WorldWideScience

Sample records for previous functional magnetic

  1. Cardiovascular magnetic resonance in adults with previous cardiovascular surgery.

    Science.gov (United States)

    von Knobelsdorff-Brenkenhoff, Florian; Trauzeddel, Ralf Felix; Schulz-Menger, Jeanette

    2014-03-01

    Cardiovascular magnetic resonance (CMR) is a versatile non-invasive imaging modality that serves a broad spectrum of indications in clinical cardiology and has proven evidence. Most of the numerous applications are appropriate in patients with previous cardiovascular surgery in the same manner as in non-surgical subjects. However, some specifics have to be considered. This review article is intended to provide information about the application of CMR in adults with previous cardiovascular surgery. In particular, the two main scenarios, i.e. following coronary artery bypass surgery and following heart valve surgery, are highlighted. Furthermore, several pictorial descriptions of other potential indications for CMR after cardiovascular surgery are given.

  2. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  3. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2009-04-01

    Full Text Available One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans. Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  4. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Science.gov (United States)

    Hu, Pingzhao; Janga, Sarath Chandra; Babu, Mohan; Díaz-Mejía, J Javier; Butland, Gareth; Yang, Wenhong; Pogoutse, Oxana; Guo, Xinghua; Phanse, Sadhna; Wong, Peter; Chandran, Shamanta; Christopoulos, Constantine; Nazarians-Armavil, Anaies; Nasseri, Negin Karimi; Musso, Gabriel; Ali, Mehrab; Nazemof, Nazila; Eroukova, Veronika; Golshani, Ashkan; Paccanaro, Alberto; Greenblatt, Jack F; Moreno-Hagelsieb, Gabriel; Emili, Andrew

    2009-04-28

    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  5. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  6. Magnetism: a supramolecular function

    International Nuclear Information System (INIS)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W.

    1996-01-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T c = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs

  7. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S; Pellaux, R; Schmalle, H W [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  8. Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis

    DEFF Research Database (Denmark)

    Langkilde, Annika Reynberg; Frederiksen, J.L.; Rostrup, Egill

    2002-01-01

    to both the results of the contrast sensitivity test and to the Snellen visual acuity. Our results indicate that fMRI is a useful method for the study of ON, even in cases where the visual acuity is severely impaired. The reduction in activated volume could be explained as a reduced neuronal input......The volume of cortical activation as detected by functional magnetic resonance imaging (fMRI) in the visual cortex has previously been shown to be reduced following optic neuritis (ON). In order to understand the cause of this change, we studied the cortical activation, both the size...... of the activated area and the signal change following ON, and compared the results with results of neuroophthalmological testing. We studied nine patients with previous acute ON and 10 healthy persons served as controls using fMRI with visual stimulation. In addition to a reduced activated volume, patients showed...

  9. Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis

    DEFF Research Database (Denmark)

    Langkilde, Annika Reynberg; Frederiksen, J.L.; Rostrup, Egill

    2002-01-01

    of the activated area and the signal change following ON, and compared the results with results of neuroophthalmological testing. We studied nine patients with previous acute ON and 10 healthy persons served as controls using fMRI with visual stimulation. In addition to a reduced activated volume, patients showed...... a reduced blood oxygenation level dependent (BOLD) signal increase and a greater asymmetry in the visual cortex, compared with controls. The volume of visual cortical activation was significantly correlated to the result of the contrast sensitivity test. The BOLD signal increase correlated significantly......The volume of cortical activation as detected by functional magnetic resonance imaging (fMRI) in the visual cortex has previously been shown to be reduced following optic neuritis (ON). In order to understand the cause of this change, we studied the cortical activation, both the size...

  10. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives.

    Science.gov (United States)

    Busan, P; Battaglini, P P; Sommer, M

    2017-06-01

    Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Novel functional magnetic materials fundamentals and applications

    CERN Document Server

    2016-01-01

    This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect.  Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdis...

  12. Magnetic susceptibility of functional groups

    International Nuclear Information System (INIS)

    Herr, T.; Ferraro, M.B.; Contreras, R.H.

    1990-01-01

    Proceeding with a series of works where new criteria are applied to the the calculation of the contribution of molecular fragments to certain properties, results are presented for a group of 1-X-benzenes and 1-X-naphtalenes for the magnetic susceptibility constant. Both the diamagnetic and paramagnetic parts are taken into account. To reduce the problems associated with the Gauge dependence originated in the approximations made, Gauge independent atomic orbitals (GIAO) orbitals are used in the atomic orbital basis. Results are discussed in terms of functional groups. (Author). 17 refs., 1 fig., 3 tabs

  13. Presurgical functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Stippich, C.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI. (orig.) [de

  14. Transcranial magnetic stimulation: language function.

    Science.gov (United States)

    Epstein, C M

    1998-07-01

    Studies of language using transcranial magnetic stimulation (TMS) have focused both on identification of language areas and on elucidation of function. TMS may result in either inhibition or facilitation of language processes and may operate directly at a presumptive site of language cortex or indirectly through intracortical networks. TMS has been used to create reversible "temporary lesions," similar to those produced by Wada tests and direct cortical electrical stimulation, in cerebral cortical areas subserving language function. Rapid-rate TMS over the left inferior frontal region blocks speech output in most subjects. However, the results are not those predicted from classic models of language organization. Speech arrest is obtained most easily over facial motor cortex, and true aphasia is rare, whereas right hemisphere or bilateral lateralization is unexpectedly prominent. A clinical role for these techniques is not yet fully established. Interfering with language comprehension and verbal memory is currently more difficult than blocking speech output, but numerous TMS studies have demonstrated facilitation of language-related tasks, including oral word association, story recall, digit span, and picture naming. Conversely, speech output also facilitates motor responses to TMS in the dominant hemisphere. Such new and often-unexpected findings may provide important insights into the organization of language.

  15. Study of functional-performance deficits in athletes with previous ankle sprains

    Directory of Open Access Journals (Sweden)

    hamid Babaee

    2008-04-01

    Full Text Available Abstract Background: Despite the importance of functional-performance deficits in athletes with history of ankle sprain few, studies have been carried out in this area. The aim of this research was to study relationship between previous ankle sprains and functional-performance deficits in athletes. Materials and methods: The subjects were 40 professional athletes selected through random sampling among volunteer participants in soccer, basketball, volleyball and handball teams of Lorestan province. The subjects were divided into 2 groups: Injured group (athletes with previous ankle sprains and healthy group (athletes without previous ankle sprains. In this descriptive study we used Functional-performance tests (figure 8 hop test and side hop test to determine ankle deficits and limitations. They participated in figure 8 hop test including hopping in 8 shape course with the length of 5 meters and side hop test including 10 side hop repetitions in course with the length of 30 centimeters. Time were recorded via stopwatch. Results: After data gathering and assessing information distributions, Pearson correlation was used to assess relationships, and independent T test to assess differences between variables. Finally the results showed that there is a significant relationship between previous ankle sprains and functional-performance deficits in the athletes. Conclusion: The athletes who had previous ankle sprains indicated functional-performance deficits more than healthy athletes in completion of mentioned functional-performance tests. The functional-performance tests (figure 8 hop test and side hop test are sensitive and suitable to assess and detect functional-performance deficits in athletes. Therefore we can use the figure 8 hop and side hop tests for goals such as prevention, assessment and rehabilitation of ankle sprains without spending too much money and time.

  16. Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison with Previous Calculations

    International Nuclear Information System (INIS)

    Adler, S.L.; Schubert, C.

    1996-01-01

    We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production threshold, using the world line path integral variant of the Bern-Kosower formalism. Numerical comparison (using programs that we have made available for public access on the Internet) shows that the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, and to the recent recalculation by Baier, Milstein, and Shaisultanov. copyright 1996 The American Physical Society

  17. Functional magnetic resonance imaging by visual stimulation

    International Nuclear Information System (INIS)

    Nishimura, Yukiko; Negoro, Kiyoshi; Morimatsu, Mitsunori; Hashida, Masahiro

    1996-01-01

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  18. Magnetism and Structure in Functional Materials

    CERN Document Server

    Planes, Antoni; Saxena, Avadh

    2005-01-01

    Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related magnanites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.

  19. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  20. Magnetic fields and density functional theory

    International Nuclear Information System (INIS)

    Salsbury, Freddie Jr.

    1999-01-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules

  1. Clinical application of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Alwatban, Adnan Z.W.

    2002-01-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  2. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z W

    2002-07-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  3. Normal endothelial function after meals rich in olive or safflower oil previously used for deep frying.

    Science.gov (United States)

    Williams, M J; Sutherland, W H; McCormick, M P; Yeoman, D; de Jong, S A; Walker, R J

    2001-06-01

    Polyunsaturated fats are more susceptible to oxidation during heating than monounsaturated fats but their effects on endothelial function when heated are unknown. The aim of this study was to compare the effect of meals rich in heat-modified safflower and olive oils on postprandial flow-mediated endothelium-dependent dilation (EDD) in healthy men. Flow-mediated EDD and glyceryltrinitrate-induced endothelium-independent dilation of the brachial artery were investigated in 14 subjects before and 4 hours after meals rich in olive oil and safflower oil used hourly for deep-frying for 8 hours in a double-blind crossover study design. There were high levels of lipid oxidation products (peroxides and carbonyls) in both heated oils. Plasma triglycerides were markedly increased at 4 hours after heated olive oil (1.26 +/- 0.43 vs 2.06 +/- 0.97 mmol/L) and heated safflower oil (1.44 +/- 0.63 vs 1.99 +/- 0.88 mmol/L). There was no change in EDD between fasting and postprandial studies and the response during the postprandial period was not significantly (p = 0.51) different between the meals (heated olive oil: 4.9 +/- 2.2% vs 4.9 +/- 2.5%; heated safflower oil: 5.1 +/- 3.1% vs 5.6 +/- 3.4%). Meals rich in olive and safflower oils previously used for deep frying and containing high levels of lipid oxidation products increase postprandial serum triglycerides without affecting endothelial function. These findings suggest that relatively short-term use of these vegetable oils for frying may not adversely affect postprandial endothelial function when foods containing the heat-modified oils are consumed.

  4. The Relationship Between Functional Movement, Balance Deficits, and Previous Injury History in Deploying Marine Warfighters.

    Science.gov (United States)

    de la Motte, Sarah J; Lisman, Peter; Sabatino, Marc; Beutler, Anthony I; OʼConnor, Francis G; Deuster, Patricia A

    2016-06-01

    Screening for primary musculoskeletal injury (MSK-I) is costly and time-consuming. Both the Functional Movement Screen (FMS) and the Y-Balance Test (YBT) have been shown to predict future MSK-I. With a goal of optimizing the efficiency of primary MSK-I screening, we studied associations between performance on the FMS and YBT and whether history of MSK-I influenced FMS and YBT scores. In total, 365 deploying Marines performed the FMS and YBT as prescribed. Composite and individual scores were each categorized as high risk or low risk using published injury thresholds: High-risk FMS included composite scores ≤14 and right-to-left (R/L) asymmetry for Shoulder Mobility, In-Line Lunge, Straight Leg Raise, Hurdle Step, or Rotary Stability. High-risk YBT consisted of anterior, posteromedial, and/or posterolateral R/L differences >4 cm and/or composite differences ≥12 cm. Pearson's χ tests evaluated associations between: (a) all FMS and YBT risk groups and (b) previous MSK-I and all FMS and YBT risk groups. Marines with high-risk FMS were twice as likely to have high-risk YBT posteromedial scores (χ = 10.2, p = 0.001; odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.3-3.2). History of any MSK-I was not associated with high-risk FMS or high-risk YBT. However, previous lower extremity MSK-I was associated with In-Line Lunge asymmetries (χ = 9.8, p = 0.002, OR = 2.2, 95% CI = 1.3-3.6). Overall, we found limited overlap in FMS and YBT risk. Because both methods seem to assess different risk factors for injury, we recommend FMS and YBT continue to be used together in combination with a thorough injury history until their predictive capacities are further established.

  5. Progress in functionalization of magnetic nanoparticles for applications in biomedicine

    International Nuclear Information System (INIS)

    Berry, Catherine C

    2009-01-01

    Magnetic nanoparticles (mNPs) ranging from the nanometre and micrometre scale have been widely applied in recent years in the area of biomedicine. They contain unique magnetic properties and due to their size can function at a cellular level, making them attractive candidates for cell labelling, imaging, tracking and as carriers. A recent surge of interest in nanotechnology has boosted the breadth and depth of the nanoparticle research field. This review aims to supplement a previously published review in 2003 and address more recent advances in the uses and bioapplications of mNPs and future interesting perspectives. (topical review)

  6. Successful Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for Recurrent Uterine Fibroid Previously Treated with Uterine Artery Embolization

    Directory of Open Access Journals (Sweden)

    Sang-Wook Yoon

    2010-01-01

    Full Text Available A 45-year-old premenopausal woman was referred to our clinic due to recurring symptoms of uterine fibroids, nine years after a uterine artery embolization (UAE. At the time of screening, the patient presented with bilateral impairment and narrowing of the uterine arteries, which increased the risk of arterial perforation during repeated UAE procedures. The patient was subsequently referred for magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS treatment. Following the treatment, the patient experienced a significant improvement in symptoms (symptom severity score was reduced from 47 to 12 by 1 year post-treatment. MR images at 3 months showed a 49% decrease in fibroid volume. There were no adverse events during the treatment or the follow-up period. This case suggests that MRgFUS can be an effective treatment option for patients with recurrent fibroids following previous UAE treatment.

  7. Magnetic spectroscopy and microscopy of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine Ann [Univ. of Mainz (Germany)

    2011-05-01

    Heusler intermetallics Mn2Y Ga and X2MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X2MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn2Y Ga to the logical Mn3Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co2FeSi (Appendix B).

  8. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  9. Secondary Myelitis in Dermal Sinus Causing Paraplegia in a Child with Previously Normal Neurological Function

    Directory of Open Access Journals (Sweden)

    Sakina Rashid

    2016-01-01

    Full Text Available Neural tube defects result from failure of neural tube fusion during early embryogenesis, the fourth week after conception. The spectrum of severity is not uniform across the various forms of this congenital anomaly as certain presentations are not compatible with extrauterine life (anencephaly while, on the other hand, other defects may remain undiagnosed as they are entirely asymptomatic (occult spina bifida. We report a child with previously normal neurological development, a devastating clinical course following superinfection of a subtle spina bifida defect which resulted in a flaccid paralysis below the level of the lesion and permanent neurological deficits following resolution of the acute infection and a back closure surgery.

  10. The statistic-thermodynamically calculations of magnetic thermodynamically functions for nuclear magnetic moments

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Luo Deli; Feng Kaiming

    2013-01-01

    The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)

  11. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  12. Exploring brain function with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G

    1999-05-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology.

  13. Previous exercise training has a beneficial effect on renal and cardiovascular function in a model of diabetes.

    Directory of Open Access Journals (Sweden)

    Kleiton Augusto dos Santos Silva

    Full Text Available Exercise training (ET is an important intervention for chronic diseases such as diabetes mellitus (DM. However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p<0.05. Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p<0.05. The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p<0.05, and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p<0.05. In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p<0.05. This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.

