Text Available Glacial lakes are potentially dangerous sources of glacial lake outburst floods (GLOFs, and represent a serious natural hazard in Himalayan countries. Despite the development of various indices aimed at determining the outburst probability, an objective evaluation of the thousands of Himalayan glacial lakes has yet to be completed. In this study we propose a single index, based on the depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs. We test our approach on five lakes in Nepal, Bhutan, and Tibet using images taken by the declassified Hexagon KH-9 satellite before these lakes experienced an outburst flood. All five lakes had a steep lakefront area (SLA, on which a depression angle was steeper than our proposed threshold of 10° before the GLOF event, but the SLA was no longer evident after the events. We further calculated the potential flood volume (PFV; i.e., the maximum volume of floodwater that could be released if the lake surface was lowered sufficiently to eradicate the SLA. This approach guarantees repeatability to assess the possibility of GLOF hazards because it requires no particular expertise to carry out, though the PFV does not quantify the GLOF risk. We calculated PFVs for more than 2000 Himalayan glacial lakes using visible band images and DEMs of ASTER data. The PFV distribution follows a power-law function. We found that 794 lakes did not have an SLA, and consequently had a PFV of zero, while we also identified 49 lakes with PFVs of over 10 million m3, which is a comparable volume to that of recorded major GLOFs. This PFV approach allows us to preliminarily identify and prioritize those Himalayan glacial lakes that require further detailed investigation on GLOF hazards and risk.

  12. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-11-01

    δ13Catm level in the Penultimate (~ 140 000 yr BP and Last Glacial Maximum (~ 22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  13. Glacial and oceanic history of the polar North Atlantic margins: An overview

    DEFF Research Database (Denmark)

    Elverhøj, A.; Dowdeswell, J.; Funder, S.V.

    1998-01-01

    The five-year PONAl'vl (polar North Atlantic l\\largin: Late Cenozoic Evolution) pr programme was launched by the European Science Foundation in 1989. Its aim was to study the major climate-driven environmental variations in the Norwegian-Greenland (also Nordic) Sea and its continental margins ove...... varying from 100,000 year glacial cycles to millennial-scale nuctuations. C(;, 1998 Elsevier Science Ltd. All rights reserved....

  14. A preliminary estimate of changing calcrete carbon storage on land since the Last Glacial Maximum

    Science.gov (United States)

    Adams, J. M.; Post, W. M.

    1999-05-01

    The glacial-to-interglacial shift in land carbon storage is important in understanding the global carbon cycle and history of the climate system. While organic carbon storage on land appears to have been much less than present during the cold, dry glacial maximum, calcrete (soil carbonate) carbon storage would have been greater. Here we attempt a global estimation of this change; we use published figures for present soil carbonate by biome to estimate changing global soil carbonate storage, on the basis of reconstruction of vegetation areas for four timeslices since the Last Glacial Maximum. It appears that there would most likely have been around a 30-45% decrease in calcrete carbon on land accompanying the transition between glacial and interglacial conditions. This represents a change of about 500-400 GtC (outer error limits are estimated at 750-200 GtC) . In order to be weathered into dissolved bicarbonate, this would take up an additional 500-400 GtC (750-200 GtC) in CO 2 from ocean/atmosphere sources. An equivalent amount to the carbonate leaving the caliche reservoir on land may have accumulated in coral reefs and other calcareous marine sediments during the Holocene, liberating an equimolar quantity of CO 2 back into the ocean-atmosphere system as the bicarbonate ion breaks up.

  15. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  16. Expanding Greenland’s Glacial Record

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker

    Mass loss from the Greenland Ice Sheet and adjecent glaciers and ice caps has accelerated within the last decades, and these changes are accurately observed using a variety of different data products. However, the observational era is relatively short offering little insight into past dynamics....... On order to expand the glacial history of Greenland, this thesis explores physical and geological archives for evidence of the glaciers’ past response to climatic variations. Using aerial photographs, the dynamic history of the Greenland Ice Sheet is extended back to 1900 C.E. Glacier changes covering...... the entire 20th century show rapid and widespread responses to climate change. On a longer time-scale is the Holocene history of Helheim Glacier reconstructed using evidence of glacial presence accumulated in lake sediments...

  17. Are glacials "dry" - and in what sense?

    Science.gov (United States)

    Scheff, J.; Seager, R.; Coats, S.; Liu, H.

    2016-12-01

    Glacial maxima during the Pleistocene are generally thought to be arid on land, with a few regional exceptions. Recent work on future climate change, however, has found that different wetness-related variables have opposite-signed responses over large portions of the continents, belying simple ideas of local "drying" or "wetting" with global temperature change in models. Here, we show that this behavior extends to simulations of the Last Glacial Maximum as well: the continents are modeled to have generally wetter topsoils and higher values of standard climate-wetness metrics in the LGM than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with the streamflow response falling in between. Is this model-derived view of the LGM an accurate one? Using a large community pollen and plant-fossil compilation, we confirm that LGM grasslands and open woodlands grew at many sites of present potential forest, seasonal or dry forests at many sites of present potential rain- or seasonal forests, and so forth, while changes in the opposite sense were extremely few and spatially confined. We show that this strongly resembles the simulated photosynthesis changes, but not the simulated streamflow or soil moisture changes. Meanwhile, published LGM lake-level estimates resemble the simulated streamflow changes, but not the photosynthesis changes. Thus, the last glacial does not appear to be systematically "dry" outside the high latitudes, but merely carbon-starved. Similarly, local findings of reduced or more open vegetation at the LGM (e.g. from pollen, carbon isotopes, or dustiness) do not indicate local "aridity" unless corroborating hydrological proxies are also found. Finally, this work suggests that glacial-era evidence of open vegetation with high lake levels (as in the eastern Mediterranean) is not odd or paradoxical, but entirely consistent with climate model output.

  18. Effects of mantle rheologies on viscous heating induced by Glacial Isostatic Adjustment

    Science.gov (United States)

    Huang, PingPing; Wu, Patrick; van der Wal, Wouter

    2018-04-01

    It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's surface can also affect the stability of ice sheets. We have studied the magnitude and spatial-temporal distribution of viscous heating induced in the mantle by the realistic ice model ICE-6G and gravitationally consistent ocean loads. Three types of mantle rheologies, including linear, non-linear and composite rheologies are considered to see if non-linear creep can induce larger viscous heating than linear rheology. We used the Coupled-Laplace-Finite-Element model of Glacial Isostatic Adjustment (GIA) to compute the strain, stress and shear heating during a glacial cycle. We also investigated the upper bound of temperature change and surface heat flux change due to viscous heating. We found that maximum viscous heating occurs near the end of deglaciation near the edge of the ice sheet with amplitude as high as 120 times larger than that of the chondritic radioactive heating. The maximum heat flux due to viscous heating can reach 30 mW m-2, but the area with large heat flux is small and the timescale of heating is short. As a result, the upper bound of temperature change due to viscous heating is small. Even if 30 glacial cycles are included, the largest temperature change can be of the order of 0.3 °C. Thus, viscous heating induced by GIA cannot induce volcanism and cannot significantly affect mantle material properties, mantle dynamics nor ice-sheet stability.

  19. Modelling end-glacial earthquakes at Olkiluoto

    International Nuclear Information System (INIS)

    Faelth, B.; Hoekmark, H.

    2011-02-01

    The objective of this study is to obtain estimates of the possible effects that post-glacial seismic events in three verified deformation zones (BFZ100, BFZ021/099 and BFZ214) at the Olkiluoto site may have on nearby fractures in terms of induced fracture shear displacement. The study is carried out by use of large-scale models analysed dynamically with the three dimensional distinct element code 3DEC. Earthquakes are simulated in a schematic way; large planar discontinuities representing earthquake faults are surrounded by a number of smaller discontinuities which represent rock fractures in which shear displacements potentially could be induced by the effects of the slipping fault. Initial stresses, based on best estimates of the present-day in situ stresses and on state-of-the-art calculations of glacially-induced stresses, are applied. The fault rupture is then initiated at a pre-defined hypocentre and programmed to propagate outward along the fault plane with a specified rupture velocity until it is arrested at the boundary of the prescribed rupture area. Fault geometries, fracture orientations, in situ stress model and material property parameter values are based on data obtained from the Olkiluoto site investigations. Glacially-induced stresses are obtained from state-of-the-art ice-crust/mantle finite element analyses. The response of the surrounding smaller discontinuities, i.e. the induced fracture shear displacement, is the main output from the simulations

  20. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  1. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  2. Methane release from the southern Brazilian margin during the last glacial.

    Science.gov (United States)

    Portilho-Ramos, R C; Cruz, A P S; Barbosa, C F; Rathburn, A E; Mulitza, S; Venancio, I M; Schwenk, T; Rühlemann, C; Vidal, L; Chiessi, C M; Silveira, C S

    2018-04-13

    Seafloor methane release can significantly affect the global carbon cycle and climate. Appreciable quantities of methane are stored in continental margin sediments as shallow gas and hydrate deposits, and changes in pressure, temperature and/or bottom-currents can liberate significant amounts of this greenhouse gas. Understanding the spatial and temporal dynamics of marine methane deposits and their relationships to environmental change are critical for assessing past and future carbon cycle and climate change. Here we present foraminiferal stable carbon isotope and sediment mineralogy records suggesting for the first time that seafloor methane release occurred along the southern Brazilian margin during the last glacial period (40-20 cal ka BP). Our results show that shallow gas deposits on the southern Brazilian margin responded to glacial-interglacial paleoceanographic changes releasing methane due to the synergy of sea level lowstand, warmer bottom waters and vigorous bottom currents during the last glacial period. High sea level during the Holocene resulted in an upslope shift of the Brazil Current, cooling the bottom waters and reducing bottom current strength, reducing methane emissions from the southern Brazilian margin.

  3. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2.

    Science.gov (United States)

    Skinner, L C; Primeau, F; Freeman, E; de la Fuente, M; Goodwin, P A; Gottschalk, J; Huang, E; McCave, I N; Noble, T L; Scrivner, A E

    2017-07-13

    While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14 C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO 2 change.

  4. A Holarctic Biogeographical Analysis of the Collembola (Arthropoda, Hexapoda Unravels Recent Post-Glacial Colonization Patterns

    Directory of Open Access Journals (Sweden)

    María Luisa Ávila-Jiménez

    2011-06-01

    Full Text Available We aimed to describe the main Arctic biogeographical patterns of the Collembola, and analyze historical factors and current climatic regimes determining Arctic collembolan species distribution. Furthermore, we aimed to identify possible dispersal routes, colonization sources and glacial refugia for Arctic collembola. We implemented a Gaussian Mixture Clustering method on species distribution ranges and applied a distance-based parametric bootstrap test on presence-absence collembolan species distribution data. Additionally, multivariate analysis was performed considering species distributions, biodiversity, cluster distribution and environmental factors (temperature and precipitation. No clear relation was found between current climatic regimes and species distribution in the Arctic. Gaussian Mixture Clustering found common elements within Siberian areas, Atlantic areas, the Canadian Arctic, a mid-Siberian cluster and specific Beringian elements, following the same pattern previously described, using a variety of molecular methods, for Arctic plants. Species distribution hence indicate the influence of recent glacial history, as LGM glacial refugia (mid-Siberia, and Beringia and major dispersal routes to high Arctic island groups can be identified. Endemic species are found in the high Arctic, but no specific biogeographical pattern can be clearly identified as a sign of high Arctic glacial refugia. Ocean currents patterns are suggested as being an important factor shaping the distribution of Arctic Collembola, which is consistent with Antarctic studies in collembolan biogeography. The clear relations between cluster distribution and geographical areas considering their recent glacial history, lack of relationship of species distribution with current climatic regimes, and consistency with previously described Arctic patterns in a series of organisms inferred using a variety of methods, suggest that historical phenomena shaping contemporary

  5. A glacial model for TIME4 applicable to the Sellafield and Dounreay areas

    International Nuclear Information System (INIS)

    Boulton, G.S.; Broadgate, M.

    1992-12-01

    This report provides input data for TIME4 Version 2.0 which has been developed for use at Sellafield and Dounreay. This report presents a review of the available data on the disposition of tills and other glacial deposits and landforms in the regions around Sellafield and Dounreay. This information is supplemented by the use of satellite imagery which has allowed the delineation of glacial flowlines on a regional basis. The glacial data is used as a constraint for the modelling of ice sheet behaviour. The physical basis of the model used has been developed previously but is presented for reference in this report. Modifications, notably the use of a nested topographic grid to improve resolution around the site, are described. Output from the model includes ice-front position, relative sea-level, erosion and deposition and sub-glacial discharge as a function of time and position along a transect. Additional information relating to the surface slope of the ice sheet is also included. (Author)

  6. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?

    Science.gov (United States)

    Baldini, James U L; Brown, Richard J; McElwaine, Jim N

    2015-11-30

    The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.

  7. Tri-dimensional Model of the Radovna Glacier from the Last Glacial Period

    Directory of Open Access Journals (Sweden)

    Luka Serianz

    2016-12-01

    Full Text Available The Radovna River Valley is located in the northwest of Slovenia, in the Julian Alps, and bounded by two plateaus – Pokljuka in the south and Mežakla in the north. Typical geological and geomorphological shapes in the valley indicate several glacial stages in the Pleistocene. As a result of glacial activity and river outflw, typical glacial and river terraces can be observed throughout the valley, especially in its lower and middle regions. The paper deals with the Radovna Glacier from the last glacial period, the existence of which is evidenced by certain remaining geomorphological features in the valley. Little investigative research on the Radovna Glacier, on its activity and extent, has been done in recent decades; the little that has been done has only featured the glacier as a secondary or incidental subject of research on the neighbouring Dolinka and Bohinj Glaciers. Both numerical modelling and fild surveying were used for the reconstruction model, with work based on previous experiences and observations of hydrogeological conditions in the Radovna Valley. However, it must be emphasized that the model is only validated based on a few remaining traces of the glacier’s activity.

  8. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    Science.gov (United States)

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  9. The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial

    Science.gov (United States)

    D'Apolito, Carlos; Absy, Maria Lúcia; Latrubesse, Edgardo M.

    2017-08-01

    The effects of climate change on the lowland vegetation of Amazonia during the last glacial cycle are partially known for the middle and late Pleniglacial intervals (late MIS 3, 59-24 ka and MIS 2, 24-11 ka), but are still unclear for older stages of the last glacial and during the last interglacial. It is known that a more seasonal dry-wet climate caused marginal forest retraction and together with cooling rearranged forest composition to some extent. This is observed in pollen records across Amazonia depicting presence of taxa at glacial times in localities where they do not live presently. The understanding of taxa migration is hindered by the lack of continuous interglacial-glacial lowland records. We present new data from a known locality in NW Amazonia (Six Lakes Hill), showing a vegetation record that probably started during MIS 5 (130-71 ka) and lasted until the onset of the Holocene. The vegetation record unravels a novel pattern in tree taxa migration: (1) from the beginning of this cycle Podocarpus and Myrsine are recorded and (2) only later do Hedyosmum and Alnus appear. The latter group is largely restricted to montane biomes or more distant locations outside Amazonia, whereas the first is found in lowlands close to the study site on sandy soils. These findings imply that Podocarpus and Myrsine responded to environmental changes equally and this reflects their concomitant niche use in NW Amazonia. Temperature drop is not discarded as a trigger of internal forest composition change, but its effects are clearer later in the Pleniglacial rather than the Early Glacial. Therefore early climatic/environmental changes had a first order effect on vegetation that invoke alternative explanations. We claim last glacial climate-induced modifications on forest composition favoured the expansion of geomorphologic-soil related processes that initiated forest rearrangement.

  10. A biomarker record of temperature and phytoplankton community in Okinawa Trough since the last glacial maximum

    Science.gov (United States)

    Ruan, Jiaping

    2017-04-01

    A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.

  11. Excitation of the earth's rotational axis by recent glacial discharges

    Science.gov (United States)

    Gasperini, P.; Sabadini, R.; Yuen, D. A.

    1986-01-01

    The effects of present-day glacial discharges and the growth of the Antarctic ice sheet on exciting the earth's rotational axis are studied. Glacial forcing could cause a maximum change in J2 of about one-third of the observed amount, for the Maxwell rheology and for Burgers' body models with a long-term, lower-mantle viscosity greater than about 10 to the 23rd P. For transient rheologies the amount of excitation due to glacial melting decreases. Polar wander is not much excited by recent glacial melting for the various types of rheologies examined.

  12. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.

    Science.gov (United States)

    Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian

    2017-05-23

    Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight

  13. Pleistocene environments and glacial history of the northern North Sea

    Science.gov (United States)

    Reinardy, Benedict; Hjelstuen, Berit; Petter Sejrup, Hans; Augedal, Hans; Jørstad, Arild

    2017-04-01

    advances. A thick till unit overlain by a sand layer in the study area was deposited by grounded ice during the Last Glacial Maximum and subsequent drainage of an ice dammed lake in the southern North Sea during the last deglaciation (MIS2) of the study area. This study shows that much of the Quaternary age sediments within the northern North Sea were deposited relatively rapidly during short periods of time probably leaving significant hiatuses within the stratigraphic record. This finding has implications for previous studies that use a chronological framework assuming a relatively continuous sedimentation rate and record for the Early Pleistocene within the North Sea.

  14. Late-glacial of southern South America

    Science.gov (United States)

    Heusser, C. J.

    Overall trends in late-glacial paleoenvironments of southern South America are interpretable from the pollen stratigraphy of radiocarbon dated sections of mires in Tierra del Fuego (55°S), the Chilotan archipelago (42-43°S), and the Chilean Lake District (39-41°S). In Tierra del Fuego, southern beech ( Nothofagus) and shrub and herb taxa (Gramineae, Empetrum, Acaena, Gunnera, Compositae and Cyperaceae) serve as indicators of the changing climate; in the Chilotan archipelago and in the Chilean Lake District, southern beech and other trees (species of Myrtaceae, Podocarpus, Prumnopitys, Pseudopanax and Weinmannia) suffice as indices of climatic change. Pollen records from each of these regions, although in need of greater dating control, indicate climatic sequences that are broadly similar. The records, however, are not regionally consistent in all aspects and differ in their indicator value with the implication of fossil beetle evidence. Attempts at correlation can be unsatisfactory at times and can stem inter alia from the different ecophysiological responses of both plants and beetles to environmental pressures. These differences, which affect the timing of reproduction and migration, may result in the variable occurrence of different species in the records. The broad implication of the pollen data is that following a glacial readvance culminating at about 15,000-14,500 BP, late-glacial climate was generally warmer during intervals before 13,000 and between 12,000 and 11,000 BP, and was cooler between 13,000 and 12,000 and from 11,000 to 10,000 BP.

  15. Glacial transport and local ice dynamics under the Keewatin Ice Divide of the Laurentide Ice Sheet, central Nunavut

    Science.gov (United States)

    Goulet, C.; Roy, M.; McMartin, I.

    2009-12-01

    Goulet, C.; Roy, M., Department of Earth and Atmospheric Sciences, and GEOTOP, University of Quebec in Montreal, QC, H3C 3P8; McMartin, I., Geological Survey of Canada, 601 Booth Street, Ottawa, ON, K1A OE8 Recent paleogeographic reconstructions indicate that the Keewatin Ice Divide (KID) of the Laurentide Ice Sheet (LIS) was highly dynamic throughout the last glacial cycle. Extensive field measurements of cross-cutting ice-flow erosional features (striations, grooves) on multi-faceted bedrock outcrops, as well as mapping of streamlined landforms indicate significant displacements (up to 500 km) of this ice flow center during the last glacial cycle. These episodes of ice-flow reorganization likely affected the patterns of glacial transport, but the extent of the reworking of former glacial dispersal trains is often unconstrained in certain regions. Here we report ice-flow directional data and associated glacial-dynamic considerations for an area located 100 km north of Baker Lake, central Nunavut. This area lies underneath the zone of migration of the KID (essentially north of its final position), thus representing a key area for understanding the dynamics of this sector of the LIS. Measurements of ice-flow indicators indicate at least 7 ice-flow directions, going from N, NNW, NW to WNW, NNE, W, SE, and SW to WSW. A relative chronology was established from multiple intersecting striations and geometrical relations between multi-faceted outcrops, starting from older phases to younger ones with W, NW, NNW, and N. Surficial mapping using air-photo and satellite images indicate that this region is characterized by zones of fast and slower ice velocity. The presence in the centre of the study area of a drift-free positive relief formed by resistant NE-SW-oriented Proterozoic quartzite appears to have played an important role on the local ice dynamics by slowing down the velocity of the ice. Local example of varying ice velocity systems is expressed by a glacially

  16. Continental shelf drowned landscapes: Submerged geomorphological and sedimentary record of the youngest cycles

    NARCIS (Netherlands)

    Cohen, K.M.; Lobo, F.J.

    2013-01-01

    Continental shelves today find themselves largely submerged as a consequence of the sea-level rise in the last 20,000 years, the time since the Last Glacial Maximum (LGM), the period of maximum ice mass and minimum ocean volume within the Last Glacial Cycle. Their geomorphology, however, is far from

  17. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Directory of Open Access Journals (Sweden)

    M. F. Sánchez Goñi

    2017-09-01

    Full Text Available Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses global database, which includes 93 pollen records from the last glacial period (73–15 ka with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL, 40Ar∕39Ar-dated tephra layers has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  18. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  19. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna.

    Science.gov (United States)

    Dong, Feng; Hung, Chih-Ming; Li, Xin-Lei; Gao, Jian-Yun; Zhang, Qiang; Wu, Fei; Lei, Fu-Min; Li, Shou-Hsien; Yang, Xiao-Jun

    2017-12-06

    The glacial-interglacial cycles in the Pleistocene caused repeated range expansion and contraction of species in several regions in the world. However, it remains uncertain whether such climate oscillations had similar impact on East Asian biota, despite its widely recognized importance in global biodiversity. Here we use both molecular and ecological niche profiles on 11 East Asian avian species with various elevational ranges to reveal their response to the late Pleistocene climate changes. The ecological niche models (ENM) consistently showed that these avian species might substantially contract their ranges to the south during the Last Interglacial period (LIG) and expanded their northern range margins through the Last Glacial Maximum (LGM), leading to the LGM ranges observed for all 11 species. Consistently, coalescent simulations based on 25-30 nuclear genes retrieved signatures of significant population growth through the last glacial period across all species studied. Climate statistics suggested that high climatic variability during the LIG and a relatively mild climate at the LGM potentially explained the historical population dynamics of these birds. This is the first study based on multiple species and both lines of ecological niche profiles and genetic data to characterize the unique response of East Asian biota to late Pleistocene climate. The present study highlights regional differences in the evolutionary consequence of climate change during the last glacial cycle and implies that global warming might pose a great risk to species in this region given potentially higher climatic variation in the future analogous to that during the LIG.

  20. Detection and structural identification of dissolved organic matter in Antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy.

    Science.gov (United States)

    Pautler, Brent G; Simpson, André J; Simpson, Myrna J; Tseng, Li-Hong; Spraul, Manfred; Dubnick, Ashley; Sharp, Martin J; Fitzsimons, Sean J

    2011-06-01

    Dissolved organic matter (DOM) is ubiquitous in aquatic ecosystems and is derived from various inputs that control its turnover. Glaciers and ice sheets are the second largest water reservoir in the global hydrologic cycle, but little is known about glacial DOM composition or contributions to biogeochemical cycling. Here we employ SPR-W5-WATERGATE (1)H NMR spectroscopy to elucidate and quantify the chemical structures of DOM constituents in Antarctic glacial ice as they exist in their natural state (average DOC of 8 mg/L) without isolation or preconcentration. This Antarctic glacial DOM is predominantly composed of a mixture of small recognizable molecules differing from DOM in marine, lacustrine, and other terrestrial environments. The major constituents detected in three distinct types of glacial ice include lactic and formic acid, free amino acids, and a mixture of simple sugars and amino sugars with concentrations that vary between ice types. The detection of free amino acid and amino sugar monomer components of peptidoglycan within the ice suggests that Antarctic glacial DOM likely originates from in situ microbial activity. As these constituents are normally considered to be biologically labile (fast cycling) in nonglacial environments, accelerated glacier melt and runoff may result in a flux of nutrients into adjacent ecosystems.

  1. Glacial rebound and crustal stress in Finland

    International Nuclear Information System (INIS)

    Lambeck, K.; Purcell, A.

    2003-11-01

    The last ice age of Fennoscandinavia continues to have geological repercussions across Finland despite the last ice having retreated almost 10,000 years ago: land uplift, shoreline retreat, and the stress state of the crust continues to evolve. This report focusses on the glacial rebound signals for Finland and the Gulf of Bothnia and explores the consequences of the ongoing deformation. The rebound signals include the geological evidence as well as instrumental observations: the tide gauge and lake-level measurements of the past century, the changes in geodetic levels recorded in the repeat levelling surveys of the region and the direct measurement of crustal deformation (radial and horizontal) using high-precision space-geodesy measurements. These signals provide constraints on the Earth's rheology, its elasticity and viscosity, and the glacial history of the region. Once observationally constrained, the rebound models are used to predict both the ongoing evolution of shorelines and the changing state of stress within the crust. This report covers: (i) A review of glacial rebound modelling for Scandinavia (Sections 2 and 3). (ii) Review of observational evidence relating to sea-level change and crustal rebound (Section 4). (iii) New earth and ice-sheet model results from the inversion of the geological evidence for sea-level change, including models of shoreline evolution (Sections 5 and 6). (iv) Earth-model results from the inversion of the geodetic evidence for sea-level change (Section 7). (v) Development of crustal stress models for past and present stress states (Section 8). (vi) Conclusions and recommendations (Section 9). Specific conclusions reached pertain to: (i) Thickness of ice cover over Scandinavia since the Last Glacial Maximum, particularly for the Lateglacial period. (ii) Sea-level change and shoreline evolution for the Baltic area since the time the region became ice-free for the last time. (iii) The predicted rates of present-day crustal

  2. Andean glacial lakes and climate variability since the last glacial maximum

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available LES LACS GLACIAIRES ET LA VARIABILITÉ CLIMATIQUE DANS LES ANDES DEPUIS LE DERNIER MAXIMUM GLACIAIRE. Des carottages réalisés dans des lacs glaciaires des Andes tropicales et subtropicales ont fourni des registres paléoclimatiques continus couvrant le Dernier Maximum Glaciaire et l’Holocène. Des datations 14C sur sédiments lacustres et sur tourbes indiquent que le maximum de la dernière glaciation s’est produit antérieurement au Dernier Maximum Glaciaire Global (18 ka BP. La plupart des lacs ont un âge inférieur à 13 ka BP, ce qui signifie que l’avancée des glaciers correspondant au Pleistocène terminal aurait culminé aux alentours de 14 ka BP. Des avancées durant le Tardi-glaciaire sont enregistrées dans plusieurs sites lacustres. À partir de 10 ka BP, les glaciers ont reculé au-delà de leurs limites actuelles. La sécheresse de l’Holocène moyen est repérée dans la stratigraphie de nombre de lacs, y compris le lac Titicaca. Cette phase d’aridité est suivie par une remontée des niveaux lacustres et une réavancée des glaciers à la fin de l’Holocène. LAGOS GLACIARES ANDINOS Y VARIABILIDAD CLIMÁTICA DESDE EL ÚLTIMO MÁXIMO GLACIAL. Testigos de sedimentos de los lagos glaciares en los Andes tropicales/subtropicales proporcionan registros continuos de los paleoclimas del último glacial superior y del Holoceno. Dataciones del radiocarbón de los sedimentos profundos en los lagos y de las turberas indican que el máximo del último glacial fue antes del máximo glacial global con una fecha de 18 14C ka BP. La mayoría de los lagos tienen una antigüedad menor de 13 14C ka BP, lo que significa que hubo una fase de glaciación del Pleistoceno superior culminada alrededor de 14 14C ka BP. Los avances durante el glacial superior son indicados en varios testigos de sedimentos de los lagos y, después de 10 14C ka BP, los glaciares quedaron dentro de sus límites actuales. Una sequía durante el Holoceno medio est

  3. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial...

  4. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    Science.gov (United States)

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  5. To what extent can global warming events influence scaling properties of climatic fluctuations in glacial periods?

    Science.gov (United States)

    Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2017-04-01

    MultiFractal Detrended Fluctuation Analysis (MF-DFA), we show that a multifractal structure exists for both high- and low-frequency fluctuations in Northern and Southern hemispheres, with different scaling exponents, thus indicating a long-range persistence of the climatic variability within the whole Last Glacial Period. Our results evidence that both DO events and cooling/warming cycles must be considered as processes of the internal component of the Earth's climate, rather than processes related to external forcings. This study should be helpful for investigation of the internal origin of climate changes. References Shao, Z.G. and Ditlevsen, P.D., Nature Commun., 7, 10951, (2016). Alberti, T., Lepreti, F., Vecchio, A., Bevacqua, E., Capparelli, V. and Carbone, V., Clim. Past, 10, 1751 (2014).

  6. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Narendra Raj Khanal

    2015-11-01

    Full Text Available The Himalayas have experienced several glacial lake outburst floods (GLOFs, and the risk of GLOFs is now increasing in the context of global warming. Poiqu watershed in the Tibet Autonomous Region, China, also known as the Bhote Koshi and Sun Koshi downstream in Nepal, has been identified as highly prone to GLOFs. This study explored the distribution of and changes in glacial lakes, past GLOFs and the resulting losses, risk from potential future GLOFs, and risk reduction initiatives within the watershed. A relationship was established between lake area and volume of lake water based on data from 33 lakes surveyed within the Hindu Kush Himalayan region, and the maximum possible discharge was estimated using this and other previously developed empirical equations. We recommend different strategies to reduce GLOF risk and highlight the need for a glacial lake monitoring and early-warning system. We also recommend strong regional cooperation, especially on issues related to transboundary rivers.