  14. Functional Magnetic Resonance Imaging in Consumer Research

    DEFF Research Database (Denmark)

    Reimann, Martin; Schilke, Oliver; Weber, Bernd

    2011-01-01

    of prior fMRI research related to consumer behavior and highlights the features that make fMRI an attractive method for consumer and marketing research. The authors discuss advantages and limitations and illustrate the proposed procedures with an applied study, which investigates loss aversion when buying......Although the field of psychology is undergoing an immense shift toward the use of functional magnetic resonance imaging (fMRI), the application of this methodology to consumer research is relatively new. To assist consumer researchers in understanding fMRI, this paper elaborates on the findings...... and selling a common product. Results reveal a significantly stronger activation in the amygdala while consumers estimate selling prices versus buying prices, suggesting that loss aversion is associated with the processing of negative emotion. © 2011 Wiley Periodicals, Inc....

  15. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  16. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjuan [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Qiu, Jianhui, E-mail: qiu@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Feng, Huixia [College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Zang, Limin; Sakai, Eiichi [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan)

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase.

  17. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    International Nuclear Information System (INIS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-01-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase

  18. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  19. Executive Functioning and Visuospatial Abilities in Bulimia Nervosa with or without a Previous History of Anorexia Nervosa.

    Science.gov (United States)

    Degortes, Daniela; Tenconi, Elena; Santonastaso, Paolo; Favaro, Angela

    2016-03-01

    The aim of the present study was to investigate executive functioning and visuospatial abilities in patients with bulimia nervosa (BN), with a particular interest in exploring the impact of a previous diagnosis of anorexia nervosa (AN). Several neuropsychological tasks were administered to 89 BN patients (52 with a previous history of AN and 37 without previous AN) and 160 healthy women. A poorer performance on set-shifting measures (Wisconsin Card Sorting Test) was found only in BN patients with a previous history of AN. Decision-making abilities (Iowa Gambling Task) were significantly impaired in the whole sample of BN patients, but difficulties were more pronounced in the subgroup with previous AN. Finally, we did not find any differences in response inhibition and visuospatial abilities between the two samples of BN patients and healthy women. Our findings support the idea that cognitive abilities in patients with BN are more impaired in the presence of a prior history of AN. The clinical and treatment implications of our findings should be explored in future studies. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  20. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo, E-mail: montemag@ualberta.ca [Ingenuity Lab, 1-070C (Canada)

    2017-02-15

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  1. Vision research with functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nakadomari, Satoshi

    1999-01-01

    Present state of functional magnetic resonance imaging (fMRI), which is based on changes of MR signals produced by blood circulation changes due to the nerve activity, in vision research was reviewed. In this field, there are international associations of Human Brain Mapping and for Research in Vision and Ophthalmology (ARVO) and reports presented in ARVO in 1998 and 1999 were firstly described. Next, the comparison between two conditions was defined as the experimental paradigm of fMRI and analyses with the event related fMRI and with classification into visual central regions were explained. Major findings obtained by stimulation of visual central regions were discussed on the lateral corpus geniculatum, areas of V1, V2, V3 (VP), V3A, V4A (V8), V5 and LO (lateral occipital complex), and others. In practice of actual fMRI, the noise is often attributable to the examinee factor and notification for speculating the result is important. The value of fMRI in the clinical ophthalmological diagnosis was discussed and thought to be further investigated. (K.H.)

  2. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice.

    Science.gov (United States)

    Bessho-Uehara, Kanako; Wang, Diane R; Furuta, Tomoyuki; Minami, Anzu; Nagai, Keisuke; Gamuyao, Rico; Asano, Kenji; Angeles-Shim, Rosalyn B; Shimizu, Yoshihiro; Ayano, Madoka; Komeda, Norio; Doi, Kazuyuki; Miura, Kotaro; Toda, Yosuke; Kinoshita, Toshinori; Okuda, Satohiro; Higashiyama, Tetsuya; Nomoto, Mika; Tada, Yasuomi; Shinohara, Hidefumi; Matsubayashi, Yoshikatsu; Greenberg, Anthony; Wu, Jianzhong; Yasui, Hideshi; Yoshimura, Atsushi; Mori, Hitoshi; McCouch, Susan R; Ashikari, Motoyuki

    2016-08-09

    Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.

  3. Functional magnetic nanoparticles for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Yuko [Graduate School of Engineering, Department of Physics, Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: yuko@ynu.ac.jp; Moritake, Shinji [Graduate School of Engineering, Department of Physics, Yokohama National University, Yokohama 240-8501 (Japan); Taira, Shu [Mitsubishi Kagaku Institute of Life Sciences, Molecular Gerontology Research Group, Tokyo 194-8511 (Japan); Setou, Mitsutoshi [Mitsubishi Kagaku Institute of Life Sciences, Molecular Gerontology Research Group, Tokyo 194-8511 (Japan)

    2007-03-15

    We prepared an amino-substituted nanoparticle by means of the amino-silane coupling procedure. The original magnetic particles were {gamma}-Fe{sub 2}O{sub 3}, which ranged in size from 1.3 to 34 nm, surrounded by amorphous SiO{sub 2}. The modification of the magnetic particle by the addition of an amino group was confirmed using a Fourier transform infrared spectrophotometer (FT-IR). The X-ray diffraction patterns showed a spinel structure both before and after modification of the amino group. The magnetization curve indicated paramagnetic behavior for the 3 nm particles, superparamagnetic behavior for the 7 nm particles, and ferromagnetic behavior for 9 nm particles at room temperature. A fluorescent reagent was applied to the particle, and the particle was introduced into a cell. The magnetic particles in the cell were localized using an external magnetic field.

  4. Functional magnetic nanoparticles for medical application

    International Nuclear Information System (INIS)

    Ichiyanagi, Yuko; Moritake, Shinji; Taira, Shu; Setou, Mitsutoshi

    2007-01-01

    We prepared an amino-substituted nanoparticle by means of the amino-silane coupling procedure. The original magnetic particles were γ-Fe 2 O 3 , which ranged in size from 1.3 to 34 nm, surrounded by amorphous SiO 2 . The modification of the magnetic particle by the addition of an amino group was confirmed using a Fourier transform infrared spectrophotometer (FT-IR). The X-ray diffraction patterns showed a spinel structure both before and after modification of the amino group. The magnetization curve indicated paramagnetic behavior for the 3 nm particles, superparamagnetic behavior for the 7 nm particles, and ferromagnetic behavior for 9 nm particles at room temperature. A fluorescent reagent was applied to the particle, and the particle was introduced into a cell. The magnetic particles in the cell were localized using an external magnetic field

  5. The association between subjective memory complaint and objective cognitive function in older people with previous major depression.

    Science.gov (United States)

    Chu, Chung-Shiang; Sun, I-Wen; Begum, Aysha; Liu, Shen-Ing; Chang, Ching-Jui; Chiu, Wei-Che; Chen, Chin-Hsin; Tang, Hwang-Shen; Yang, Chia-Li; Lin, Ying-Chin; Chiu, Chih-Chiang; Stewart, Robert

    2017-01-01

    The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%). Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale scorememory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples.

  6. The association between subjective memory complaint and objective cognitive function in older people with previous major depression.

    Directory of Open Access Journals (Sweden)

    Chung-Shiang Chu

    Full Text Available The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%. Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale score<7. The results suggest subjective memory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples.

  7. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Science.gov (United States)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  8. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  9. A magnetic window into bodily functions

    International Nuclear Information System (INIS)

    Sutton, C.

    1986-01-01

    The paper concerns the uses of Nuclear Magnetic Resonance (NMR) spectroscopy in Medical Science. The physics of NMR and the chemical shift are both explained. The use of NMR in studying metabolism and deep tissue is described; these studies include brain metabolites in babies, muscle disorders, and monitoring malfunctions in the human body. (UK)

  10. Functionalization of magnetic nanowires by charged biopolymers

    DEFF Research Database (Denmark)

    Magnin, D.; Callegari, V.; Mátéfi-Tempfli, Stefan

    2008-01-01

    We report on a facile method for the preparation of biocompatible and bioactive magnetic nanowires. The method consists of the direct deposition of polysaccharides by layer-by-layer (LbL) assembly onto a brush of metallic nanowires; obtained by electrodeposition of the metal within the nanopores ...

  11. Cognitive functioning in children and adolescents in their first episode of psychosis: differences between previous cannabis users and nonusers.

    Science.gov (United States)

    de la Serna, Elena; Mayoral, María; Baeza, Inmaculada; Arango, Celso; Andrés, Patricia; Bombin, Igor; González, Cristina; Rapado, Marta; Robles, Olalla; Rodríguez-Sánchez, Jose Manuel; Zabala, Arantzazu; Castro-Fornieles, Josefina

    2010-02-01

    To investigate the relationship between cognition and prior cannabis use in children and adolescents presenting a first episode of psychosis. A total of 107 patients with first episode of psychosis and 96 healthy controls, aged 9 to 17 years, were interviewed about their previous substance use and to assess their cognitive functions. Patients were assessed while not using cannabis by means of a comprehensive neuropsychological battery. They were divided into 2 groups depending on the history of prior cannabis use: cannabis users (CU) and cannabis nonusers (CNU). Significant differences were found in all areas evaluated between the 3 groups. Both CU and CNU patients obtained lower scores than controls on verbal learning and memory and working memory. Patients with prior cannabis use performed better on some tests of attention (Continuous performance test (CPT) number of correct responses, p = 0.002; CPT average reaction time, p < 0.001) and executive functions (Trail Making Test, part B (TMT-B) number of mistakes, p < 0.001; Wisconsin Card Sorting Test (WCST) number of categories completed, p < 0.001) than CNU patients. CU patients performed better than CNU subjects on some cognitive measures. This may indicate lower individual vulnerability for psychosis in CU patients in whom cannabis use can be a precipitating factor of psychotic episodes.

  12. Density functional approach for the magnetism of β-TeVO4

    Science.gov (United States)

    Saúl, A.; Radtke, G.

    2014-03-01

    Density functional calculations have been carried out to investigate the microscopic origin of the magnetic properties of β-TeVO4. Two different approaches, based either on a perturbative treatment of the multiorbital Hubbard model in the strongly correlated limit or on the calculation of supercell total energy differences, have been employed to evaluate magnetic couplings in this compound. The picture provided by these two approaches is that of weakly coupled frustrated chains with ferromagnetic nearest-neighbor and antiferromagnetic second-nearest-neighbor couplings. These results, differing substantially from previous reports, should motivate further experimental investigations of the magnetic properties of this compound.

  13. Full-thickness knee articular cartilage defects in national football league combine athletes undergoing magnetic resonance imaging: prevalence, location, and association with previous surgery.

    Science.gov (United States)

    Nepple, Jeffrey J; Wright, Rick W; Matava, Matthew J; Brophy, Robert H

    2012-06-01

    To better define the prevalence and location of full-thickness articular cartilage lesions in elite football players undergoing knee magnetic resonance imaging (MRI) at the National Football League (NFL) Invitational Combine and assess the association of these lesions with previous knee surgery. We performed a retrospective review of all participants in the NFL Combine undergoing a knee MRI scan from 2005 to 2009. Each MRI scan was reviewed for evidence of articular cartilage disease. History of previous knee surgery including anterior cruciate ligament reconstruction, meniscal procedures, and articular cartilage surgery was recorded for each athlete. Knees with a history of previous articular cartilage restoration surgery were excluded from the analysis. A total of 704 knee MRI scans were included in the analysis. Full-thickness articular cartilage lesions were associated with a history of any previous knee surgery (P football players at the NFL Combine undergoing MRI. The lateral compartment appears to be at greater risk for full-thickness cartilage loss. Previous knee surgery, particularly meniscectomy, is associated with these lesions. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Changes in nonhuman primate brain function following chronic alcohol consumption in previously naïve animals.

    Science.gov (United States)

    Rowland, Jared A; Stapleton-Kotloski, Jennifer R; Alberto, Greg E; Davenport, April T; Kotloski, Robert J; Friedman, David P; Godwin, Dwayne W; Daunais, James B

    2017-08-01

    Chronic alcohol abuse is associated with neurophysiological changes in brain activity; however, these changes are not well localized in humans. Non-human primate models of alcohol abuse enable control over many potential confounding variables associated with human studies. The present study utilized high-resolution magnetoencephalography (MEG) to quantify the effects of chronic EtOH self-administration on resting state (RS) brain function in vervet monkeys. Adolescent male vervet monkeys were trained to self-administer ethanol (n=7) or an isocaloric malto-dextrin solution (n=3). Following training, animals received 12 months of free access to ethanol. Animals then underwent RS magnetoencephalography (MEG) and subsequent power spectral analysis of brain activity at 32 bilateral regions of interest associated with the chronic effects of alcohol use. demonstrate localized changes in brain activity in chronic heavy drinkers, including reduced power in the anterior cingulate cortex, hippocampus, and amygdala as well as increased power in the right medial orbital and parietal areas. The current study is the first demonstration of whole-head MEG acquisition in vervet monkeys. Changes in brain activity were consistent with human electroencephalographic studies; however, MEG was able to extend these findings by localizing the observed changes in power to specific brain regions. These regions are consistent with those previously found to exhibit volume loss following chronic heavy alcohol use. The ability to use MEG to evaluate changes in brain activity following chronic ethanol exposure provides a potentially powerful tool to better understand both the acute and chronic effects of alcohol on brain function. Published by Elsevier B.V.

  15. Wigner functions for fermions in strong magnetic fields

    Science.gov (United States)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  16. Magnetic and optical bistability in tetrairon(III) single molecule magnets functionalized with azobenzene groups.

    Science.gov (United States)

    Prasad, Thazhe Kootteri; Poneti, Giordano; Sorace, Lorenzo; Rodriguez-Douton, Maria Jesus; Barra, Anne-Laure; Neugebauer, Petr; Costantino, Luca; Sessoli, Roberta; Cornia, Andrea

    2012-07-21

    Tetrairon(III) complexes known as "ferric stars" have been functionalized with azobenzene groups to investigate the effect of light-induced trans-cis isomerization on single-molecule magnet (SMM) behaviour. According to DC magnetic data and EPR spectroscopy, clusters dispersed in polystyrene (4% w/w) exhibit the same spin (S = 5) and magnetic anisotropy as bulk samples. Ligand photoisomerization, achieved by irradiation at 365 nm, has no detectable influence on static magnetic properties. However, it induces a small but significant acceleration of magnetic relaxation as probed by AC susceptometry. The pristine behaviour can be almost quantitatively recovered by irradiation with white light. Our studies demonstrate that magnetic and optical bistability can be made to coexist in SMM materials, which are of current interest in molecular spintronics.

  17. Pediatric applications of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Nolan R. [Miami Children' s Hospital, Department of Radiology, Miami, FL (United States); Bernal, Byron [Miami Children' s Hospital, Pediatric Neuroradiology, Miami, FL (United States)

    2015-09-15

    Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions. (orig.)

  18. Pediatric applications of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Altman, Nolan R.; Bernal, Byron

    2015-01-01

    Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions. (orig.)

  19. THE EFFECT OF A PELVIC COMPRESSION BELT ON FUNCTIONAL HAMSTRING MUSCLE ACTIVITY IN SPORTSMEN WITH AND WITHOUT PREVIOUS HAMSTRING INJURY.

    Science.gov (United States)

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2015-06-01

    There is evidence that applying a pelvic compression belt (PCB) can decrease hamstring and lumbar muscle electromyographic activity and increase gluteus maximus activity in healthy women during walking. Increased isokinetic eccentric hamstring strength in the terminal range (25 ° - 5 °) of knee extension has been reported with the use of such a belt in sportsmen with and without hamstring injuries. However, it is unknown whether wearing a pelvic belt alters activity of the hamstrings in sportsmen during walking. To examine the effects of wearing a PCB on electromyographic activity of the hamstring and lumbopelvic muscles during walking in sportsmen with and without hamstring injuries. Randomised crossover, cross-sectional study. Thirty uninjured sportsmen (23.53 ± 3.68 years) and 20 sportsmen with hamstring injuries (22.00 ± 1.45 years) sustained within the previous 12 months participated in this study. Electromyographic amplitudes of the hamstrings, gluteus maximus, gluteus medius and lumbar multifidus were monitored during defined phases of walking and normalised to maximum voluntary isometric contraction. Within-group comparisons [PCB vs. no PCB] for the normalised electromyographic amplitudes were performed for each muscle group using paired t tests. Electromyographic change scores [belt - no belt] were calculated and compared between the two groups with independent t tests. No significant change was evident in hamstring activity for either group while walking with the PCB (p > 0.050). However, with the PCB, gluteus medius activity (p ≤ 0.028) increased in both groups, while gluteus maximus activity increased (p = 0.025) and multifidus activity decreased (p hamstrings during walking, resulting in no significant changes within or between the two groups. Future studies investigating effects of the PCB on hamstring activity in participants with acute injury and during a more demanding functional activity such as running are warranted

  20. A functional magnetic resonance imaging study

    Indian Academy of Sciences (India)

    MADU

    systems and ultra fast imaging techniques, such as echo planar imaging (EPI ) ... is used to understand brain organization, assessing of neurological status, and ..... J C 1998 Functional MRI studies of motor recovery after stroke;. NeuroImage 7 ...

  1. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, Pedro Gomes; Op 't Veld, Roel C.; de Graaf, Wolter; Strijkers, Gustav J.; Grüll, Holger

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function

  2. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, P.G.; Op ‘t Veld, R.C.; de Graaf, W.; Strijkers, G.J.; Grüll, H.

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a noninvasive technique to image heart function of

  3. Rationalisation of distribution functions for models of nanoparticle magnetism

    International Nuclear Information System (INIS)

    El-Hilo, M.; Chantrell, R.W.

    2012-01-01

    A formalism is presented which reconciles the use of different distribution functions of particle diameter in analytical models of the magnetic properties of nanoparticle systems. For the lognormal distribution a transformation is derived which shows that a distribution of volume fraction transforms into a lognormal distribution of particle number albeit with a modified median diameter. This transformation resolves an apparent discrepancy reported in Tournus and Tamion [Journal of Magnetism and Magnetic Materials 323 (2011) 1118]. - Highlights: ► We resolve a problem resulting from the misunderstanding of the nature. ► The nature of dispersion functions in models of nanoparticle magnetism. ► The derived transformation between distributions will be of benefit in comparing models and experimental results.

  4. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  5. [Functional magnetic resonance imaging and dynamic neuroanatomy of addictive disorders].

    Science.gov (United States)

    Mel'nikov, M E; Shtark, M B

    2014-01-01

    Research into the cerebral patterns that govern the formation and development of addictive behavior is one of the most interesting goals of neurophysiology. Authors of contemporary papers on the matter define a number of symptoms that are all part of substance or non-substance dependence, each one of them leading to abnormalities in the corresponding system of the brain. During the last twenty years the functional magnetic resonance imaging (fMR1) technology has been instrumental in locating such abnormalities, identifying specific parts of the brain that, when dysfunctional, may enhance addiction and cause its positive or negative symptoms. This article reviews fMRI studies aimed toward locating areas in the brain that are responsible for cognitive, emotional, and motivational dysfunction. Cerebral correlatives of impulsiveness, behavior control, and drug cravings are reviewed separately. The article also contains an overview of possibilities to further investigate the Selves of those dependent on substances, identify previously unknown diagnostic markers of substance dependence, and evaluate the effectiveness of therapy. The research under review in this article provides data that points to a special role of the nucleus caudatus as well as the nucleus accumbens, the thalamus, the insular cortex (IC), the anterior cingulate, prefrontal and orbitofrontal areas in psychological disorders that are part of substance dependence. General findings of the article are in accordance with contemporary models of addictive pattern.

  6. Precise response function for the magnetic component of gravitational waves in scalar-tensor gravity

    International Nuclear Information System (INIS)

    Corda, Christian

    2011-01-01

    The important issue of the magnetic component of gravitational waves (GWs) has been considered in various papers in the literature. From such analyses, it has been found that such a magnetic component becomes particularly important in the high-frequency portion of the frequency range of ground based interferometers for GWs which arises from standard general theory of relativity (GTR). Recently, such a magnetic component has been extended to GWs arising from scalar-tensor gravity (STG) too. After a review of some important issues on GWs in STG, in this paper we reanalyze the magnetic component in the framework of STG from a different point of view, by correcting an error in a previous paper and by releasing a more precise response function. In this way, we also show that if one neglects the magnetic contribution considering only the low-frequency approximation of the electric contribution, an important part of the signal could be, in principle, lost. The determination of a more precise response function for the magnetic contribution is important also in the framework of the possibility of distinguishing other gravitational theories from GTR. At the conclusion of this paper, an expansion of the main results is also shown in order to recall the presence of the magnetic component in GTR too.

  7. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  8. Self-reported previous knee injury and low knee function increase knee injury risk in adolescent female football.

    Science.gov (United States)

    Clausen, M B; Tang, L; Zebis, M K; Krustrup, P; Hölmich, P; Wedderkopp, N; Andersen, L L; Christensen, K B; Møller, M; Thorborg, K

    2016-08-01

    Knee injuries are common in adolescent female football. Self-reported previous knee injury and low Knee injury and Osteoarthritis Outcome Score (KOOS) are proposed to predict future knee injuries, but evidence regarding this in adolescent female football is scarce. The aim of this study was to investigate self-reported previous knee injury and low KOOS subscale score as risk factors for future knee injuries in adolescent female football. A sample of 326 adolescent female football players, aged 15-18, without knee injury at baseline, were included. Data on self-reported previous knee injury and KOOS questionnaires were collected at baseline. Time-loss knee injuries and football exposures were reported weekly by answers to standardized text-message questions, followed by injury telephone interviews. A priori, self-reported previous knee injury and low KOOS subscale scores (female football. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Functional magnetic resonance imaging and dementia

    International Nuclear Information System (INIS)

    Giesel, F.L.; Hempel, A.; Schoenknecht, P.; Schroeder, J.; Wuestenberg, T.; Weber, M.A.; Essig, M.

    2003-01-01

    Currently, different cerebral neuroimaging methods are being applied to varying questions in the diagnosis of dementia. In patients with manifest Alzheimer's disease a reduction of cortical perfusion and metabolism in temporal and temporoparietal regions has been demonstrated when compared to healthy controls on a diversity of memory tasks. Since differing levels of performance and varying degrees of cortical atrophy may influence functional results considerably, an understanding of the processes associated with normal ageing is perceived as prerequisite for studies applying functional neuroimaging. The integration of knowledge concerning neuropsychological and neurobiological alterations associated with healthy ageing allows hypotheses for the differentiation of pathological ageing processes to be phrased. In this connection non-invasive methods such as fMRI and ASL are of increasing importance. (orig.) [de

  10. Functional magnetic resonance imaging with ultra-high fields

    International Nuclear Information System (INIS)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E.; Fischmeister, F.P.S.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [de

  11. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  12. Practical Introduction to Cerebral Functional Magnetic Resonance (fMRI)

    International Nuclear Information System (INIS)

    Delgado, Jorge Andres; Rascovsky Simon; Sanz, Alexander; Castrillon, Juan Gabriel

    2008-01-01

    Magnetic resonance (MR ) imaging holds a privileged position within neuroimaging techniques owing to its high anatomic detail and its capacity to study many physiological processes. The appearance of functional magnetic resonance (fMR I) brings more relevance to MR , turning it into a powerful tool with the ability to group, in a single exam, high-resolution anatomy and cerebral function. In this article we describe the principles and some advantages of fMRI compared to other neuro functional imaging modalities. In addition, we present the site wide and analysis requisites for the performance and post-processing of the most common neuro functional experiments in clinical practice. We also include neuro functional images obtained at Instituto de Alta Tecnologia Medica of Antioquia (IATM ) on a healthy volunteer group and two pathological cases. Lastly, we mention some of the practical indications of this technique which is still in an intense development, research and validation phase.

  13. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    Science.gov (United States)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  14. Magnetic elements in otoliths of lagena and their function

    International Nuclear Information System (INIS)

    Harada, Yasuo

    2002-01-01

    The mystery of pigeons' homing abilities has been the subject of much interest, and it is widely believed that information from the earth's magnetic field may be involved. However, no specific magnetic sensory organ has yet been identified. The recent finding of magnetic materials in the lagenal otolith of fishes and birds raises the possibility that these structures might be key elements in the elusive magnetic sensor system. For the elemental analysis inside materials, x-ray fluorescence method (Synchrotron radiation) is one of the most powerful techniques. BL4A beam line of Photo factory of KEK at Tsukuba was used for analysis of the otolith. Comparing the compositions of the three different kinds of otolith among several species of sea fishes and birds, we found that the saccular and utricular otolith rarely contain detectable levels of Fe (iron), but that Fe is present in significant quantities in the lagenal otolith of the birds. The lagenal otolith is tiny crystal that contains magnetic elements and is sensitively displaced by imposed magnetic fields, providing the animal with geomagnetic sensory input, from which the brain would infer navigational information. Behavioral experiments of the homing abilities of the pigeons involving sectioning the lagenal nerves and the magnetic interfere to their lagena were done using 30 controlled birds and 21 treated birds from the same loft of the racing pigeons. The result of homing test of the control and treated pigeons clearly indicates the magnetic influence and lagenal function to pigeon's navigation ability, and the treated pigeons were either lost or significantly delayed, while the controls returned within 30 minutes after the release. Thus the birds' lagena is unique organ, and it may be concluded that the lagena is a key element to magnetic sensory system for birds. (author)

  15. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  16. Magnetic behavior study of samarium nitride using density functional theory

    Science.gov (United States)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  17. Density-functional theory for internal magnetic fields

    Science.gov (United States)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  18. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  19. Self-reported previous knee injury and low knee function increase knee injury risk in adolescent female football

    DEFF Research Database (Denmark)

    Clausen, Mikkel Bek; Tang, L; Zebis, M K

    2016-01-01

    with low KOOS subscale scores (Sport/Recreational (RR: 2.2) and Quality of Life (RR: 3.0) (P time-loss knee...... questionnaires were collected at baseline. Time-loss knee injuries and football exposures were reported weekly by answers to standardized text-message questions, followed by injury telephone interviews. A priori, self-reported previous knee injury and low KOOS subscale scores (... as independent variables in the risk factor analyses. The study showed that self-reported previous knee injury significantly increased the risk of time-loss knee injury [relative risk (RR): 3.65, 95% confidence (CI) 1.73-7.68; P time-loss knee injury was also significantly increased in players...

  20. Functional Magnetic Resonance in the Evaluation of Oesophageal Motility Disorders

    OpenAIRE

    Covotta, Francesco; Piretta, Luca; Badiali, Danilo; Laghi, Andrea; Biondi, Tommaso; Corazziari, Enrico S.; Panebianco, Valeria

    2011-01-01

    Functional magnetic resonance imaging (fMRI) has been recently proposed for the evaluation of the esophagus. Our aim is to assess the role of fMRI as a technique to assess morphological and functional parameters of the esophagus in patients with esophageal motor disorders and in healthy controls. Subsequently, we assessed the diagnostic efficiency of fMRI in comparison to videofluoroscopic and manometric findings in the investigation of patients with esophageal motor disorders. Considering...

  1. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  2. Left Ventricular Function Improves after Pulmonary Valve Replacement in Patients with Previous Right Ventricular Outflow Tract Reconstruction and Biventricular Dysfunction

    Science.gov (United States)

    Kane, Colin; Kogon, Brian; Pernetz, Maria; McConnell, Michael; Kirshbom, Paul; Rodby, Katherine; Book, Wendy M.

    2011-01-01

    Congenital heart defects that have a component of right ventricular outflow tract obstruction, such as tetralogy of Fallot, are frequently palliated in childhood by disruption of the pulmonary valve. Although this can provide an initial improvement in quality of life, these patients are often left with severe pulmonary valve insufficiency. Over time, this insufficiency can lead to enlargement of the right ventricle and to the deterioration of right ventricular systolic and diastolic function. Pulmonary valve replacement in these patients decreases right ventricular volume overload and improves right ventricular performance. To date, few studies have examined the effects of pulmonary valve replacement on left ventricular function in patients with biventricular dysfunction. We sought to perform such an evaluation. Records of adult patients who had undergone pulmonary valve replacement from January 2003 through November 2006 were analyzed retrospectively. We reviewed preoperative and postoperative echocardiograms and calculated left ventricular function in 38 patients. In the entire cohort, the mean left ventricular ejection fraction increased by a mean of 0.07 after pulmonary valve replacement, which was a statistically significant change (P < 0.01). In patients with preoperative ejection fractions of less than 0.50, mean ejection fractions increased by 0.10. We conclude that pulmonary valve replacement in patients with biventricular dysfunction arising from severe pulmonary insufficiency and right ventricular enlargement can improve left ventricular function. Prospective studies are needed to verify this finding. PMID:21720459

  3. Uniform magnetic fields in density-functional theory

    Science.gov (United States)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  4. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    Neurosurgical resection of brain lesions aims to maximize excision while minimizing the risk of permanent injury to the surrounding intact brain tissue and resulting neurological deficits. While direct electrical cortical stimulation at the time of surgery allows the precise identification...... of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical......, if the stimulated cortex makes a critical contribution to the brain functions subserving the task. While the relationship between task and functional activation as revealed by fMRI is correlative in nature, the neurodisruptive effect of TMS reflects a causal effect on brain activity.The use of preoperative f...

  5. Anterior Cutaneous Nerve Entrapment Syndrome in a Pediatric Patient Previously Diagnosed With Functional Abdominal Pain: A Case Report.

    Science.gov (United States)

    DiGiusto, Matthew; Suleman, M-Irfan

    2018-03-23

    Chronic abdominal pain is common in children and adolescents but challenging to diagnose, because practitioners may be concerned about missing serious occult disease. Abdominal wall pain is an often ignored etiology for chronic abdominal pain. Anterior cutaneous nerve entrapment syndrome causes abdominal wall pain but is frequently overlooked. Correctly diagnosing patients with anterior cutaneous nerve entrapment syndrome is important because nerve block interventions are highly successful in the remittance of pain. Here, we present the case of a pediatric patient who received a diagnosis of functional abdominal pain but experienced pain remittance after receiving a trigger-point injection and transverse abdominis plane block.

  6. Zero-field magnetic response functions in Landau levels

    Science.gov (United States)

    Gao, Yang; Niu, Qian

    2017-07-01

    We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models.

  7. Green's function of compressible Petschek-type magnetic reconnection

    International Nuclear Information System (INIS)

    Penz, Thomas; Semenov, V.S.; Ivanova, V.V.; Heyn, M.F.; Ivanov, I.B.; Biernat, H.K.