  7. Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, Antarctica

    Science.gov (United States)

    Whitehouse, Pippa L.; Bentley, Michael J.; Vieli, Andreas; Jamieson, Stewart S. R.; Hein, Andrew S.; Sugden, David E.

    2017-01-01

    The Weddell Sea sector of the Antarctic Ice Sheet is hypothesized to have made a significant contribution to sea-level rise since the Last Glacial Maximum. Using a numerical flowline model we investigate the controls on grounding line motion across the eastern Weddell Sea and compare our results with field data relating to past ice extent. Specifically, we investigate the influence of changes in ice temperature, accumulation, sea level, ice shelf basal melt, and ice shelf buttressing on the dynamics of the Foundation Ice Stream. We find that ice shelf basal melt plays an important role in controlling grounding line advance, while a reduction in ice shelf buttressing is found to be necessary for grounding line retreat. There are two stable positions for the grounding line under glacial conditions: at the northern margin of Berkner Island and at the continental shelf break. Global mean sea-level contributions associated with these two scenarios are 50 mm and 130 mm, respectively. Comparing model results with field evidence from the Pensacola Mountains and the Shackleton Range, we find it unlikely that ice was grounded at the continental shelf break for a prolonged period during the last glacial cycle. However, we cannot rule out a brief advance to this position or a scenario in which the grounding line retreated behind present during deglaciation and has since re-advanced. Better constraints on past ice sheet and ice shelf geometry, ocean temperature, and ocean circulation are needed to reconstruct more robustly past behavior of the Foundation Ice Stream.

  8. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale

    KAUST Repository

    Dypvik, Eivind

    2012-06-05

    The seasonal variations in glacier lanternfish (Benthosema glaciale) vertical distribution and diel vertical migration (DVM) were studied by use of a bottom-mounted upward-facing 38 kHz echo sounder deployed at 392 m depth and cabled to shore in Masfjorden (~6052?N, ~524?E), Norway. Acoustic data from July 2007-October 2008 were analyzed, and scattering layers below ~220 m during daytime were attributed to glacier lanternfish based on net sampling in this, and previous studies, as well as from analysis of the acoustic data. At these depths, three different diel behavioral strategies were apparent: normal diel vertical migration (NDVM), inverse DVM (IDVM), and no DVM (NoDVM). NoDVM was present all year, while IDVM was present in autumn and winter, and NDVM was present during spring and summer. The seasonal differences in DVM behavior seem to correlate with previously established seasonal distribution of prey. We hypothesize that in regions with seasonally migrating zooplankton, such as where calanoid copepods overwinter at depth, similar plasticity in DVM behavior might occur in other populations of lanternfishes. 2012 The Author(s).

  9. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    Science.gov (United States)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  10. Glacial isostatic uplift of the European Alps.

    Science.gov (United States)

    Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R

    2016-11-10

    Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.

  11. Uncertainty in Greenland glacial isostatic adjustment

    DEFF Research Database (Denmark)

    Milne, G. A.; Lecavalier, B.; Kjeldsen, K. K.

    It is well known that the interpretation of geodetic data in Greenland to constrain recent ice mass changes requires knowledge of isostatic land motion associated with past changes in the ice sheet. In this talk we will consider a variety of factors that limit how well the signal due to past mass...... changes (commonly referred to as glacial isostatic adjustment (GIA)) can be defined. Predictions based on a new model of Greenland GIA will be shown. Using these predictions as a reference, we will consider the influence of plausible variations in some key aspects of both the Earth and ice load components...... of the GIA model on predictions of land motion and gravity changes. The sensitivity of model output to plausible variations in both depth-dependent and lateral viscosity structure will be considered. With respect to the ice model, we will compare the relative contributions of loading during key periods...

  12. Quaternary glacial stratigraphy and chronology of Mexico

    Science.gov (United States)

    White, Sidney E.

    The volcano Iztaccihuatl in central Mexico was glaciated twice during the middle Pleistocene, once probably in pre-Illinoian (or pre-Bull Lake) time, and once in late Illinoian (or Bull Lake) time. Glaciation during the late Pleistocene was restricted to the late Wisconsin (or Pinedale). A maximum advance and one readvance are recorded in the early part, and one readvance in the latter part. Three or four small neoglacial advances occurred during the Holocene. Two other volcanoes nearby, Ajusco and Malinche, have a partial record of late Pleistocene and Holocene glaciations. Three others, Popocatépetl, Pico de Orizaba, and Nevado de Toluca, have a full Holocene record of three to five glacial advances during Neoglaciation.

  13. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    Directory of Open Access Journals (Sweden)

    N. Sudarchikova

    2015-05-01

    Full Text Available The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL, mid-Holocene (6000 yr BP; hereafter referred to as "6 kyr", last glacial inception (115 000 yr BP; hereafter "115 kyr" and Eemian (126 000 yr BP; hereafter "126 kyr". One glacial time interval, the Last Glacial Maximum (LGM (21 000 yr BP; hereafter "21 kyr", was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher

  14. A simple metabolic model of glacial-interglacial energy supply to the upper ocean

    Science.gov (United States)

    Pelegrí, J. L.; Olivella, R.; García-Olivares, A.

    2011-03-01

    We use a simple two-state two-box ocean to simulate the CO2 signal during the last four glacial-interglacial transitions in the earth system. The model is inspired by the similarity in spatial organization and temporal transition patterns between the earth and other complex systems, such as mammals. The comparison identifies the earth's metabolic rate with net autotrophic primary production in the upper ocean, sustained through new inorganic carbon and nutrients advected from the deep ocean and organic matter remineralized within the upper ocean. We view the glacial-interglacial transition as a switch of the upper ocean from a basal to an enhanced metabolic state, with energy supply initially relying on the remineralization of the local organic sources and the eventual steady state resulting from the increased advective supply of inorganic deep sources. During the interglacial-glacial transition the opposite occurs, with an initial excess of advective supply and primary production that allows the replenishment of the upper-ocean organic storages. We set the relative change in energy supply from the CO2 signal and use genetic algorithms to explore the sensitivity of the model output to both the basal recirculation rate and the intensity-timing of the maximum recirculation rate. The model is capable of reproducing quite well the long-term oscillations, as shown by correlations with observations typically about 0.8. The dominant time scale for each cycle ranges between about 40 and 45 kyr, close to the 41 kyr average obliquity astronomical period, and the deep-ocean recirculation rate increases between one and two orders of magnitude from glacial to interglacial periods.

  15. Phylogeography and post-glacial recolonization in wolverines (Gulo gulo from across their circumpolar distribution.

    Directory of Open Access Journals (Sweden)

    Joanna Zigouris

    Full Text Available Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05 were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900 from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC. The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This

  16. A Glacial Perspective on the Impact of Heinrich Stadials on North Atlantic Climate

    Science.gov (United States)

    Bromley, G. R.; Putnam, A. E.; Rademaker, K. M.; Balter, A.; Hall, B. L.

    2017-12-01

    The British Isles contain a rich geologic record of Late Pleistocene ice sheet behaviour in the NE North Atlantic basin. We are using cosmogenic 10Be surface-exposure dating, in conjunction with detailed glacial-geomorphic mapping, to reconstruct the timing and nature of cryospheric change - and thus climate variability - in northern Scotland since the Last Glacial Maximum. Our specific focus is Heinrich Stadial 1 (18,300-14,700 years ago), arguably the most significant abrupt climate event of the last glacial cycle and a major feature in global palaeoclimate records. Such constraint is needed because of currently conflicting models of how these events impact terrestrial environments and a recent hypothesis attributing this disparity to enhanced seasonality in the North Atlantic basin. To date, we have measured 10Be in > 30 samples from glacial erratics located on moraines deposited by the British Ice Sheet as it retreated from the continental shelf to its highland source regions. Our preliminary results indicate that the stadial was characterised by widespread deglaciation driven by atmospheric warming, a pattern that is suggestive of pronounced seasonality. Additionally, we report new exposure ages from moraines deposited during a subsequent phase of alpine glaciation (known locally as the Loch Lomond Readvance) that has long been attributed to the Younger Dryas stadial. With the growing focus on the full expression of stadials, and the inherent vulnerability of Europe to shifts in North Atlantic climate, developing the extant record of terrestrial glaciation and comparing these data to marine records is a critical step towards understanding the drivers of abrupt climate change.

  17. Regional differentiation and post-glacial expansion of the Atlantic silverside, Menidia menidia, an annual fish with high dispersal potential

    OpenAIRE

    Mach, Megan E.; Sbrocco, Elizabeth J.; Hice, Lyndie A.; Duffy, Tara A.; Conover, David O.; Barber, Paul H.

    2010-01-01

    The coastal marine environment of the Northwest Atlantic contains strong environmental gradients that create distinct marine biogeographic provinces by limiting dispersal, recruitment, and survival. This region has also been subjected to numerous Pleistocene glacial cycles, resulting in repeated extirpations and recolonizations in northern populations of marine organisms. In this study, we examined patterns of genetic structure and historical demography in the Atlantic silverside, Menidia men...

  18. Late- and post-glacial vegetation dynamics in Western Rhodopes (Bulgaria) based on pollen analysis and radiocarbon dating

    International Nuclear Information System (INIS)

    Filipovitch, L.; Lazarova, M.

    2002-01-01

    This study offers a reconstruction of Quaternary vegetation in the region of Shiroka Polyana (Western Rhodopes mountains) on the basis of pollen analysis and 14 C dating. It helps to trace out the trends in vegetation dynamics. The palaeosuccession cycle providing valuable floristic and coenotic information about the Late Glacial (13000 BP) and the entire Holocene throughout several major stages is recreated: grassy communities, thermophilus deciduous forests, fir-hornbeam-beech forests, spruce-pine forests, pine-spruce forests. (authors)

  19. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  20. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula

    Science.gov (United States)

    Hanson, Michelle A.; Lian, Olav B.; Clague, John J.

    2012-01-01

    Glacial Lake Missoula formed when the Purcell Trench lobe of the Cordilleran ice sheet dammed Clark Fork River in Montana during the Fraser Glaciation (marine oxygen isotope stage 2). Over a period of several thousand years, the lake repeatedly filled and drained through its ice dam, and floodwaters coursed across the landscape in eastern Washington. In this paper, we describe the stratigraphy and sedimentology of a significant new section of fine-grained glacial Lake Missoula sediment and compare this section to a similar, previously described sequence of sediments at Ninemile Creek, 26 km to the northwest. The new exposure, which we informally term the rail line section, is located near Missoula, Montana, and exposes 29 units, each of which consists of many silt and clay couplets that we interpret to be varves. The deposits are similar to other fine-grained sediments attributed to glacial Lake Missoula. Similar varved sediments overlie gravelly flood deposits elsewhere in the glacial Lake Missoula basin. Each of the 29 units represents a period when the lake was deepening, and all units show evidence for substantial draining of glacial Lake Missoula that repeatedly exposed the lake floor. The evidence includes erosion and deformation of glaciolacustrine sediment that we interpret happened during draining of the lake, desiccation cracks that formed during exposure of the lake bottom, and fluvial sand deposited as the lake began to refill. The floods date to between approximately 21.4 and 13.4 cal ka ago based on regional chronological data. The total number of varves at the rail line and Ninemile sites are, respectively, 732 and 583. Depending on lake refilling times, each exposure probably records 1350-1500 years of time. We present three new optical ages from the rail line and Ninemile sites that further limit the age of the floods. These ages, in calendar years, are 15.1 ± 0.6 ka at the base of the Ninemile exposure, and 14.8 ± 0.7 and 12.6 ± 0.6 ka midway

  1. Geomorphology of the Chippewa River delta of Glacial Lake Saginaw, central Lower Michigan, USA

    Science.gov (United States)

    Connallon, Christopher B.; Schaetzl, Randall J.

    2017-08-01

    We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈ 17 and 15 ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈ 18 km wide and ≈ 38 km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1-2 m or less on its eastern margins. Mean thicknesses are 2.3-2.9 m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈ 17.1 to ≈ 16 ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈ 15 ka·BP). Together, these data suggest that the Chippewa delta formed

  2. Re-assessing the influence of glacial-isostatic adjustment on Antarctic ice-mass balance estimated from GRACE

    Science.gov (United States)

    Konrad, H.; Sasgen, I.; Klemann, V.; Ivins, E. R.; Martinec, Z.

    2012-04-01

    Satellite gravimetry observations of the contemporary ice-mass balance in Antarctica are strongly influenced by mass movements in the Earth interior induced by ice-load variations during the last glacial cycle, i.e. the glacial-isostatic adjustment (GIA). Newly available GPS observations collected within the POLENET project (www.polenet.org) represent a valuable constraint on GIA models predicting surface deformation and gravity-field change in Antarctica. Here, we re-assess the influence of GIA on Antarctic ice-mass balance estimated from the Gravity Recovery and Climate Experiment (GRACE). For this, we apply a viscoelastic Earth model, accounting for the rheological differences between East and West Antarctica, to three independent glacial histories ICE-5G (Peltier, 2004), IJ05 (Ivins & James, 2005) and HUY (Huybrechts, 2002). We predict the associated Antarctic GIA signal. With a stochastic approach, the glacial histories are regionally modified to satisfy GPS, GRACE as well as the combination of both observation types. We assess the influence of constraining GIA with GPS/GRACE on the reduction of the error budget of Antarctic ice-mass balances from GRACE.

  3. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet

    Directory of Open Access Journals (Sweden)

    Tao Che

    2014-01-01

    Full Text Available Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet, in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.

  4. Subglacial drainage of the Eurasian Ice Sheet Complex during the last glacial period

    Science.gov (United States)

    Shackleton, C.; Patton, H.; Winsborrow, M.; Hubbard, A.; Andreassen, K.

    2017-12-01

    The presence and behaviour of water at the interface between an ice sheet and its substrate exerts a fundamental control over many aspects of ice dynamics. The long-term evolution of subglacial hydrology is therefore a key issue when considering how ice sheets respond to environmental change. We investigate the long-term development of the subglacial drainage system beneath the Eurasian Ice Sheet Complex (EISC) - the third largest ice mass globally during the Last Glacial Maximum. At its peak the EISC comprised three semi-independent ice sheets centered over the Barents Sea, Fennoscandia, and the British Isles, which merged together to form continuous ice cover over more than 60° of longitude and 30° of latitude. Using empirically constrained modelled ice sheet surfaces and high-resolution isostatically corrected topographies, we calculate hydraulic pressure potential surfaces across a full glacial cycle (37-10 ka BP). Snapshots of hydraulic activity are produced at a temporal resolution of 100 years, with hydraulic potential minima used as a proxy for potential subglacial lake locations, and channelized flow routing. Up to 4000 potential lakes are predicted during ice maximum conditions, some reaching extents over 100 km2. More than 70% have a surface area cycle, reflecting the first-order influence of divergent topographic relief within each sub-domain. Furthermore, drainage switching and water piracy in response to subtle changes in ice surface configurations are observed, with potential implications for the stability of major palaeo-ice streams in the Baltic and Barents seas. The persistency of hydraulic potential minima during the last glacial period is used to identify possible sites of preserved palaeo-subglacial lakes, defining useful target areas for further field-based investigations.

  5. Abiotic landscape and vegetation patterns in the Netherlands during the Weichselian Late Glacial

    NARCIS (Netherlands)

    Hoek, W.Z.

    2000-01-01

    The Late Glacial landscape of the Netherlands was a landscape with changing geomorphology and vegetation. Glacial, eolian and fluvial processes in the time before the Late Glacial initially had formed the main landscape types that still existed during the Late Glacial. In these landscape types,

  6. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  7. Glacial history and behaviour of Mackay Glacier, Transantarctic Mountains

    Science.gov (United States)

    Selwyn Jones, Richard; Mackintosh, Andrew; Norton, Kevin; Golledge, Nicholas; Fogwill, Christopher

    2014-05-01

    previously been studied in this manner. Mackay Glacier is critical because its response on glacial-interglacial timescales is likely modulated by changes in grounded ice volume in the western Ross Sea. The Ross Sea sector contained a large amount of the excess ice volume in Antarctica at the LGM, and hence is also an important area to search for a possible Antarctic contribution to Meltwater Pulse 1a. We present the geomorphology of glaciated nunataks and >50 cosmogenic surface-exposure dates that record thinning from elevation transects at 3 locations down Mackay Glacier. The deglacial thinning chronology is being used, together with a series of mapped offshore grounding-zone wedges, to constrain a 1-dimensional numerical flowline model investigating the time-transgressive glacial dynamics. The model will help to evaluate the mechanisms that forced ice sheet retreat between the LGM and present-day.

  8. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

    International Nuclear Information System (INIS)

    Watson, Andrew J.; Naveira Garabato, Alberto C.

    2006-01-01

    Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO 2 . Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and 2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air/sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO 2 could then be explained as a natural consequence of the connection between the air/sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO 2 . Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO 2 in such a formulation

  9. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh; Oryan, Bar

    2017-12-15

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  10. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Science.gov (United States)

    Malinverno, A.; Cook, A.; Daigle, H.; Oryan, B.

    2017-12-01

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  11. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    OpenAIRE

    Jansen, Malte F.

    2016-01-01

    To understand climatic swings between glacial and interglacial climates we need to explain the observed fluctuations in atmospheric carbon dioxide (CO2), which in turn are most likely driven by changes in the deep ocean circulation. This study presents a model for differences in the deep ocean circulation between glacial and interglacial climates consistent with both our physical understanding and various proxy observations. The results suggest that observed changes in ocean circulation and s...

  12. Circulation and oxygenation of the glacial South China Sea

    Science.gov (United States)

    Li, Dawei; Chiang, Tzu-Ling; Kao, Shuh-Ji; Hsin, Yi-Chia; Zheng, Li-Wei; Yang, Jin-Yu Terence; Hsu, Shih-Chieh; Wu, Chau-Ron; Dai, Minhan

    2017-05-01

    Degree of oxygenation in intermediate water modulates the downward transferring efficiency of primary productivity (PP) from surface water to deep water for carbon sequestration, consequently, the storage of nutrients versus the delivery and sedimentary burial fluxes of organic matter and associated biomarkers. To better decipher the PP history of the South China Sea (SCS), appreciation about the glacial-interglacial variation of the Luzon Strait (LS) throughflow, which determines the mean residence time and oxygenation of water mass in the SCS interior, is required. Based on a well-established physical model, we conducted a 3-D modeling exercise to quantify the effects of sea level drop and monsoon wind intensity on glacial circulation pattern, thus, to evaluate effects of productivity and circulation-induced oxygenation on the burial of organic matter. Under modern climatology wind conditions, a 135 m sea-level drop results in a greater basin closeness and a ∼24% of reduction in the LS intermediate westward throughflow, consequently, an increase in the mean water residence time (from 19.0 to 23.0 years). However, when the wind intensity was doubled during glacial low sea-level conditon, the throughflow restored largely to reach a similar residence time (18.4 years) as today regardless its closeness. Comparing with present day SCS, surface circulation pattern in glacial model exhibits (1) stronger upwelling at the west off Luzon Island, and (2) an intensified southwestward jet current along the western boundary of the SCS basin. Superimposed hypothetically by stronger monsoon wind, the glacial SCS conditions facilitate greater primary productivity in the northern part. Manganese, a redox sensitive indicator, in IMAGES core MD972142 at southeastern SCS revealed a relatively reducing environment in glacial periods. Considering the similarity in the mean water residence time between modern and glacial cases, the reducing environment of the glacial southeastern SCS

  13. Glacial Earthquakes: Monitoring Greenland's Glaciers Using Broadband Seismic Data

    Science.gov (United States)

    Olsen, K.; Nettles, M.

    2017-12-01

    The Greenland ice sheet currently loses 400 Gt of ice per year, and up to half of that mass loss comes from icebergs calving from marine-terminating glaciers (Enderlin et al., 2014). Some of the largest icebergs produced by Greenland's glaciers generate magnitude 5 seismic signals when they calve. These glacial earthquakes are recorded by seismic stations around the world. Full-waveform inversion and analysis of glacial earthquakes provides a low-cost tool to identify where and when gigaton-sized icebergs calve, and to track this important mass-loss mechanism in near-real-time. Fifteen glaciers in Greenland are known to have produced glacial earthquakes, and the annual number of these events has increased by a factor of six over the past two decades (e.g., Ekström et al., 2006; Olsen and Nettles, 2017). Since 2000, the number of glacial earthquakes on Greenland's west coast has increased dramatically. Our analysis of three recent years of data shows that more glacial earthquakes occurred on Greenland's west coast from 2011 - 2013 than ever before. In some cases, glacial-earthquake force orientations allow us to identify which section of a glacier terminus produced the iceberg associated with a particular event. We are able to track the timing of major changes in calving-front orientation at several glaciers around Greenland, as well as progressive failure along a single calving front over the course of hours to days. Additionally, the presence of glacial earthquakes resolves a glacier's grounded state, as glacial earthquakes occur only when a glacier terminates close to its grounding line.

  14. Diversification within glacial refugia: tempo and mode of evolution of the polytypic fish Barbus sclateri.

    Science.gov (United States)

    Gante, Hugo F; Micael, Joana; Oliva-Paterna, Francisco J; Doadrio, Ignacio; Dowling, Thomas E; Alves, Maria Judite

    2009-08-01

    A diversity of evolutionary processes can be responsible for generating and maintaining biodiversity. Molecular markers were used to investigate the influence of Plio-Pleistocene climatic oscillations on the evolutionary history of taxa restricted to the freshwaters of a classical glacial refugium. Population genetic, phylogenetic and phylogeographical methods allowed the inference of temporal dynamics of cladogenesis and processes shaping present-day genetic constitution of Barbus sclateri, a polytypic taxon found in several independent river drainages in southern Iberian Peninsula. Results from different analyses consistently indicate several range expansions, high levels of allopatric fragmentation, and admixture following secondary contacts throughout its evolutionary history. Using a Bayesian demographical coalescent model on mitochondrial DNA sequences calibrated with fossil evidence, all cladogenetic events within B. sclateri are inferred to have occurred during the Pleistocene and were probably driven by environmental factors. Our results suggest that glaciation cycles did not inhibit cladogenesis and probably interacted with regional geomorphology to promote diversification. We conclude that this polytypic taxon is a species complex that recently diversified in allopatry, and that Pleistocene glaciation-deglaciation cycles probably contributed to the generation of biological diversity in a classical glacial refugium with high endemicity.

  15. Menstrual Cycle

    Science.gov (United States)

    ... To receive General email updates Enter email Submit Menstrual Cycle The menstrual cycle is the hormonal process ... Preventing problems with your menstrual cycle View more Menstrual Cycle resources Related information Endometriosis Infertility Polycystic ovary ...

  16. Clasts petrography of post-glacial deposits in the Lubusz Elevation, western Poland

    Science.gov (United States)

    Lipka, Ewelina

    2010-05-01

    occured to be greater than in any other previous research concerning this area or its surroundings. Further research shall reveal the ground of this increased flint contribution. Indicator erratics spectra show that the ice incorporated mainly rocks from southern Sweden (Småland, Skåne), Bornholm and Dalarna. Both indicator and statistical erratics spectra suggest that the ice-flow direction was straight southward. Also the so-called theoretical stone centre TGZ is always located in Småland. The discrepancy between TGZs of analysed samples is insignificant. On the one hand indicator erratics spectra taken both from glacial till and glaciofluvial deposits were found to be very similar. On the other hand parent areas of erratics from the foreland appear slightly more scattered than the parent areas of erratics from the end moraine zone. Nevertheless the author suggests the need to conduct more extensive research before drawing a firm conclusion.

  17. Alternative glacial-interglacial refugia demographic hypotheses tested on Cephalocereus columna-trajani (Cactaceae) in the intertropical Mexican drylands

    Science.gov (United States)

    Cornejo-Romero, Amelia; Aguilar-Martínez, Gustavo F.; Medina-Sánchez, Javier; Rendón-Aguilar, Beatriz; Valverde, Pedro Luis; Zavala-Hurtado, Jose Alejandro; Serrato, Alejandra; Rivas-Arancibia, Sombra; Pérez-Hernández, Marco Aurelio; López-Ortega, Gerardo; Jiménez-Sierra, Cecilia

    2017-01-01

    Historic demography changes of plant species adapted to New World arid environments could be consistent with either the Glacial Refugium Hypothesis (GRH), which posits that populations contracted to refuges during the cold-dry glacial and expanded in warm-humid interglacial periods, or with the Interglacial Refugium Hypothesis (IRH), which suggests that populations contracted during interglacials and expanded in glacial times. These contrasting hypotheses are developed in the present study for the giant columnar cactus Cephalocereus columna-trajani in the intertropical Mexican drylands where the effects of Late Quaternary climatic changes on phylogeography of cacti remain largely unknown. In order to determine if the historic demography and phylogeographic structure of the species are consistent with either hypothesis, sequences of the chloroplast regions psbA-trnH and trnT-trnL from 110 individuals from 10 populations comprising the full distribution range of this species were analysed. Standard estimators of genetic diversity and structure were calculated. The historic demography was analysed using a Bayesian approach and the palaeodistribution was derived from ecological niche modelling to determine if, in the arid environments of south-central Mexico, glacial-interglacial cycles drove the genetic divergence and diversification of this species. Results reveal low but statistically significant population differentiation (FST = 0.124, P < 0.001), although very clear geographic clusters are not formed. Genetic diversity, haplotype network and Approximate Bayesian Computation (ABC) demographic analyses suggest a population expansion estimated to have taken place in the Last Interglacial (123.04 kya, 95% CI 115.3–130.03). The species palaeodistribution is consistent with the ABC analyses and indicates that the potential area of palaedistribution and climatic suitability were larger during the Last Interglacial and Holocene than in the Last Glacial Maximum. Overall

  18. Alternative glacial-interglacial refugia demographic hypotheses tested on Cephalocereus columna-trajani (Cactaceae in the intertropical Mexican drylands.

    Directory of Open Access Journals (Sweden)

    Amelia Cornejo-Romero

    Full Text Available Historic demography changes of plant species adapted to New World arid environments could be consistent with either the Glacial Refugium Hypothesis (GRH, which posits that populations contracted to refuges during the cold-dry glacial and expanded in warm-humid interglacial periods, or with the Interglacial Refugium Hypothesis (IRH, which suggests that populations contracted during interglacials and expanded in glacial times. These contrasting hypotheses are developed in the present study for the giant columnar cactus Cephalocereus columna-trajani in the intertropical Mexican drylands where the effects of Late Quaternary climatic changes on phylogeography of cacti remain largely unknown. In order to determine if the historic demography and phylogeographic structure of the species are consistent with either hypothesis, sequences of the chloroplast regions psbA-trnH and trnT-trnL from 110 individuals from 10 populations comprising the full distribution range of this species were analysed. Standard estimators of genetic diversity and structure were calculated. The historic demography was analysed using a Bayesian approach and the palaeodistribution was derived from ecological niche modelling to determine if, in the arid environments of south-central Mexico, glacial-interglacial cycles drove the genetic divergence and diversification of this species. Results reveal low but statistically significant population differentiation (FST = 0.124, P < 0.001, although very clear geographic clusters are not formed. Genetic diversity, haplotype network and Approximate Bayesian Computation (ABC demographic analyses suggest a population expansion estimated to have taken place in the Last Interglacial (123.04 kya, 95% CI 115.3-130.03. The species palaeodistribution is consistent with the ABC analyses and indicates that the potential area of palaedistribution and climatic suitability were larger during the Last Interglacial and Holocene than in the Last Glacial

  19. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2008-03-01

    Full Text Available One possible path for exploring the Earth’s far-from-equilibrium homeostasis is to assume that it results from the organisation of optimal pulsating systems, analogous to that in complex living beings. Under this premise it becomes natural to examine the Earth’s organisation using physiological-like variables. Here we identify some of these main variables for the ocean’s circulatory system: pump rate, stroke volume, carbon and nutrient arterial-venous differences, inorganic nutrients and carbon supply, and metabolic rate. The stroke volume is proportional to the water transported into the thermocline and deep oceans, and the arterial-venous differences occur between recently-upwelled deep waters and very productive high-latitudes waters, with atmospheric CO2 being an indicator of the arterial-venous inorganic carbon difference. The metabolic rate is the internal-energy flux (here expressed as flux of inorganic carbon in the upper ocean required by the system’s machinery, i.e. community respiration. We propose that the pump rate is set externally by the annual cycle, at one beat per year per hemisphere, and that the autotrophic ocean adjusts its stroke volume and arterial-venous differences to modify the internal-energy demand, triggered by long-period astronomical insolation cycles (external-energy supply. With this perspective we may conceive that the Earth’s interglacial-glacial cycle responds to an internal organisation analogous to that occurring in living beings during an exercise-recovery cycle. We use an idealised double-state metabolic model of the upper ocean (with the inorganic carbon/nutrients supply specified through the overturning rate and the steady-state inorganic carbon/nutrients concentrations to obtain the temporal evolution of its inorganic carbon concentration, which mimics the glacial-interglacial atmospheric CO2 pattern.