    2006-01-01

    We present a method to analyze the wave and shock structures arising from Petschek-type magnetic reconnection. Based on a time-dependent analytical approach developed by Heyn and Semenov [Phys. Plasmas 3, 2725 (1996)] and Semenov et al. [Phys. Plasmas 11, 62 (2004)], we calculate the perturbations caused by a delta function-shaped reconnection electric field, which allows us to achieve a representation of the plasma variables in the form of Green's functions. Different configurations for the initial conditions are considered. In the case of symmetric, antiparallel magnetic fields and symmetric plasma density, the well-known structure of an Alfven discontinuity, a fast body wave, a slow shock, a slow wave, and a tube wave occurs. In the case of asymmetric, antiparallel magnetic fields, additionally surface waves are found. We also discuss the case of symmetric, antiparallel magnetic fields and asymmetric densities, which leads to a faster propagation in the lower half plane, causing side waves forming a Mach cone in the upper half plane. Complex effects like anisotropic propagation characteristics, intrinsic wave coupling, and the generation of different nonlinear and linear wave modes in a finite β plasma are retained. The temporal evolution of these wave and shock structures is shown

  8. Arbitrary function generator for APS injector synchrotron correction magnets

    International Nuclear Information System (INIS)

    Despe, O.D.

    1991-01-01

    The APS injector synchrotron has eighty correction magnets around its circumference to provide the vernier field changes required for beam orbit correction during acceleration. The arbitrary function generator (AFG) design is based on scanning out encoded data from a semi-conductor memory, a first-in-first-out (FIFO) device. The data input consists of a maximum of 20 correction values specified within the acceleration window. Additional points between these values are then linearly interpolated to create a uniformly spaced 1000 data-point function stored in the FIFO. Each point, encoded as a 3-bit value is scanned out in synchronism with the injection pulse and used to clock the up/down counter driving the DAC. The DAC produces the analog reference voltage used to control the magnet current. 1 ref., 4 figs

  9. Chronic antiepileptic drug use and functional network efficiency : a functional magnetic resonance imaging study

    NARCIS (Netherlands)

    van Veenendaal, T.M.; IJff, D.M.; Aldenkamp, A.P.; Lazeron, R.H.C.; Hofman, P.A.M.; de Louw, A.J.A.; Backes, W.H.; Jansen, J.F.A.

    2017-01-01

    AIM: To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug (AED) treatment. METHODS: The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of patients

  10. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    Science.gov (United States)

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  11. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    Energy Technology Data Exchange (ETDEWEB)

    Hall, W.A. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Depts. of Neurosurgery; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiation Oncology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; University of Minnesota Medical Center (MMC), Minneapolis, MN (United States); Truwit, C.L. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Pediatrics; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Neurology; Hennepin Country Medical Center, Minneapolis, MN (United States). Dept. of Radiology

    2006-12-15

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  12. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    International Nuclear Information System (INIS)

    Hall, W.A.; Truwit, C.L.; Univ. of Minnesota Medical School, Minneapolis, MN; Univ. of Minnesota Medical School, Minneapolis, MN; Hennepin Country Medical Center, Minneapolis, MN

    2006-01-01

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  13. Nuclear magnetic resonance studies of epithelial metabolism and function

    International Nuclear Information System (INIS)

    Balaban, R.S.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a noninvasive technique for studying cellular metabolism and function. In this review the general applications and advantages of NMR will be discussed with specific reference to epithelial tissues. Phosphorus NMR investigations have been performed on epithelial tissues in vivo and in vitro; however, other detectable nuclei have not been utilized to date. Several new applications of phosphorus NMR to epithelial tissues are also discussed, including studies on isolated renal tubules and sheet epithelia

  14. Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.

    1995-01-01

    The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs

  15. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  16. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    Science.gov (United States)

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  17. Toward a functional neuroanatomy of dysthymia: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Ravindran, Arun V; Smith, Andra; Cameron, Colin; Bhatla, Raj; Cameron, Ian; Georgescu, Tania M; Hogan, Matthew J

    2009-12-01

    Dysthymia is a common mood disorder. Recent studies have confirmed the neurobiological and treatment response overlap of dysthymia with major depression. There are no previous published studies of functional magnetic resonance imaging (fMRI) in dysthymia. fMRI was used to compare neural processing of 17 unmedicated dysthymic patients with 17 age, sex, and education-matched control subjects in a mood induction paradigm using the International Affective Pictures System (IAPS). Using a random effects analysis to compare the groups, the results revealed that the dysthymic patients had significantly reduced activation in the dorsolateral prefrontal cortex compared to controls. The dysthymic patients exhibited increased activation in the amygdala, anterior cingulate and insula compared to controls and these differences were more evident when processing negative than positive images. This study included both early and late subtypes of dysthymia, and participants were only imaged at one time point, which may limit the generalizability of the results. The findings suggest the involvement of the prefrontal cortex, anterior cingulate, amygdala, and insula in the neural circuitry underlying dysthymia. It is suggested that altered activation in some of these neural regions may be a common substrate for depressive disorders in general while others may relate specifically to symptom characteristics and the chronic course of dysthymia. These findings are particularly striking given the history of this deceptively mild disorder which is still confused by some with character pathology.

  18. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible.

  19. Evaluation of different strategies for magnetic particle functionalization with DNA aptamers.

    Science.gov (United States)

    Pérez-Ruiz, Elena; Lammertyn, Jeroen; Spasic, Dragana

    2016-12-25

    The optimal bio-functionalization of magnetic particles is essential for developing magnetic particle-based bioassays. Whereas functionalization with antibodies is generally well established, immobilization of DNA probes, such as aptamers, is not yet fully explored. In this work, four different types of commercially available magnetic particles, coated with streptavidin, maleimide or carboxyl groups, were evaluated for their surface coverage with aptamer bioreceptors, efficiency in capturing target protein and non-specific protein adsorption on their surface. A recently developed aptamer against the peanut allergen, Ara h 1 protein, was used as a model system. Conjugation of biotinylated Ara h 1 aptamer to the streptavidin particles led to the highest surface coverage, whereas the coverage of maleimide particles was 25% lower. Carboxylated particles appeared to be inadequate for DNA functionalization. Streptavidin particles also showed the greatest target capturing efficiency, comparable to the one of particles functionalized with anti-Ara h 1 antibody. The performance of streptavidin particles was additionally tested in a sandwich assay with the aptamer as a capture receptor on the particle surface. While the limit of detection obtained was comparable to the same assay system with antibody as capture receptor, it was superior to previously reported values using the same aptamer in similar assay schemes with different detection platforms. These results point to the promising application of the Ara h 1 aptamer-functionalized particles in bioassay development. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Avian magnetic compass: Its functional properties and physical basis

    Directory of Open Access Journals (Sweden)

    Roswitha WILTSCHKO, Wolfgang WILTSCHKO

    2010-06-01

    Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].

  1. Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    International Nuclear Information System (INIS)

    Khashan, Saud A; Furlani, Edward P

    2013-01-01

    A study is presented of coupled particle–fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle–fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle–fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle–fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle–fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency

  2. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  3. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  4. Optimal arrangement of magnetic coils for functional magnetic stimulation of the inspiratory muscles in dogs.

    Science.gov (United States)

    Lin, Vernon Weh-Hau; Zhu, Ercheng; Sasse, Scott A; Sassoon, Catherine; Hsiao, Ian N

    2005-12-01

    In an attempt to maximize inspiratory pressure and volume, the optimal position of a single or of dual magnetic coils during functional magnetic stimulation (FMS) of the inspiratory muscles was evaluated in twenty-three dogs. Unilateral phrenic magnetic stimulation (UPMS) or bilateral phrenic magnetic stimulation (BPMS), posterior cervical magnetic stimulation (PCMS), anterior cervical magnetic stimulation (ACMS) as well as a combination of PCMS and ACMS were performed. Trans-diaphragmatic pressure (Pdi), flow, and lung volume changes with an open airway were measured. Transdiaphragmatic pressure was also measured with an occluded airway. Changes in inspiratory parameters during FMS were compared with 1) electrical stimulation of surgically exposed bilateral phrenic nerves (BPES) and 2) ventral root electrical stimulation at C5-C7 (VRES C5-C7). Relative to the Pdi generated by BPES of 36.3 +/- 4.5 cm H2O (Mean +/- SEM), occluded Pdi(s) produced by UPMS, BPMS, PCMS, ACMS, and a combined PCMS + ACMS were 51.7%, 61.5%, 22.4%, 100.3%, and 104.5% of the maximal Pdi, respectively. Pdi(s) produced by UPMS, BPMS, PCMS, ACMS, and combined ACMS + PCMS were 38.0%, 45.2%, 16.5%, 73.8%, and 76.8%, respectively, of the Pdi induced by VRES (C5-C7) (48.0 +/- 3.9 cm H2O). The maximal Pdi(s) generated during ACMS and combined PCMS + ACMS were higher than the maximal Pdi(s) generated during UPMS, BPMS, or PCMS (p BPMS or PCMS. ACMS can be used to generate sufficient inspiratory pressure, flow, and volume for activation of the inspiratory muscles.

  5. Magnetic Resonance and Brain Function. Approaches from Physics

    International Nuclear Information System (INIS)

    Maraviglia, B.

    1999-01-01

    In the last decade of this millennium, while, on the one hand, the international scientific community has focused with increasing endeavour on the research about the great unknown of the mechanism and the pathologies of the human brain, on the other hand, the NMR community has achieved some important results, which should widely affect, in the future, the possibility of understanding the function and disfunction of the human brain. In the early 1980's, the beginning of the application of Magnetic Resonance Imaging (MRI) to the morphological study of the brain in vivo, has played an extraordinary role, which, since then, placed MRI in a leading position among the methodologies used for investigation and diagnostics of the Central Nervous System. In the 1990s, the objective of finding new means, based on MRI, capable of giving functional and metabolic information, with the highest possible space resolution, drove the scientists towards different approaches. Among these, the first one to generate a breakthrough in the localization of specific cerebral functions was the Blood Oxygen Level Development (BOLD) MRI. A very wide range of applications followed the discovery of BOLD imaging. Still, this method gives an indirect information of the localization of functions, via the variation of oxygen release and deoxyhemoglobin formation. Of course, a high-resolution spatial distribution of the metabolites, crucial to brain function, would give a deeper insight into the occurring processes. This finality is aimed at by the Double Magnetic Resonance methods, which are developing new procedures able to detect some metabolites with increasing sensitivity and resolution. A third new promising approach to functional MRI should derive from the use of hyperpolarized, opens a series of potential applications to the study of brain function

  6. Functional Magnetic Resonance Imaging of Story Listening in Adolescents and Young Adults with Down Syndrome: Evidence for Atypical Neurodevelopment

    Science.gov (United States)

    Jacola, L. M.; Byars, A. W.; Hickey, F.; Vannest, J.; Holland, S. K.; Schapiro, M. B.

    2014-01-01

    Background: Previous studies have documented differences in neural activation during language processing in individuals with Down syndrome (DS) in comparison with typically developing individuals matched for chronological age. This study used functional magnetic resonance imaging (fMRI) to compare activation during language processing in young…

  7. Functional magnetic resonance in the conditions of a clinical department

    International Nuclear Information System (INIS)

    Obenberger, J.; Seidl, Z.; Krasensky, J.; Vitak, T.; Haberzettel, V.

    1997-01-01

    Functional magnetic resonance is a novel technique enabling non-invasive monitoring of the brain function and metabolism at a time resolution and spatial resolution unmatched by any other imaging technique. The principle of the method is outlined, and it is demonstrated that such demanding examinations can be performed using state-of-the-art MR instrumentation combined with conventional equipment and GE sequences available at normal clinical departments. The functional MR examination, which does not take a much longer time than routine examination, can be improved by fixing the patient's head. As a prerequisite for correlation, the MR instrument has to be interfaced to a computer, and suitable tools for mutual data correlation have to be created. (P.A.)

  8. Functional and perfusion magnetic resonance imaging at 3 tesla

    International Nuclear Information System (INIS)

    Klarhoefer, M.

    2001-03-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flow velocity measurements in the human finger showed that the use of a strong, small-bore gradient system permits short echo times that reduce flow artefacts and allows high spatial resolution in order to keep systematic errors due to partial volume effects small. With regard to the perfusion investigations an inversion recovery snapshot-FLASH sequence was implemented, which allowed the acquisition of T1 parameter maps of the human brain within a few seconds. The accuracy of this method was demonstrated in test objects. The perfusion investigations with FAIR showed good qualitative results, whereas the quantitative analysis did not yield reproducible findings. A reason for the poor results could be the low signal-to-noise ratio (SNR) of the FAIR images or an incomplete global inversion of the magnetization due to the transmission characteristics of the radio-frequency coil. The BASE sequence that did not require a global inversion yielded quantitative perfusion

  9. Neuromodulation of detrusor hyper-reflexia by functional magnetic stimulation of the sacral roots.

    Science.gov (United States)

    Sheriff, M K; Shah, P J; Fowler, C; Mundy, A R; Craggs, M D

    1996-07-01

    To investigate the acute effects of functional magnetic stimulation (FMS) on detrusor hyper-reflexia using a multi-pulse magnetic stimulator. Seven male patients with established and intractable detrusor hyper-reflexia following spinal cord injury were studied. No patient was on medication and none had had previous surgery for detrusor hyper-reflexia. After optimization of magnetic stimulation of S2-S4 sacral anterior roots by recording toe flexor electromyograms, unstable detrusor activity was provoked during cystometry by rapid infusion of fluid into the bladder. The provocation test produced consistent and predictable detrusor hyper-reflexia. On some provocations, supramaximal FMS at 20 pulses/s for 5 s was applied at detrusor pressures which were > 15 cmH2O. Following FMS there was an obvious acute suppression of detrusor hyper-reflexia. There was a profound reduction in detrusor contraction, as assessed by the area under the curves of detrusor pressure with time. Functional magnetic stimulation applied over the sacrum can profoundly suppress detrusor hyper-reflexia in man. It may provide a non-invasive method of assessing patients for implantable electrical neuromodulation devices and as a therapeutic option in its own right.

  10. Whiplash Injuries Can be Visible by Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Bengt H Johansson

    2006-01-01

    Full Text Available Whiplash trauma can result in injuries that are difficult to diagnose. Diagnosis is particularly difficult in injuries to the upper segments of the cervical spine (craniocervical joint [CCJ] complex. Studies indicate that injuries in that region may be responsible for the cervicoencephalic syndrome, as evidenced by headache, balance problems, vertigo, dizziness, eye problems, tinnitus, poor concentration, sensitivity to light and pronounced fatigue. Consequently, diagnosis of lesions in the CCJ region is important. Functional magnetic resonance imaging is a radiological technique that can visualize injuries of the ligaments and the joint capsules, and accompanying pathological movement patterns.

  11. [Functional magnetic resonance imaging in psychiatry and psychotherapy].

    Science.gov (United States)

    Derntl, B; Habel, U; Schneider, F

    2010-01-01

    technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.

  12. Functional magnetic resonance imaging for neurosurgical planning in neurooncology

    International Nuclear Information System (INIS)

    Vlieger, Erik-Jan; Majoie, Charles B.; Heeten, Gerard J. den; Leenstra, Sieger

    2004-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that is widely available and can be used to determine the spatial relationships between tumor tissue and eloquent brain areas. Within certain limits, this functional information can be applied in the field of neurosurgery as a pre-operative mapping tool to minimize damage to eloquent brain areas. In this article, we review the literature on the use of fMRI for neurosurgical planning. The issues addressed are: (1) stimulation paradigms, (2) the influence of tumors on the blood oxygenation level-dependent (BOLD) signal, (3) post-processing the fMRI time course, (4) integration of fMRI results into neuronavigation systems, (5) the accuracy of fMRI and (6) fMRI compared to intra-operative mapping (IOM). (orig.)

  13. A compatible electrocutaneous display for functional magnetic resonance imaging application.

    Science.gov (United States)

    Hartwig, V; Cappelli, C; Vanello, N; Ricciardi, E; Scilingo, E P; Giovannetti, G; Santarelli, M F; Positano, V; Pietrini, P; Landini, L; Bicchi, A

    2006-01-01

    In this paper we propose an MR (magnetic resonance) compatible electrocutaneous stimulator able to inject an electric current, variable in amplitude and frequency, into the fingertips in order to elicit tactile skin receptors (mechanoreceptors). The desired goal is to evoke specific tactile sensations selectively stimulating skin receptors by means of an electric current in place of mechanical stimuli. The field of application ranges from functional magnetic resonance imaging (fMRI) tactile studies to augmented reality technology. The device here proposed is designed using safety criteria in order to comply with the threshold of voltage and current permitted by regulations. Moreover, MR safety and compatibility criteria were considered in order to perform experiments inside the MR scanner during an fMRI acquisition for functional brain activation analysis. Psychophysical laboratory tests are performed in order to define the different evoked tactile sensation. After verifying the device MR safety and compatibility on a phantom, a test on a human subject during fMRI acquisition is performed to visualize the brain areas activated by the simulated tactile sensation.

  14. Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements

    International Nuclear Information System (INIS)

    Miki, Atsushi; Takagi, Mineo; Abe, Haruki; Nakajima, Takashi; Miyauchi, Satoru.

    1996-01-01

    We evaluated activity-induced signal intensity changes in the human cerebral cortex during horizontal saccadic eye movements using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) contrast method. Compared with central fixation, significant signal increases were observed bilaterally in the middle frontal gyrus (Brodmann area 8) during saccadic conditions. The location of the activated area was consistent with that of previously reported frontal eye fields (FEF). These results suggest that fMRI has potential merit for the study of cortical control of eye movements in humans. (author)

  15. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  16. Modulating functional and dysfunctional mentalizing by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tobias eSchuwerk

    2014-11-01

    Full Text Available Mentalizing, the ability to attribute mental states to others and oneself, is a cognitive function with high relevance for social interactions. Recent neuroscientific research has increasingly contributed to attempts to decompose this complex social cognitive function into constituting neurocognitive building blocks. Additionally, clinical research that focuses on social cognition to find links between impaired social functioning and neurophysiological deviations has accumulated evidence that mentalizing is affected in most psychiatric disorders. Recently, both lines of research have started to employ transcranial magnetic stimulation: the first to modulate mentalizing in order to specify its neurocognitive components, the latter to treat impaired mentalizing in clinical conditions. This review integrates findings of these two different approaches to draw a more detailed picture of the neurocognitive basis of mentalizing and its deviations in psychiatric disorders. Moreover, we evaluate the effectiveness of hitherto employed stimulation techniques and protocols, paradigms and outcome measures. Based on this overview we highlight new directions for future research on the neurocognitive basis of functional and dysfunctional social cognition.

  17. Novel axolotl cardiac function analysis method using magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Pedro Gomes Sanches

    Full Text Available The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls. Three axolotls were imaged with magnetic resonance imaging using a retrospectively gated Fast Low Angle Shot cine sequence. Within one scanning session the axolotl heart was imaged three times in all planes, consecutively. Heart rate, ejection fraction, stroke volume and cardiac output were calculated using three techniques: (1 combined long-axis, (2 short-axis series, and (3 ultrasound (control for heart rate only. All values are presented as mean ± standard deviation. Heart rate (beats per minute among different animals was 32.2±6.0 (long axis, 30.4±5.5 (short axis and 32.7±4.9 (ultrasound and statistically similar regardless of the imaging method (p > 0.05. Ejection fraction (% was 59.6±10.8 (long axis and 48.1±11.3 (short axis and it differed significantly (p = 0.019. Stroke volume (μl/beat was 133.7±33.7 (long axis and 93.2±31.2 (short axis, also differed significantly (p = 0.015. Calculations were consistent among the animals and over three repeated measurements. The heart rate varied depending on depth of anaesthesia. We described a new method for defining and imaging the anatomical planes of the axolotl heart and propose one of our techniques (long axis analysis may prove useful in defining cardiac function in regenerating axolotl hearts.

  18. Functional magnetic resonance imaging in the activation of working memory

    International Nuclear Information System (INIS)

    Spitzer, M.; Kammer, T.; Bellemann, M.E.; Gueckel, F.; Georgi, M.; Gass, A.; Brix, G.

    1996-01-01

    Functional magnetic resonance imaging was used in conjunction with a letter detection task for the study of working memory in 16 normal subjects. Because of movement artifacts, data from only 9 subjects were analysed. In the activation taks, subjects responded by pressing a button whenever any presented letter was the same as the second last in the sequence. In the control condition, the subjects had to respond to a fixed letter. Hence, the activation condition and the control condition differend only subjectively, i.e., regarding the task demand, whereas the stimuli and the type and frequency of response were identical. The activation condition produced significant activation in the dorsolateral prefrontal cortex (Brodmann's areas 10, 46, and 9). In contrast to experimental tasks previsouly used rather extensively to study the prefrontal cortex, the present paradigm is characterized by its simplicity, interpretability, and its ties to known neurophysiology of the frontal cortex. (orig.) [de

  19. Functional magnetic resonance imaging of autism spectrum disorders

    Science.gov (United States)

    Dichter, Gabriel S.

    2012-01-01

    This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDs), Although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the “social brain” during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments. PMID:23226956

  20. The application of functional magnetic resonance imaging to neuropharmacology.

    Science.gov (United States)

    Shah, Yasmene B; Marsden, Charles A

    2004-10-01

    The technique of functional magnetic resonance imaging (fMRI) has the capacity to acquire data with spatial and temporal resolution that far exceeds other currently available methods of non-invasive investigation of brain function. This coupled with its ability for serial studies makes it an attractive prospect for investigating the effects of pharmacological agents in the brain. Recent advances in fMRI have been made in the areas of reward and dependence, brain trauma and injury, psychotropic drugs and pain using small animals. Although the use of fMRI in pharmacological studies is becoming popular, there are various associated complications, such as the possible interference of drugs with the mechanisms that give rise to the pharmacological fMRI signal, and local or global cardiovascular changes that might produce functional responses unrelated to neural activity. Consideration of these concerns, coupled with careful attention to experimental detail and verification procedures, promises to make pharmacological fMRI use a valuable tool for understanding the actions of drugs in the brain.

  1. Long-term cerebral metabolite changes on proton magnetic resonance spectroscopy in patients cured of acute lymphoblastic leukemia with previous intrathecal methotrexate and cranial irradiation prophylaxis

    International Nuclear Information System (INIS)

    Chan Yuleung; Roebuck, Derek J.; Yuen Manpan; Yeung Kawai; Lau Kamying; Li Chikong; Chik Kiwai

    2001-01-01

    Purpose: To evaluate the long-term brain metabolite changes on 1 H-MRS in acute lymphoblastic leukemia (ALL) patients who had intrathecal methotrexate (ITMTX) and cranial irradiation (CRT) for central nervous system (CNS) prophylaxis against CNS relapse. Methods and Materials: Thirty-seven ALL patients (12 females, 25 males) with history of ITMTX and CRT for CNS prophylaxis were studied. Age ranges at the time of diagnosis and at magnetic resonance examination were 0.8-13 years and 12-27 years, respectively. The interval since diagnosis was 5.6-19 years. T2-weighted and gradient-recalled echo (GRE) magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ( 1 H-MRS) were performed to assess brain injury. Results: On MRI, 3 leukoencephalopathy (LEP) and 1 infarct were detected. Twenty-two patients had evidence of hemosiderin. On 1 H-MRS no statistically significant difference in choline (Cho)/creatine (Cr) and N-acetylaspartate (NAA)/Cr was associated with LEP. A lower Cho/Cr (p=0.006) and NAA/Cr (p=0.078) was observed in brains with hemosiderin. Linear-regression analysis showed no statistically significant relationship between NAA/Cr or Cho/Cr with age at diagnosis, but there was a statistically significant decreasing trend of NAA/Cr and Cho/Cr with the interval since diagnosis. Conclusion: Long-term brain injury in ALL survivors after CNS prophylaxis with ITMTX and CRT was reflected by decreasing NAA/Cr and Cho/Cr with the interval since diagnosis. The lower Cho/Cr associated with hemosiderin but not LEP suggested a different pathophysiology for these brain lesions

  2. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...... → ns1np1 excitation energies in the Zn, Cd, and Hg atoms (n = 4-6) and (vertical) excitation energies of UO2+ 2 ; and we test the performance of various functionals by comparison with experimental data (group 12 atoms) or higher-level computational results (UO2+2 ). The results indicate...

  3. Effects of electroconvulsive therapy on amygdala function in major depression - a longitudinal functional magnetic resonance imaging study.

    Science.gov (United States)

    Redlich, R; Bürger, C; Dohm, K; Grotegerd, D; Opel, N; Zaremba, D; Meinert, S; Förster, K; Repple, J; Schnelle, R; Wagenknecht, C; Zavorotnyy, M; Heindel, W; Kugel, H; Gerbaulet, M; Alferink, J; Arolt, V; Zwanzger, P; Dannlowski, U

    2017-09-01

    Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, little is known regarding brain functional processes mediating ECT effects. In a non-randomized prospective study, functional magnetic resonance imaging data during the automatic processing of subliminally presented emotional faces were obtained twice, about 6 weeks apart, in patients with major depressive disorder (MDD) before and after treatment with ECT (ECT, n = 24). Additionally, a control sample of MDD patients treated solely with pharmacotherapy (MED, n = 23) and a healthy control sample (HC, n = 22) were obtained. Before therapy, both patient groups equally showed elevated amygdala reactivity to sad faces compared with HC. After treatment, a decrease in amygdala activity to negative stimuli was discerned in both patient samples indicating a normalization of amygdala function, suggesting mechanisms potentially unspecific for ECT. Moreover, a decrease in amygdala activity to sad faces was associated with symptomatic improvements in the ECT sample (r spearman = -0.48, p = 0.044), and by tendency also for the MED sample (r spearman = -0.38, p = 0.098). However, we did not find any significant association between pre-treatment amygdala function to emotional stimuli and individual symptom improvement, neither for the ECT sample, nor for the MED sample. In sum, the present study provides first results regarding functional changes in emotion processing due to ECT treatment using a longitudinal design, thus validating and extending our knowledge gained from previous treatment studies. A limitation was that ECT patients received concurrent medication treatment.

  4. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. Y., E-mail: annetsai@csmu.edu.tw [Chung Shan Medical University, Department of Applied Chemistry (China); Chang, C. Y.; Li, Y. C.; Chu, W. C.; Viswanathan, K.; Bor Fuh, C., E-mail: cbfuh@ncnu.edu.tw [National Chi Nan University, Department of Applied Chemistry (China)

    2011-06-15

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic ({approx}80 nm) and fluorescent ({approx}180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  5. Magnetic resonance imaging of hypertrophic cardiomyopathy. Evaluation of diastolic function

    International Nuclear Information System (INIS)

    Schwarz, F.; Reiser, M.F.; Theisen, D.; Schwab, F.; Beckmann, B.M.; Schuessler, F.; Kaeaeb, S.; Zinsser, D.; Goelz, T.

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) has a prevalence of approximately 0.2% and is clinically asymptomatic in many patients or presents with unspecific symptoms. This explains the importance of imaging for the diagnosis of HCM as well as for the assessment of the clinical course. The definitive finding in HCM is myocardial hypertrophy with thickening of the ventricular wall ≥ 15 mm. While echocardiography is an excellent screening tool magnetic resonance imaging (MRI) allows a comprehensive analysis of the heart in HCM. This includes a detailed analysis of the distribution and extent of myocardial hypertrophy, a thorough evaluation of systolic and diastolic cardiac function, the assessment of the presence and extent of dynamic outflow tract obstruction as well as the description of the systolic anterior motion (SAM) phenomenon of the mitral valve with secondary mitral insufficiency. When contrast material is administered, additional information about myocardial perfusion as well as the presence and extent of myocardial fibrosis can be obtained. This study compared systolic functional parameters as well as end systolic and end diastolic wall thickness of patients with and without diastolic dysfunction. (orig.) [de

  6. Functional magnetic resonance imaging (FMRI) and expert testimony.

    Science.gov (United States)

    Kulich, Ronald; Maciewicz, Raymond; Scrivani, Steven J

    2009-03-01

    Medical experts frequently use imaging studies to illustrate points in their court testimony. This article reviews how these studies impact the credibility of expert testimony with judges and juries. The apparent "objective" evidence provided by such imaging studies can lend strong credence to a judge's or jury's appraisal of medical expert's testimony. However, as the court usually has no specialized scientific expertise, the use of complex images as part of courtroom testimony also has the potential to mislead or at least inappropriately bias the weight given to expert evidence. Recent advances in brain imaging may profoundly impact forensic expert testimony. Functional magnetic resonance imaging and other physiologic imaging techniques currently allow visualization of the activation pattern of brain regions associated with a wide variety of cognitive and behavioral tasks, and more recently, pain. While functional imaging technology has a valuable role in brain research and clinical investigation, it is important to emphasize that the use of imaging studies in forensic matters requires a careful scientific foundation and a rigorous legal assessment.

  7. Rapid Evaluation of Platelet Function With T2 Magnetic Resonance

    Science.gov (United States)

    Cuker, Adam; Husseinzadeh, Holleh; Lebedeva, Tatiana; Marturano, Joseph E.; Massefski, Walter; Lowery, Thomas J.; Lambert, Michele P.; Abrams, Charles S.; Weisel, John W.

    2016-01-01

    Objectives: The clinical diagnosis of qualitative platelet disorders (QPDs) based on light transmission aggregometry (LTA) requires significant blood volume, time, and expertise, all of which can be barriers to utilization in some populations and settings. Our objective was to develop a more rapid assay of platelet function by measuring platelet-mediated clot contraction in small volumes (35 µL) of whole blood using T2 magnetic resonance (T2MR). Methods: We established normal ranges for platelet-mediated clot contraction using T2MR, used these ranges to study patients with known platelet dysfunction, and then evaluated agreement between T2MR and LTA with arachidonic acid, adenosine diphosphate, epinephrine, and thrombin receptor activator peptide. Results: Blood from 21 healthy donors was studied. T2MR showed 100% agreement with LTA with each of the four agonists and their cognate inhibitors tested. T2MR successfully detected abnormalities in each of seven patients with known QPDs, with the exception of one patient with a novel mutation leading to Hermansky-Pudlak syndrome. T2MR appeared to detect platelet function at similar or lower platelet counts than LTA. Conclusions: T2MR may provide a clinically useful approach to diagnose QPDs using small volumes of whole blood, while also providing new insight into platelet biology not evident using plasma-based platelet aggregation tests. PMID:28028118

  8. Assessment of cerebral perfusional and functional connectivity in schizophrenia using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Oliveira, Ícaro A. F.; Guimarães, Tiago M.; Souza, Roberto M.; Santos, Antônio C. dos; Leoni, Renata F.; Machado-Sousa, João Paulo; Hallak, Jaime E.C.