  20. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: Radically different climate system on the pre-Ediacaran Earth

    Directory of Open Access Journals (Sweden)

    George E. Williams

    2016-07-01

    Full Text Available Proterozoic (pre-Ediacaran glaciations occurred under strongly seasonal climates near sea level in low palaeolatitudes. Metre-scale primary sand wedges in Cryogenian periglacial deposits are identical to those actively forming, through the infilling of seasonal (winter thermal contraction-cracks in permafrost by windblown sand, in present-day polar regions with a mean monthly air temperature range of 40 °C and mean annual air temperatures of −20 °C or lower. Varve-like rhythmites with dropstones in Proterozoic glacial successions are consistent with an active seasonal freeze–thaw cycle. The seasonal (annual oscillation of sea level recorded by tidal rhythmites in Cryogenian glacial successions indicates a significant seasonal cycle and extensive open seas. Palaeomagnetic data determined directly for Proterozoic glacial deposits and closely associated rocks indicate low palaeolatitudes: Cryogenian deposits in South Australia accumulated at ≤10°, most other Cryogenian deposits at 54° during Proterozoic low-latitude glaciations, whereby the equator would be cooler than the poles, on average, and global seasonality would be greatly amplified.

  1. Flood-pulse and riverscape dynamics in a braided glacial river.

    Science.gov (United States)

    Malard, Florian; Uehlinger, Urs; Zah, Rainer; Tockner, Klement

    2006-03-01

    River ecosystems are increasingly viewed as dynamic riverscapes; their extent, composition, and configuration vary in response to the pulsing of discharge. Although compositional and configurational shifts in riverscapes are thought to control ecosystem processes and biodiversity, attempts to quantify riverscape dynamics of braided rivers are scarce. We measured monthly changes in the length, spatial arrangement, and age distribution of clear (groundwater-fed) and turbid-water (glacial-fed) channels during two annual cycles in a braided glacial river. Biological data from concurrent studies were used to assess the effects of seasonal changes in the size and pattern of the riverscape on local zoobenthic density, standing crop of epilithic algae, and spatiotemporal distribution of the hyporheos. The hydrological processes involved in the expansion-contraction cycle of the riverscape resulted in a complex, albeit predictable, pattern of change in the proportion and spatial arrangement of clear and turbid channels. On average, 30% of the riverscape was renewed at monthly intervals. Surface hydrological connectivity and the length of turbid channels increased logarithmically with increasing discharge. The length of clear channels increased up to a threshold discharge of 1.5 m3/s, above which surface flooding resulted in the contraction and fragmentation of clear water bodies. Turbid channels exhibited a unimodal age distribution, whereas clear channels had two cohorts that appeared during the expansion and contraction phases. The renewal pattern and configuration of the riverscape changed little between years despite differences in discharge and the occurrence of several rainfall-induced spates. The density of benthic invertebrate communities in the main channel decreased with increasing size of aquatic habitats indicating that local zoobenthic density was affected by dilution-concentration effects. The disproportionate increase in the proportion of glacial-fed habitats

  2. Heinrich events modeled in transient glacial simulations

    Science.gov (United States)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  3. Microfabric and Structures in Glacial Ice

    Science.gov (United States)

    Monz, M.; Hudleston, P. J.

    2017-12-01

    Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have

  4. A very simple criterion for the orbital-scale occurrence of interglacials and glacial inceptions over the last 800 kyr

    Science.gov (United States)

    Mitsui, Takahito; Crucifix, Michel; Wolff, Eric; Tzedakis, Chronis

    2017-04-01

    Past Interglacials Working Group of PAGES (2016) identifies eleven interglacials during the last 800 kyr based on a sea level definition: Marine Isotope Stage (MIS) 1, 5e, 7a-7c (as a single interglacial), 7e, 9e, 11c, 13a, 15a, 15e, 17c, and 19c. An important aspect of this definition is the occurrence of more than one interglacial within an MIS. Recently, the authors of this study proposed a simple rule to determine which insolation cycles lead to interglacials (Tzedakis et al. in press). During the last 800 kyr, interglacial onsets occur when a peak of caloric summer half-year insolation at 65oN exceeds a certain threshold which decreases with time. On the other hand, Ganopolski et al. (2016) proposed a criterion to diagnose the glacial inceptions over the last 800 kyr. Based on the experiments with CLIMBER-2, they derived a critical insolation-CO2 relation curve, below which a glacial inception occurs. It is consistent with all the glacial inceptions happened, but incompatible with the lack of glacial inception near the insolation minimum at 209 kyr BP (MIS 7b). While the summer solstice (or mid-June) mean daily insolation at 65oN has about 20 % of variance in obliquity band, the caloric summer half-year insolation at at 65oN has about 50 % of variance in the obliquity band. In this study, we show that the critical insolation-CO2 relation in terms of caloric summer-half year insolation successfully diagnoses all the glacial inceptions over the last 800 kyr and its lack near MIS 7b. This is due to the fact that, near MIS 7b, the effect of precession maximum (boreal summer solstice at aphelion) is counteracted by the effect of average-above obliquity more strongly in the caloric summer insolation than in the summer solstice insolation. Unifying those two theories with the single caloric summer insolation metric, we present a particularly simple criterion for the orbital-scale occurrence of interglacials and glacial inceptions over the last 800 kyr. We also

  5. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    Science.gov (United States)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  6. Enhancing rates of erosion and uplift through glacial perturbations

    Science.gov (United States)

    Norton, Kevin; Schlunegger, Fritz; Abbühl, Luca

    2010-05-01

    Research over the past decade has shown that the pattern of modern rock uplift in the Swiss Alps correlates with both long-term (thermochronometers) and short-term (cosmogenic nuclide-derived denudation rates, sediment loads, lake fills) measures of erosion. This correlation has been attributed alternately to isostatic causes (compensation to erosion and/or glacial unloading) and tectonic forces (ongoing collision and partial delamination). Of these potential driving forces, only isostatic compensation to erosion fits all available structural, geodetic, and flexural models. We explore this uplift-erosion relationship by analyzing river channel steepness for Alpine rivers. Zones of oversteepening, and hence enhanced stream power, are associated with glacial erosion and deposition during LGM and earlier glaciations, resulting in the focusing of erosion into the inner gorges which connect hanging tributary valleys to the main glacial trunk valley. These inner gorges are transient zones in which fluvial and hillslope processes are in the process of re-adjusting this glacially perturbed landscape. Bedrock properties also play a major role in the response time of these adjustments. Glacially generated knickzones are located within 5 km of the trunk stream in the Rhone valley where resistant lithologies dominate (gneiss), whereas the knickzones have migrated as much as 10 km or further in the less resistant rocks (buendnerschists) of the Rhine valley. We suggest that the rock uplift pattern is controlled by surface denudation as set by the glacial-interglacial history of the Alps. Rapid, focused erosion results in rapid rock uplift rates in the Central Swiss Alps, where glaciers were most active. An interesting ramification of this reasoning is that in the absence of glacial perturbation, both rock uplift rates and denudation rates would be substantially lower in this isostatically compensated mountain belt.

  7. Sea-level driven glacial-age refugia and post-glacial mixing on subtropical coasts, a palaeohabitat and genetic study.

    Science.gov (United States)

    Dolby, Greer A; Hechinger, Ryan; Ellingson, Ryan A; Findley, Lloyd T; Lorda, Julio; Jacobs, David K

    2016-11-30

    Using a novel combination of palaeohabitat modelling and genetic mixture analyses, we identify and assess a sea-level-driven recolonization process following the Last Glacial Maximum (LGM). Our palaeohabitat modelling reveals dramatic changes in estuarine habitat distribution along the coast of California (USA) and Baja California (Mexico). At the LGM (approx. 20 kya), when sea level was approximately 130 m lower, the palaeo-shoreline was too steep for tidal estuarine habitat formation, eliminating this habitat type from regions where it is currently most abundant, and limiting such estuaries to a northern and a southern refugium separated by 1000 km. We assess the recolonization of estuaries formed during post-LGM sea-level rise through examination of refugium-associated alleles and approximate Bayesian computation in three species of estuarine fishes. Results reveal sourcing of modern populations from both refugia, which admix in the newly formed habitat between the refuges. We infer a dramatic peak in habitat area between 15 and 10 kya with subsequent decline. Overall, this approach revealed a previously undocumented dynamic and integrated relationship between sea-level change, coastal processes and population genetics. These results extend glacial refugial dynamics to unglaciated subtropical coasts and have significant implications for biotic response to predicted sea-level rise. © 2016 The Author(s).

  8. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  9. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification

    OpenAIRE

    Sun, S; Eisenman, I; Stewart, AL

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  10. Glacial geology of the Hellas region on Mars

    Science.gov (United States)

    Kargel, Jeffrey S.; Strom, Robert G.; Johnson, Natasha

    1991-01-01

    A glacial geologic interpretation was recently presented for Argyre, which is herein extended to Hellas. This glacial event is believed to constitute an important link in a global cryohydric epoch of Middle Amazonian age. At glacial maximum, ice apparently extended far beyond the regions of Argyre and Hellas, and formed what is termed as the Austral Ice Sheet, an agglomeration of several ice domes and lobes including the Hellas Lobe. It is concluded that Hellas was apparently heavily glaciated. Also glaciation was young by Martian standards (Middle Amazonian), and ancient by terrestrial standards. Glaciation appears to have occurred during the same period that other areas on Mars were experiencing glaciation and periglacial activity. Glaciation seems to have occurred as a geological brief epoch of intense geomorphic activity in an era characterized by long periods of relative inactivity.

  11. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    Science.gov (United States)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice

  12. Glacial melt content of water use in the tropical Andes

    Science.gov (United States)

    Buytaert, Wouter; Moulds, Simon; Acosta, Luis; De Bièvre, Bert; Olmos, Carlos; Villacis, Marcos; Tovar, Carolina; Verbist, Koen M. J.

    2017-11-01

    Accelerated melting of glaciers is expected to have a negative effect on the water resources of mountain regions and their adjacent lowlands, with tropical mountain regions being among the most vulnerable. In order to quantify those impacts, it is necessary to understand the changing dynamics of glacial melting, but also to map how glacial meltwater contributes to current and future water use, which often occurs at considerable distance downstream of the terminus of the glacier. While the dynamics of tropical glacial melt are increasingly well understood and documented, major uncertainty remains on how the contribution of tropical glacial meltwater propagates through the hydrological system, and hence how it contributes to various types of human water use in downstream regions. Therefore, in this paper we present a detailed regional mapping of current water demand in regions downstream of the major tropical glaciers. We combine these maps with a regional water balance model to determine the dominant spatiotemporal patterns of the contribution of glacial meltwater to human water use at an unprecedented scale and resolution. We find that the number of users relying continuously on water resources with a high (>25%) long-term average contribution from glacial melt is low (391 000 domestic users, 398 km2 of irrigated land, and 11 MW of hydropower production), but this reliance increases sharply during drought conditions (up to 3.92 million domestic users, 2096 km2 of irrigated land, and 732 MW of hydropower production in the driest month of a drought year). A large proportion of domestic and agricultural users are located in rural regions where climate adaptation capacity tends to be low. Therefore, we suggest that adaptation strategies should focus on increasing the natural and artificial water storage and regulation capacity to bridge dry periods.

  13. ESR Dating Research of Glacial Tills in Tibetan Plateau

    Science.gov (United States)

    Bi, W.; Yi, C.

    2016-12-01

    In recent years, Quaternary Glacial-chronology has been made remarkable progress in the Tibetan Platean(TP) with the development of several numeric dating techniques, such as cosmogenic nuclides(NC), optically stimulated luminescence(OSL) and 14C. In constrast, the dating of Quaternary glacial tills in 100,000 years even more than million-year has been a challenge, just because the techniques has defects themselves and the sediments were stransformed during the geological and geomorphology progress later. Electron Spin Resonance(ESR) has been becoming one of the key methods of Quaternary Glacial-chronology with wide range of dating, expecially for the sample older than 100,000 years up to million-year scale. The accurate measurement of equivalent dose significantly impacts on accuracy and reliability of ESR dating method. Therefore, the study of the mechanisms of resetting processes is fundamental for accurate and reliable ESR dating. To understand the mechanism and characteristics of quartz ESR signal resetting of different samples, a series of laboratory simulation and field observation studies were carried out, which made lots of important breakthrough. But the research in quartz ESR signal of moraines is less and the test of ESR dating method is still in the qualitative investigation. Therefor, we use ESR dating and study on the mechanism and characteristics of quartz ESR signals in tills in the Tibetan Platean. In the adjust method of Modern, the quartz ESR signals in Modern glacial tills represent residual values which can be adjusted signals in the older glacial tills. As a consequence, ESR dating of the quartz in moraines needs to be explored in deep with building models to adjust ages which are measured by ESR dating. Therefore, ESR dating will become the trusted one of the cross dating methods in Quaternary Glacial-chronology with the adjust mothod improving the accuracy of ESR dating ages.

  14. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse.

    Science.gov (United States)

    Vandenbroucke, Thijs R A; Armstrong, Howard A; Williams, Mark; Paris, Florentin; Zalasiewicz, Jan A; Sabbe, Koen; Nõlvak, Jaak; Challands, Thomas J; Verniers, Jacques; Servais, Thomas

    2010-08-24

    Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO(2) (8 to 22x PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan ("mixed layer") marine zooplankton biotopes for the Hirnantian glacial maximum (440 Ma) are reconstructed and compared to those from the Sandbian (460 Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 55 degrees -70 degrees S to approximately 40 degrees S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in pCO(2) from a modeled Sandbian level of approximately 8x PAL to approximately 5x PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction.

  15. Timing of Pleistocene glacial oscillations recorded in the Cantabrian Mountains (North Iberia): correlation of glacial and periglacial sequences from both sides of the range using a multiple-dating method approach

    Science.gov (United States)

    Rodriguez-Rodriguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María; Rinterknecht, Vincent; Pallàs, Raimón; Bourlès, Didier

    2015-04-01

    The Cantabrian Mountains is a coastal mountain range up to 2648 m altitude located at 43oN latitude and directly influenced by the North Atlantic climate oscillations. Although nowadays it is fully deglaciatied, glacial sediments and landforms are clearly preserved elsewhere above 1600 m. Particularly, glacial evidence in the central Cantabrian Mountains suggests the formation of an icefield in the headwaters of the Porma and Esla catchments drained by glaciers up to 1-6 km in length in the northern slope and 19 km-long in the southern slope, with their fronts at minimum altitudes of 900 and 1150 m asl respectively (Rodríguez-Rodríguez et al., 2014). Numerical ages obtained from the base of the Brañagallones ice-dammed deposit and one of the lateral moraines that are damming this deposit suggest that the local glacial maximum was prior to ca 33.5 cal ka BP in the Monasterio Valley (see data compiled in Rodriguez-Rodríguez et al., in press). Currently, our research is focused on developing a full chronology of glacial oscillations in both sides of the range and investigating their paleoclimate significance and relationship with glacial asymmetry through the combined use of surface exposure, OSL and radiocarbon dating methods. In this work, we present 47 10Be surface exposure ages obtained from boulders in moraines, glacial erratic boulders and rock glaciers in the Monasterio and Porma valleys. The glacial record of these valleys was chosen because of: (i) its good preservation state; (ii) the occurrence of a quartz-rich sandstone formation; and (iii) the availability of previous 14C and OSL numerical ages. Sampling sites were selected considering the relative age of glacial stages to cover as complete as possible the history of Pleistocene glaciations in the studied area, from the glacial maximum stage to the prevalence of periglacial conditions. Preliminary results suggest the occurrence of several glacial advances of similar extent at ca 150 - 50 ka followed

  16. Late-Glacial radiocarbon- and palynostratigraphy in the Swiss Plateau

    International Nuclear Information System (INIS)

    Ammann, B.; Lotter, A.F.

    1989-01-01

    A detailed Late-Glacial radiocarbon stratigraphy for the Swiss Plateau has been established on the basis of over 90 accelerator 14 C dates on terrestrial plant macrofossils. A comparison of the radiocarbon ages derived from terrestrial, telmatic and limnic material at different sites on the Swiss Plateau yields a proposal for modifying the zonation system of Welten for the Late-Glacial. By retaining the limits of chronozones and by refining the palynostratigraphic criteria for the limits of biozones, a separation between chrono- and biozonation at the beginning of the Boelling and the Younger Dryas becomes obvious. 54 refs

  17. Late Glacial to Holocene climate change and human impact in the Mediterranean : The last ca. 17ka diatom record of Lake Prespa (Macedonia/Albania/Greece)

    NARCIS (Netherlands)

    Cvetkoska, Aleksandra; Levkov, Zlatko; Reed, Jane M.; Wagner, Bernd

    2014-01-01

    Lake Prespa (Macedonia/Albania/Greece) occupies an important location between Mediterranean and central European climate zones. Although previous multi-proxy research on the Late Glacial to Holocene sequence, core Co1215 (320cm; ca. 17cal ka BP to present), has demonstrated its great value as an

  18. Impact of the Agulhas Return Current on the glacial Subantarctic region in the South Indian Ocean

    Science.gov (United States)

    Ikehara, M.; Crosta, X.; Manoj, M. C.

    2017-12-01

    The Southern Ocean has played an important role in the evolution of the global climate system. The Southern Ocean circulation is dominated by the Antarctic Circumpolar Current (ACC), the world's longest and largest current system. Sea ice coverage on sea surface strongly affects the climate of the Southern Hemisphere through its impacts on the energy and gas budget, on the atmospheric circulation, on the hydrological cycle, and on the biological productivity. The Agulhas Return Current (ARC) originates from the Agulhas Current, the major western boundary current in the Indian Ocean, and transports heat from subtropical to subantarctic region. It's thought that the Agulhas leakage from the Indian Ocean to the Atlantic was reduced for the last glacial due to a northward shift of the westerlies and ACC, however, there are still unknown yet how the ARC was responded to the reduced Agulhas leakage. A piston core DCR-1PC was collected from the Del Caño Rise (46°S, 44°E, 2632m), Indian sector of the Southern Ocean. Core site located in the Subantarctic region between the Subtropical Front (STF) and Subantarctic Front (SAF). Age model of the core was established by radiocarbon dating of planktic foraminifer Globorotalia bulloides and oxygen isotope stratigraphy of benthic foraminifers Cibicidoides wuellerstorfi and Melonis bareelanus. Sediment of DCR-1PC show the cyclic changes of diatom/carbonate ooze sedimentation corresponding to Southern Ocean fronts' migrations on glacial-interglacial timescales. Records of ice-rafted debris (IRD) and oxygen isotope in planktic foraminfer G. bulloides suggest that the melting of sea ice was significantly increased during the last glacial maximum (LGM) in the Subantarctic surface water. Diatom assemblage based summer SST also shows the relative warmer condition in the Subantarctic during the LGM. These results might be explained by the strong influence of the Agulhas Return Current during the LGM in the Subantarctic. The reduced

  19. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  20. The Effect of Cycling Intensity on Cycling Economy During Seated and Standing Cycling.

    Science.gov (United States)

    Arkesteijn, Marco; Jobson, Simon; Hopker, James; Passfield, Louis

    2016-10-01

    Previous research has shown that cycling in a standing position reduces cycling economy compared with seated cycling. It is unknown whether the cycling intensity moderates the reduction in cycling economy while standing. The aim was to determine whether the negative effect of standing on cycling economy would be decreased at a higher intensity. Ten cyclists cycled in 8 different conditions. Each condition was either at an intensity of 50% or 70% of maximal aerobic power at a gradient of 4% or 8% and in the seated or standing cycling position. Cycling economy and muscle activation level of 8 leg muscles were recorded. There was an interaction between cycling intensity and position for cycling economy (P = .03), the overall activation of the leg muscles (P = .02), and the activation of the lower leg muscles (P = .05). The interaction showed decreased cycling economy when standing compared with seated cycling, but the difference was reduced at higher intensity. The overall activation of the leg muscles and the lower leg muscles, respectively, increased and decreased, but the differences between standing and seated cycling were reduced at higher intensity. Cycling economy was lower during standing cycling than seated cycling, but the difference in economy diminishes when cycling intensity increases. Activation of the lower leg muscles did not explain the lower cycling economy while standing. The increased overall activation, therefore, suggests that increased activation of the upper leg muscles explains part of the lower cycling economy while standing.

  1. Marine Isotope Stages (MIS) 96-101: Glacial induced closure of the Panamanian Gateway

    Science.gov (United States)

    Groeneveld, Jeroen; Debey, Henry; Hathorne, Ed C.; Steinke, Stephan

    2010-05-01

    We present combined Mg/Ca and δ18O measurements from ODP Site 1241 from the east Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first major glacial-interglacial cycles (MIS96-101) after intensification of Northern Hemisphere Glaciation. Analyses were performed on the planktic foraminifers Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed layer respectively. Data resolution is aimed to be able to resolve millennial scale variations to constrain the changes in water mass conditions during MIS96-101. Aim of the study is to test the theory that the Panamanian Gateway temporarily closed during glacial MIS 96, 98, and 100 due to a drop in sea level of 50-80 m. This was first suggested in Groeneveld et al., (in prep.) and might have provided the necessary conditions to allow the Great American Biotic Interchange, the large scale migration of mammals from South to North America and vice versa. As this exchange would have required more arid conditions in Central America to allow the fauna, which was mainly adapted to a savannah-like environment, to cross, a glacial period would have provided the right conditions. Reconstruction of sea water temperatures can indicate if and when the gateway closed. With an open Panamanian Gateway relatively cold water flowed from the Pacific into the Caribbean. With the onset of glacial conditions sea surface temperatures (SST) expectedly would show a decrease in the east Pacific (Site 1241). But, SSTs in the Caribbean (Site 999) are expected to rise as no longer relatively cold Pacific water is entering the Caribbean, but rather the warmer waters from the Western Atlantic Warm Pool advanced from the north to the core location. Indeed, reconstructed SSTs from G. sacculifer show a decrease of 2.5° C at Site 1241 and an increase of 3° C at Site 999 suggesting that the Panamanian Gateway truly was closed during the glacial stage

  2. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    mountain glacier in the Andes. Accelerated glacial melting at present rates of climate change could lead to a recurrence of many of these post-Pleistocene events. A framework for augmenting hazard assessments and countermeasures is also proposed based on the types of hazards presented by accelerated glacial melting. Glacial melting may lead to volcanic hazards in areas not previously considered at risk, and hence there may be a low level of preparedness. Compared to the end-Pleistocene accelerated glacial melting and sector collapses, present-day glacial melting in volcanic terrain has the potential to affect large human populations. Human settlements, hydropower production, forestry, mining and wilderness tourism are all concentrated near some glaciated volcanic areas. For example, the area covered by the debris avalanche from Volcan Planchon currently supports a rich agricultural economy in Chile. Effective risk management is needed to address the issues of changing patterns in vulnerability, the nature and redistribution of hazards, and the potential socioeconomic consequences of glaciovolcanic events. Since these events are infrequent, local communities frequently do not have a memory of past occurrences, and therefore have a low awareness of the potential effects. Systematic and structured impact assessment allows objective risk analysis, uncertainty analysis, and a framework for balancing countermeasures and contingency measures with public need and acceptance. An impact assessment approach similar to that used in land use planning is presented here, with the following major elements: (i) hazard characterization; (ii) consequence characterization; (iii) risk assessment; (iv) risk control and countermeasures; and (v) risk communication. The emphasis is on effective risk communication, supported by facts, in order to address the increased hazards posed by accelerated glacial melting on volcanic cone stability. Decision makers must then weigh societal acceptance of the

  3. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    Science.gov (United States)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with

  4. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules.

    Science.gov (United States)

    Moine, Olivier; Antoine, Pierre; Hatté, Christine; Landais, Amaëlle; Mathieu, Jérôme; Prud'homme, Charlotte; Rousseau, Denis-Didier

    2017-06-13

    The characterization of Last Glacial millennial-timescale warming phases, known as interstadials or Dansgaard-Oeschger events, requires precise chronologies for the study of paleoclimate records. On the European continent, such chronologies are only available for several Last Glacial pollen and rare speleothem archives principally located in the Mediterranean domain. Farther north, in continental lowlands, numerous high-resolution records of loess and paleosols sequences show a consistent environmental response to stadial-interstadial cycles. However, the limited precision and accuracy of luminescence dating methods commonly used in loess deposits preclude exact correlations of paleosol horizons with Greenland interstadials. To overcome this problem, a radiocarbon dating protocol has been developed to date earthworm calcite granules from the reference loess sequence of Nussloch (Germany). Its application yields a consistent radiocarbon chronology of all soil horizons formed between 47 and 20 ka and unambiguously shows the correlation of every Greenland interstadial identified in isotope records with specific soil horizons. Furthermore, eight additional minor soil horizons dated between 27.5 and 21 ka only correlate with minor decreases in Greenland dust records. This dating strategy reveals the high sensitivity of loess paleoenvironments to Northern Hemisphere climate changes. A connection between loess sedimentation rate, Fennoscandian ice sheet dynamics, and sea level changes is proposed. The chronological improvements enabled by the radiocarbon "earthworm clock" thus strongly enhance our understanding of loess records to a better perception of the impact of Last Glacial climate changes on European paleoenvironments.

  5. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules

    Science.gov (United States)

    Moine, Olivier; Antoine, Pierre; Hatté, Christine; Landais, Amaëlle; Mathieu, Jérôme; Prud'homme, Charlotte; Rousseau, Denis-Didier

    2017-06-01

    The characterization of Last Glacial millennial-timescale warming phases, known as interstadials or Dansgaard-Oeschger events, requires precise chronologies for the study of paleoclimate records. On the European continent, such chronologies are only available for several Last Glacial pollen and rare speleothem archives principally located in the Mediterranean domain. Farther north, in continental lowlands, numerous high-resolution records of loess and paleosols sequences show a consistent environmental response to stadial-interstadial cycles. However, the limited precision and accuracy of luminescence dating methods commonly used in loess deposits preclude exact correlations of paleosol horizons with Greenland interstadials. To overcome this problem, a radiocarbon dating protocol has been developed to date earthworm calcite granules from the reference loess sequence of Nussloch (Germany). Its application yields a consistent radiocarbon chronology of all soil horizons formed between 47 and 20 ka and unambiguously shows the correlation of every Greenland interstadial identified in isotope records with specific soil horizons. Furthermore, eight additional minor soil horizons dated between 27.5 and 21 ka only correlate with minor decreases in Greenland dust records. This dating strategy reveals the high sensitivity of loess paleoenvironments to Northern Hemisphere climate changes. A connection between loess sedimentation rate, Fennoscandian ice sheet dynamics, and sea level changes is proposed. The chronological improvements enabled by the radiocarbon “earthworm clock” thus strongly enhance our understanding of loess records to a better perception of the impact of Last Glacial climate changes on European paleoenvironments.

  6. Fore reef upper slope mixed sedimentation response to penultimate glacial interglacial sea level fluctuations: IODP Hole 325-M0058A , Great Barrier Reef, Australia

    Science.gov (United States)

    Harper, B.; Bernabéu; Droxler, A. W.; Webster, J. M.; Thomas, A. L.; Tiwari, M.; Gischler, E.; Jovane, L.; Morgan, S.; Lado-Insua, T.

    2012-12-01

    High resolution stratigraphy in IODP Expedition 325 Hole-M0058A(58A) shows that the mixed carbonate siliciclastic sedimentary section, cored on the upper slope of the Great Barrier Reef (GBR) SE of Cairns, corresponds to the last 200 ky or almost two full late Quaternary glacial-interglacial cycles. Contrary to what has been observed in similar settings, strontium (Sr) and silica (Si) X-ray Fluorescence counts-proxies for reef-derived carbonate and terrigenous exports to the upper slope, respectively-appear to be out of phase of well-established models such as highstand shedding for periplatform sediment and lowstand shedding for siliciclastics systems. Hole 58A, drilled at 167 mbsl, is the deepest site along a 7 site transect SE of Cairns offshore the GBR. The recovered 41.4 m-long sedimentary sequence is mainly composed of three unconsolidated green mud sections intercalated with two distinct sandy intervals. The close proximity to the modern GBR and shallow water depth of this hole allows for dramatic changes in sedimentation and energy as a result of the glacial-interglacial high amplitude sea level fluctuations. Planktic foraminifer tests of the species Globigerinoides ruber (white) were picked and analyzed every 10 cm to produce a high resolution oxygen isotope record at Hole 58A. This record clearly exhibits δ18O cyclic variations that are interpreted to correspond with Marine Isotope Stages (MIS) 1-7 or the last 200ky. The disappearance of G. ruber (pink) at 28.5 m, in addition to several uranium/thorium dates, confirm that the interval between 30 and 28 m characterized by a sharp δ18O decrease corresponds to Termination II; moreover three radiocarbon ages (6550 years BP or younger) within the top 6 m of Hole 58A confirm the Holocene. Throughout Hole 58A, Sr and Si count variations appear to be out of phase suggesting periods of alternating neritic and terrigenous input dominance to the upper slope. The pattern, however, does not follow the typical

  7. Ice sheets as a missing component of the global silicon cycle

    Science.gov (United States)

    Hawkings, J.; Hatton, J.; Hendry, K. R.; Wadham, J.; Ivanovic, R. F.; Kohler, T. J.; Stibal, M.; Beaton, A.; Lamarche-Gagnon, G.; Tedstone, A.; Pike, J.; Tranter, M.

    2016-12-01

    Silicon (Si) plays an important role in global biogeochemical cycles. It is required for the growth of diatoms, silicoflagellates, radiolarians and some sponges. Diatoms build their frustules out of silica and account for approximately half of oceanic primary production. Therefore determining the sensitivity of the Si cycle in the past, and its likely response to future climate warming, is important for our understanding of marine ecosystem change, biogeochemical cycling and, by association, the efficiency of the ocean's biological carbon pump. The δ30Si of biogenic silica in marine sediments is increasingly being used as a palaeoceanographic tool. In particular, there has been a focus on the δ30Si change from the Last Glacial Maximum (LGM; 21-25 ka) to present, with opal records showing an increase in δ30Si of 0.2-1.0 ‰ from LGM to present day. This has previously been explained by lower biological utilisation of Si and by swings in intermediate and deep-water dissolved silica due to changes in oceanic circulation. Here we challenge the paradigm that the ocean Si input flux and δ30Si composition was uniform over glacial-interglacial timescales. During the LGM glaciers and ice sheets covered nearly 30% of land surface, including much of North America and northern Eurasia. These palaeo ice sheets exported large quantities of eroded sediment into the oceans, and their wastage raised global sea level by 130 m. Research indicates glaciers may export significant quantities of nutrients to downstream ecosystems, including large amounts of reactive silica. Si fluxes and their associated δ30Si signature from the palaeo ice sheets have not been considered in previous interpretations of the marine Si inventory and δ30Si record. Here, we demonstrate the importance of huge ice sheet meltwater fluxes to the marine Si inventory and oceanic δ30Si composition during the last deglaciation. We present the first dissolved and amorphous particulate silica time series with

  8. Relict non-glacial surfaces and autochthonous blockfields in the northern Swedish mountains

    OpenAIRE

    Goodfellow, Bradley W.

    2008-01-01

    Relict non-glacial surfaces occur in many formerly glaciated landscapes, where they represent areas that have escaped significant glacial modification. Frequently distinguished by blockfield mantles, relict non-glacial surfaces are important archives of long-term weathering and landscape evolution processes. The aim of this thesis is to examine the distribution, weathering, ages, and formation of relict non-glacial surfaces in the northern Swedish mountains. Mapping of surfaces from aerial ph...

  9. An evaluation of stream characteristics in glacial versus fluvial process domains in the Colorado Front Range

    Science.gov (United States)

    Livers, Bridget; Wohl, Ellen

    2015-02-01

    Many of the conceptual models developed for river networks emphasize progressive downstream trends in morphology and processes. Such models can fall short in describing the longitudinal variability associated with low-order streams. A more thorough understanding of the influence of local variability of process and form in low-order stream channels is required to remotely and accurately predict channel geometry characteristics for management purposes, and in this context designating process domains is useful. We define process domains with respect to glacial versus fluvial valleys and lateral confinement of valley segments. We evaluated local variability of process domains in the Colorado Front Range by systematically following streams, categorizing them into stream morphologic type and process domain, and evaluating a number of channel geometry characteristics. We evaluated 111 stream reaches for significant differences in channel geometry among stream types and process domains, location and clustering of stream types on a slope-drainage area (S-A) plot and downstream hydraulic geometry relationships. Although individual channel geometry variables differed significantly between individual stream types in glacial and fluvial process domains, no single channel geometry variable consistently differentiated all stream types between process domains. Hypothetical S-A boundaries between bedrock- and alluvial-bed channels proposed in previous studies did not reliably divide bedrock and alluvial reaches for our study sites. Although downstream hydraulic geometry relationships are well-defined using all reaches in the study area, reaches in glacial valleys display much more variability in channel geometry characteristics than reaches in fluvial valleys, less pronounced downstream hydraulic geometry relationships, and greater scatter of reaches on an S-A plot. Local spatial variability associated with process domains at the reach scale (101-103 m) overrides progressive

  10. Kettle holes formed by glacial outburst floods: identification when their surface expression has been removed?

    Science.gov (United States)

    Marren, Philip; Fay, Helen; Duller, Robert

    2014-05-01

    Kettle holes and obstacle marks formed by the transport, deposition and burial of ice-blocks during glacial outburst floods (jökulhlaups) are a common geomorphological feature on proglacial outwash plains. Indeed, they represent one of the few features which can unequivocally identify glacially-sourced flood deposits in the geomorphological and sedimentary record. Despite an abundance of work on the surface expression of jökulhlaup-generated ice-block structures, descriptions of the subsurface expression of these features in the sedimentary record are limited. There is currently no comprehensive model of the sedimentary characteristics of these features. This is a major gap in our knowledge, as the positive identification of ice-block features constitutes an unambiguous criterion for the identification of former jökulhlaup deposits in the Quaternary sedimentary record. We address this by describing several examples of ice-block impact in the sedimentary record from southern Iceland. Our work recognizes key criteria for the identification of ice-block impact in the sedimentary record, enabling them to be identified in sedimentary sections where their geomorphological expression has since been removed or buried. These key criterion combine: (1) structures formed by the interaction of water flow with the ice-block body during transportation and immobilization; (2) distinctive sedimentological features of surrounding deposits; and, (3) the post-burial mechanical disruption on the deposits. Formulating a suite of key criteria with which to positively identify the sedimentary impact of ice-blocks limits the possibility of misidentification in the sedimentary record, and provides a means of identifying previously unrecognized Quaternary catastrophic glacial floods.

  11. Groundwater-level trends in the U.S. glacial aquifer system, 1964-2013

    Science.gov (United States)

    Hodgkins, Glenn A.; Dudley, Robert W.; Nielsen, Martha G.; Renard, Benjamin; Qi, Sharon L.

    2017-01-01

    The glacial aquifer system in the United States is a major source of water supply but previous work on historical groundwater trends across the system is lacking. Trends in annual minimum, mean, and maximum groundwater levels for 205 monitoring wells were analyzed across three regions of the system (East, Central, West Central) for four time periods: 1964-2013, 1974-2013, 1984-2013, and 1994-2013. Trends were computed separately for wells in the glacial aquifer system with low potential for human influence on groundwater levels and ones with high potential influence from activities such as groundwater pumping. Generally there were more wells with significantly increasing groundwater levels (levels closer to ground surface) than wells with significantly decreasing levels. The highest numbers of significant increases for all four time periods were with annual minimum and/or mean levels. There were many more wells with significant increases from 1964 to 2013 than from more recent periods, consistent with low precipitation in the 1960s. Overall there were low numbers of wells with significantly decreasing trends regardless of time period considered; the highest number of these were generally for annual minimum groundwater levels at wells with likely human influence. There were substantial differences in the number of wells with significant groundwater-level trends over time, depending on whether the historical time series are assumed to be independent, have short-term persistence, or have long-term persistence. Mean annual groundwater levels have significant lag-one-year autocorrelation at 26.0% of wells in the East region, 65.4% of wells in the Central region, and 100% of wells in the West Central region. Annual precipitation across the glacial aquifer system, on the other hand, has significant autocorrelation at only 5.5% of stations, about the percentage expected due to chance.

  12. The Evolution of Glacial Conditions in the Southern Atlantic Ocean: A Depth Transect Approach

    Science.gov (United States)

    Foreman, Alan Dean

    Understanding the role of the deep ocean in governing glacial/interglacial cycles has been a central theme of paleoceanography since its inception. Historically attempts at resolving the changes that occurred in the deep ocean have focused on tying together sedimentary time series from disparate locations. However, the sparse geographic distribution and variable depositional conditions of the sedimentary cores that make up such compilations have been significant obstacles for the creation of a detailed picture of changes in circulation and carbon storage over ice-age cycles. Vertical tracer profiles represent an alternative approach that circumvents a number of these problems. These profiles ('depth transects') compile proxy measurements from sediment cores collected at multiple depths in a single geographic area into a single 'steady-state' picture. By densely sampling the water column in a single location, vertical profiles act as 'paleo-CTD' casts that provide detailed observations of changes in water mass geometry using sediment cores that have experienced nearly identical depositional conditions. In this thesis I present proxy observations from a depth transect in the Southeastern Atlantic Ocean for 6 different time points over the last glacial/interglacial cycle. Together these observations provide information about the timing and magnitude of changes in deep ocean temperature, salinity, and carbon storage as glacial conditions evolved over the last 140,000 years. The efficacy of the vertical depth transect approach depends entirely on how accurately the cores that comprise the depth transect can be correlated and dated. In Chapter 1, I present X-Ray Fluorescence (XRF) observations of bulk sedimentary elemental abundances for the 20 sediment cores that comprise the core collection. In this chapter I demonstrate that these XRF-derived elemental traces have characteristic variability that can be used to correlate cores across the entire range of depths in the

  13. What is the phase space of the last glacial inception?

    Science.gov (United States)

    Bahadory, Taimaz; Tarasov, Lev

    2017-04-01

    Would the ice and climate pattern of glacial inception changed much with small tweaks to the initial Eemian climate state? Given the very limited available geological constraints, what is the range of potential spatio-temporal patterns of ice sheet inception and associated climate? What positive and negative feedbacks between ice, atmospheric and ocean circulation, and vegetation dominate glacial inception? As a step towards answering these questions, we examine the phase space of glacial inception in response to a subset of uncertainties in a coupled 3D model through an ensemble of simulations. The coupled model consists of the GSM (Glacial Systems Model) and LOVECLIM earth systems model of intermediate complexity. The former includes a 3D ice sheet model, asynchronously coupled glacio isostatic adjustment, surface drainage solver, and permafrost resolving bed thermal model. The latter includes an ocean GCM, atmospheric component, dynamic/thermodynamic seaice, and simplified dynamical vegetation. Our phase space exploration probes uncertainties in: initial conditions, downscaling and upscaling, the radiative effect of clouds, snow and ice albedo, precipitation parameterization, and freshwater discharge. The probe is constrained by model fit to present day climate and LGM climate.

  14. Groundwater quality in the glacial aquifer system, United States

    Science.gov (United States)

    Stackelberg, Paul E.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The glacial aquifer system constitutes one of the important areas being evaluated.

  15. "Battered Women" and Previous Victimization: Is the Question Relevant?

    Science.gov (United States)

    Gudim, Laurie, Comp.; And Others

    This report discusses battered women and the role of their previous victimization. After a literature review on family violence in general, these topics are discussed: (1) family violence and the patriarchy; (2) the historical background of family violence; (3) intergenerational cycle of violence; and (4) psychological literature's four ways…

  16. Tidal pumping - missing factor in glacial bays evolution?

    Science.gov (United States)

    Szczucinski, Witold; Moskalik, Mateusz; Dominiczak, Aleksander

    2017-04-01

    Most of the glaciers worldwide are subjected to rapid retreat. It is particularly well visible in Svalbard, where tidewater glaciers after the termination of the Little Ice Age often resulted in formation of new glacial bays. These bays are specific environments, characterised by high sediment accumulation rates, seasonal formation of sea-ice cover and common presence of icebergs. They are usually separated from the rest of the fjord by shallow (e.g. submerged moraine) or narrow passages. Although hostile, these bays also host unique ecosystems, with particular importance as feeding grounds for seals and sea birds. Among factors considered in development of such environments the role of tides is usually neglected or assumed as constant. Here we would like to stress the increasing role of tides in development of glacial bays ecosystems, as well as for import and burial of organic carbon in the bays. We present a model of tide development and results on present day conditions from Brepolen bay in Hornsund (southern Spitsbergen). On the basis of ADCP and CTD surveys we present the modern conditions and water exchange rates between the glacial bay and the fjord. Analysis of archival satellite images, aerial photographs and historical maps was used to map the change in glacial bay area. Finally simple modeling allow to identify a linear increase in tidal pumping magnitude (water exchange due to tides) with increasing glacial bay area due to glaciers retreat. We discuss it in context of potential consequences for bay oceanography, ecology and sedimentation. With fast glacier retreat and rapid grow of glacial bays one may expect the following effects of increasing tidal pumping: enhanced water exchange with the central part of the fjord, increasing salinity, facilitating colonisation by new species (e.g. import of juvenile forms of benthic species), increased input of marine organic carbon into setting suitable for its burial (high sediment accumulation rate in glacial

  17. Changing Dust Provenance to the South Atlantic Since the Last Glacial Maximum and Implications for the Southern Hemisphere Wind Belts

    Science.gov (United States)

    Franzese, A. M.; Goldstein, S. L.; Hemming, S. R.

    2017-12-01

    The Southern Hemisphere Westerly Winds are known to be important for climate due to their effects on the global carbon cycle and on the global thermohaline circulation (THC). Numerous proxy records have been interpreted to indicate significant glacial to interglacial changes in the SHWW. There is no clear consensus regarding their strength and position during the Last Glacial Maximum (LGM), though most observations are consistent with an equatorward displacement of the glacial wind belts. We test this hypothesis using geochemical provenance measurements of deep-sea sediments deposited along the Mid-Atlantic Ridge between 24°S and 37°S. In the central South Atlantic, dust can be delivered from South America via the Westerlies, or from Africa via the Trade Winds. The dust sources on South America and Africa have very different geochemical signatures, making it possible to distinguish between eolian transport via the Westerlies vs. the Trade Winds. Any northward shift in the Southern Hemisphere Westerlies should increase the northward extent of a South American provenance in sediments dominated by eolian sources. We measured major and trace element concentrations, and radiogenic isotopes of Ar, Sr, Nd, and Pb on the Africa as the primary source of sediment in the north, and South American sediments being delivered to the south. Glacial sediments display a clear compositional boundary near 30°S, which likely reflects the boundary between the Westerlies and the Trade Winds. The data are therefore not consistent with northward shifted wind belts at the LGM. The observed variations in terrigenous sediment composition at these sites may, however, be consistent with an equatorward displacement of the SHWW through the deglaciation. The results may also point to changes in the continental source regions supplying dust to the atmosphere as the glaciers retreated.

  18. Glacial isostatic adjustment and sea-level change. State of the art report

    International Nuclear Information System (INIS)

    Whitehouse, Pippa

    2009-04-01

    This report outlines the physics of glacial isostatic adjustment (GIA), how this affects sea-level, and the methods which are employed by researchers to study and understand these processes. The report describes the scientific background into the processes and methods presented in SKB TR-06-23 (INIS ref 38-021351). The purpose of this report is to provide a reference document for people who require a more in-depth understanding of GIA processes than is presented in the earlier report. The key components of the GIA system are described, and this is followed by a concise description of the processes that take place within and between these components during a glacial cycle. The report contains 4 chapters: Chapter 1, 'Introduction'; Chapter 2, 'GIA systems', describes the three main systems which are involved in the GIA process; the solid Earth, the hydrosphere and the cryosphere. The various parameters which govern the behaviour of these systems, and must be known in order to model GIA processes, are defined. Chapter 3, 'Governing equations', lays out the physics of GIA and derives the equations which must be solved to determine the redistribution of water over the surface of the Earth, and the solid Earth response. Secondary processes, such as ocean syphoning, are also described. The driving forces behind glacial cycles are briefly discussed. The methods used to solve these equations are laid out in chapter 4, 'State-of-the-art GIA models'. In this chapter, the different approaches used by different groups of researchers are discussed, as are the relative accuracy of the methods. Recent improvements to the theory are described, as are current shortcomings of the models. The various data sets used to calibrate and verify the accuracy of the modelling are also briefly described in this chapter. In the past few years advances in computational speed have enabled researchers to develop models which attempt to account for the effects 3-D Earth structure upon GIA processes

  19. Glacial isostatic adjustment and sea-level change. State of the art report

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Pippa (Durham Univ., Dept. of Geography, Durham (United Kingdom))

    2009-04-15

    This report outlines the physics of glacial isostatic adjustment (GIA), how this affects sea-level, and the methods which are employed by researchers to study and understand these processes. The report describes the scientific background into the processes and methods presented in SKB TR-06-23 (INIS ref 38-021351). The purpose of this report is to provide a reference document for people who require a more in-depth understanding of GIA processes than is presented in the earlier report. The key components of the GIA system are described, and this is followed by a concise description of the processes that take place within and between these components during a glacial cycle. The report contains 4 chapters: Chapter 1, 'Introduction'; Chapter 2, 'GIA systems', describes the three main systems which are involved in the GIA process; the solid Earth, the hydrosphere and the cryosphere. The various parameters which govern the behaviour of these systems, and must be known in order to model GIA processes, are defined. Chapter 3, 'Governing equations', lays out the physics of GIA and derives the equations which must be solved to determine the redistribution of water over the surface of the Earth, and the solid Earth response. Secondary processes, such as ocean syphoning, are also described. The driving forces behind glacial cycles are briefly discussed. The methods used to solve these equations are laid out in chapter 4, 'State-of-the-art GIA models'. In this chapter, the different approaches used by different groups of researchers are discussed, as are the relative accuracy of the methods. Recent improvements to the theory are described, as are current shortcomings of the models. The various data sets used to calibrate and verify the accuracy of the modelling are also briefly described in this chapter. In the past few years advances in computational speed have enabled researchers to develop models which attempt to account for the

  20. Influence of glacial meltwater on global seawater δ234U

    Science.gov (United States)

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; Das, Sarah B.; Sheik, Cody; Stevenson, Emily I.

    2018-03-01

    We present the first published uranium-series measurements from modern Greenland Ice Sheet (GrIS) runoff and proximal seawater, and investigate the influence of glacial melt on global seawater δ234U over glacial-interglacial (g-ig) timescales. Climate reconstructions based on closed-system uranium-thorium (U/Th) dating of fossil corals assume U chemistry of seawater has remained stable over time despite notable fluctuations in major elemental compositions, concentrations, and isotopic compositions of global seawater on g-ig timescales. Deglacial processes increase weathering, significantly increasing U-series concentrations and changing the δ234U of glacial meltwater. Analyses of glacial discharge from GrIS outlet glaciers indicate that meltwater runoff has elevated U concentrations and differing 222Rn concentrations and δ234U compositions, likely due to variations in subglacial residence time. Locations with high δ234U have the potential to increase proximal seawater δ234U. To better understand the impact of bulk glacial melt on global seawater δ234U over time, we use a simple box model to scale these processes to periods of extreme deglaciation. We account for U fluxes from the GrIS, Antarctica, and large Northern Hemisphere Continental Ice Sheets, and assess sensitivity by varying melt volumes, duration and U flux input rates based on modern subglacial water U concentrations and compositions. All scenarios support the hypothesis that global seawater δ234U has varied by more than 1‰ through time as a function of predictable perturbations in continental U fluxes during g-ig periods.

  1. Mercury in wetlands at the Glacial Ridge National Wildlife Refuge, northwestern Minnesota, 2007-9

    Science.gov (United States)

    Cowdery, Timothy K.; Brigham, Mark E.

    2013-01-01

    The Glacial Ridge National Wildlife Refuge was established in 2004 on land in northwestern Minnesota that had previously undergone extensive wetland and prairie restorations. About 7,000 acres of drained wetlands were restored to their original hydrologic function and aquatic ecosystem. During 2007–9, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service and the Red Lake Watershed District, analyzed mercury concentrations in wetland water and sediment to evaluate the effect of wetland restoration on mercury methylation. The wetland waters sampled generally were of the calcium/magnesium bicarbonate type. Nitrogen in water was mostly in the form of dissolved-organic nitrogen, with very low dissolved-nitrate and dissolved-ammonia concentrations. About 71 percent of all phosphorus in water was dissolved, with one-half of that in the form of orthophosphorus. Wetland water had total-mercury and methylmercury concentrations ranging from 1.5 to 20 nanograms per liter (ng/L) and 0.2 to 16 ng/L, respectively. Median concentrations were 7.1 and 2.9 ng/L, respectively. About one-half of the mercury in wetland water samples was in the form of methylmercury, but this form ranged from 7 to 81 percent of each sample. Compared to concentrations in stream sediment samples collected throughout the United States, Glacial Ridge National Wildlife Refuge wetland sediment samples contained typical total-mercury concentrations, but methylmercury concentrations were nearly twice as high. The maximum concentration measured in Glacial Ridge National Wildlife Refuge wetland water approached the highest published water methylmercury concentration in uncontaminated waters of which we are aware. However, the upper quartile of water methylmercury concentrations is similar to concentrations reported for some impoundments and wetlands in northwestern Minnesota and North Dakota. Methylmercury concentrations in sampled wetlands were much higher than those from typical

  2. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum

    Science.gov (United States)

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-01-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80 000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years. PMID:20717162

  3. Antarctic sea ice control on ocean circulation in present and glacial climates.

    Science.gov (United States)

    Ferrari, Raffaele; Jansen, Malte F; Adkins, Jess F; Burke, Andrea; Stewart, Andrew L; Thompson, Andrew F

    2014-06-17

    In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur.

  4. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum.

    Science.gov (United States)

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-02-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80,000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years.

  5. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought. PMID:24937320

  6. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    Science.gov (United States)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  7. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    Science.gov (United States)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  8. Changes in Fe Oxidation Rate in Hydrothermal Plumes as a Potential Driver of Enhanced Hydrothermal Input to Near-Ridge Sediments During Glacial Terminations

    Science.gov (United States)

    Cullen, J. T.; Coogan, L. A.

    2017-12-01

    Recent studies have hypothesized that changes in sea level due to glacial-interglacial cycles lead to changes in the rate of melt addition to the crust at mid-ocean ridges with globally significant consequences. Arguably the most compelling evidence for this comes from increases in the hydrothermal component in near-ridge sediments during glacial-interglacial transitions. Here we explore the hypothesis that changes in ocean bottom water [O2] and pH across glacial-interglacial transitions would lead to changes in the rate of Fe oxidation in hydrothermal plumes. A simple model shows that a several fold increase in the rate of Fe oxidation is expected at glacial-interglacial transitions. Uncertainty in bottom water chemistry and the relationship between oxidation and sedimentation rates prevent direct comparison of the model and data. However, it appears that the null hypothesis of invariant hydrothermal vent fluxes into ocean bottom water that changed in O2 content and pH across these transitions cannot currently be discounted.

  9. Dietas com nitrogênio não-proteico para fêmeas bovinas superovuladas sem prévia adaptação durante curto tempo e em diferentes fases do ciclo estral Effect of short term non-protein nitrogen feeding for superovulated beef cows without previous adaptation and at different periods of the oestrus cycle

    Directory of Open Access Journals (Sweden)

    Flávio Rocha Alves

    2010-09-01

    effects of short term non-protein nitrogen feeding at different periods of the oestrus cycle in superovulated cows, without previous adaptation, on yield, quality and development degree of recovered embryos. A total of sixty-eight Nelore cows were distributed in three groups: the control group (C and two groups with urea supply before (UB; urea supply from day -5 to day 0 and after (UA; supply from day 0 to day 5 artificial insemination. Animals were kept grazing and received 3.0 kg/animal/day of concentrate during 16 days. Two concentrates were formulated and the total diets (concentrate and estimate forage intake showed 12.0% (control diet and 14.6% (non-protein diet of crude protein. Animals were synchronized, superovulated and inseminated. The embryos were collected and analysed seven days (day 7 after insemination (day 0. Blood samples were collected on days -5, 0 and 5 to determine concentration of plasmatic urea nitrogen, glucose, insulin and progesterone. The time of urea supply affected average plasmatic urea nitrogen concentration on days -5, 0 5 but it did not affect concetrations of glucose, insulin and progesterone. The moment of urea inclusion had effect on compact morula percentage in relation to the total number of structures (UB = 51.4 vs. UA = 15.3%, to the total number of fertilized oocytes (UB = 62.5 vs. UA = 30.6% and to the total number of viable embryos (UB = 68.8 vs. UA = 38.6%. In the after insemination group of urea supply there was 70.2% of reduction on compact morula proportion over the total structures in relation to the group that received urea before insemination. Non-protein nitrogen feeding immediately after insemination promotes faster rates of embryo development.

  10. Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel.

    Science.gov (United States)

    Provan, Jim; Wattier, Remi A; Maggs, Christine A

    2005-03-01

    Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2-3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128,000 BP and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20,000 BP) in the Hurd Deep, an enigmatic trench in the English Channel.

  11. Warm Nordic Seas delayed glacial inception in Scandinavia

    Directory of Open Access Journals (Sweden)

    A. Born

    2010-12-01

    Full Text Available We simulate the last glacial inception, 115 000 years ago, with a three dimensional thermomechanical ice sheet model of the Northern Hemisphere, forced by a comprehensive coupled climate model. High oceanic heat transport into the Nordic Seas prevents large scale ice growth over Scandinavia. Glacial inception in the region starts on the highest mountains in the south when sea surface temperatures in the Nordic Seas are reduced by at least 3 °C. Ice growth in Northern Scandinavia requires a cooling by at least 4 °C. This is in good agreement with marine proxy data from the Nordic Seas and North Atlantic as well as available terrestrial data. This study thus provides a physical understanding and revised timing of the first glacier advance over Scandinavia.

  12. The distribution of glacial erratics in the Northeast Atlantic

    International Nuclear Information System (INIS)

    Huggett, Q.

    1985-01-01

    A detailed study of all the available information on glacial erratics has been carried out. This has included an examination of 288 dredge hauls, 1164 sediment cores and 176 camera runs. Sufficient data have now been collected to provide an estimate of the impact risk of a point projectile with a glacial erratic, down to oxygen isotope stage 5 (127,000 years) in three areas of the North East Atlantic. 1. Porcupine seabight (50 deg N, 14 deg W) 0.460%; 2. King's Trough Flank (42 deg N, 24 deg W) 0.502%; 3. Great Meteor East (31 deg N, 25 deg W) 0.015%. These estimates are for all erratics larger than 1.5 cm diameter and apply only down to oxygen isotope stage 5. If estimates are required at greater depths than this, it is proposed that a detailed study of a long core should be undertaken. (author)

  13. Geomorphometry of the glacial lakes in the Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Andrei ZAMOSTEANU

    2014-11-01

    Full Text Available The aim of this study is to make an inventory and a database comprising of all glacial lakes in the Romanian Carpathians based on information provided by Gâştescu (1960, Pişota (1968, 1971, Decei (1981, Mindrescu (2006, and the data obtained in the field and laboratory by employing GIS techniques (ArcView, Global Mapper, Map Maker, Google Earth.

  14. Human population dynamics in Europe over the Last Glacial Maximum

    Science.gov (United States)

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  15. Deformed glacial deposits of Passamaquoddy Bay area, New Brunswick

    International Nuclear Information System (INIS)

    Kumarapeli, S.

    1990-03-01

    The New Brunswick-Maine border area, centred around Passamaquoddy Bay, is characterized by a distinctly higher level of seismic activity compared with the very low level background activity of the region. In this same general area, post-glacial deformation including faulting, has been observed in glaciofluvial and ice contact deposits and the possibility that these structures may in some way related to neotectonic movements in the area has been suggested. A study was undertaken to document these structures and to investigate their origin. The studies show that structures related to collapse of sediments due to melting of buried ice masses are the most prominent post-depositional structures in the glacial sediments. A second group of structures includes failure phenomena such as slumping. These require the action of a mechanism leading to reduction of sediment strength which could be achieved by seismic shaking. However, such failure phenomena could also be brought about by non-seismic processes, thus a unique interpretation of the origin of these structures is difficult, if not impossible. Since seismic shaking is the most effective, regionally extensive trigger of a broad group of failure phenomena in soft sediments, the related structures are usually spread over a large area, but are restricted to a very short time gap. Although the establishment of such space and time relationships may be feasible, for example in extensive lake deposits, it is difficult to do so in patchy laterally variable deposits such as the glacial deposits in Passamaquoddy Bay area

  16. A northern glacial refugium for bank voles (Clethrionomys glareolus).

    Science.gov (United States)

    Kotlík, Petr; Deffontaine, Valérie; Mascheretti, Silvia; Zima, Jan; Michaux, Johan R; Searle, Jeremy B

    2006-10-03

    There is controversy and uncertainty on how far north there were glacial refugia for temperate species during the Pleistocene glaciations and in the extent of the contribution of such refugia to present-day populations. We examined these issues using phylogeographic analysis of a European woodland mammal, the bank vole (Clethrionomys glareolus). A Bayesian coalescence analysis indicates that a bank vole population survived the height of the last glaciation (approximately 25,000-10,000 years B.P.) in the vicinity of the Carpathians, a major central European mountain chain well north of the Mediterranean areas typically regarded as glacial refugia for temperate species. Parameter estimates from the fitted isolation with migration model show that the divergence of the Carpathian population started at least 22,000 years ago, and it was likely followed by only negligible immigration from adjacent regions, suggesting the persistence of bank voles in the Carpathians through the height of the last glaciation. On the contrary, there is clear evidence for gene flow out of the Carpathians, demonstrating the contribution of the Carpathian population to the colonization of Europe after the Pleistocene. These findings are consistent with data from animal and plant fossils recovered in the Carpathians and provide the clearest phylogeographic evidence to date of a northern glacial refugium for temperate species in Europe.

  17. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Science.gov (United States)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  18. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Directory of Open Access Journals (Sweden)

    C. Narama

    2018-04-01

    Full Text Available Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000  m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary, and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth–drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i a debris landform containing ice (ice-cored moraine complex, (ii a depression with water supply on a debris landform as a potential lake basin, and (iii no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2 in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s−1 at peak discharge.

  19. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    Science.gov (United States)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  20. Using geometry to improve model fitting and experiment design for glacial isostasy

    Science.gov (United States)

    Kachuck, S. B.; Cathles, L. M.