    2017-01-01

    Schizophrenia is a significant mental disorder that compromises structural and functional aspects of the brain, with an extreme effect on the patient’s thoughts, feelings, and behavior. Physiologically, changes in neuronal activity are reported besides functional and structural abnormalities. Since the cerebral blood flow (CBF) is directly related to neuronal activity, the magnetic resonance imaging (MRI) technique called arterial spin labeling (ASL), which allows the quantification of CBF, is a useful tool in brain perfusional evaluation. In addition, ASL can be used to assess functional connectivity, which is efficient in investigating functional impairment between regions of the brain. Pseudo-continuous arterial spin labeling (pCASL) images were acquired from 28 schizophrenia patients in treatment and 28 age-matched healthy controls. Static CBF and connectivity patterns were assessed in both groups. Decreased CBF and functional connectivity were observed in regions that form two resting brain networks, default mode (DMN) and salience (SN), for schizophrenia patients. Previous studies related the features of this pathology with altered resting CBF and functional disconnections. Therefore, using a noninvasive technique, it was possible to find CBF deficits and altered functional organization of the brain in schizophrenia patients that are associated with the symptoms and characteristics of the disorder. (author)

  9. Assessment of cerebral perfusional and functional connectivity in schizophrenia using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ícaro A. F.; Guimarães, Tiago M.; Souza, Roberto M.; Santos, Antônio C. dos; Leoni, Renata F.; Machado-Sousa, João Paulo; Hallak, Jaime E.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil)

    2017-07-01

    Schizophrenia is a significant mental disorder that compromises structural and functional aspects of the brain, with an extreme effect on the patient’s thoughts, feelings, and behavior. Physiologically, changes in neuronal activity are reported besides functional and structural abnormalities. Since the cerebral blood flow (CBF) is directly related to neuronal activity, the magnetic resonance imaging (MRI) technique called arterial spin labeling (ASL), which allows the quantification of CBF, is a useful tool in brain perfusional evaluation. In addition, ASL can be used to assess functional connectivity, which is efficient in investigating functional impairment between regions of the brain. Pseudo-continuous arterial spin labeling (pCASL) images were acquired from 28 schizophrenia patients in treatment and 28 age-matched healthy controls. Static CBF and connectivity patterns were assessed in both groups. Decreased CBF and functional connectivity were observed in regions that form two resting brain networks, default mode (DMN) and salience (SN), for schizophrenia patients. Previous studies related the features of this pathology with altered resting CBF and functional disconnections. Therefore, using a noninvasive technique, it was possible to find CBF deficits and altered functional organization of the brain in schizophrenia patients that are associated with the symptoms and characteristics of the disorder. (author)

  10. Chronic antiepileptic drug use and functional network efficiency: A functional magnetic resonance imaging study.

    Science.gov (United States)

    van Veenendaal, Tamar M; IJff, Dominique M; Aldenkamp, Albert P; Lazeron, Richard H C; Hofman, Paul A M; de Louw, Anton J A; Backes, Walter H; Jansen, Jacobus F A

    2017-06-28

    To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug (AED) treatment. The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of patients with epilepsy with a different risk profile for developing cognitive side effects were included: A "low risk" category (lamotrigine or levetiracetam, n = 16), an "intermediate risk" category (carbamazepine, oxcarbazepine, phenytoin, or valproate, n = 34) and a "high risk" category (topiramate, n = 5). Brain connectivity was assessed using resting state functional magnetic resonance imaging and graph theoretical network analysis. The Computerized Visual Searching Task was used to measure central information processing speed, a common cognitive side effect of AED treatment. Central information processing speed was lower in patients taking AEDs from the intermediate and high risk categories, compared with patients from the low risk category. The effect of risk category on global efficiency was significant ( P effect on the clustering coefficient (ANCOVA, P > 0.2). Also no significant associations between information processing speed and global efficiency or the clustering coefficient (linear regression analysis, P > 0.15) were observed. Only the four patients taking topiramate show aberrant network measures, suggesting that alterations in functional brain network organization may be only subtle and measureable in patients with more severe cognitive side effects.

  11. Resonancia magnética funcional Functional magnetic resonance

    Directory of Open Access Journals (Sweden)

    Erick Sell

    2007-01-01

    Full Text Available La resonancia magnética funcional (RMNf es un estudio no invasivo de mapeo funcional cerebral, cuya señal obtenida en secuencias T2* es dependiente del nivel de oxigenación sanguínea (BOLD. Este estudio se agrega actualmente a otros muchos empleados en el abordaje de pacientes candidatos a cirugía de epilepsia, para localizar lenguaje y función motriz previa a planear la cirugía. Tiene una concordancia con el test de WADA de cerca del 90%. El uso concomitante de registro encefalográfico y RMNf es técnicamente difícil, pero una vez filtrados los artefactos presenta un patrón de activación significativamente discordante con el foco de actividad interictal. Este hallazgo podría obedecer a redes complejas de actividad epiléptica, y promete ser un útil instrumento en la investigación de la fisiopatología del tejido epileptogénico.Functional magnetic resonance imaging (fmri is a non-invasive functional brain mapping technique ased on blood oxygenated level dependent signal (BOLD. It is obtained during T2* weighted imaging MRI studies. fmri aids in the localization of language and motor function for patients candidates for epilepsy surgery, and has up to a 90% concordance with WADA test. Even though synchronous recording of fmri and EEG is technically challenging, it shows a discordant pattern of activation when compared with EEG or electrocorticography. This finding could be due to complex epileptic networks, and overall this study technique has the potential to contribute to further research into epileptic network and epilepsy physiopathology.

  12. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  13. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

    Directory of Open Access Journals (Sweden)

    Chiao-Fang Hung

    2017-02-01

    Full Text Available In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss, the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g and z-axis vibration (sine-wave, 142 Hz, 3.8 g, the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  14. Non-invasive mapping of calculation function by repetitive navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Maurer, Stefanie; Tanigawa, Noriko; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-11-01

    Concerning calculation function, studies have already reported on localizing computational function in patients and volunteers by functional magnetic resonance imaging and transcranial magnetic stimulation. However, the development of accurate repetitive navigated TMS (rTMS) with a considerably higher spatial resolution opens a new field in cognitive neuroscience. This study was therefore designed to evaluate the feasibility of rTMS for locating cortical calculation function in healthy volunteers, and to establish this technique for future scientific applications as well as preoperative mapping in brain tumor patients. Twenty healthy subjects underwent rTMS calculation mapping using 5 Hz/10 pulses. Fifty-two previously determined cortical spots of the whole hemispheres were stimulated on both sides. The subjects were instructed to perform the calculation task composed of 80 simple arithmetic operations while rTMS pulses were applied. The highest error rate (80 %) for all errors of all subjects was observed in the right ventral precentral gyrus. Concerning division task, a 45 % error rate was achieved in the left middle frontal gyrus. The subtraction task showed its highest error rate (40 %) in the right angular gyrus (anG). In the addition task a 35 % error rate was observed in the left anterior superior temporal gyrus. Lastly, the multiplication task induced a maximum error rate of 30 % in the left anG. rTMS seems feasible as a way to locate cortical calculation function. Besides language function, the cortical localizations are well in accordance with the current literature for other modalities or lesion studies.

  15. Interpreting "Personality" Taxonomies: Why Previous Models Cannot Capture Individual-Specific Experiencing, Behaviour, Functioning and Development. Major Taxonomic Tasks Still Lay Ahead.

    Science.gov (United States)

    Uher, Jana

    2015-12-01

    As science seeks to make generalisations, a science of individual peculiarities encounters intricate challenges. This article explores these challenges by applying the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) and by exploring taxonomic "personality" research as an example. Analyses of researchers' interpretations of the taxonomic "personality" models, constructs and data that have been generated in the field reveal widespread erroneous assumptions about the abilities of previous methodologies to appropriately represent individual-specificity in the targeted phenomena. These assumptions, rooted in everyday thinking, fail to consider that individual-specificity and others' minds cannot be directly perceived, that abstract descriptions cannot serve as causal explanations, that between-individual structures cannot be isomorphic to within-individual structures, and that knowledge of compositional structures cannot explain the process structures of their functioning and development. These erroneous assumptions and serious methodological deficiencies in widely used standardised questionnaires have effectively prevented psychologists from establishing taxonomies that can comprehensively model individual-specificity in most of the kinds of phenomena explored as "personality", especially in experiencing and behaviour and in individuals' functioning and development. Contrary to previous assumptions, it is not universal models but rather different kinds of taxonomic models that are required for each of the different kinds of phenomena, variations and structures that are commonly conceived of as "personality". Consequently, to comprehensively explore individual-specificity, researchers have to apply a portfolio of complementary methodologies and develop different kinds of taxonomies, most of which have yet to be developed. Closing, the article derives some meta-desiderata for future research on individuals' "personality".

  16. Multi-function magnetic jack control drive mechanism

    International Nuclear Information System (INIS)

    Bollinger, L.R.; Crawford, D.C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism is described for controlling a nuclear reactor comprising: an elongate pressure housing; closely-spaced drive rods located in the pressure housing, the drive rod being connected to a reactor rod which is insertable in a reactor core; electrochemical stationary latch means which are selectively actuatable for holding a respective one of the drive rods stationary with respect to the pressure housing, the plurality of stationary latch means including at least one coil located about the pressure housing; longitudinally spaced electromechanical movable latch means, individually associated with one of the drive rods and each including a base for the drive rod associated therewith, for, when actuated, holding the associated drive rod stationary with respect to the base associated therewith, the movable latch means including an associated coil located about the pressure housing; and longitudinally spaced electromechanical lift means, individually associated with the base, for, when actuated, moving an associated base longitudinally along the pressure housing from a first position to a second position to thereby enable movement of one or more of the other drive rods longitudinally independently of the other drive rods in response to sequential and repeated operation of the electromechanical means, the lift means including an associated coil located about the pressure housing

  17. Task-related signal decrease on functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo; Kitamura, Junji

    2001-01-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  18. Functional magnetic resonance imaging of internet addiction in young adults.

    Science.gov (United States)

    Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo

    2016-02-28

    To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical

  19. Functional magnetic resonance imaging of internet addiction in young adults

    Institute of Scientific and Technical Information of China (English)

    Gianna Sepede; Margherita Tavino; Rita Santacroce; Federica Fiori; Rosa Maria Salerno; Massimo Di Giannantonio

    2016-01-01

    AIM: To report the results of functional magnetic resonance imaging(f MRI) studies pertaining internet addiction disorder(IAD) in young adults.METHODS: We conducted a systematic review on Pub Med, focusing our attention on f MRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: f MRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20th, 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients’ age ≥ 18 years, patients affected by IAD, studies providing f MRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than f MRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis.RESULTS: We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males(95.4%) and very young(21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found

  20. Magnetic property variation in carbon steel and chrome-molybdenum steel as a function of uniaxial stress noncoaxial with the magnetic field (abstract)

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kaminski, D.A.; Jiles, D.C.; Biner, S.B.

    1993-01-01

    Magnescope 1 magnetic measurements were made on carbon steel specimens ranging from 0.1--0.8 wt %C and on chrome-molybdenum steel specimens cut from electric power plant pipes previously in service. The carbon steel specimens were heat-treated using three procedures: (1) spheroidization, (2) quenching, and (3) quench and tempering. The specimens were subjected to uniaxial tension up to 40 ksi. The inspection head was aligned so that the magnetic field was oriented at different angles with respect to the stress axis. Magnetic properties (such as coercivity and maximum differential permeability) were extracted from digitized magnetic hysteresis loop measurements. Magnetic properties were studied as a function of stress at each angle of stress-field orientation. To our knowledge, such a comprehensive study of noncoaxial stress and field effects has never been accomplished before for such a wide variety of steel specimens. Results for the various materials are presented for different orientation angles and compared to numerical results from the noncoaxial magnetomechanical hysteresis model of Sablik et al. 2

  1. Green's functions for a graphene sheet and quantum dot in a normal magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Liu, S Y

    2009-01-01

    This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field

  2. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Mrówczyński, Radosław; Rednic, Lidia; Turcu, Rodica; Liebscher, Jürgen

    2012-01-01

    Novel magnetic Fe 3 O 4 nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  3. Treatment response in psychotic patients classified according to social and clinical needs, drug side effects, and previous treatment; a method to identify functional remission.

    Science.gov (United States)

    Alenius, Malin; Hammarlund-Udenaes, Margareta; Hartvig, Per; Sundquist, Staffan; Lindström, Leif

    2009-01-01

    Various approaches have been made over the years to classify psychotic patients according to inadequate treatment response, using terms such as treatment resistant or treatment refractory. Existing classifications have been criticized for overestimating positive symptoms; underestimating residual symptoms, negative symptoms, and side effects; or being to open for individual interpretation. The aim of this study was to present and evaluate a new method of classification according to treatment response and, thus, to identify patients in functional remission. A naturalistic, cross-sectional study was performed using patient interviews and information from patient files. The new classification method CANSEPT, which combines the Camberwell Assessment of Need rating scale, the Udvalg for Kliniske Undersøgelser side effect rating scale (SE), and the patient's previous treatment history (PT), was used to group the patients according to treatment response. CANSEPT was evaluated by comparison of expected and observed results. In the patient population (n = 123), the patients in functional remission, as defined by CANSEPT, had higher quality of life, fewer hospitalizations, fewer psychotic symptoms, and higher rate of workers than those with the worst treatment outcome. In the evaluation, CANSEPT showed validity in discriminating the patients of interest and was well tolerated by the patients. CANSEPT could secure inclusion of correct patients in the clinic or in research.

  4. Theory of multichannel magnetic stimulation: toward functional neuromuscular rehabilitation.

    Science.gov (United States)

    Ruohonen, J; Ravazzani, P; Grandori, F; Ilmoniemi, R J

    1999-06-01

    Human excitable cells can be stimulated noninvasively with externally applied time-varying electromagnetic fields. The stimulation can be achieved either by directly driving current into the tissue (electrical stimulation) or by means of electro-magnetic induction (magnetic stimulation). While the electrical stimulation of the peripheral neuromuscular system has many beneficial applications, peripheral magnetic stimulation has so far only a few. This paper analyzes theoretically the use of multiple magnetic stimulation coils to better control the excitation and also to eventually mimic electrical stimulation. Multiple coils allow electronic spatial adjustment of the shape and location of the stimulus without moving the coils. The new properties may enable unforeseen uses for peripheral magnetic stimulation, e.g., in rehabilitation of patients with neuromuscular impairment.

  5. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    Directory of Open Access Journals (Sweden)

    Ahmed S. Helal

    2016-05-01

    Full Text Available Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD, was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC. SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES. The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS, X-Ray Fluorescence spectrometry (XRF and Superconducting QUantum Interference Device (SQUID magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  6. Functional valve assessment: the emerging role of cardiovascular magnetic resonance.