    2017-12-01

    As scientists we routinely deal with models, which are geometric objects at their core - the manifestation of a set of parameters as predictions for comparison with observations. When the number of observations exceeds the number of parameters, the model is a hypersurface (the model manifold) in the space of all possible predictions. The object of parameter fitting is to find the parameters corresponding to the point on the model manifold as close to the vector of observations as possible. But the geometry of the model manifold can make this difficult. By curving, ending abruptly (where, for instance, parameters go to zero or infinity), and by stretching and compressing the parameters together in unexpected directions, it can be difficult to design algorithms that efficiently adjust the parameters. Even at the optimal point on the model manifold, parameters might not be individually resolved well enough to be applied to new contexts. In our context of glacial isostatic adjustment, models of sparse surface observations have a broad spread of sensitivity to mixtures of the earth's viscous structure and the surface distribution of ice over the last glacial cycle. This impedes precise statements about crucial geophysical processes, such as the planet's thermal history or the climates that controlled the ice age. We employ geometric methods developed in the field of systems biology to improve the efficiency of fitting (geodesic accelerated Levenberg-Marquardt) and to identify the maximally informative sources of additional data to make better predictions of sea levels and ice configurations (optimal experiment design). We demonstrate this in particular in reconstructions of the Barents Sea Ice Sheet, where we show that only certain kinds of data from the central Barents have the power to distinguish between proposed models.

  1. From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates

    Science.gov (United States)

    Le Mézo, Priscilla; Beaufort, Luc; Bopp, Laurent; Braconnot, Pascale; Kageyama, Masa

    2017-07-01

    The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial-interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20-150° W, 30° S-60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.

  2. Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale.

    Science.gov (United States)

    Mellett, Claire L; Hodgson, David M; Plater, Andrew J; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-12-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14 C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of

  3. Automatically detecting Himalayan Glacial Lake Outburst Floods in LANDSAT time series

    Science.gov (United States)

    Veh, Georg; Korup, Oliver; Roessner, Sigrid; Walz, Ariane

    2017-04-01

    More than 5,000 meltwater lakes currently exist in the Himalayas, and some of them have grown rapidly in past decades due to glacial retreat. This trend might raise the risk of Glacial Lake Outburst Floods (GLOFs), which have caused catastrophic damage and several hundred fatalities in historic time. Yet the growing number and size of Himalayan glacial lakes have no detectable counterpart in increasing GLOF frequency. Only 35 events are documented in detail since the 1950s, mostly in the Himalayas of Eastern Nepal and Bhutan. Observations are sparse in the far eastern and totally missing in the northwestern parts of the mountain belt. The GLOF record is prone to a censoring bias, such that mainly larger floods or flood impacts have been registered. Thus, establishing a more complete record and learning from past GLOFs is essential for hazard assessment and regional planning. To detect previously unreported GLOFs in the Himalayas, we developed an automated processing chain for generating GLOF related surface-cover time series from LANDSAT data. We downloaded more than 5,000 available LANDSAT TM, ETM+ and OLI images from 1987 to present. We trained a supervised machine-learning classifier with >4,000 randomly selected image pixels and topographic variables derived from digital topographic data (SRTM and ALOS DEMs), defining water, sediment, shadow, clouds, and ice as the five main classes. We hypothesize that GLOFs significantly decrease glacial lake area while increasing the amount of sediment cover in the channel network downstream simultaneously. Thus we excluded shadows, clouds, and lake ice from the analysis. We derived surface cover maps from the fitted model for each satellite image and compiled a pixelwise time-series stack. Customized rule sets were applied to systematically remove misclassifications and to check for a sediment fan in the flow path downstream of the former lake pixels. We verified our mapping approach on thirteen GLOFs documented in the

  4. The last glacial cycles in East Greenland, an overVIew

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1994-01-01

    Marine, fluvial and glacigcnc sediments exposed in coastal cliffs and stream-cllt sections in East Greenland between latitudes 69° and 78°N display a record of Quaternary climatic and environmental change going back to prc-SaaJian times (> 240 ka), but with main emphasis on the last interglacial......, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sa interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2"_3" lower than the present. The marine and fluvial sediments from the second ice-free period, the Manselv...... ( ~ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faullas show that summer temperatures were 3-4"C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later...

  5. Imprints of Millennial and Orbital forcing of African climates over the last glacial cycle

    Science.gov (United States)

    Farrow, Aidan; Singarayer, Joy; Burrough, Sallie; Bailey, Richard

    2010-05-01

    Paleoclimate records across Late Quaternary Africa reveal high amplitude variability between wet and dry conditions. There is abundant evidence that the extents of arid areas and lakes are not static and that during numerous incursions in the past the African continent has hosted vegetation, lakes and rivers not present today. The spatial distribution and timing of these humid arid transitions is complex. This work explores the possible orbital and millennial scale forcing mechanisms which may be involved in producing the complex patterns within our observations. African monsoon strength is determined by neighbouring sea surface temperatures and the cross continent temperature gradient. Over millennial and longer time scales these factors are controlled by orbital conditions but can also be affected by changes in the thermohaline circulation. Recent work has revealed apparent synchronicity between some lake high stand records and the timing of high latitude Heinrich events. For example lake highstands revealed by dated shoreline deposits from Lake Chilwa, southern Malawi, correlate with the high latitudes Heinrich events. In this work we ask if and where high latitude events impact African humidity. Specific attention is paid to South African records because their complexity suggest that different regions are sensitive to different forcings. We use a unique suite of equilibrium model simulations covering the last 140,000 years generated using the Hadley Centre model HadCM3. Comparison of possible forcing mechanisms is made against simulations of the 17, 24, 32, 38, 46 and 60 kyr B.P Heinrich events. Heinrich events were forced upon the model by initiating a fresh water pulse of 1 Sv across the region 50-70˚N in the Atlantic for 100 years of simulated time. This was sufficient to cause significant thermohaline circulation slowdown in the model and hence provides a mechanism for sea surface temperature change globally. We will show the effects of thermohaline shutdown on African climates.

  6. The Paleoceanography of the Bering Sea During the Last Glacial Cycle

    Science.gov (United States)

    2006-02-01

    centennial and millenial time scales during the deglaciation, even though the climate system was undergoing a major transition. 60 Chapter 4 Marine Isotope...A., Cullen, J., Trend , M., 1999. The Brown University foraminiferal data base. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution

  7. Preliminary results on the search for new Late Glacial rock shelter-sites in the Federal State of Hesse

    DEFF Research Database (Denmark)

    Sauer, Florian Rudolf

    . One of the major work packages is the discovery of new sites which can provide Late Palaeolithic strata in the context of volcanic ash deposits. Previous tephrochronological research has demonstrated that neither open-air nor deep cave sites harbour great potential for discovering in situ volcanic ash...... of the Laacher See eruption (Hofbauer 1991, 1995). Geospatial approaches, including archaeological predictive modelling and the use of geological proxies, were used to estimate conditions most adequate for the potential presence of rock shelters used by Late Glacial foragers. Following this computer-aided pre...

  8. Glacial erosion of high-elevation low-relief summits on passive continental margins constrained by cosmogenic nuclides

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    We present a new, extensive in-situ cosmogenic 10Be and 26Al dataset from high-elevation low-relief summits along Sognefjorden in Norway. Contrary to previous studies of high-elevation low-relief summits in cold regions, we find only limited cosmogenic nuclide inheritance in bedrock surfaces......, indicating that warm-based ice eroded the summits during the last glacial period. From the isotope concentrations we model denudation histories using a recently developed Monte Carlo Markov Chain inversion model (Knudsen et al, 2015). The model relies on the benthic d18O curve (Lisiecki and Raymo, 2005...

  9. Assessing Cycling Participation in Australia

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Planning and evaluating cycling programs at a national or state level requires accurate measures of cycling participation. However, recent reports of cycling participation have produced very different estimates. This paper examines the reported rates of cycling in five recent population surveys of cycling. Three surveys (one national and two from Sydney asking respondents when they last rode a bicycle generated cycling participation (cycled in the past year estimates of 29.7%, 34.1% and 28.9%. Two other national surveys which asked participants to recall (unprompted any physical activity done for exercise, recreation or sport in the previous 12 months, estimated cycling in the past year as 11.1% and 6.5%. While unprompted recall of cycling as a type of physical activity generates lower estimates of cycling participation than specific recall questions, both assessment approaches produced similar patterns of cycling by age and sex with both approaches indicating fewer women and older adults cycling. The different question styles most likely explain the substantial discrepancies between the estimates of cycling participation. Some differences are to be expected due to sampling variability, question differences, and regional variation in cycling.

  10. How great was the Great Oxidation Event? Observations from the behavior of redox-sensitive elements in Precambrian glacial tillites

    Science.gov (United States)

    Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.

    2013-12-01

    atmosphere. This observation suggests that oxic weathering was insignificant during the entire Paleoproterozoic glacial interval, despite the fact that the GOE occurs relatively early in the stratigraphic record of this glaciation. This suggests that the GOE may have not been as 'great' as previously thought; oxygen concentration in the atmosphere may have remained at the very minimum level required to end the preservation of the mass independent fractionation of sulfur isotopes but low enough to prevent widespread oxidative weathering of the continental crust.

  11. Evidence of Glacial Mid-Depth Respired Carbon Storage in the Eastern Equatorial Pacific and Links to Deglacial Ventilation

    Science.gov (United States)

    Umling, N. E.; Thunell, R.

    2017-12-01

    A growing body of literature has sought to explain the CO2 increases of the last glacial-interglacial transition. However, much of the previous research has presented conflicting evidence for mechanisms of oceanic-atmospheric CO2 exchange. We investigate these inconsistencies and document the role of the eastern equatorial Pacific in the CO2 changes of the last glacial-interglacial transition. By recording changes in deep ocean chemistry and circulation, this study assesses both physical and biological mechanisms of oceanic-atmospheric CO2 exchange. Radiocarbon-based ventilation studies suggest two pulses of gradually increasing CO2 recorded synchronously in both thermocline and mid-depth water. This is a key departure from the earlier predictions of an isolated abyssal reservoir, consistent with respired carbon storage in mid-depth rather than deep waters. However, the radiocarbon content recorded in mid-depth and deep waters can be impacted by processes other than decreased ventilation. We investigate whether respired carbon storage did indeed occur in tandem with periods of decreased mid-depth radiocarbon content and attempt to uncover the role that circulation and water-mass mixing may have played in glacial-interglacial ventilation and biological pump variability. Here we utilize B/Ca estimates of carbonate saturation and Δδ13C oxygenation estimates to investigate the biological pump. We investigate past changes in circulation using coupled Cd/Ca and δ13C measurements to characterize changes in mid and deep water masses. Our results indicate synchronous shifts in ventilation and indicators of the biological pump suggesting that both decreased ventilation and a more efficient biological pump worked to sequester CO2 during the last glacial period and resulted in evasion of a respired carbon reservoir to the atmosphere during deglaciation. Additionally, we find that the boundary between northward-flowing Lower Circumpolar Deep Water (LCDW) and its southward

  12. Glacial hazards: communicating the science and managing the risk

    Science.gov (United States)

    Reynolds, J. M.

    2009-04-01

    The recession of glaciers worldwide has received huge media coverage over the last few years in association with the issue of climate change. Young people at schools and colleges are increasingly aware of the environmental pressures due to ‘global warming'. Yet simultaneously, there appears to be an increasing move away from studying science both at pre-university and undergraduate levels. One of the oft cited reasons is that students cannot see the application of the subjects being taught them. Glacial hazards are one of the most obvious adverse effects of climate change, with many, often poor, communities in remote mountain areas being the most affected by frequently devastating Glacial Lake Outburst Floods (GLOFs). When students are exposed to examples of these hazards and the science behind them, many become enthused by the subject and want to study it further. There has been a huge increase in the number of students selecting projects on glacial hazards as well as a large increase in the number of institutions offering to teach modules on this subject. In an effort to provide a basic visualisation, Peter Kennett has taken the principle of GLOFs and developed a cheap but highly visual demonstration of the potentially devastating effect of melting ice within a moraine leading to subsidence and subsequent dam failure. This is available on www.earthlearningidea.com as ‘Dam burst danger - modelling the collapse of a natural dam in the mountains - and the disaster that might follow'. Furthermore, the methods by which glacial hazards are assessed provide excellent applications of geophysics, geology, geography (physical and Human), engineering, mathematics, and glaciology. By exploring the potential vulnerability of communities downstream, the applications can be extended to include sociology, economics, geopolitics and even psychology. Glacial hazards have been the subject of presentations to the Earth Science Teachers Association (ESTA) in the UK to demonstrate

  13. High resolution record of the Last Glacial Maximum in eastern Australia

    Science.gov (United States)

    Petherick, Lynda; Moss, Patrick; McGowan, Hamish

    2010-05-01

    time than traditionally accepted, and was not uniformly cool and dry. Alloway, B. V., D. J. Lowe, D. J. A. Barrell, R. M. Newnham, P. C. Almond, P. C. Augustinus, N. A. N. Bertler, L. Carter, N. J. Litchfield, M. S. McGlone, J. Shulmeister, M. J. Vandergoes, P. W. Williams and N.-I. members (2007). Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). Journal of Quaternary Science 22(1): 9-35. Denton, G. H., T. V. Lowell, C. J. Heusser, C. Schluchter, B. G. Andersen, L. E. Heusser, P. I. Moreno and D. R. Marchant (1999). Geomorrphology, stratigraphy, and radiocarbon chronology of Llanquihe Drift in the area of the Southern Lake District, Seno Reloncavi, and Isal Grande de Chiloe, Chile. Geografiska Annaler 81A: 167-229. EPICA (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444: 195-198. Kershaw, A. P., G. M. McKenzie, N. Porch, R. G. Roberts, J. Brown, H. Heijnis, M. L. Orr, G. Jacobsen and P. R. Newall (2007). A high-resolution record of vegetation and climate through the last glacial cycles from Caledonia Fen, southeastern highlands of Australia. Journal of Quaternary Science 22(5): 481-500. Newnham, R. M., D. J. Lowe, T. Giles and B. V. Alloway (2007). Vegetation and climate of Auckland, New Zealand, since ca. 32 000 cal. yr ago: support for an extended LGM Journal of Quaternary Science 22(5): 517-534. Petherick, L. M., H. A. McGowan and P. T. Moss (2008). Climate variability during the Last Glacial Maximum in eastern Australia: Evidence of two stadials? Journal of Quaternary Science 23(8): 787-802. Röthlisberger, R., R. Mulvaney, E. W. Wolff, M. A. Hutterli, M. Bigler, S. Sommer and J. Jouzel (2002). Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyr and its implications for southern high latitude climate. Geophysical Research Letters 29(20): Art # 1963. Smith, M. A. (2009). Late Quaternary landscapes in Central Australia: sedimentary

  14. Glacial dispersal and flow history, East Arm area of Great Slave Lake, NWT, Canada

    Science.gov (United States)

    Sharpe, D. R.; Kjarsgaard, B. A.; Knight, R. D.; Russell, H. A. J.; Kerr, D. E.

    2017-06-01

    Little work has been completed on paleo-ice-sheet flow indicators of the Laurentide Ice Sheet, west of the Keewatin Ice Divide. Field mapping, sampling and analysis of glaciogenic sediment (∼500 sample sites) in a ∼33,000 km2 region near the East Arm of Great Slave Lake in northwestern Canada, provided a rare opportunity to improve understanding of sediment erosion and transport patterns. Glacially-eroded bedrock and sedimentary landforms record east to west flow with NW and SW divergence, mapped within a portion of the Great Slave Lake flow tract. Transported till reflects a similar divergent flow pattern based on dispersal geometries for multiple indicators (e.g., heavy minerals and lithic fragments), which are aligned with the dominant and latest ice flow direction. Glaciofluvial erosion (e.g., s-forms and till removal), transport, and deposition (mainly as esker sediment) are set within 0.3-3 km wide meltwater erosional corridors, spaced regularly at 10-15 km intervals. Transport paths and distances are comparable in till and esker sediment, however, distances appear to be greater (∼5-25 km) in some esker constituents and indicator minerals are typically more concentrated in esker sediment than in till. Corridors form a divergent array identical to the pattern of ice-flow features. The congruence of ice and meltwater flow features is interpreted to be a response to a similar ice sheet gradient, and close timing of events (late dominant glacial ice flow and meltwater flow). The similarity in glacial and glaciofluvial flow patterns has important ramifications for event reconstruction and for exploration geologists utilizing mineral and geochemical tracing methods in this region, and possibly other parts of northern Canada. The correspondence between East Arm dispersal patterns, landforms and flow indicators supports interpretation of a simple and predictable single flow divergence model. This is in contrast to previous, multi-flow models, in which fan

  15. Placental complications after a previous cesarean section

    OpenAIRE

    Milošević Jelena; Lilić Vekoslav; Tasić Marija; Radović-Janošević Dragana; Stefanović Milan; Antić Vladimir

    2009-01-01

    Introduction The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complic...

  16. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    Science.gov (United States)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  17. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  18. Reversed North Atlantic gyre dynamics in present and glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Marisa [Universidad Complutense de Madrid, Ciudad Universitaria, Dpto. Astrofisica y Ciencias de la Atmosfera, Facultad de Ciencias Fisicas, Madrid (Spain); Born, Andreas [Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway); Levermann, Anders [Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam (Germany); Potsdam University, Institute of Physics, Potsdam (Germany)

    2011-03-15

    The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland-Scotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies. (orig.)

  19. Overdeepening development in a glacial landscape evolution model with quarrying

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.; Iverson, Neal R.

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified when considering bed abrasion, where rock debris transported in the basal ice drives erosion. However, the relation is not well......) introduced a new model for subglacial erosion by quarrying that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form in the lee of bed obstacles when the sliding velocity is too high to allow for the ice to creep...

  20. Dendroclimatic trend and glacial fluctuations in the Central Italian Alps

    Science.gov (United States)

    Pelfini, M.; Santilli, M.; D Agata, C.; Diolaiuti, G.; Smiraglia, C.

    2003-04-01

    In the Alpine environment, one of the main limiting factors for tree growth is the thermal conditions of the vegetative season. The conifers at high altitude, if not subject to others disturbs, such as geomorphological processes or biological interferences, undergo a development, from which the width of annual rings depends. Five chronologies few centuries long, obtained for the species Larix decidua Mill. and Pinus cembra L. from different valleys of the Central Italian Alps (Alpisella, Valfurva, Gavia and Solda) in proximity of timberline (2000-2550 m of altitude), were analysed and their climatic signal gained; this last one was then related to the recent glacial fluctuations. The chronologies are the averages of many dendrochronological indicized curves obtained from dominant trees with regular growth and extended from 13th-17th century up to the present. The time intervals of the chronologies are the following ones: Pinus cembra: 1752-1999 for Valfurva; 1607-1999 for Gavia; 1593-1999 for Val Solda. With regard to Larix decidua: 1252-1998 for Val Solda; 1784-2001 for Alpisella. The good correspondence between the various chronologies allows to consider them representative of the climatic regional signal. In order to evidence climatic evolution, linear trends based on running mean with period of 11 years have been constructed. Those curves have been compared between them and then overlapped and mediated in order to obtain a climatic signal of regional value that excludes eventual local anomalies. Finally, the growth variations in the chronologies have been compared to known alpine climatic variations and glacial fluctuations. In particular time-distance curves (curves of cumulated frontal variations) of some glaciers from the Ortles-Cevedale Group were utilized. The periods of tree rings growth rate reduction appear well correlated to glacial advancing phases of the Little Ice Age and of the following phases. In particular, growth rate reductions are observable

  1. A northern glacial refugium for bank voles (Clethrionomys glareolus)

    OpenAIRE

    Kotlík, Petr; Deffontaine, Valérie; Mascheretti, Silvia; Zima, Jan; Michaux, Johan R.; Searle, Jeremy B.

    2006-01-01

    There is controversy and uncertainty on how far north there were glacial refugia for temperate species during the Pleistocene glaciations and in the extent of the contribution of such refugia to present-day populations. We examined these issues using phylogeographic analysis of a European woodland mammal, the bank vole (Clethrionomys glareolus). A Bayesian coalescence analysis indicates that a bank vole population survived the height of the last glaciation (≈25,000–10,000 years B.P.) in the v...

  2. Glacial flutings in bedrock, an observation in East Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1978-01-01

    and 5 m in height and occur between 50 and 250 m above sea level inthe gently sloping lowland area adjacent to the fjord. They were probably formed beneath the lateral part of the former Harefjord-Glacier which receded rapidly in the fjord and exposed the area at c. 7500 years BP. Large scale glacial...... flutings have not been recorded before in Greenland, but seem to be of common occurrence in parts of North America. They have probably been formed near the margin of actively moving glaciers, and secondary flow in the basal ice may have played an important role...

  3. Dansgaard-Oeschger Oscillations in a Comprehensive Model of Glacial Climate

    Science.gov (United States)

    Peltier, W. R.; Vettoretti, G.

    2016-12-01

    One of the most enigmatic modes of climate variability has remained the millenium timescale Dansgaard-Oeschger oscillation, first discovered over 30 years ago on the basis of the surface air temperature proxy provided by oxygen isotopic data from Greenland ice cores. This mode of variability, which was dominant during Oxygen Isotope Stage 3 of the most recent ice-age cycle, has only recently been fully explained through analyses based upon the use of a fully comprehensive model of glacial climate. We demonstrate, using the Community Earth System Model version 1, that D-O oscillations appear spontaneously following a sharp cooling of northern hemsiphere climate associated with a sharp reduction in the strength of the North Atlantic thermohaline circulation as occurs during a typical Heinrich event. The physical mechanism that underlies this mode of variability involves a "salt oscillation", one that is "kicked" into action by the preceding Heinrich event. Individual D-O pulses are of relaxation oscillation form in which a fast timescale shift from cold stadial to warm interstadial conditions is followed by a slow timescale relaxation back to the cold stadial state. We show that the fast timescale initiation of individual pulses is associated with the development of a "super-polynya" in the sea ice lid that caps the North Atlantic under stadial conditions. It is furthermore demonstrated that the D-O oscillations delivered by the coupled climate model are able to fully explain not only the peak-to-peak surface air temperature variations that are inferred to have been characteristic of individual D-O cycles at Summit Greenland but also the characteristic "seesaw" interconnection between the hemispheres that has been established on the basis of complimentary air temperature proxies from Antarctic ice cores. It is of considerable interest that our model replication of the Dansgaard-Oeschger process does not require any contribution to the forcing of the oscillation from

  4. Glacial populations and postglacial migration of Douglas-fir based on fossil pollen and macrofossil evidence

    Science.gov (United States)

    Gugger, Paul F.; Sugita, Shinya

    2010-08-01

    To understand how temperate forests might respond to future episodes of global warming, it is important to study the effects of large-scale climate change brought about by rapid postglacial warming. Compilations of fossil evidence have provided the best evidence of past plant range shifts, especially in eastern North America and Europe, and provide a context for interpreting new molecular datasets from modern forests. In western North America, however, such reviews have lagged even for common, widespread taxa. Here, we synthesize fossil evidence for Douglas-fir ( Pseudotsuga menziesii) from nearly 550 fossil pollen, sedimentary macrofossil, and packrat midden macrofossil sites to develop hypotheses about the species' late Quaternary history that can be tested with molecular phylogeographic studies. For both the coastal and interior varieties, we identified alternative hypotheses on the number of glacial populations and postglacial migration patterns that can be characterized as single-population versus multiple-population hypotheses. Coastal Douglas-fir may have been subdivided into two populations at the Last Glacial Maximum (LGM) and colonized British Columbia from populations in Washington and Oregon. Interior Douglas-fir could have been subdivided along major topographic barriers into at least three LGM populations and colonized British Columbia and Alberta from populations in northwest Wyoming and/or northeast Utah. For both varieties, we calculated migration rates lower than previous studies, which could have been as high as 100-220 m/yr if Douglas-fir reached its modern distribution 9000 cal yr BP, or as low as 50 m/yr if it reached its modern range at present. The elevational range of populations in California and the southern Rockies shifted upslope by 700-1000 m. If there were multiple LGM populations, these elevational shifts suggest that those populations did not contribute to the colonization of Canada. Our findings emphasize the possibility of low

  5. Role of CO2 and Southern Ocean winds in glacial abrupt climate change

    Directory of Open Access Journals (Sweden)

    M. Montoya

    2012-06-01

    Full Text Available The study of Greenland ice cores revealed two decades ago the abrupt character of glacial millennial-scale climate variability. Several triggering mechanisms have been proposed and confronted against growing proxy-data evidence. Although the implication of North Atlantic deep water (NADW formation reorganisations in glacial abrupt climate change seems robust nowadays, the final cause of these reorganisations remains unclear. Here, the role of CO2 and Southern Ocean winds is investigated using a coupled model of intermediate complexity in an experimental setup designed such that the climate system resides close to a threshold found in previous studies. An initial abrupt surface air temperature (SAT increase over the North Atlantic by 4 K in less than a decade, followed by a more gradual warming greater than 10 K on centennial timescales, is simulated in response to increasing atmospheric CO2 levels and/or enhancing southern westerlies. The simulated peak warming shows a similar pattern and amplitude over Greenland as registered in ice core records of Dansgaard-Oeschger (D/O events. This is accompanied by a strong Atlantic meridional overturning circulation (AMOC intensification. The AMOC strengthening is found to be caused by a northward shift of NADW formation sites into the Nordic Seas as a result of a northward retreat of the sea-ice front in response to higher temperatures. This leads to enhanced heat loss to the atmosphere as well as reduced freshwater fluxes via reduced sea-ice import into the region. In this way, a new mechanism that is consistent with proxy data is identified by which abrupt climate change can be promoted.

  6. Wisconsinan and early Holocene glacial dynamics of Cumberland Peninsula, Baffin Island, Arctic Canada

    Science.gov (United States)

    Margreth, Annina; Gosse, John C.; Dyke, Arthur S.

    2017-07-01

    Three glacier systems-an ice sheet with a large marine-based ice stream, an ice cap, and an alpine glacier complex-coalesced on Cumberland Peninsula during the Late Wisconsinan. We combine high-resolution mapping of glacial deposits with new cosmogenic nuclide and radiocarbon age determinations to constrain the history and dynamics of each system. During the Middle Wisconsinan (Oxygen Isotope Stage 3, OIS-3) the Cumberland Sound Ice Stream of the Laurentide Ice Sheet retreated well back into Cumberland Sound and the alpine ice retreated at least to fiord-head positions, a more significant recession than previously documented. The advance to maximal OIS-2 ice positions beyond the mouth of Cumberland Sound and beyond most stretches of coastline remains undated. Partial preservation of an over-ridden OIS-3 glaciomarine delta in a fiord-side position suggests that even fiord ice was weakly erosive in places. Moraines formed during deglaciation represent stillstands and re-advances during three major cold events: H-1 (14.6 ka), Younger Dryas (12.9-11.7 ka), and Cockburn (9.5 ka). Distinctly different responses of the three glacial systems are evident, with the alpine system responding most sensitively to Bølling-Allerød warming whereas the larger systems retreated mainly during Pre-Boreal warming. While the larger ice masses were mainly influenced by internal dynamics, the smaller alpine glacier system responded sensitively to local climate effects. Asymmetrical recession of the alpine glacier complex indicates topoclimatic control on deglaciation and perhaps migration of the accumulation area toward moisture source.

  7. Glacial evolution of the Ampato Volcanic Complex (Peru)

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  8. Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    R. Calov

    2009-06-01

    Full Text Available We investigate glacial inception and glacial thresholds in the climate-cryosphere system utilising the Earth system model of intermediate complexity CLIMBER-2, which includes modules for atmosphere, terrestrial vegetation, ocean and interactive ice sheets. The latter are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. A bifurcation which represents glacial inception is analysed with two different model setups: one setup with dynamical ice-sheet model and another setup without it. The respective glacial thresholds differ in terms of maximum boreal summer insolation at 65° N (hereafter referred as Milankovitch forcing (MF. The glacial threshold of the configuration without ice-sheet dynamics corresponds to a much lower value of MF compared to the full model. If MF attains values only slightly below the aforementioned threshold there is fast transient response. Depending on the value of MF relative to the glacial threshold, the transient response time of inland-ice volume in the model configuration with ice-sheet dynamics ranges from 10 000 to 100 000 years. Due to these long response times, a glacial threshold obtained in an equilibrium simulation is not directly applicable to the transient response of the climate-cryosphere system to time-dependent orbital forcing. It is demonstrated that in transient simulations just crossing of the glacial threshold does not imply large-scale glaciation of the Northern Hemisphere. We found that in transient simulations MF has to drop well below the glacial threshold determined in an equilibrium simulation to initiate glacial inception. Finally, we show that the asynchronous coupling between climate and inland-ice components allows one sufficient realistic simulation of glacial inception and, at the same time, a considerable reduction of computational costs.

  9. Glacial geology of the upper Wairau Valley, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Late Pleistocene glaciers in the upper Wairau Valley deposited four groups of moraines inferred to represent one Waimean ice advance, two Otiran ice advances, and an advance of early Aranuian age. The Waimean and early Otiran glaciers advanced into Tarndale Valley, deposited terminal moraines, and shed outwash down both the Alma River and Travellers Valley. The middle Otiran glacier terminated in northern Tarndale Valley and shed outwash from the southern part of its terminus down the Alma River. The north side of the terminus abutted a large ice-dammed lake in the Wairau Gorge, and fan-deltas graded to an old shore level at an elevation of 1040 m. Well-preserved moraines at the mouths of four glaciated tributaries may be middle Otiran recessional, or late Otiran terminal moraines. The latest ice advance extended 11 km down the upper Wairau Valley and deposited a subdued moraine at Island Gully. The composite chronology of the latest glacial advance based on 10 radiocarbon ages suggests it occurred between about 9.5 and 10.2 ka. This age span is similar to that of early Aranuian glacial advances dated by other workers in the Southern Alps, and may reflect Younger Dryas cooling. (author). 22 refs., 10 figs., 3 tabs

  10. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    Science.gov (United States)

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  11. Anthropogenic fire and the treeless landscapes of glacial Europe

    Science.gov (United States)

    Kaplan, J. O.; Pfeiffer, M.; Davis, B. A. S.; Kolen, J. C. A.