    Science.gov (United States)

    Shah, Dipan J

    2010-01-01

    The prevalence of valvular heart disease is increasing along with the life span of the population. In assessing individuals with valve disease, echocardiography is the primary imaging modality used by clinicians both for initial assessment and for longitudinal evaluation. Information regarding valve morphology and function, cardiac chamber size, wall thickness, ventricular function, and estimates of pulmonary artery pressures can be readily obtained and integrated to formulate an assessment of valve disease severity. In some instances, body habitus or the presence of coexisting lung disease may result in suboptimal acoustic windows on echocardiography, which may lead to technically difficult studies. Additionally, in some patients, information from clinical history and physical examination or other diagnostic tests may be discordant with echocardiographic findings. In these instances, there is a significant clinical role for cardiovascular magnetic resonance (CMR). The diagnostic capabilities of CMR have increased substantially over the past 20 years due to hardware and software advances. Today, CMR has a number of unique advantages over other imaging modalities - primarily, it provides a view of the entire heart without limitations from inadequate imaging windows or body habitus. Furthermore, CMR can obtain imaging data in any imaging plane prescribed by the scan operator, which makes it ideal for accurate investigation of all cardiac valves - aortic, mitral, pulmonic, and tricuspid. In addition, CMR for valve assessment is noninvasive, free of ionizing radiation, and in most instances does not require contrast administration. Since a comprehensive review of the role of CMR in all valve lesions is beyond the scope of this article, we will focus on the most common valvular indication for performance of clinical CMR techniques and an overview of selected validation and reproducibility studies. The objectives of a comprehensive CMR study for evaluating mitral

  7. Functional magnetic resonance maps obtained by personal computer

    International Nuclear Information System (INIS)

    Gomez, F. j.; Manjon, J. V.; Robles, M.; Marti-Bonmati, L.; Dosda, R.; Molla, E.

    2001-01-01

    Functional magnetic resonance (fMR) is of special relevance in the analysis of certain types of brain activation. The present report describes the development of a simple software program for use with personal computers (PCs) that analyzes these images and provides functional activation maps. Activation maps are based on the temporal differences in oxyhemoglobin in tomographic images. To detect these differences, intensities registered repeatedly during brain control and activation are compared. The experiments were performed with a 1.5-Tesla MR unit. To verify the reliability of the program fMR studies were carried out in 4 healthy individuals (12 contiguous slices, 80 images per slice every 3.1 seconds for a total of 960 images). All the images were transferred to a PC and were processed pixel by pixel within each sequence to obtain an intensity/time curve. The statistical study of the results (Student's test and cross correlation analysis) made it possible to establish the activation of each pixel. The images were prepared using spatial filtering, temporal filtering, baseline correction, normalization and segmentation of the parenchyma. The postprocessing of the results involved the elimination of single pixels, superposition of an anatomical image of greater spatial resolution and anti-aliasing. The application (Xfun 1.0, Valencia, Spain) was developed in Microsoft Visual C++5.0 Developer Studio for Windows NT Workstation. As a representative example, the program took 8.2 seconds to calculate and present the results of the entire study (12 functional maps). In the motor and visual activation experiments, the activation corresponding to regions proximal to the central sulcus of the hemisphere contralateral to the hand that moved and in the occipital cortex were observed. While programs that calculate activation maps are available, the development of software for PCs running Microsoft Windows ensures several key features for its use on a daily basis: it is easy

  8. Neuropsychological assessment of language functions during functional magnetic resonance imaging: development of new tasks. Preliminary report.

    Science.gov (United States)

    Fersten, Ewa; Jakuciński, Maciej; Kuliński, Radosław; Koziara, Henryk; Mroziak, Barbara; Nauman, Paweł

    2011-01-01

    Due to the complex and extended cerebral organization of language functions, the brain regions crucial for speech and language, i.e. eloquent areas, have to be affected by neurooncological surgery. One of the techniques that may be helpful in pre-operative planning of the extent of tumour removal and estimating possible complications seems to be functional magnetic resonance imaging (fMRI). The aim of the study was to develop valid procedures for neuropsychological assessment of various language functions visualisable by fMRI in healthy individuals. In this fMRI study, 10 healthy (with no CNS pathology), right-handed volunteers aged 25-35 were examined using four tasks designed to measure different language functions, and one for short-term memory assessment. A 1.5-T MRI scanner performing ultrafast functional (EPI) sequences with 4-mm slice thickness and 1-mm interslice gap was used to detect the BOLD response to stimuli present-ed in a block design (30-second alternating blocks of activity and rest). The analyses used the SPM software running in a MATLAB environment, and the obtained data were interpreted by means of colour-coded maps superimposed on structural brain scans. For each of the tasks developed for particular language functions, a different area of increased neuronal activity was found. The differential localization of function-related neuronal activity seems interesting and the research worth continuing, since verbal communication failure may result from impairment of any of various language functions, and studies reported in the literature seem to focus on verbal expression only.

  9. Wave functions for a relativistic electron in superstrong magnetic fields

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.

    2003-01-01

    In the past decade few authors attempted to search interesting features of the radiation of a specific neutron star, the magnetar. In this paper we investigate some features of the motion of an electron in a strong magnetic field as it occurs in a magnetar atmosphere. We have applied the conditions of the super relativistic electrons in super-strong magnetic fields proposed by Gonthier et al. to express two specific spin operators and their eigenfunctions. We have done this in order to investigate into a further paper an estimation of the cross section in Compton process in strong and superstrong magnetic fields in relativistic regime. (author)

  10. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows.

    Science.gov (United States)

    Ortega, M Sofia; Denicol, Anna C; Cole, John B; Null, Daniel J; Taylor, Jeremy F; Schnabel, Robert D; Hansen, Peter J

    2017-05-01

    Many genetic markers related to health or production traits are not evaluated in populations independent of the discovery population or related to phenotype. Here we evaluated 68 single nucleotide polymorphisms (SNP) in candidate genes previously associated with genetic merit for fertility and production traits for association with phenotypic measurements of fertility in a population of Holstein cows that was selected based on predicted transmitting ability (PTA) for daughter pregnancy rate (DPR; high, ≥1, n = 989; low, ≤ -1.0, n = 1,285). Cows with a high PTA for DPR had higher pregnancy rate at first service, fewer services per conception, and fewer days open than cows with a low PTA for DPR. Of the 68 SNP, 11 were associated with pregnancy rate at first service, 16 with services per conception, and 19 with days open. Single nucleotide polymorphisms in 12 genes (BDH2, BSP3, CAST, CD2, CD14, FUT1, FYB, GCNT3, HSD17B7, IBSP, OCLN, and PCCB) had significant associations with 2 fertility traits, and SNP in 4 genes (CSPP1, FCER1G, PMM2, and TBC1D24) had significant associations with each of the 3 traits. Results from this experiment were compared with results from 2 earlier studies in which the SNP were associated with genetic estimates of fertility. One study involved the same animals as used here, and the other study was of an independent population of bulls. A total of 13 SNP associated with 1 or more phenotypic estimates of fertility were directionally associated with genetic estimates of fertility in the same cow population. Moreover, 14 SNP associated with reproductive phenotype were directionally associated with genetic estimates of fertility in the bull population. Nine SNP (located in BCAS, BSP3, CAST, FUT1, HSD17B7, OCLN, PCCB, PMM2, and TBC1D24) had a directional association with fertility in all 3 studies. Examination of the function of the genes with SNP associated with reproduction in more than one study indicates the importance of steroid hormones

  11. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement

    Science.gov (United States)

    Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...

  12. Homozygous loss of function BRCA1 variant causing a Fanconi-anemia-like phenotype, a clinical report and review of previous patients.

    Science.gov (United States)

    Freire, Bruna L; Homma, Thais K; Funari, Mariana F A; Lerario, Antônio M; Leal, Aline M; Velloso, Elvira D R P; Malaquias, Alexsandra C; Jorge, Alexander A L

    2018-03-01

    Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Dual-function magnetic structure for toroidal plasma devices

    International Nuclear Information System (INIS)

    Brown, R.L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring

  14. Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer.

    Science.gov (United States)

    Kami, Daisuke; Kitani, Tomoya; Kishida, Tsunao; Mazda, Osam; Toyoda, Masashi; Tomitaka, Asahi; Ota, Satoshi; Ishii, Ryuga; Takemura, Yasushi; Watanabe, Masatoshi; Umezawa, Akihiro; Gojo, Satoshi

    2014-08-01

    Gene transfer technique has various applications, ranging from cellular biology to medical treatments for diseases. Although nonviral vectors, such as episomal vectors, have been developed, it is necessary to improve their gene transfer efficacy. Therefore, we attempted to develop a highly efficient gene delivery system combining an episomal vector with magnetic nanoparticles (MNPs). In comparison with the conventional method using transfection reagents, polyethylenimine-coated MNPs introduced episomal vectors more efficiently under a magnetic field and could express the gene in mammalian cells with higher efficiency and for longer periods. This novel in vitro separation method of gene-introduced cells utilizing the magnetic property of MNPs significantly facilitated the separation of cells of interest. Transplanted cells in vivo were detected using magnetic resonance. These results suggest that MNPs play multifunctional roles in ex vivo gene transfer, such as improvement of gene transfer efficacy, separation of cells, and detection of transplanted cells. This study convincingly demonstrates enhanced efficiency of gene transfer via magnetic nanoparticles. The method also enables magnetic sorting of cells positive for the transferred gene, and in vivo monitoring of the process with MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Bacterial Nanocellulose Magnetically Functionalized for Neuro-Endovascular Treatment.

    Science.gov (United States)

    Echeverry-Rendon, Mónica; Reece, Lisa M; Pastrana, Fernando; Arias, Sandra L; Shetty, Akshath R; Pavón, Juan Jose; Allain, Jean Paul

    2017-06-01

    Current treatments for brain aneurysms are invasive, traumatic, and not suitable in most patients with increased risks. A new alternative method is using scaffold stents to create a local and focal attraction force of cells for an in situ reconstruction of the tunica media. For this purpose, a nanostructured bioactive coating is designed to render an asymmetric region of the stent scaffold magnetic and biomimetic, which utilizes bacterial nanocellulose (BNC) as a platform for both magnetic and cell attraction as well as proliferation. The magnetization of the BNC is realized through the reaction of Fe III and II, precipitating superparamagnetic iron oxide nanoparticles (SPION). Subsequently, magnetic bacterial nanocellulose (MBNC) is coated with polyethylene glycol to improve its biocompatibility. Cytotoxicity and biocompatibility are evaluated using porcine aortic smooth muscle cells. Preliminary cellular migration assays demonstrate the behavior between MBNC and cells labeled with SPION. In this work, (1) synthesis of BNC impregnated with magnetic nanoparticles is successfully demonstrated; (2) a viable, resilient, and biocompatible hydrogel membrane is tested for neuroendovascular application using a stent scaffold; (3) cell viability and minimal cytotoxicity is achieved; (4) cell migration tests and examination of cellular magnetic attraction confirm the viability of MBNC as a multifunctional coating. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Engineering magnetism at functional oxides interfaces: manganites and beyond.

    Science.gov (United States)

    Yi, Di; Lu, Nianpeng; Chen, Xuegang; Shen, Shengchun; Yu, Pu

    2017-11-08

    The family of transition metal oxides (TMOs) is a large class of magnetic materials that has been intensively studied due to the rich physics involved as well as the promising potential applications in next generation electronic devices. In TMOs, the spin, charge, orbital and lattice are strongly coupled, and significant advances have been achieved to engineer the magnetism by different routes that manipulate these degrees of freedom. The family of manganites is a model system of strongly correlated magnetic TMOs. In this review, using manganites thin films and the heterostructures in conjunction with other TMOs as model systems, we review the recent progress of engineering magnetism in TMOs. We first discuss the role of the lattice that includes the epitaxial strain and the interface structural coupling. Then we look into the role of charge, focusing on the interface charge modulation. Having demonstrated the static effects, we continue to review the research on dynamical control of magnetism by electric field. Next, we review recent advances in heterostructures comprised of high T c cuprate superconductors and manganites. Following that, we discuss the emergent magnetic phenomena at interfaces between 3d TMOs and 5d TMOs with strong spin-orbit coupling. Finally, we provide our outlook for prospective future directions.

  17. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  18. Current-current correlation function in presence of chemical potential and external magnetic field

    International Nuclear Information System (INIS)

    Apresyan, E.A.

    2017-01-01

    The (2+1)-dimensional electron system was observed, where relation between the Green functions and conductivity was used. The current-current correlation function Π_μ_ν(B) for the fermion system was calculated in presence of non-quantizing magnetic field B, chemical potential η and gap m. From this function it is possible to obtain the equation for polarization operator calculated without the magnetic field. The result is also applicable for graphene

  19. Interpolation of magnetic surface functions for an axi-symmetric plasma

    International Nuclear Information System (INIS)

    Yamaguchi, Taiki; Maeyama, Mitsuaki

    2000-01-01

    Informations of the magnetic surface functions of magnetically confined plasma are indispensable for equilibrium, stability and transport analyses. In this paper, in order to identify a realistic surface functions and compare those with ones which are introduced from Taylor's relaxation theory, we propose a code to interpolate these surface functions for an axi-symmetric plasma from experimentally measured data. To confirm our code, we used the date which were analyzed from known functions given as a measured data. As a result, we have developed a code which can derive surface functions I and P. Effects of measurement error on those functions are also examined. (author)

  20. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    International Nuclear Information System (INIS)

    Qiu, R.K.; Guo, F.F.; Zhang, Z.D.

    2016-01-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  1. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.K., E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Guo, F.F. [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Z.D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-02-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  2. How does MRI work? An introduction into physics and functionality of magnetic resonance imaging. 6. ed.

    International Nuclear Information System (INIS)

    Weishaupt, Dominik; Marincek, Borut

    2009-01-01

    The book provides the basic physics and describes the functionality of magnetic resonance tomography in a very illustrative way. The following topics are covered: Spins and the magnetic resonance phenomenon, image contrast, three-dimensional structure, signal-to-noise ratio, description of a magnetic resonance tomography, basic pulse sequences, fast pulse sequences, methods for fat suppression, parallel imaging, cardiovascular imaging, MR contrast media, MR image artifacts, high-field MRI, imaging beyond morphology and structure, safety and risks [de

  3. Quantal density-functional theory in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Yang Tao; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We generalize the quantal density-functional theory (QDFT) of electrons in the presence of an external electrostatic field E(r)=-∇v(r) to include an external magnetostatic field B(r)=∇xA(r), where (v(r),A(r)) are the respective scalar and vector potentials. The generalized QDFT, valid for nondegenerate ground and excited states, is the mapping from the interacting system of electrons to a model of noninteracting fermions with the same density ρ(r) and physical current density j(r), and from which the total energy can be obtained. The properties (ρ(r),j(r)) constitute the basic quantum-mechanical variables because, as proved previously, for a nondegenerate ground state they uniquely determine the potentials (v(r),A(r)). The mapping to the noninteracting system is arbitrary in that the model fermions may be either in their ground or excited state. The theory is explicated by application to a ground state of the exactly solvable (two-dimensional) Hooke's atom in a magnetic field, with the mapping being to a model system also in its ground state. The majority of properties of the model are obtained in closed analytical or semianalytical form. A comparison with the corresponding mapping from a ground state of the (three-dimensional) Hooke's atom in the absence of a magnetic field is also made.