    2016-12-01

    The vegetation of Europe during the Last Glacial Maximum (LGM) is an enigma. Pollen-based reconstructions have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  12. A study of Glacial Isostatic Adjustment in Greenland

    Science.gov (United States)

    Nielsen, Jens Emil; Sandberg Sørensen, Louise; Adalgeirsdottir, Gudfinna; Spada, Giorgio

    2010-05-01

    Glacial isostatic adjustment (GIA) is the viscoelastic response of the Earth caused by changes in ice loads during glaciations and deglaciations. Knowledge of the GIA signal is particularly important in cryospheric applications of satellite gravimetry and altimetry, where the origin of the observed changes must be separated into past and present response. Modeling the present-day GIA signal must include knowledge of both the ice loading history and the Earth's rheology. Neither of these models are well constrained in Greenland, and hence the GIA estimates here are uncertain. In this paper we implement a loading history of the Greenland Ice Sheet derived from the ice sheet model SICOPOLIS, and we study the present-day gravity changes and vertical crustal motion derived from using this ice history. The results are compared with those derived from the widely used ICE-5G ice history. For calculation of present day GIA signal, we assume the Earth's rheology to be a simplified version of the VM2 Earth model. The calculated GIA signal in Greenland, derived from the two ice loading histories are compared with geodetic measurements of vertical crustal motion from GPS time series and with repeated gravity measurements in Greenland. The free code SELEN is used for calculating the effects of the Earth model and different ice loading histories. This study is performed within the Working Group 4 of the ESF COST Action ES0701 "Improved constraints on models of Glacial Isostatic Adjustment".

  13. Mechanisms of abrupt climate change of the last glacial period

    Science.gov (United States)

    Clement, Amy C.; Peterson, Larry C.

    2008-12-01

    More than a decade ago, ice core records from Greenland revealed that the last glacial period was characterized by abrupt climate changes that recurred on millennial time scales. Since their discovery, there has been a large effort to determine whether these climate events were a global phenomenon or were just confined to the North Atlantic region and also to reveal the mechanisms that were responsible for them. In this paper, we review the available paleoclimate observations of abrupt change during the last glacial period in order to place constraints on possible mechanisms. Three different mechanisms are then reviewed: ocean thermohaline circulation, sea ice feedbacks, and tropical processes. Each mechanism is tested for its ability to explain the key features of the observations, particularly with regard to the abruptness, millennial recurrence, and geographical extent of the observed changes. It is found that each of these mechanisms has explanatory strengths and weaknesses, and key areas in which progress could be made in improving the understanding of their long-term behavior, both from observational and modeling approaches, are suggested. Finally, it is proposed that a complete understanding of the mechanisms of abrupt change requires inclusion of processes at both low and high latitudes, as well as the potential for feedbacks between them. Some suggestions for experimental approaches to test for such feedbacks with coupled climate models are given.

  14. Preoperative screening: value of previous tests.

    Science.gov (United States)

    Macpherson, D S; Snow, R; Lofgren, R P

    1990-12-15

    To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.

  15. Milankovitch insulation forcing and cyclic formation of large-scale glacial, fluvial, and eolian landforms in central Alaska

    Science.gov (United States)

    Beget, J. E.

    1993-01-01

    Continuous marine and ice-core proxy climate records indicate that the Earth's orbital geometry modulates long-term changes. Until recently, little direct evidence has been available to demonstrate correlations between Milankovitch cycles and large-scale terrestrial landforms produced during worldwide glaciations. In central Alaska large areas of loess and sand fill valleys and basins near major outwash streams. The streams themselves are bordered by sets of outwash terraces, and the terraces grade up valley into sets of moraines. The discovery of the Stampede tephra (approximately 175,000 yr ago) reworked within push moraines of the Lignite Creek glaciation suggests that this event correlates with the glaciation of marine isotope stage 6. A new occurrence of the Old Crow tephra (approximately 140,000 yr ago) on the surface of the oldest outwash terrace of the Tanana River, correlated with Delta glaciation, suggests this event also occurred at this time. The penultimate Healy glaciation apparently correlates with marine isotope stage 4, while radiocarbon dates indicate the latest Pleistocene moraines correlate with marine isotope stage 2. Recognition of the importance of orbital forcing to the cyclical formation of glacial landforms and landscapes can help in interpretations of remotely sensed glacial and proglacial land forms.

  16. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    Science.gov (United States)

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  17. Quaternary history of an endemic passerine bird on Corsica Island: Glacial refugium and impact of recent forest regression

    Science.gov (United States)

    Thibault, Jean-Claude; Cibois, Alice; Prodon, Roger; Pasquet, Eric

    2016-03-01

    Molecular studies support the hypothesis that Corsica Island was a glacial refugium for a number of forest birds during the Pleistocene. We focused on the Corsican nuthatch (Sitta whiteheadi), an endemic passerine strongly associated with the laricio pine (Pinus nigra laricio). The range of laricio pine has been impacted by the Pleistocene glacial periods and forest has been recently fragmented by cutting and fires. Using both molecular (mitochondrial and nuclear) and morphological characters, we assessed the variation within the nuthatch population. Our results are consistent with the hypothesis that the Corsican nuthatch endured through the late Pleistocene and Holocene climatic variations, and sustained the subsequent cycles of forests reduction/expansion. The results also suggest that the recent anthropization of the landscape resulted in the isolation of a cluster of populations in the northern part of the island. The fragmentation of the habitat of the nuthatch may impede the future of the bird by creating isolated population units between which the gene flow is reduced.

  18. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  19. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records

    Science.gov (United States)

    Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.

    2016-01-01

    We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.

  20. Millennial-scale climate variability in response to changing glacial and orbital boundary conditions during the Mid-Pleistocene transition

    Science.gov (United States)

    Ferretti, Patrizia; Crowhurst, Simon; Drysdale, Russell; Bajo, Petra; Barbante, Carlo

    2016-04-01

    The Mid-Pleistocene transition represents perhaps the most important climate transition in the Quaternary period, yet it is one of the most poorly understood. Although the exact timing and mechanism of the onset of the "100 kyr" regime remain a matter of debate, it is well established that the overall periodicity of the glacial-interglacial cycles changed from a dominant 41 kyr obliquity periodicity prior to ~0.9 Ma to a dominant late Pleistocene 100 kyr variance. This change in the frequency domain was associated with an increase in the amplitude of global ice volume variations that, superimposed on a long-term climatic trend towards more glacial conditions over millions of years, produced some of the most extreme glaciations recorded. This interval of time has often been considered to be important in relation to long-term Milankovitch-scale climate variability. In contrast, here, special emphasis will be placed on assessing the presence and the characteristics of the suborbital-scale variability, and reconstructing the evolution of millennial-scale climate variability as the average climate state evolve toward generally colder conditions with larger ice sheets, and the spectral character of climate variability shifted from dominantly 41 kyr to 100 kyr. Appealing evidence suggests that millennial-scale climate variability is amplified during times of intense forcing changes, but this rapid variability has not been thoroughly explored yet at the time when the major changes in climate periodicity occurred. To address these questions, we have examined the record of climatic conditions from Marine Isotope Stages 25 to 16 (~970-650 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to assess millennial-scale changes in sea-surface and deep-water conditions, the dynamics of thermohaline deep-water circulation

  1. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  2. Timing of the deglaciation and the late-glacial vegetation development on the Pandivere Upland, North Estonia

    Directory of Open Access Journals (Sweden)

    L. Amon

    2016-12-01

    Full Text Available In this study, the deglaciation chronology of the Pandivere Upland is defined, and the late-glacial vegetation trends of north-eastern Estonia are summarised. The multi-proxy study includes accelerated mass spectrometry 14 C dating, plant macrofossil, magnetic susceptibility, loss-on-ignition and grain-size distribution data of the lacustrine sediment record from one previously unpublished study site (Kursi, and the study discusses the results in combination with five previously published study locations from the area. The results indicate that the deglaciation of the Pandivere Upland started at approximately 14 200 cal. yr BP and was completed by 13 800 cal. yr BP. The ice recession rate was approximately 180 m yr -1 . Based on these new radiocarbon dates, the Baltic Ice Lake stage A 1 submerged the northern and western ice-free areas of Estonia by ca. 13 800 cal. yr BP. The prevalent vegetation type in north-eastern Estonia during the late-glacial period was tundra with local variations in the dominant shrub species. The region remained treeless until the Holocene.

  3. Impact of multiple glacial surges - a geomorphological map from Brúarjökull, East Iceland

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Korsgaard, Niels Jákup; Schomacker, Anders

    2008-01-01

    Simultaneously with geological field investigations at the surge-type glacier Bruarjokull in August 2003, aerial photographs covering the central part of the glacier including the Kringilsarrani area were recorded with the purpose of mapping glacial landforms. A glacial geomorphological map has...

  4. Weak oceanic heat transport as a cause of the instability of glacial climates

    NARCIS (Netherlands)

    Colin de Verdière, A.; Raa, L. te

    2010-01-01

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean-atmosphere-sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The

  5. Clustre: semi-automated lineament clustering for palaeo-glacial reconstruction

    NARCIS (Netherlands)

    Smith, M.; Anders, N.S.; Keesstra, S.D.

    2016-01-01

    Datasets containing large numbers (>10 000) of glacial lineaments are increasingly being mapped from remotely sensed data in order to develop a palaeo-glacial reconstruction or ‘inversion’. The palimpsest landscape presents a complex record of past ice flow and deconstructing this information

  6. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  7. Concomitant and previous osteoporotic vertebral fractures.

    Science.gov (United States)

    Lenski, Markus; Büser, Natalie; Scherer, Michael

    2017-04-01

    Background and purpose - Patients with osteoporosis who present with an acute onset of back pain often have multiple fractures on plain radiographs. Differentiation of an acute osteoporotic vertebral fracture (AOVF) from previous fractures is difficult. The aim of this study was to investigate the incidence of concomitant AOVFs and previous OVFs in patients with symptomatic AOVFs, and to identify risk factors for concomitant AOVFs. Patients and methods - This was a prospective epidemiological study based on the Registry of Pathological Osteoporotic Vertebral Fractures (REPAPORA) with 1,005 patients and 2,874 osteoporotic vertebral fractures, which has been running since February 1, 2006. Concomitant fractures are defined as at least 2 acute short-tau inversion recovery (STIR-) positive vertebral fractures that happen concomitantly. A previous fracture is a STIR-negative fracture at the time of initial diagnostics. Logistic regression was used to examine the influence of various variables on the incidence of concomitant fractures. Results - More than 99% of osteoporotic vertebral fractures occurred in the thoracic and lumbar spine. The incidence of concomitant fractures at the time of first patient contact was 26% and that of previous fractures was 60%. The odds ratio (OR) for concomitant fractures decreased with a higher number of previous fractures (OR =0.86; p = 0.03) and higher dual-energy X-ray absorptiometry T-score (OR =0.72; p = 0.003). Interpretation - Concomitant and previous osteoporotic vertebral fractures are common. Risk factors for concomitant fractures are a low T-score and a low number of previous vertebral fractures in cases of osteoporotic vertebral fracture. An MRI scan of the the complete thoracic and lumbar spine with STIR sequence reduces the risk of under-diagnosis and under-treatment.

  8. Late glacial vegetation and climate changes in the high mountains of Bulgaria (Southeast Europe)

    International Nuclear Information System (INIS)

    Bozilova, E.D.; Tonkov, S.B.

    2005-01-01

    Full text: The Late glacial vegetation history in the high mountains of Southern Bulgaria (Rila, Pirin, Western Rhodopes) is reconstructed by means of pollen analysis, plant macrofossils and radiocarbon dating of sediments from lakes and peat-bogs located between 1300 and 2200 m a.s.l. The vegetation response to the climate fluctuations after 13000 14 C yrs. BP in the Rila Mountains is bound for the first time to a detailed chronological framework. Two stadial and one interstadial phases are delimited analogous with the Oldest Dryas-Bolling/Allerod-Younger Dryas cycle for Western Europe. During the stadials mountain-steppe vegetation composed of Artemisia, Chenopodiaceae, Poaceae and other cold-resistant herbs dominated at high elevation with sparse stands of Pinus, Betula, and shrubland of Juniperus and Ephedra. The climate improvement in the interstadial resulted in the initial spread of deciduous and coniferous trees (Quercus, Tilia, Corylus, Carpinus, Abies, Picea) from their local refugia below 1000 m. The palaeoecological record from the climate deterioration during the Younger Dryas is documented in thin sections of the cores investigated. (author)

  9. Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events

    Directory of Open Access Journals (Sweden)

    M. Wary

    2017-06-01

    Full Text Available Dansgaard–Oeschger oscillations constitute one of the most enigmatic features of the last glacial cycle. Their cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here, based on dinocyst analyses from the 48–30 ka interval of four sediment cores from the northern Northeast Atlantic and southern Norwegian Sea, we provide direct and quantitative evidence of a regional paradoxical seesaw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases. Combined with additional palaeorecords and multi-model hosing simulations, our results suggest that during cold Greenland phases, reduced Atlantic meridional overturning circulation and cold North Atlantic sea-surface conditions were accompanied by the subsurface propagation of warm Atlantic waters that re-emerged in the Nordic Seas and provided moisture towards Greenland summit.

  10. Precise time-window for the onset of glacial termination found

    Science.gov (United States)

    Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.

    2009-04-01

    Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic

  11. Future intrusion of oxygenated glacial meltwaters into the Fennoscandian shield: a possibility to consider in performance assessments for nuclear-waste disposal sites?

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, Pierre [U.S. Geological Survey, Reston, VA 20192 (United States)

    2008-03-15

    The SKB analyses conducted in the Guimera et al. (2006) and Auque et al. (2006) reports do not provide sufficient evidence to discount the possibility that during glacial cycles over the next 120,000 to 1,000,000 years, oxygenated glacial meltwaters could intrude to repository depths (500m) and could stay in contact with the near-field environment of a nuclear-waste repository for 10,000 years or more. The performance analyses and calculations conducted by SKB seem optimistic, rather than conservative with respect to the possibility of oxygen intrusion for the following reasons. 1) The studies minimize the dissolved oxygen concentrations likely to occur in the intruding waters; they do not consider the physical differences between small alpine glaciers and continental ice sheets. Dissolved oxygen concentrations in waters exiting atmospherically equilibrated channels in these small glaciers are a fraction of those likely to occur in meltwater beneath an ice sheet. 2) The calculations do not consider the physical processes that could be responsible for significant and enduring meltwater intrusion over large warm-based areas of the advancing ice sheets (as argued by Provost et al., 1998). 3) The calculations overestimate the reaction potential and reaction rates for ferrous silicate minerals with the dissolved oxygen in the intruding glacial meltwaters.

  12. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions

    Science.gov (United States)

    Rohling, Eelco J.; Hibbert, Fiona D.; Williams, Felicity H.; Grant, Katharine M.; Marino, Gianluca; Foster, Gavin L.; Hennekam, Rick; de Lange, Gert J.; Roberts, Andrew P.; Yu, Jimin; Webster, Jody M.; Yokoyama, Yusuke

    2017-11-01

    Studies of past glacial cycles yield critical information about climate and sea-level (ice-volume) variability, including the sensitivity of climate to radiative change, and impacts of crustal rebound on sea-level reconstructions for past interglacials. Here we identify significant differences between the last and penultimate glacial maxima (LGM and PGM) in terms of global volume and distribution of land ice, despite similar temperatures and radiative forcing. Our analysis challenges conventional views of relationships between global ice volume, sea level, seawater oxygen isotope values, and deep-sea temperature, and supports the potential presence of large floating Arctic ice shelves during the PGM. The existence of different glacial 'modes' calls for focussed research on the complex processes behind ice-age development. We present a glacioisostatic assessment to demonstrate how a different PGM ice-sheet configuration might affect sea-level estimates for the last interglacial. Results suggest that this may alter existing last interglacial sea-level estimates, which often use an LGM-like ice configuration, by several metres (likely upward).

  13. Uterine rupture without previous caesarean delivery

    DEFF Research Database (Denmark)

    Thisted, Dorthe L. A.; H. Mortensen, Laust; Krebs, Lone

    2015-01-01

    OBJECTIVE: To determine incidence and patient characteristics of women with uterine rupture during singleton births at term without a previous caesarean delivery. STUDY DESIGN: Population based cohort study. Women with term singleton birth, no record of previous caesarean delivery and planned...... vaginal delivery (n=611,803) were identified in the Danish Medical Birth Registry (1997-2008). Medical records from women recorded with uterine rupture during labour were reviewed to ascertain events of complete uterine rupture. Relative Risk (RR) and adjusted Relative Risk Ratio (aRR) of complete uterine...... rupture with 95% confidence intervals (95% CI) were ascertained according to characteristics of the women and of the delivery. RESULTS: We identified 20 cases with complete uterine rupture. The incidence of complete uterine rupture among women without previous caesarean delivery was about 3...

  14. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland

    Science.gov (United States)

    Reinig, Frederick; Nievergelt, Daniel; Esper, Jan; Friedrich, Michael; Helle, Gerhard; Hellmann, Lena; Kromer, Bernd; Morganti, Sandro; Pauly, Maren; Sookdeo, Adam; Tegel, Willy; Treydte, Kerstin; Verstege, Anne; Wacker, Lukas; Büntgen, Ulf

    2018-04-01

    The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41-506 years and were growing between the Allerød and Preboreal (∼13‧900-11‧300 cal BP). Together with previously collected pines from this region, this world's best preserved Late Glacial forest substantially improves the earliest part of the absolutely dated European tree-ring width chronology between 11‧300 and 11‧900 cal BP. Radiocarbon measurements from 65 Zurich pines between ∼12‧320 and 13‧950 cal BP provide a perspective to prolong the continuous European tree-ring record by another ∼2000 years into the Late Glacial era. These data will also be relevant for pinpointing the Laacher See volcanic eruption (∼12‧900 cal BP) and two major Alpine earthquakes (∼13‧770 and ∼11‧600 cal BP). In summary, this study emphasizes the importance of dating precision and multi-proxy comparison to disentangle environmental signals from methodological noise, particularly during periods of high climate variability but low data availability, such as the Younger Dryas cold spell (∼11‧700 and 12‧900 cal BP).

  15. Increasing risk of glacial lake outburst floods as a consequence of climate change in the Himalayan region

    Directory of Open Access Journals (Sweden)

    Somana Riaz

    2014-03-01

    Full Text Available The greater Himalayan Mountains host the largest snow covered area outside the polar regions and serves as the source for some of the major fluvial systems of the world. The region acts as the lifeline for approximately 10% of the world’s population. The terrain is geologically active, highly susceptible to climate change processes and plays a significant role in global hydro-meteorological cycles and biodiversity. With the increasing impacts of climate change to the glaciers and ice caps during the past few decades, people living in the Himalayas have become vulnerable to a higher risk of floods, avalanches and glacial lake outburst floods(GLOFs. This study reviewed the work carried out by earlier researchers to understand the history and science of GLOFs and their potential risk to the communities in the Himalayanbelt, particularly in Pakistan.

  16. Inverse vertical migration and feeding in glacier lanternfish (Benthosema glaciale)

    KAUST Repository

    Dypvik, Eivind

    2011-11-08

    A bottom-mounted upward-facing 38-kHz echo sounder was deployed at ~400 m and cabled to shore in Masfjorden (~60 52?N, ~5 24?E), Norway. The scattering layers seen during autumn (September-October) 2008 were identified by trawling. Glacier lanternfish (Benthosema glaciale) were mainly distributed below ~200 m and displayed three different diel behavioral strategies: normal diel vertical migration (NDVM), inverse DVM (IDVM) and no DVM (NoDVM). The IDVM group was the focus of this study. It consisted of 2-year and older individuals migrating to ~200-270 m during the daytime, while descending back to deeper than ~270 m during the night. Stomach content analysis revealed increased feeding during the daytime on overwintering Calanus sp. We conclude that visually searching glacier lanternfish performing IDVM benefit from the faint daytime light in mid-waters when preying on overwintering Calanus sp. 2011 The Author(s).

  17. INTRODUCTION Previous reports have documented a high ...

    African Journals Online (AJOL)

    pregnancy if they were married, educated, had dental insurance, previously used dental services when not pregnant, or had knowledge about the possible connection between oral health and pregnancy outcome8. The purpose of this study was to explore the factors determining good oral hygiene among pregnant women ...

  18. Empowerment perceptions of educational managers from previously ...

    African Journals Online (AJOL)

    The perceptions of educational manag ers from previously disadvantaged primary and high schools in the Nelson Mandela Metropole regarding the issue of empowerment are outlined and the perceptions of educational managers in terms of various aspects of empowerment at different levels reflected. A literature study ...

  19. Management of choledocholithiasis after previous gastrectomy.

    Science.gov (United States)

    Anwer, S; Egan, R; Cross, N; Guru Naidu, S; Somasekar, K

    2017-09-01

    Common bile duct stones in patients with a previous gastrectomy can be a technical challenge because of the altered anatomy. This paper presents the successful management of two such patients using non-traditional techniques as conventional endoscopic retrograde cholangiopancreatography was not possible.

  20. Laboratory Grouping Based on Previous Courses.

    Science.gov (United States)

    Doemling, Donald B.; Bowman, Douglas C.

    1981-01-01

    In a five-year study, second-year human physiology students were grouped for laboratory according to previous physiology and laboratory experience. No significant differences in course or board examination performance were found, though correlations were found between predental grade-point averages and grouping. (MSE)

  1. Glacial-Holocene variability in pelagic denitrification and OMZ intensity along the NW Mexican Margin

    Science.gov (United States)

    Ontiveros Cuadras, J. F.; Thunell, R.; Ruiz-Fernandez, A. C.; Machain-Castillo, M. L.; Tappa, E.

    2017-12-01

    Denitrification of fixed nitrogen represents a substantial loss of bioavailable nitrogen from the ocean, thus playing a major role in the global nitrogen cycle. Water-column (pelagic) denitrification occurs mostly in the oxygen minimum zones (OMZs), which are situated beneath coastal upwelling areas that are characterized by high settling fluxes of organic detritus and high rates of oxygen utilization from remineralization. Our study uses biogenic components (total organic carbon and opal) and δ15N values of sediments from the NW Mexican Margin to reconstruct variations in denitrification and strength of the OMZ in the eastern tropical North Pacific (ETNP) for the last 36,000 years. During the last glacial period (LGM, 23-18 kyr) the associations between relatively low δ15N values (7-8‰) and low TOC (2-4%) and opal (1-4%) content indicates reduced denitrification due to reduced upwelling and decreased flux of organic matter through the OMZ. This was followed by abrupt acceleration of water-column denitrification (δ15N, 7-10‰) and the strengthening of the OMZ during the latter half of Heinrich Stadial 1 (HS1; 18-14.7 kyr). However, the biogenic component of sediments deposited during HS1 do not increase appreciably, suggesting that the increase in denitrification was not driven by an increase in productivity. Furthermore, the increase in δ15N precedes the deglacial decrease in planktonic foraminiferal δ18O which mostly occurs during the Bolling Alerod (14.7-12.9 kyr). This suggests that the increase in denitrification was not a response to surface warming. Rather, we attribute the rapid increase in denitrification during HS1 to reduced ventilation of the ETNP OMZ. Following the peak in denitrification at the end of HS1, we observe a small but steady decline in δ15N over the last 15 kyr. Higher TOC in Holocene sediments relative to glacial sediments suggests that increased productivity has played a role in maintaining a strong OMZ throughout the Holocene.

  2. Catastrophic glacial multi-phase mass movements: a special type of glacial hazard

    Directory of Open Access Journals (Sweden)

    D. A. Petrakov

    2008-04-01

    Full Text Available Many glacier-related hazards are well typified and studied, but some events stand out from conventional classifications. The Kolka-Karmadon catastrophic event on 20 September 2002 in North Ossetia, North Caucasus, Russia is used as an example of a complex glacier failure exhibiting characteristics such as high mobility, long runout, ultrarapid movement and multiphase behaviour. We consider terminology protocol for glacier hazard classification and then, using the Kolka-Karmadon event and several other examples from around the world, we propose a new term for this family of events. Catastrophic glacier multi-phase mass movement (CGMM is described and further illustrated by eight major events from Russia, Georgia, Peru, Chile, and Canada. CGMM have a combination of specific features: extraordinary velocities and long-distance runout despite low path angle; progressive fluidisation along travel path; superelevation and run-up of the moving mass, air blast wave in the avalanche flow phase; entrainment of available materials in its path, and the repeated nature of the event. CGMM events may affect areas remote from glaciers which were previously considered as safe.

  3. Catastrophic glacial multi-phase mass movements: a special type of glacial hazard

    Science.gov (United States)

    Petrakov, D. A.; Chernomorets, S. S.; Evans, S. G.; Tutubalina, O. V.

    2008-04-01

    Many glacier-related hazards are well typified and studied, but some events stand out from conventional classifications. The Kolka-Karmadon catastrophic event on 20 September 2002 in North Ossetia, North Caucasus, Russia is used as an example of a complex glacier failure exhibiting characteristics such as high mobility, long runout, ultrarapid movement and multiphase behaviour. We consider terminology protocol for glacier hazard classification and then, using the Kolka-Karmadon event and several other examples from around the world, we propose a new term for this family of events. Catastrophic glacier multi-phase mass movement (CGMM) is described and further illustrated by eight major events from Russia, Georgia, Peru, Chile, and Canada. CGMM have a combination of specific features: extraordinary velocities and long-distance runout despite low path angle; progressive fluidisation along travel path; superelevation and run-up of the moving mass, air blast wave in the avalanche flow phase; entrainment of available materials in its path, and the repeated nature of the event. CGMM events may affect areas remote from glaciers which were previously considered as safe.

  4. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  5. CYCLE CONTROL

    African Journals Online (AJOL)

    changed to gestodene. Although large- scale comparative trials are needed to confirm this finding, evidence suggests that cycle control with gestodene is better than for monophasic preparations containing desogestrel, norgestimate or levonorgestrel,10 as well as for levonorg- estrel-or norethisterone-containing triphasics.

  6. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  7. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  8. Provenance Of James Bay Lowlands Glacial Deposits In The Context Of Multiple Ice-flow Events Of The Eastern Sector Of The Laurentide Ice Sheet

    Science.gov (United States)

    Dube-Loubert, H.; Roy, M.; Stevenson, R.; Hemmings, S.; Veillette, J.; Parent, M.; Allard, G.

    2007-12-01

    Paleoclimate records indicate that the Laurentide Ice Sheet (LIS) was highly dynamic throughout the last glacial cycle. Measurements of glacial striations taken from multi-faceted rock outcrops and tracing of lithological indicators also indicate important reorganizations of the ice divide system of the LIS. The sequence of shifting ice flows for the eastern sector of the LIS consists in several ice movements dating presumably from the ice-dome buildup in the early phases of the last glacial cycle to late deglaciation stages. There is, however, little information on the timing of these ice flow shifts as well as the exact trajectories and extent of the documented ice flow events. Here we focus on the evolution of the Labrador-Quebec ice dome by documenting the provenance of till units of the James Bay lowlands of Quebec. This region preserves a long record of late Pleistocene events and its location near the former geographic center of the LIS makes it particularly important for the study of ice sheet dynamics. Our investigations along the Harricana and Nottaway rivers indicate that the regional stratigraphy consists of at least 4 distinct till units. A 20-m thick varve unit also separates the lower two till units from the two upper ones. This glacial sequence lies on fluvial sands containing abundant compressed wood fragments. Distinguishing ice-flow events in multiple-till sequences is difficult and requires the development of approaches that will lead to a well-constrained interpretation of till provenance. Ice flow directional data of till was obtained through sedimentological methods (till fabrics, measurements of striations on bullet-shaped boulders, etc.), as well as the petrography of clasts, and mineralogic geochemical composition of till matrix. Clast petrological data from the four-till sequence shows variations that suggest an early ice flow towards the northwest, followed by a counterclockwise shift to the west, southwest and then south. This

  9. Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    Science.gov (United States)

    García, Marga; Dowdeswell, J. A.; Noormets, R.; Hogan, K. A.; Evans, J.; Ó Cofaigh, C.; Larter, R. D.

    2016-12-01

    Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size.

  10. Previously unknown organomagnesium compounds in astrochemical context

    OpenAIRE

    Ruf, Alexander

    2018-01-01

    We describe the detection of dihydroxymagnesium carboxylates (CHOMg) in astrochemical context. CHOMg was detected in meteorites via ultrahigh-resolving chemical analytics and represents a novel, previously unreported chemical class. Thus, chemical stability was probed via quantum chemical computations, in combination with experimental fragmentation techniques. Results propose the putative formation of green-chemical OH-Grignard-type molecules and triggered fundamental questions within chemica...

  11. [Placental complications after a previous cesarean section].

    Science.gov (United States)

    Milosević, Jelena; Lilić, Vekoslav; Tasić, Marija; Radović-Janosević, Dragana; Stefanović, Milan; Antić, Vladimir

    2009-01-01

    The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complication development. The research was conducted at the Clinic of Gynecology and Obstetrics in Nis covering 10-year-period (from 1995 to 2005) with 32358 deliveries, 1280 deliveries after a previous cesarean section, 131 cases of placenta previa and 118 cases of placental abruption. The experimental groups was presented by the cases of placenta previa or placental abruption with prior cesarean section in obstetrics history, opposite to the control group having the same conditions but without a cesarean section in medical history. The incidence of placenta previa in the control group was 0.33%, opposite to the 1.86% incidence after one cesarean section (pcesarean sections and as high as 14.28% after three cesarean sections in obstetric history. Placental abruption was recorded as placental complication in 0.33% pregnancies in the control group, while its incidence was 1.02% after one cesarean section (pcesarean sections. The difference in the incidence of intrapartal hysterectomy between the group with prior cesarean section (0.86%) and without it (0.006%) shows a high statistical significance (pcesarean section is an important risk factor for the development of placental complications.

  12. The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin

    Directory of Open Access Journals (Sweden)

    M. O'Regan

    2017-09-01

    Full Text Available Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions. The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a  >  65 m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ∼ 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS 6.

  13. Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest.

    Science.gov (United States)

    Liu, Yongqin; Yao, Tandong; Jiao, Nianzhi; Kang, Shichang; Huang, Sijun; Li, Qiang; Wang, Kejuan; Liu, Xiaobo

    2009-01-01

    Culturable bacteria in the glacial meltwater in the ablation zones of glacier at high altitude (6,350 m) on Mt Everest were isolated and identified by 16S rRNA amplification and sequencing. The obtained sequences revealed the presence of members of alpha, beta, and gamma-Proteobacteria, Actinobacteria, and Firmicutes, with the Actinobacteria dominant in the studied habitat. All 16S rRNA sequences were similar to previously determined sequences, ranging from 97 to 99% identical values. The strains isolated from meltwater were distinctly different from those recovered from a cryoconite hole and under glacier habitat. The majority of the isolates' nearest neighbors were from the permafrost, dust, soil, plant, and aqueous environments. The Biolog bioassay and growth test under different temperatures suggested that the culturable bacteria in glacial meltwater could be divided into three categories in terms of their survival strategies: Group I sensitive to temperature change but versatile in utilization of carbon substrates (capable of utilization of about 70% of the Biolog carbon substrates); Group II tolerant to variable temperature and less capable of carbon utilization (less than half of the Biolog carbon species can be used); Group III slow in growth and weak in carbon utilization (only a few Biolog carbon substrates can be used).

  14. Late Glacial and Early Holocene Climatic Changes Based on a Multiproxy Lacustrine Sediment Record from Northeast Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kokorowski, H D; Anderson, P M; Sletten, R S; Lozhkin, A V; Brown, T A

    2008-05-20

    Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicates no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.

  15. Glacial-interglacial sea ice proxies from the Antarctic Peninsula using the James Ross Island ice core.

    Science.gov (United States)

    Benton, A. K.; Mulvaney, R.; Triest, J.; Abram, N.

    2014-12-01

    Ice core records from Antarctica have shown promise as highly-resolved indicators of regional sea ice change, but to date semi-quantified reconstructions do not extend back more than ~150 years. In this study the chemical composition of the James Ross Island ice core is presented as a potential sea ice proxy record spanning the full Holocene and into the last glacial interval. A CFA-TE method was used to analyse the chemical composition of the entire 363.9m core including final 5m which contains evidence of glacial age ice. MSA- and major anions were measured at 4cm effective resolution, along with trace elements Na, Ca, K, Mg, Mn, H2O2, NO3, total conductivity and dust at <0.5cm effective resolution. Seasonal signals from H2O2 in the upper 50m of the core support the use of non sea salt-SO42- for determining seasonality in deeper sections. This multi-proxy analysis of the oldest ice core to date from the Antarctic Peninsula region allows the concurrent interpretation of sea ice changes and their environmental drivers. The potential dual influence of previous winter sea ice extent and air pathway source region on MSA concentrations in the core are interpreted with use of Na as a winter maximum indicator and Ca and dust signal strength showing changes in dust flux indicating potential source region variation.

  16. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  17. A New View of Glacial Age Coastal Wetlands from A Well-Preserved Underwater Baldcypress Forest in the Northern Gulf of Mexico

    Science.gov (United States)

    DeLong, K. L.; Harley, G. L.; Bentley, S. J.; Xu, K.; Reese, A.; Caporaso, A.; Obelcz, J.; Gonzalez Rodriguez, S. M.; Truong, J. T.; Shen, Z.; Raines, B.

    2017-12-01

    A unique site in the northern Gulf of Mexico contains well-preserved baldcypress (Taxodium distichum) stumps in life position deposited when sea level was lower during the last glacial interval presumably uncovered by Hurricane Ivan in 2004. Previous pollen and climate model studies suggest the southeastern USA was cold and dry during the glacial with boreal forests; however, little paleo-evidence for the northern gulf coast exist. Wood normally decomposes quickly in marine environments thus such sites are rare and understudied until this multi-disciplinary team began studying the site in 2012. The team has dived the site collecting 23 wood samples, conducted two geophysical surveys, and recovered 18 vibracores. Radiocarbon dating of tree stumps reveal that the trees are radiocarbon dead yet some dates from the woody fractions in the sediments above the trees have 14C ages from 37,350-41,830 years BP, which are close to the 14C dating limitations. Optically stimulated luminescence dating pushes burial of the forest back to 60-70 ka. Based on the site location (13.5 km offshore), water depth (18 m), and relative tectonic stability of this area, and geophysical surveys, these subtropical baldcypress trees lived 30 m above sea level in a backwater swamp in an area with topographic relief during a lower sea level stand in the last glacial interval (MIS 3-4) near the now buried and incised Mobile River channels. Pollen analysis from sediment core samples found an abundance of baldcypress and tupelo (Nyssa aquatic)with some pine pollen similar to the modern northern Gulf Coast. We developed a floating tree-ring chronology spanning 489 years using wood samples with bark still intact. This chronology reveals growth suppression events towards the end of their life with death occurring simultaneously and burial possibly caused by floodplain aggradation from a quick rise in sea level during the glacial interval. These large baldcypress trees and pollen results suggest the

  18. A long pollen record from lowland Amazonia: Forest and cooling in glacial times

    Energy Technology Data Exchange (ETDEWEB)

    Colinvaux, P.A.; Moreno, J.E.; Bush, M.B. [Smithsonian Tropical Research Institute, Balboa (Panama)] [and others

    1996-10-04

    A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23 refs., 22 tabs.

  19. Chironomid (Diptera) distribution and diversity in Tibetan streams with different glacial influence

    DEFF Research Database (Denmark)

    Hamerlik, Ladislav; Jacobsen, Dean

    2012-01-01

    . Both average taxon number and abundance were lower in glacier-fed streams compared with those of non-glacial origin. The total taxon number collected (? diversity) was similar regardless of glacial influence. However, spot diversity (a diversity) was higher in non-glacial streams, while glacier......-fed streams supported higher species turnover (beta diversity). 4. Detrended correspondence analysis scattered the study sites along the first ordination axis, representing a combination of distance from glacier and channel stability. Two-way indicator analysis distinguished three groups of sites. Group 1...

  20. Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand

    Science.gov (United States)

    Barrows, Timothy T.; Almond, Peter; Rose, Robert; Keith Fifield, L.; Mills, Stephanie C.; Tims, Stephen G.

    2013-08-01

    On the South Island of New Zealand, large piedmont glaciers descended from an ice cap on the Southern Alps onto the coastal plain of the West Coast during the late Pleistocene. The series of moraine belts and outwash plains left by the Taramakau glacier are used as a type section for interpreting the glacial geology and timing of major climatic events of New Zealand and also as a benchmark for comparison with the wider Southern Hemisphere. In this paper we review the chronology of advances by the Taramakau glacier during the last or Otira Glaciation using a combination of exposure dating using the cosmogenic nuclides 10Be and 36Cl, and tephrochronology. We document three distinct glacial maxima, represented by the Loopline, Larrikins and Moana Formations, separated by brief interstadials. We find that the Loopline Formation, originally attributed to Oxygen Isotope Chronozone 4, is much younger than previously thought, with an advance culminating around 24,900 ± 800 yr. The widespread late Pleistocene Kawakawa/Oruanui tephra stratigraphically lies immediately above it. This Formation has the same age previously attributed to the older part of the Larrikins Formation. Dating of the Larrikins Formation demonstrates there is no longer a basis for subdividing it into older and younger phases with an advance lasting about 1000 years between 20,800 ± 500 to 20,000 ± 400 yr. The Moana Formation represents the deposits of the last major advance of ice at 17,300 ± 500 yr and is younger than expected based on limited previous dating. The timing of major piedmont glaciation is restricted to between ˜25,000 and 17,000 yr and this interval corresponds to a time of regionally cold sea surface temperatures, expansion of grasslands at the expense of forest on South Island, and hemisphere wide glaciation.

  1. Sforzellina Glaciers: Glacial Geomorfology, Mass Balance, Frontal Variations and Dendroglaciology

    Science.gov (United States)

    Diolaiuti, G.; D'Agata, C.; Smiraglia, C.; Santilli, M. Pelfini M.

    The Sforzellina Glacier is a small cirque glacier located in Gavia Valley, in the Lom- bardy side of the Ortles-Cevedale Group (Italy). Although its modest dimensions, it is an important source of glaciological and geomorphological data; it is in fact moni- torated over a long time, more than seventy years, by the Italian Glaciological Com- mitteeSs (CGI) relatively to the frontal variations and so now is available a complete data set that was used in order to calculate the correlation with other alpine italian glaciers. The analysis allowed to estimate that this small cirque glacier is in phase with a large number of alpine glacial bodies. The glacier had a continuous and un- interrupted retreating phase from 1925 to the beginning of the 70s of XXth century when a frontal progress phase started. This new trend culminated in 1985 and finished in 1987. From that year the glacier resumed a continuous and uninterrupted frontal retreat. From 1925 to 2000 the glacier retreated was of 379 m. From 1987 up to now Sforzellina is used as a sample glacier for mass balance measurements and all the data (15 years of mass balance data) were correlated with the other Italian and European mass balance data; this analysis allowed to notice that this glacier was strongly corre- lated with many of the monitorated alpine glaciers located in the same climatic region. This result suggests to continue the monitoring of Sforzellina as important climatic and environmental index and suggests to use the data in order to calcolate matemathi- cal models to create alpine glacier scenaries. From 1987 to 2000 the Sforzellina mass balances were constantly negative. In the hydrological year 2000-2001 there was a change in mass balance trend with a moderately positive mass balance. In 15 years the glacier lost a thickness of about 13 m w.e. In the summers 1999 and 2000 the glacier was studied by means of sysmic and radar geophysical surveys to determinate the thickness, that was resulted of about 40

  2. A vigorous Mesoamerican monsoon during the Last Glacial Maximum driven by orbital and oceanic forcing

    Science.gov (United States)

    Lachniet, M. S.; Asmerom, Y.; Bernal, J. P.; Polyak, V.; Vazquez-Selem, L. V.

    2012-12-01

    The external forcings on global monsoon strength include summer orbital insolation and ocean circulation changes, both of which are key control knobs on Earth's climate. However, few records of the North American Monsoon (NAM) are available to test its sensitivity to variations in the precession-dominated insolation signal and Atlantic Meridional Overturning Circulation (AMOC) for the Last Glacial Maximum (LGM; 21 ± 3 cal ka BP) and deglacial periods. In particular, well-dated and high-resolution records from the southern sector of the NAM, referred to informally as the Mesoamerican monsoon to distinguish it from the more northerly 'core' NAM, are needed to better elucidate paleoclimate change in North America. Here, we present a 22 ka (ka = kilo years) rainfall history from absolutely-dated speleothems from tropical southwestern Mexico that documents a vigorous LGM summer monsoon, in contradiction to previous interpretations, and that the monsoon collapsed during the Heinrich stadial 1 and Younger Dryas cold events. We conclude that a strong Mesoamerican monsoon requires both a large ocean-to-land temperature contrast, driven as today by summer insolation, and a proximal latitudinal position of the Intertropical Convergence Zone, forced by active AMOC.

  3. Mitigation of global cooling by stratospheric chemistry feedbacks in a simulation of the Last Glacial Maximum

    Science.gov (United States)

    Noda, S.; Kodera, K.; Deushi, M.; Kitoh, A.; Mizuta, R.; Yoshida, K.; Murakami, S.; Adachi, Y.; Yoden, S.

    2017-12-01

    A series of numerical simulations of the Last Glacial Maximum (21 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone profile on the surface climate with decreased CO2 condition and different orbital parameters. The contribution of the interactive ozone chemistry reveals a significant anomaly of +0.5 K (approximately 20 %) in the tropics and up to +1.5 K in high-latitudes for the annual mean zonal mean surface air temperature compared with those of the corresponding experiments with a prescribed ozone profile for preindustrial simulation of the fifth Coupled Model Intercomparison Project (CMIP5). In the tropics, this mitigation of global cooling is related to longwave radiative feedbacks associated with circulation-driven increases in lower stratospheric ozone and related increase in stratospheric water vapor and related decrease in cirrus cloud. The relations are opposite signs to and consistent with those of a global warming simulation. In high-latitudes, the polar amplification of mitigation of cooling associated with the change of sea ice area that is the same sign to and consistent with our previous paleoclimate simulation in the mid-Holocene (6 kyr B.P.). We recommend that climate models include sea ice and ozone profile that are consistent with CO2 concentration.

  4. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Science.gov (United States)

    Harrison, Stephan; Kargel, Jeffrey S.; Huggel, Christian; Reynolds, John; Shugar, Dan H.; Betts, Richard A.; Emmer, Adam; Glasser, Neil; Haritashya, Umesh K.; Klimeš, Jan; Reinhardt, Liam; Schaub, Yvonne; Wiltshire, Andy; Regmi, Dhananjay; Vilímek, Vít

    2018-04-01

    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity - rather unexpectedly - have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  5. Glacial Isostatic Adjustment Derived Boundary Conditions for Paleoclimate Simulation: the Refined ICE-6G_D (VM5a) Model and the Dansgaard-Oeschger Oscillation

    Science.gov (United States)

    Peltier, W. R.; Vettoretti, G.; Argus, D. F.

    2017-12-01

    Global models of the glacial isostatic adjustment (GIA) process are designed to fit a wide range of geophysical and geomorphological observations that simultaneously constrain the internal viscoelastic structure of Earths interior and the history of grounded ice thickness variations that has occurred over the most recent ice-age cycle of the Late Quaternary interval of time. The most recent refinement of the ICE-NG (VMX) series of such global models from the University of Toronto, ICE-6G_C (VM5a), has recently been slightly modified insofar as its Antarctic component is concerned to produce a "_D" version of the structure. This has been chosen to provide the boundary conditions for the next round of model-data inter-comparisons in the context of the international Paleoclimate Modeling Inter-comparison Project (PMIP). The output of PMIP will contribute to the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change which is now under way. A highly significant test of the utility of this latest model has recently been performed that is focused upon the Dansgaard-Oeschger oscillation that was the primary source of climate variability during Marine Isotope Stage 3 (MIS3) of the most recent glacial cycle. By introducing the surface boundary conditions for paleotopography and paleobathymetry, land-sea mask and surface albedo into the NCAR CESM1 coupled climate model configured at full one degree by one degree CMIP5 resolution, together with the appropriate trace gas and orbital insolation forcing, we show that the millennium timescale Dansgard-Oeschger oscillation naturally develops following spin- up of the model into the glacial state.

  6. 3D Modeling of Glacial Erratic Boulders in the Haizi Shan Region, Eastern Tibetan Plateau

    Science.gov (United States)

    Sheriff, M.; Stevens, J.; Radue, M. J.; Strand, P.; Zhou, W.; Putnam, A. E.

    2017-12-01

    The focus of our team's research is to study patterns of glacier retreat in the Northern and Southern Hemispheres at the end of the last ice age. Our purpose is to search for what caused this great global warming. Such information will improve understanding of how the climate system may respond to the human-induced buildup of fossil carbon dioxide. To reconstruct past glacier behavior, we sample boulders deposited by glaciers to find the rate of ancient recession. Each sample is tested to determine the age of the boulder using 10Be cosmogenic-nuclide dating. My portion of this research focuses on creating 3D models of the sampled boulders. Such high-resolution 3D models afford visual inspection and analysis of each boulder in a virtual reality environment after fieldwork is complete. Such detailed virtual reconstructions will aid post-fieldwork evaluation of sampled boulders. This will help our team interpret 10Be dating results. For example, a high-resolution model can aid post-fieldwork observations, and allow scientists to determine whether the rock has been previously covered, eroded, or moved since it was deposited by the glacier, but before the sample was collected. Also a model can be useful for recognizing patterns between age and boulder morphology. Lastly, the models can be used for those who wish to review the data after publication. To create the 3D models, I will use Hero4 GoPro and Canon PowerShot digital cameras to collect photographs of each boulder from different angles. I will then process the digital imagery using `structure-from-motion' techniques and Agisoft Photoscan software. All boulder photographs will be synthesized to 3D and based on a standardized scale. We will then import these models into an environment that can be accessed using cutting-edge virtual reality technology. By producing a virtual archive of 3D glacial boulder reconstructions, I hope to provide deeper insight into geological processes influencing these boulders during and

  7. Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece during the Late Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    A. Masi

    2018-03-01

    Full Text Available A new high-resolution pollen and NPP (non-pollen palynomorph analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and the former Yugoslav Republic of Macedonia (FYROM. The sequence covers the last 12 500 years and provides information on the vegetational dynamics of the Late Glacial and Holocene for the southern Balkans. Robust age model, sedimentological diatom, and biomarker analyses published previously have been the base for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. The Quercus robur type and Pinus are the most abundant taxa, followed by the Quercus cerris type, the Quercus ilex type and Ostrya–Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP from the contemporary presence of cereals, Juglans and Rumex. A drop in both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also, a correlation between Pediastrum boryanum and fecal stanol suggests that the increase in nutrients in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the Roman Empire impacted a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake

  8. Oxygen isotope composition as late glacial palaeoclimate indicators of groundwater recharge in the Baltic Basin

    International Nuclear Information System (INIS)

    Mokrik, R.; Mazeika, J.

    2002-01-01

    Several hypotheses were established to explain low δ 18 O values of groundwater which have been found in the Estonian Homocline. Traces of depleted groundwater were found also in other parts of the Baltic Basin near the shoreline. From data collected in this and previous studies, the δ 18 O values of groundwater in most aquifers are known to range from -7.7 to -13.9 per mille. However, the groundwater in Estonia in the Cambrian-Vendian aquifer system has significantly lower δ 18 O values, which vary mainly from -18 to -22.5 per mille. The overlying Ordovician-Cambrian aquifer is also depleted in 18 O, but, as a rule, the degree of depletion is several per mille less than in case of the Cambrian- Vendian aquifer. The thickness of the depleted water in Estonia reaches 450 m. At similar depths beneath Gotland Island (Sweden Homocline), groundwater has significantly higher δ 18 O values (from -5.7 to -6.1 per mille). A hydrogeologic model, depicting conditions during the pre Late Glacial, and accounting for hydraulic connections between the lake and river systems through taliks in permafrost, was developed to explain the observed groundwater isotope data. According to the adopted model, penetration of isotopically depleted surface waters could have reached depths of up to 500 m, with subsequent mixing between subglacial meltwater and old groundwater of Huneborg-Denekamp time. Traces of this penetration were discovered only near the shoreline, where δ 18 O values vary from -12 to -13.9 per mille and 14 C is below 4%. In the territory of the Estonian Homocline, the hydraulically close connection via the Cambrian-Vendian aquifer between talik systems of the Gulf of Riga and the Gulf of Finland existed through permafrost before the Late Glacial. This was due to subglacial recharge during the recessional Pandivere (12 ka BP) and Palivere (11.2 ka BP) phases, which is also associated with recharge of isotopically depleted groundwater. (author)

  9. Glacial to Holocene climate changes in Easter Island (SE Pacific, 27

    Science.gov (United States)

    Sáez, A.; Giralt, S.; Valero-Garcés, B. L.; Moreno, A.; Bao, R.; Pueyo, J. J.; Hernández, A.

    2009-04-01

    Sedimentary architecture and paleoclimate for the last 34 000 cal years BP and human activity during the last 850 years have been reconstructed from the Raraku Lake sediments in Easter Island (SE Pacific, 27°S) using a high-resolution multiproxy study of 8 cores, 36 AMS radiocarbon dates and correlation with previous core studies. The Last Glacial period was characterized by cold and relatively humid conditions between 34 to 28 cal kyr BP. High lake levels and clastic input dominated sedimentation in Raraku Lake and a relatively open forest developed at that time. Between 28 and 17.3 cal kyr BP, including LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major floods due to the erosion of littoral sediments. The Deglaciation Period (Termination 1) occurred between 17.3 and 12.5 cal kyr BP, characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery inaugurating a period of intermediate lake levels. During this period, the dominance of algal lamination is interpreted as a warmer climate. The timing and duration of this warming trend in Easter Island broadly agrees with other mid- and low latitude circum South Pacific terrestrial records. The early Holocene was characterized by low lake levels. The lake level dropped during the early Holocene (ca. 9.5 cal kyr BP) and peatbog and shallow lake conditions dominated till mid Holocene, partially caused by the colmatation of the lacustrine basin. During the mid Holocene an intense drought occurred that led to a persistent low water table period, subaerial exposure and erosion of some of the sediments, generating a sedimentary gap in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The palm deforestation of the Easter Island, attributed to the human colonization at about 850 cal yr

  10. ANN modelling of sediment concentration in the dynamic glacial environment of Gangotri in Himalaya.

    Science.gov (United States)

    Singh, Nandita; Chakrapani, G J

    2015-08-01

    The present study explores for the first time the possibility of modelling sediment concentration with artificial neural networks (ANNs) at Gangotri, the source of Bhagirathi River in the Himalaya. Discharge, rainfall and temperature have been considered as the main controlling factors of variations in sediment concentration in the dynamic glacial environment of Gangotri. Fourteen feed forward neural networks with error back propagation algorithm have been created, trained and tested for prediction of sediment concentration. Seven models (T1-T7) have been trained and tested in the non-updating mode whereas remaining seven models (T1a-T7a) have been trained in the updating mode. The non-updating mode refers to the scenario where antecedent time (previous time step) values are not used as input to the model. In case of the updating mode, antecedent time values are used as network inputs. The inputs applied in the models are either the variables mentioned above as individual factors (single input networks) or a combination of them (multi-input networks). The suitability of employing antecedent time-step values as network inputs has hence been checked by comparative analysis of model performance in the two modes. The simple feed forward network has been improvised with a series parallel non-linear autoregressive with exogenous input (NARX) architecture wherein true values of sediment concentration have been fed as input during training. In the glacial scenario of Gangotri, maximum sediment movement takes place during the melt period (May-October). Hence, daily data of discharge, rainfall, temperature and sediment concentration for five consecutive melt periods (May-October, 2000-2004) have been used for modelling. High Coefficient of determination values [0.77-0.88] have been obtained between observed and ANN-predicted values of sediment concentration. The study has brought out relationships between variables that are not reflected in normal statistical analysis. A

  11. Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece) during the Late Glacial and Holocene

    Science.gov (United States)

    Masi, Alessia; Francke, Alexander; Pepe, Caterina; Thienemann, Matthias; Wagner, Bernd; Sadori, Laura

    2018-03-01

    A new high-resolution pollen and NPP (non-pollen palynomorph) analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and the former Yugoslav Republic of Macedonia (FYROM). The sequence covers the last 12 500 years and provides information on the vegetational dynamics of the Late Glacial and Holocene for the southern Balkans. Robust age model, sedimentological diatom, and biomarker analyses published previously have been the base for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. The Quercus robur type and Pinus are the most abundant taxa, followed by the Quercus cerris type, the Quercus ilex type and Ostrya-Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP from the contemporary presence of cereals, Juglans and Rumex. A drop in both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also, a correlation between Pediastrum boryanum and fecal stanol suggests that the increase in nutrients in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the Roman Empire impacted a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake Dojran multi-proxy analysis including pollen

  12. Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies

    Science.gov (United States)

    Caron, L.; Métivier, L.; Greff-Lefftz, M.; Fleitout, L.; Rouby, H.

    2017-05-01

    Glacial Isostatic Adjustment (GIA) models commonly assume a mantle with a viscoelastic Maxwell rheology and a fixed ice history model. Here, we use a Bayesian Monte Carlo approach with a Markov chain formalism to invert the global GIA signal simultaneously for the mechanical properties of the mantle and the volumes of the ice sheets, using as starting ice models two previously published ice histories. Two stress relaxing rheologies are considered: Burgers and Maxwell linear viscoelasticities. A total of 5720 global palaeo sea level records are used, covering the last 35 kyr. Our goal is not only to seek the model best fitting this data set, but also to determine and display the range of possible solutions with their respective probability of explaining the data. In all cases, our a posteriori probability maps exhibit the classic character of solutions for GIA-determined mantle viscosity with two distinct peaks. What is new in our treatment is the presence of the bi-viscous Burgers rheology and the fact that we invert rheology jointly with ice history, in combination with the greatly expanded palaeo sea level records. The solutions tend to be characterized by an upper-mantle viscosity of around 5 × 1020 Pa s with one preferred lower-mantle viscosities at 3 × 1021 Pa s and the other more than 2 × 1022 Pa s, a rather classical pairing. Best-fitting models depend upon the starting ice history and the stress relaxing law. A first peak (P1) has the highest probability only in the case with a Maxwell rheology and ice history based on ICE-5G, while the second peak (P2) is favoured for ANU-based ice history or Burgers stress relaxation. The latter solution also may satisfy lower-mantle viscosity inferences from long-term geodynamics and gravity gradient anomalies over Laurentia. P2 is also consistent with large Laurentian and Fennoscandian ice-sheet volumes at the Last Glacial Maximum (LGM) and smaller LGM Antarctic ice volume than in either ICE-5G or ANU. Exploration of

  13. Books average previous decade of economic misery.

    Science.gov (United States)

    Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.

  14. Induced vaginal birth after previous caesarean section

    Directory of Open Access Journals (Sweden)

    Akylbek Tussupkaliyev

    2016-11-01

    Full Text Available Introduction The rate of operative birth by Caesarean section is constantly rising. In Kazakhstan, it reaches 27 per cent. Research data confirm that the percentage of successful vaginal births after previous Caesarean section is 50–70 per cent. How safe the induction of vaginal birth after Caesarean (VBAC remains unclear. Methodology The studied techniques of labour induction were amniotomy of the foetal bladder with the vulsellum ramus, intravaginal administration of E1 prostaglandin (Misoprostol, and intravenous infusion of Oxytocin-Richter. The assessment of rediness of parturient canals was conducted by Bishop’s score; the labour course was assessed by a partogram. The effectiveness of labour induction techniques was assessed by the number of administered doses, the time of onset of regular labour, the course of labour and the postpartum period and the presence of complications, and the course of the early neonatal period, which implied the assessment of the child’s condition, described in the newborn development record. The foetus was assessed by medical ultrasound and antenatal and intranatal cardiotocography (CTG. Obtained results were analysed with SAS statistical processing software. Results The overall percentage of successful births with intravaginal administration of Misoprostol was 93 per cent (83 of cases. This percentage was higher than in the amniotomy group (relative risk (RR 11.7 and was similar to the oxytocin group (RR 0.83. Amniotomy was effective in 54 per cent (39 of cases, when it induced regular labour. Intravenous oxytocin infusion was effective in 94 per cent (89 of cases. This percentage was higher than that with amniotomy (RR 12.5. Conclusions The success of vaginal delivery after previous Caesarean section can be achieved in almost 70 per cent of cases. At that, labour induction does not decrease this indicator and remains within population boundaries.

  15. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    Artiklens formål er at diskutere oplevede kvaliteter og adfærdsaspekter af mobilitet med udgangspunkt i spørgsmålet om cykling i byer og relationen mellem design og adfærd. Artiklen tager afsæt i et studie forløb der involverede studerende fra Urban Design, Industriel Design Arkitektskolen Aarhus...... og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  16. European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia

    Czech Academy of Sciences Publication Activity Database

    Horsák, M.; Chytrý, M.; Hájková, Petra; Hájek, M.; Danihelka, Jiří; Horsáková, V.; Ermakov, N.; German, D. A.; Kočí, M.; Lustyk, P.; Nekola, J. C.; Preislerová, Z.; Valachovič, M.

    2015-01-01

    Roč. 44, č. 4 (2015), s. 638-657 ISSN 0300-9483 Institutional support: RVO:67985939 Keywords : glacial relicts * snail s * vascular plants Subject RIV: EF - Botanics Impact factor: 2.386, year: 2015

  17. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Directory of Open Access Journals (Sweden)

    Brian Huntley

    Full Text Available Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM we explored the implications of the differing climatic conditions generated by a general circulation model (GCM in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  18. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Science.gov (United States)

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  19. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  20. Late Pliocene-Pleistocene environments and glacial history of the northern North Sea

    Science.gov (United States)

    Reinardy, Benedict T. I.; Hjelstuen, Berit O.; Sejrup, Hans Petter; Augedal, Hans; Jørstad, Arild

    2017-02-01

    during MIS6 and may have been more conducive to tunnel valley formation in comparison to lower shear strength tills deposited by later ice advances. A thick till unit overlain by a sand layer in the study area was deposited by grounded ice during the Last Glacial Maximum and subsequent drainage of an ice dammed lake in the southern North Sea during the last deglaciation (MIS2) of the study area. This study shows that much of the Quaternary age sediments within the northern North Sea were deposited relatively rapidly during short periods of time probably leaving significant hiatuses within the stratigraphic record. This finding has implications for previous studies that use a chronological framework assuming a relatively continuous sedimentation rate and record for the Early Pleistocene within the North Sea.

  1. How many seals were there? The global shelf loss during the last glacial maximum and its effect on the size and distribution of grey seal populations.

    Science.gov (United States)

    Boehme, Lars; Thompson, Dave; Fedak, Mike; Bowen, Don; Hammill, Mike O; Stenson, Garry B

    2012-01-01

    Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42 · 10(6) km(2) and 2.07 · 10(6) km(2)) and at the last glacial maximum (between 4.74 · 10(4) km(2) and 2.11 · 10(5) km(2)); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so.

  2. How Many Seals Were There? The Global Shelf Loss during the Last Glacial Maximum and Its Effect on the Size and Distribution of Grey Seal Populations

    Science.gov (United States)

    Boehme, Lars; Thompson, Dave; Fedak, Mike; Bowen, Don; Hammill, Mike O.; Stenson, Garry B.

    2012-01-01

    Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so. PMID:23300843

  3. How many seals were there? The global shelf loss during the last glacial maximum and its effect on the size and distribution of grey seal populations.

    Directory of Open Access Journals (Sweden)

    Lars Boehme

    Full Text Available Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42 · 10(6 km(2 and 2.07 · 10(6 km(2 and at the last glacial maximum (between 4.74 · 10(4 km(2 and 2.11 · 10(5 km(2; taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf, currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so.

  4. Glacial and Quaternary geology of the northern Yellowstone area, Montana and Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Krause, Teresa R.; Whitlock, Cathy

    2014-01-01

    This field guide focuses on the glacial geology and paleoecology beginning in the Paradise Valley and progressing southward into northern Yellowstone National Park. During the last (Pinedale) glaciation, the northern Yellowstone outlet glacier flowed out of Yellowstone Park and down the Yellowstone River Valley into the Paradise Valley. The field trip will traverse the following Pinedale glacial sequence: (1) deposition of the Eightmile terminal moraines and outwash 16.5 ± 1.4 10Be ka in the Paradise Valley; (2) glacial recession of ~8 km and deposition of the Chico moraines and outwash 16.1 ± 1.7 10Be ka; (3) glacial recession of 45 km to near the northern Yellowstone boundary and moraine deposition during the Deckard Flats readjustment 14.2 ± 1.2 10Be ka; and (4) glacial recession of ~37 km and deposition of the Junction Butte moraines 15.2 ± 1.3 10Be ka (this age is a little too old based on the stratigraphic sequence). Yellowstone's northern range of sagebrush-grasslands and bison, elk, wolf, and bear inhabitants is founded on glacial moraines, sub-glacial till, and outwash deposited during the last glaciation. Floods released from glacially dammed lakes and a landslide-dammed lake punctuate this record. The glacial geologic reconstruction was evaluated by calculation of basal shear stress, and yielded the following values for flow pattern in plan view: strongly converging—1.21 ± 0.12 bars (n = 15); nearly uniform—1.04 ± 0.16 bars (n = 11); and strongly diverging—0.84 ± 0.14 bars (n = 16). Reconstructed mass balance yielded accumulation and ablation each of ~3 km3/yr, with glacial movement near the equilibrium line altitude dominated by basal sliding. Pollen and charcoal records from three lakes in northern Yellowstone provide information on the postglacial vegetation and fire history. Following glacial retreat, sparsely vegetated landscapes were colonized first by spruce parkland and then by closed subalpine forests. Regional fire activity

  5. Glacial-driven vicariance in the amphipod Gammarus duebeni.

    Science.gov (United States)

    Krebes, L; Blank, M; Jürss, K; Zettler, M L; Bastrop, R

    2010-02-01

    We have examined the genetic diversity using mitochondrial COI and ND2 sequence data from 306 specimens of the amphi-Atlantic-distributed amphipod Gammarus duebeni. Marine populations from the Atlantic Ocean, the Baltic and North Sea, as well as freshwater populations from Ireland, Cornwall and Brittany were analysed. G. duebeni is a complex of five allopatric lineages. Freshwater populations result from multiple invasions of marine ancestors, represented by distinct lineages. We interpret the recent distribution of lineages as the outcome of a series of spatio-temporal vicariant events caused by Pleistocene glaciations and sea level changes. The freshwater lineages are therefore regarded as 'glacial relicts'. Furthermore, inter-specific competition with, for example, Gammarus pulex (which is absent in Ireland and western Brittany) may be another important determinant in the distribution of freshwater G. duebeni. In Ireland and Brittany, three freshwater refugia are suggested. The significantly limited gene flow detected among marine populations is more likely due to inter-specific competition than to salinity. The G. duebeni-complex represents a model system for the study of allopatric speciation accompanied by major habitat shifts. The pattern of spatio-temporal origins of the freshwater entities we describe here provides an excellent system for investigating evolutionary adaptations to the freshwater environment. Our data did not confirm the presently used subspecies classification but are only preliminary in the absence of nuclear genetic analyses. Copyright (c) 2009. Published by Elsevier Inc.

  6. Mean global ocean temperatures during the last glacial transition.

    Science.gov (United States)

    Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff

    2018-01-03

    Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO 2 , thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

  7. Seismic characterization of glacial sediments in central Illinois

    Science.gov (United States)

    Ismail, Ahmed; Stumpf, Andrew; Bauer, Robert

    2014-02-01

    The vertical distribution of compressional wave velocity (Vp) and shear wave velocity (Vs) acquired from fifteen boreholes in central Illinois using the standard surface-source downhole-receiver method was studied. The velocity logs were compared with lithologic logs and gamma-ray logs acquired from the same boreholes to: 1) better understand the Vp and Vs ranges and variations within glacial sediments, 2) determine whether characteristic seismic velocities could be resolved to distinguish among the three major Pleistocene glaciations of Wisconsin (WI), Illinois (IL), and pre-Illinois (PIL), and 3) examine velocity variations corresponding to heterogeneities in the sediments composing these three major units. Results showed that deposits composing these units had highly variable Vp and Vs values. Only the contact between deposits of the WI and IL episodes could be delineated by a corresponding slight decrease in Vp. Other than that, neither Vp nor Vs logs showed significant contrasts at the contacts between these units. Some individual sediment packages, or intraunits, exhibited distinctive velocity patterns in the study area and were identified more clearly from Vs than from Vp logs. These intraunits are Wisconsin tills (T), Vandalia till (GV) and Mahomet sand (BM).

  8. Glacial to Holocene swings of the Australian-Indonesian monsoon

    Science.gov (United States)

    Mohtadi, Mahyar; Oppo, Delia W.; Steinke, Stephan; Stuut, Jan-Berend W.; de Pol-Holz, Ricardo; Hebbeln, Dierk; Lückge, Andreas

    2011-08-01

    The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high-latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotopes and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.

  9. The migration of colloidal particles through glacial sand

    International Nuclear Information System (INIS)

    Harrison, I.; Higgo, J.J.W.; Leader, R.; Noy, D.; Smith, B.; Wealthall, G.; Williams, G.M.

    1991-02-01

    Significant concentrations of colloids exist in groundwater and radionuclides may be associated with this colloidal material. This must be taken into consideration in any safety case for a radionuclide waste repository. This report describes column experiments with monodisperse latex beads. A selection of beads with diameters ranging from 0.055 μm to 0.6 μm, some plain and some with carboxyl groups attached, were passed through columns of glacial sand. The breakthrough curves and profiles on the sand columns were studied and will be used to develop and validate colloid migration models. The mobility depended on both size and charge, and the beads appeared to move ahead of a 36Cl tracer until they were trapped. After trapping movement was slow with plain beads appearing to be slightly more mobile than carboxylated beads. The beads were shown to sorb strongly on the fine clay particles in the sand and there was evidence to suggest that they moved with the fines rather than independently. (author)

  10. Mean global ocean temperatures during the last glacial transition

    Science.gov (United States)

    Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff

    2018-01-01

    Little is known about the ocean temperature’s long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

  11. Safe cycling!

    CERN Document Server

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  12. Dansgaard Oeschger Dynamics: Clearly Revealed in a Comprehensive Model of Glacial Climate

    Science.gov (United States)

    Peltier, W. Richard; Vettoretti, Guido

    2017-04-01

    More than 30 years ago, Willi Dansgaard in Copenhagen and Hans Oeschger in Bern established the existence of millennium timescale oscillations in oxygen isotope stratigraphies from Greenland ice cores. This isotopic signal was interpreted as implying large amplitude variations in surface air temperature. Until the publication of Peltier and Vettoretti (2014, GRL) the prevalent view had been that this exclusively ice-age phenomenon, thought to be linked to variability in the strength of the Atlantic MOC, was considered to be forced by the episodic release of freshwater from the continental ice sheets, each oscillation requiring its own freshwater input. In Peltier and Vettoretti (2014) this phenomenon was recovered for the first time in a comprehensive model of glacial climate, specifically the CESM1 model of the NCAR laboratory. Attention was drawn to the fact that individual D-O oscillations, or Bond Cycle clusters of such oscillations, were inevitably preceded by individual Heinrich events. In Peltier and Vettoretti (2014) it was shown that, following the "spin-up" of CESM1 into the glacial state, with continental ice sheet volume held fixed, a sequence of nonlinear unforced and therefor "free" oscillations of the MOC occurred, following a sharp Heinrich event-like sharp suppression of MOC strength. All of the salient characteristics of the D-O process inferred on the basis of ice core evidence from both hemispheres were fully captured in these high (CMIP5) resolution simulations, namely: (i) the pulse shape of the individual oscillations characterized by an extremely rapid shift from cold stadial to warm interstadial conditions followed by a slow return to the stadial state, (ii) the peak-to-peak variations in Greenland surface air temperature of 10-15 degrees Centigrade during individual oscillations, (iii) the "bi-polar see saw" connection between this Northern Hemisphere process and that recorded in the EDML and WAIS Divide ice cores from Antarctica, (iv) the

  13. The interaction of climate and glacial landforms on subsurface and surface hydrology and chemistry across a heterogeneous boreal plain landscape

    Science.gov (United States)

    Hokanson, Kelly; Carrera-Hernández, Jaime; Devito, Kevin; Mendoza, Carl

    2016-04-01

    The Boreal Plains (BP) region of Canada is experiencing high levels of anthropogenic activity and may be susceptible to climate change to various degrees. The BP is characterized by heterogeneous glacial landforms, with large contrasts in storage and transmissivity, which when coupled with wet-dry climate cycles, results in complex groundwater-surface water interactions. Predicting the impacts of land use change, climate change, and the future performance of constructed and reclaimed landscapes is currently not possible due to our limited knowledge regarding the natural variability of water table fluctuations, geochemistry, and salinity across the various glacial landforms in the BP. We compare isotopes, EC, chemistry (DOC, Ca, Mg, SO4) and water table position between a drought (2003) and a wet (2013) year to examine the interactions between climate, landform, and geology on the variation in landscape connectivity and overall salinity distribution. Data were collected from surface waters to a depth of 40 m, along a 50 km transect encompassing pond-wetland-forestland sequences across the major glacial depositional types typical of the BP (coarse textured glaciofluvial outwash, fine textured stagnant ice moraine, and lacustrine clay plain). Within each landform, sites range from isolated local flow systems to large intermediate scale flow systems. High spatial variability of water table fluctuations and salinity illustrate the strong regional controls that climate and geology exerts over scales of groundwater flow between landforms and surface water bodies across the BP, reinforcing the need to link surface water and groundwater processes when developing conceptual models. Additionally, when coupled with a strong, physical hydrogeologic conceptual model, synoptic chemical and isotopic surveys can be used to confirm scales and directions of flow; however, without an understanding of the climatic and geologic influence of the region, such data cannot be used as a

  14. Mean ocean temperature change over the last glacial transition based on heavy noble gases in the atmosphere

    Science.gov (United States)

    Bereiter, Bernhard; Severinghaus, Jeff; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji

    2017-04-01

    On paleo-climatic timescales heavy noble gases (krypton and xenon) are conserved in the atmosphere-ocean system and are passively cycled through this system without interaction with any biogeochemical process. Due to the characteristic temperature dependency of the gas solubility factors in sea water, the atmospheric noble gas content is unambiguously linked to mean global ocean temperature (MOT). Here we use this proxy to reconstruct MOT over the course of the last glacial transition based on measurements of trapped air in the WAIS Divide ice core. We analyzed 78 ice samples with a recently developed method that yields the isotopic ratios of N2, Ar, Kr and the elemental ratios of Kr/N2, Xe/N2 and Xe/Kr in the trapped air with the required precision. Based on the isotopic ratios we correct the elemental ratios for the fractionation processes in the firn column to obtain the true atmospheric values. On the basis of a 4-box model that incorporates effects of sea-level change, different saturation states of the water and different temperature distributions in the global ocean, we infer MOT based on the three elemental ratio pairs and assess its uncertainty. On average, the uncertainty of our MOT record is +/- 0.27°C, which is a significant improvement to earlier studies that reached about +/- 1°C uncertainty. This allows an unprecedented assessment of the glacial-interglacial MOT difference, as well as a direct comparison between MOT and climate change for the first time. We find a LGM-Holocene difference of 2.6°C, which is on the lower end of what earlier studies have suggested (3 +/- 1°C) and provides a new constraint on ocean heat uptake over the last glacial transition. Furthermore, we find a very close relation between MOT and Antarctic temperatures which shows for the first time the effect of Atlantic overturning circulation changes on global ocean heat uptake. Finally, our record shows a MOT warming rate during the Younger Dryas that is almost double to

  15. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  16. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique

    Science.gov (United States)

    Li, Jia; Li, Zhi-wei; Wu, Li-xin; Xu, Bing; Hu, Jun; Zhou, Yu-shan; Miao, Ze-lang

    2018-04-01

    We investigated the interactions of Lake Merzbacher with the Southern Inylchek Glacier (Central Tien Shan) using the Synthetic Aperture Radar (SAR) Pixel Offset-Small Baseline Subset (PO-SBAS) to derive a time series of three-dimensional (3D) glacier motion. The measurements of 3D glacier velocity were ∼17% more precise than a previous study that did not use the SBAS estimation. The velocities of the glacier were up to 58 cm/day east, 70 cm/day north, and 113 cm/day vertically. Combining these data with Landsat images indicated that movement of the glacier is sensitive to changes of Lake Merzbacher. Specifically, the entry of more lake water into the glacier during the ablation season increased englacial ablation due to thermal erosion. Moreover, ice calving begins when the lake water gradually lifts the ice dam. Calving can cause greater loss of glacier mass than normal ablation. Trying to replenish the front mass loss, the distributary accelerates and the mass loss further intensifies. A time series of the vertical velocity indicates that the glacier tongue has a huge englacial cavity. We suggest that the lake outburst is directly related to the crack of this cavity. Bursting of the lake triggers a mini-surge at the glacier tongue. The vertical velocity at the ice dam was ∼+60 cm/day before the lake outburst, and ∼-113 cm/day afterwards. After drainage of the lake, flow velocities at the distributary, do not sharply decrease because pre-drainage mass loss needs to be replenished by fast flow. Based on comparisons with previous measurements, our results indicate that the lake had an increasing influence on the glacier from 2005 to 2009. This study demonstrates that a time series of 3D glacier motion based on the PO-SBAS technique is effective for assessing the dynamics of a mountain glacial system and interactions with its glacial lake.

  17. The Southern Westerlies during the last glacial maximum in PMIP2 simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Maisa [University of Chile Blanco Encalada, Department of Geophysics, Santiago (Chile); Institute of Ecology and Biodiversity, Santiago (Chile); Moreno, Patricio [Institute of Ecology and Biodiversity, Santiago (Chile); University of Chile, Department of Ecological Sciences, Santiago (Chile); Kageyama, Masa [UMR CEA-CNRS-UVSQ 1572, CE Saclay, LSCE/IPSL, Gif-sur-Yvette Cedex (France); Crucifix, Michel [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique G. Lemaitre, Louvain-la-Neuve (Belgium); Hewitt, Chris [Met Office, Exeter, Devon (United Kingdom); Abe-Ouchi, Ayako [The University of Tokyo, Center for Climate System Research, Kashiwa (Japan); Ohgaito, Rumi [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change, Yokohama, Kanagawa (Japan); Brady, Esther C. [Climate Change Research National Center for Atmospheric Research, 1850 Table Mesa Drive, P.O. Box 3000, Boulder, CO (United States); Hope, Pandora [Bureau of Meteorology Research Centre, GPO Box 1289, Melbourne, VIC (Australia)

    2009-03-15

    The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO{sub 2}. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40 S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia. (orig.)

  18. Glacial Inception in north-east Canada: The Role of Topography and Clouds

    Science.gov (United States)

    Birch, Leah; Tziperman, Eli; Cronin, Timothy

    2016-04-01

    Over the past 0.8 million years, ice ages have dominated Earth's climate on a 100 thousand year cycle. Interglacials were brief, sometimes lasting only a few thousand years, leading to the next inception. Currently, state-of-the-art global climate models (GCMs) are incapable of simulating the transition of Earth's climate from interglacial to glaciated. We hypothesize that this failure may be related to their coarse spatial resolution, which does not allow resolving the topography of inception areas, and their parameterized representation of clouds and atmospheric convection. To better understand the small scale topographic and cloud processes mis-represented by GCMs, we run the Weather Research and Forecasting model (WRF), which is a regional, cloud-resolving atmospheric model capable of a realistic simulation of the regional mountain climate and therefore of surface ice and snow mass balance. We focus our study on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred at 115kya. We examine the sensitivity of mountain glaciers to Milankovitch Forcing, topography, and meteorology, while observing impacts of a cloud resolving model. We first verify WRF's ability to simulate present day climate in the region surrounding the Penny Ice Cap, and then investigate how a GCM-like biased representation of topography affects sensitivity of this mountain glacier to Milankovitch forcing. Our results show the possibility of ice cap growth on an initially snow-free landscape with realistic topography and insolation values from the last glacial inception. Whereas, smoothed topography as seen in GCMs has a negative surface mass balance, even with the relevant orbital parameter configuration. We also explore the surface mass balance feedbacks from an initially ice-covered Baffin Island and discuss the role of clouds and convection.

  19. Influence of glacial landform hydrology on phosphorus budgets of shallow lakes on the Boreal Plain, Canada

    Science.gov (United States)

    Plach, Janina M.; Ferone, Jenny-Marie; Gibbons, Zabrina; Smerdon, Brian D.; Mertens, Alexander; Mendoza, Carl A.; Petrone, Richard M.; Devito, Kevin J.

    2016-04-01

    A comparative study of three shallow lake catchments in contrasting glacial landscapes (coarse-textured outwash, fine-textured-till hummocky moraines and glacio-lacustrine clay-till plains) demonstrated a distinct landform control on the proportion and type of surface and groundwater sources influencing total phosphorus ([P]) and total dissolved phosphorus ([DP]) concentrations, and P budgets of lakes on the Boreal Plain of the Western Boreal Forest, Alberta, Canada. Lakes located on fine-textured landforms had high [P] and [DP] (median 148 and 148 μg L-1 glacio-lacustrine plains; 99 and 63 μg L-1 moraine, respectively) linked to shallow groundwater loadings from near-surface peat with high [P] from adjacent wetlands. In contrast, the lowest lake [P] and [DP] (median 50 and 11 μg L-1, respectively) occurred on the coarse-textured landform, reflecting greater inputs of deep mineral-groundwater with low [P] from quartz-rich substrates. Annual lake P budgets reflected lake connectivity to the surrounding landform and relative contributions of P by surface versus groundwater. They also reflected distinct scales of groundwater (larger-scale versus short, shallow-flow paths) with differing [P] between landform types and occurrence of internal biogeochemical P cycling within landforms. A regional lake survey reflected trends from the catchment-scale, linking landform type to potential P sources as well as topographic position to potential trophic status across the Boreal Plain. Together, the results provide a conceptual framework for the scale of interactions between lakes and surrounding source waters influencing P loadings in differing hydrogeological landscapes, important to management strategies and predicting impacts of land-use disturbances on productivity of Boreal Plain lakes.

  20. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2011-03-01

    Full Text Available Loess deposits are widely distributed in the Northern Hemisphere, where they have recorded not only the glacial-interglacial cycles, but also millennial-timescale changes resembling those in marine and ice cores. Such abrupt variations are clearly marked in western European series, but have not yet been evidenced in the East of the continent. Here we present results of the high-resolution investigation of a Weichselian Upper Pleniglacial loess sequence (~38–15 ka from Stayky, Ukraine. The stratigraphy shows an alternation of loess horizons and embryonic soils, similar to sequences from western Europe. Similarities are also found between variations of a grain-size index (ratio between coarse and fine material fractions in Stayky and in western European profiles. Based on these similarities and in agreement with the luminescence dates, the embryonic soils are associated with the Greenland interstadials (GIS 7 to 2, and the Vytachiv paleosol at the base of the sequence, with GIS 8. Pollen analysis indicates a wetter climate for these interstadials, allowing the development of arboreal vegetation, than for the stadials, which are marked by loess formation. The grain-size index reaches the highest values for intervals correlated with the Heinrich events 3 and 2. Thus, it appears that the North Atlantic abrupt climate changes have extended their influence and modulated the loess sedimentation at least as far as eastern Europe. This result is supported by recent climate modeling experiments and recommends the Stayky sequence as a reference for further comparisons between profiles along the Eurasian loess belt centered at 50° N.

  1. Comparison between hydroacoustical and terrestrial evidence of glacially induced faulting, Lake Voxsjön, central Sweden

    Science.gov (United States)

    Smith, Colby A.; Nyberg, Johan; Bergman, Björn

    2018-01-01

    The recent availability of a terrestrial high-resolution digital elevation model in Sweden has led to the discovery of previously unknown scarps believed to be associated with bedrock faults that ruptured to the surface during the Holocene. Field investigations, however, are required to confirm these findings and determine the timing of post-glacial seismicity. Here, we present results from a unique hybrid approach, where hydroacoustical data from the sediments of Lake Voxsjön are compared to stratigraphic and geomorphologic records from nearby terrestrial settings. The hydroacoustical data are largely consistent with the terrestrial data indicating a single fault rupture shortly after deglaciation, which occurred about 11,000-10,500 cal BP.

  2. Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia.

    Science.gov (United States)

    Shen, L; Chen, X-Y; Zhang, X; Li, Y-Y; Fu, C-X; Qiu, Y-X

    2005-04-01

    Ginkgo biloba, a famous living fossil, is the sole survivor of the genus Ginkgo. To make inferences about the glacial refugia that harbored G. biloba, we examined the genetic structure of eight potential refugial populations and plantations using chloroplast DNA (cpDNA) with eight size variants in the trnK1-trnK2 fragment. The data consist of haplotypes from 158 trees collected from eight localities. The majority of the cpDNA haplotypes are restricted to minor portions of the geographical range. Our results suggest that refugia of G. biloba were located in southwestern China. This area is a current biodiversity hotspot of global importance, and may have been protected from the extremes of climatic fluctuations during the Pleistocene. The Ginkgos on West Tianmu Mountain, which were previously considered to be wild by many researchers, may, instead, have been introduced by Buddhist monks.

  3. Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA)

    Science.gov (United States)

    Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Drinkwater, Mark R.

    2017-12-01

    A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modeling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward-modeling GIA, we estimate GIA from multiple space-geodetic observations: Gravity Recovery and Climate Experiment (GRACE), Envisat/ICESat and Global Positioning System (GPS). Making use of the different sensitivities of the respective satellite observations to current and past surface-mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice-mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several centimetres per year have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contributions summarizing the work carried out within a European Space Agency funded study, REGINA (www.regina-science.eu).

  4. Changing Groundwater and Lake Storage in the Americas from the Last Glacial Maximum to the Present Day

    Science.gov (United States)

    Callaghan, K. L.; Wickert, A. D.; Michael, L.; Fan, Y.; Miguez-Macho, G.; Mitrovica, J. X.; Austermann, J.; Ng, G. H. C.

    2017-12-01

    Groundwater accounts for 1.69% of the globe's water storage - nearly the same amount (1.74%) that is stored in ice caps and glaciers. The volume of water stored in this reservoir has changed over glacial-interglacial cycles as climate warms and cools, sea level rises and falls, ice sheets advance and retreat, surface topography isostatically adjusts, and patterns of moisture transport reorganize. During the last deglaciation, over the past 21000 years, all of these factors contributed to profound hydrologic change in the Americas. In North America, deglaciation generated proglacial lakes and wetlands along the isostatically-depressed margin of the retreating Laurentide Ice Sheet, along with extensive pluvial lakes in the desert southwest. In South America, changing patterns of atmospheric circulation caused regional and time-varying wetting and drying that led to fluctuations in water table levels. Understanding how groundwater levels change in response to these factors can aid our understanding of the effects of modern climate change on groundwater resources. Using a model that incorporates temporally evolving climate, topography (driven by glacial isostatic adjustment), ice extent, sea level, and spatially varying soil properties, we present our estimates of changes in total groundwater storage in the Americas over the past 21000 years. We estimate depth to water table at 500-year intervals and at a 30-arcsecond resolution. This allows a comparative assessment of changing groundwater storage volumes through time. The model has already been applied to the present day and has proven successful in estimating modern groundwater depths at a broad scale (Fan et al., 2013). We also assess changing groundwater-fed lakes, and compare model-estimated lake sizes and locations to paleorecords of these lakes. Our data- and model-integrated look back at the terminal Pleistocene provides an estimate of groundwater variability under extreme climate change. Preliminary results

  5. The relationship between mammal faunas and climatic instability since the Last Glacial Maximum: A Nearctic vs. Western Palearctic comparison

    Science.gov (United States)

    Torres-Romero, Erik Joaquín; Varela, Sara; Fisher, Jason T.; Olalla-Tárraga, Miguel Á.

    2017-07-01

    Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions - defined on the basis of climatic change velocity since the Last Glacial Maximum - in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on

  6. Genetic signals of demographic expansion in Downy Woodpecker (Picoides pubescens after the last North American glacial maximum.

    Directory of Open Access Journals (Sweden)

    Paulo C Pulgarín-R

    Full Text Available The glacial cycles of the Pleistocene have been recognized as important, large-scale historical processes that strongly influenced the demographic patterns and genetic structure of many species. Here we present evidence of a postglacial expansion for the Downy Woodpecker (Picoides pubescens, a common member of the forest bird communities in North America with a continental distribution. DNA sequences from the mitochondrial tRNA-Lys, and ATPase 6 and 8 genes, and microsatellite data from seven variable loci were combined with a species distribution model (SDM to infer possible historical scenarios for this species after the last glacial maximum. Analyses of Downy Woodpeckers from 23 geographic areas suggested little differentiation, shallow genealogical relationships, and limited population structure across the species' range. Microsatellites, which have higher resolution and are able to detect recent differences, revealed two geographic groups where populations along the eastern edge of the Rocky Mountains (Montana, Utah, Colorado, and southern Alberta were genetically isolated from the rest of the sampled populations. Mitochondrial DNA, an important marker to detect historical patterns, recovered only one group. However, populations in Idaho and southeast BC contained high haplotype diversity and, in general were characterized by the absence of the most common mtDNA haplotype. The SDM suggested several areas in the southern US as containing suitable Downy Woodpecker habitat during the LGM. The lack of considerable geographic structure and the starburst haplotype network, combined with several population genetic tests, suggest a scenario of demographic expansion during the last part of Pleistocene and early Holocene.

  7. Variaciones glaciales durante el Holoceno en Patagonia Central, Aisén, Chile: evidencias geomorfológicas Holocene glacial variations in Central Patagonia, Aisén, Chile: geomorphological evidences

    Directory of Open Access Journals (Sweden)

    María Mardones

    2011-07-01

    en la temperatura y precipitación atmosférica.During the Holocene, the patagonian glaciers were characterized by geomorphologically registered advances and retreats. This paper presents the geomorphological evolution and evidences of Holocene glacial advances within a segment in Central Patagonia Cordillera. This area will be used as a reference for studying the postglacial paleoclimatic evolution in the southernmost part of South America. The study area is the río Blanco basin (45°30'S, located in Central Patagonia (Aisén Region, Chile. Radiometric dating of organic sediments, within terminal moraines, provides preliminary data of two glacial advances. The first one is represented by the Lake Elizalde frontal moraine, which yielded a 14C age of 9.370±50 years BP (10,700 to 10,480 cal. yr BP. According to this chronological age, this glacial event took place in the Early Holocene. This glacial advance, being 100 to 200 years older than that observed immediately south of the study area, on the eastern edge of General Carrera Lake (or Buenos Aires Lake, in Argentina and approximately 100 years younger than the event recorded in the Puerto Banderas I moraine (Argentino Lake, 50°S. These results show that the behavior patterns of the Central Patagonia glaciers differ from that observed both in the Lake District (41°S, Chile and in the Magallanes District (54°S, Chile, where there are no traces of glacial readvancement recorded during the Early Holocene. After a major retreat to the west, a more recent glacial advance occurred in the Quetro river valley (a tributary river of the Blanco river, at an age prior to 2.250±40 BP (2.340 to 2.150 cal. yr BP, comparable to the cold stage of the Middle Neoglacial, interpreted to have occurred in different parts of Patagonia. Confronting these results with previously published pollen records, we postulate that the cause of both glacier fluctuations are regional variations in the atmospheric temp