  4. Magnetic resonance lung function – a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial

    Directory of Open Access Journals (Sweden)

    Rauh Manfred

    2006-08-01

    Full Text Available Abstract Background Chronic lung diseases are a major issue in public health. A serial pulmonary assessment using imaging techniques free of ionizing radiation and which provides early information on local function impairment would therefore be a considerably important development. Magnetic resonance imaging (MRI is a powerful tool for the static and dynamic imaging of many organs. Its application in lung imaging however, has been limited due to the low water content of the lung and the artefacts evident at air-tissue interfaces. Many attempts have been made to visualize local ventilation using the inhalation of hyperpolarized gases or gadolinium aerosol responding to MRI. None of these methods are applicable for broad clinical use as they require specific equipment. Methods We have shown previously that low-field MRI can be used for static imaging of the lung. Here we show that mathematical processing of data derived from serial MRI scans during the respiratory cycle produces good quality images of local ventilation without any contrast agent. A phantom study and investigations in 85 patients were performed. Results The phantom study proved our theoretical considerations. In 99 patient investigations good correlation (r = 0.8; p ≤ 0.001 was seen for pulmonary function tests and MR ventilation measurements. Small ventilation defects were visualized. Conclusion With this method, ventilation defects can be diagnosed long before any imaging or pulmonary function test will indicate disease. This surprisingly simple approach could easily be incorporated in clinical routine and may be a breakthrough for lung imaging and functional assessment.

  5. Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells

    Science.gov (United States)

    Zhang, Qing-Hua; Ye, Min; Wu, Xin-Yan; Ren, Shuang-Xi; Zhao, Meng; Zhao, Chun-Jun; Fu, Gang; Shen, Yu; Fan, Hui-Yong; Lu, Gang; Zhong, Ming; Xu, Xiang-Ru; Han, Ze-Guang; Zhang, Ji-Wang; Tao, Jiong; Huang, Qiu-Hua; Zhou, Jun; Hu, Geng-Xi; Gu, Jian; Chen, Sai-Juan; Chen, Zhu

    2000-01-01

    Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58–752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon–intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3′ UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation. [The sequence data described in this paper have been submitted to the GenBank data library under the accession nos. listed in Table 1, pp 1548–1552.] PMID:11042152

  6. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Directory of Open Access Journals (Sweden)

    Peng Shang

    2012-12-01

    Full Text Available The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g, 1 g, 1.56 g and 1.96 g in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  7. Evaporation rate of water as a function of a magnetic field and field gradient.

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  8. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  9. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Y., E-mail: nano@tsutmb.ru [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation); Golovin, D. [G.R. Derzhavin Tambov State University (Russian Federation); Klyachko, N.; Majouga, A.; Kabanov, A. [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation)

    2017-02-15

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  10. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    International Nuclear Information System (INIS)

    Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.

    2017-01-01

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  11. Use of Green functions in line shape problems in nuclear Magnetic resonance

    International Nuclear Information System (INIS)

    Martin, M.; Moreno, J.A.

    1982-01-01

    A method based on the two times Green function formalism is presented. It permits the straightforward determination of the line shape in Magnetic Resonance experiments together with its temperature behavior. Model calculations are made on a two-spin system attached to a one-dimensional rotor obtaining the temperature dependence of its Magnetic Resonance line shape and second moment

  12. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  13. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Directory of Open Access Journals (Sweden)

    Pradhan S.

    2017-01-01

    Full Text Available A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions

  14. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  15. Cannabis abuse is associated with better emotional memory in schizophrenia: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Bourque, Josiane; Mendrek, Adrianna; Durand, Myriam; Lakis, Nadia; Lipp, Olivier; Stip, Emmanuel; Lalonde, Pierre; Grignon, Sylvain; Potvin, Stéphane

    2013-10-30

    In schizophrenia cannabis abuse/dependence is associated with poor compliance and psychotic relapse. Despite this, the reasons for cannabis abuse remain elusive, but emotions may play a critical role in this comorbidity. Accordingly, we performed a functional magnetic resonance imaging study of emotional memory in schizophrenia patients with cannabis abuse (dual-diagnosis, DD). Participants comprised 14 DD patients, 14 non-abusing schizophrenia patients (SCZ), and 21 healthy controls (HC) who had to recognize positive and negative pictures while being scanned. Recognition of positive and negative emotions was prominently impaired in SCZ patients, relative to HC, while differences between DD and HC were smaller. For positive and negative stimuli, we observed significant activations in frontal, limbic, temporal and occipital regions in HC; in frontal, limbic and temporal regions in DD; and in temporal, parietal, limbic and occipital regions in the SCZ group. Our results suggest that emotional memory and prefrontal lobe functioning are preserved in DD relative to SCZ patients. These results are consistent with previous findings showing that cannabis abuse is associated with fewer negative symptoms and better cognitive functioning in schizophrenia. Longitudinal studies will need to determine whether the relative preservation of emotional memory is primary or secondary to cannabis abuse in schizophrenia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. A Computerized Tablet with Visual Feedback of Hand Position for Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Mahta eKarimpoor

    2015-03-01

    Full Text Available Neuropsychological tests - behavioral tasks that very commonly involve handwriting and drawing - are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP, a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important.

  17. A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging

    Science.gov (United States)

    Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201

  18. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    International Nuclear Information System (INIS)

    Soeda, Akio; Iwama, Toru; Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun; Kuwata, Kazuo

    2005-01-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  19. Density functional theory study of structure, electronic and magnetic ...

    Indian Academy of Sciences (India)

    ABHIJIT DUTTA

    2018-01-30

    Jan 30, 2018 ... magnetic properties of non-metal (Group 13) doped stable. Rhn(n = 2−8) ... Deformed electron density was found to be higher in the case of Rh5B, Rh4Al, Rh7Al and ...... systems: Modeling of surface alloys and alloy surfaces.

  20. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity.

    Science.gov (United States)

    Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko

    2012-01-01

    Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.

  1. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as ...

    Indian Academy of Sciences (India)

    as recyclable catalyst for synthesis of imidazoles under microwave irradiation ... functionalized magnetic Fe3O4 nanoparticles (SA–MNPs) as a novel solid acid catalyst under solvent-free classical heating ..... green chemistry approach.

  2. Stress and brain functional changes in patients with Crohn's disease: A functional magnetic resonance imaging study.

    Science.gov (United States)

    Agostini, A; Ballotta, D; Righi, S; Moretti, M; Bertani, A; Scarcelli, A; Sartini, A; Ercolani, M; Nichelli, P; Campieri, M; Benuzzi, F

    2017-10-01

    In Crohn's disease (CD) patients, stress is believed to influence symptoms generation. Stress may act via central nervous system pathways to affect visceral sensitivity and motility thus exacerbating gastrointestinal symptoms. The neural substrate underpinning these mechanisms needs to be investigated in CD. We conducted an explorative functional magnetic resonance imaging (fMRI) study in order to investigate potential differences in the brain stress response in CD patients compared to controls. 17 CD patients and 17 healthy controls underwent a fMRI scan while performing a stressful task consisting in a Stroop color-word interference task designed to induce mental stress in the fMRI environment. Compared to controls, in CD patients the stress task elicited greater blood oxygen level dependent (BOLD) signals in the midcingulate cortex (MCC). The MCC integrate "high" emotional processes with afferent sensory information ascending from the gut. In light of these integrative functions, the stress-evoked MCC hyperactivity in CD patients might represent a plausible neural substrate for the association between stress and symptomatic disease. The MCC dysfunction might be involved in mechanisms of central disinhibition of nociceptive inputs leading to amplify the visceral sensitivity. Finally, the stress-evoked MCC hyperactivity might affect the regulation of intestinal motility resulting in exacerbation of disease symptoms and the autonomic and neuroendocrine regulation of inflammation resulting in enhanced inflammatory activity. © 2017 John Wiley & Sons Ltd.

  3. A Functional Magnetic Resonance Imaging Study of Foreign-Language Vocabulary Learning Enhanced by Phonological Rehearsal: The Role of the Right Cerebellum and Left Fusiform Gyrus

    Science.gov (United States)

    Makita, Kai; Yamazaki, Mika; Tanabe, Hiroki C.; Koike, Takahiko; Kochiyama, Takanori; Yokokawa, Hirokazu; Yoshida, Haruyo; Sadato, Norihiro

    2013-01-01

    Psychological research suggests that foreign-language vocabulary acquisition recruits the phonological loop for verbal working memory. To depict the neural underpinnings and shed light on the process of foreign language learning, we conducted functional magnetic resonance imaging of Japanese participants without previous exposure to the Uzbek…

  4. Irregular wave functions of a hydrogen atom in a uniform magnetic field

    Science.gov (United States)

    Wintgen, D.; Hoenig, A.

    1989-01-01

    The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.

  5. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  6. High pressure cells for magnetic measurements - destruction and functional tests

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Machátová, Zuzana; Arnold, Zdeněk

    2004-01-01

    Roč. 75, č. 11 (2004), s. 5022-5025 ISSN 0034-6748 R&D Projects: GA ČR GA202/02/0739; GA AV ČR IAA1010315 Institutional research plan: CEZ:AV0Z1010914 Keywords : pressure cells * pressure transmitting media * CuBe * MP35N Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.226, year: 2004

  7. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    International Nuclear Information System (INIS)

    Reznickova, A.; Orendac, M.; Kolska, Z.; Cizmar, E.; Dendisova, M.; Svorcik, V.

    2016-01-01

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  8. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Orendac, M., E-mail: martin.orendac@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Kolska, Z., E-mail: zdenka.kolska@seznam.cz [Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Cizmar, E., E-mail: erik.cizmar@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Dendisova, M., E-mail: vyskovsm@vscht.cz [Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, V., E-mail: vaclav.svorcik@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-12-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  9. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance

    International Nuclear Information System (INIS)

    Fiechter, Michael; Gaemperli, Oliver; Kaufmann, Philipp A; Fuchs, Tobias A; Gebhard, Catherine; Stehli, Julia; Klaeser, Bernd; Stähli, Barbara E; Manka, Robert; Manes, Costantina; Tanner, Felix C

    2013-01-01

    The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20–29, 30–49, 50–69, and ≥70 years) and cardiac measurements were compared using Pearson’s rank correlation over the four different groups. With advanced age a slight but significant decrease in ESV (r=−0.41 for both ventricles, P<0.001) and EDV (r=−0.39 for left ventricle, r=−0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies

  10. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mrowczynski, Radoslaw [Humboldt-University Berlin, Department of Chemistry (Germany); Rednic, Lidia; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Liebscher, Juergen, E-mail: liebscher@chemie.hu-berlin.de [Humboldt-University Berlin, Department of Chemistry (Germany)

    2012-07-15

    Novel magnetic Fe{sub 3}O{sub 4} nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  11. Magnetism of Ba4Ru3O10 revealed by density functional calculations: Structural trimers behaving as coupled magnetic dimers

    Science.gov (United States)

    Saul, Andres; Radtke, Guillaume; Klein, Yannick; Rousse, Gwenaelle

    2013-03-01

    From a simple ionic picture, the only magnetically active ions in this compound are the three Ru4+ atoms which form trimers of faced shared RuO6 octahedral. The Ru atom in the middle of the trimer (named Ru(1)) is cristallographically inequivalent to the ones at the corners (named Ru(2)). A naïve analysis of the magnetic properties of this compound compatible with the expected low spin magnetic configuration of the Ru ions would predict a complicate magnetic order at low temperature involving the Ru(1) and Ru(2) ions and a high temperature susceptibility corresponding to three S=1 ions per unit cell. In spite of that, we demonstrate in this work, from density functional calculations, that under the influence of Ru-Ru covalent bonding, the structural trimers behave in an extended range of temperature from 0 to 600K, as strong (S = 1) antiferromagnetic dimers. Our calculations of the effective exchange interactions show a strong intra-dimer interaction and a weaker inter-dimer one which explains the antiferromagnetic order observed below TN = 105 K and the magnetic susceptibility in the intermediate and high temperature range (from TN=105K up to 612 K).

  12. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    Science.gov (United States)

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  13. Effect of repetitive transcranial magnetic stimulation on rectal function and emotion in humans

    International Nuclear Information System (INIS)

    Aizawa, Yuuichi; Morishita, Joe; Kano, Michiko; Mori, Takayuki; Izumi, Shin-ichi; Kanazawa, Motoyori; Fukudo, Shin; Tsutsui, Kenichiro; Iijima, Toshio

    2011-01-01

    A previous brain imaging study demonstrated activation of the right dorsolateral prefrontal cortex (DLPFC) during visceral nociception, and this activation was associated with anxiety. We hypothesized that functional modulation of the right DLPFC by repetitive transcranial magnetic stimulation (rTMS) can reveal the actual role of right DLPFC in brain-gut interactions in humans. Subjects were 11 healthy males aged 23.5±1.4 (mean±spin echo (SE)) years. Viscerosensory evoked potential (VEP) with sham (0 mA) or actual (30 mA) electrical stimulation (ES) of the rectum was taken after sham, low frequency rTMS at 0.1 Hz, and high frequency rTMS at 10 Hz to the right DLPFC. Rectal tone was measured with a rectal barostat. Visceral perception and emotion were analyzed using an ordinate scale, rectal barostat, and VEP. Low frequency rTMS significantly reduced anxiety evoked by ES at 30 mA (p<0.05). High frequency rTMS-30 mA ES significantly produced more phasic volume events than sham rTMS-30 mA ES (p<0.05). We successfully modulated the gastrointestinal function of healthy individuals through rTMS to the right DLPFC. Thus, rTMS to the DLPFC appears to modulate the affective, but not direct, component of visceral perception and motility of the rectum. (author)

  14. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  15. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  16. Function's evaluation, perfusion and metabolism by positron emission tomography associated with multislice tomography (PET/CT) in patient with previous diagnosis to myocardial necrosis

    International Nuclear Information System (INIS)

    Campisi, Roxana; Aramayo, Natalia; Osorio, Amilcar

    2010-01-01

    A 64-years-old male patient with previous diagnosis of myocardial necrosis as assessed by myocardial perfusion gated single photon emission computed tomography (gSPECT) with 3-vessel-disease, left ventricular dysfunction and symptomatic by epigastric pain. The patient was referred for myocardial viability assessment by positron emission tomography (PET) to define clinical management decision. (authors) [es

  17. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM and structural (voxel-based morphometry, VBM neuroimaging data. Functional magnetic resonance imaging (fMRI data were obtained from 22 individuals (12 females while listening to music (joy, fear, or neutral music. ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens. Individuals with higher E κ values (indexing higher tender emotionality showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ correlates with both function (increased network centrality and structure (grey matter volume of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for

  18. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian

    2013-01-01

    Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher E κ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for

  19. Functionalization and magnetization of carbon nanotubes using Co-60 gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Fu, M.J.; Tsai, C.Y. [Division of Isotope Application, Institute of Nuclear Energy Research, Atomic Energy Council, P.O. BOX 3-27 Longtan, Taoyuan County 32546, Taiwan (R.O.C.) (China); Lin, F.H. [Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (R.O.C.) (China); Chen, K.Y., E-mail: chenky@iner.gov.tw [Division of Isotope Application, Institute of Nuclear Energy Research, Atomic Energy Council, P.O. BOX 3-27 Longtan, Taoyuan County 32546, Taiwan (R.O.C.) (China)

    2014-10-01

    Functionalized magnetic carbon nanotubes (CNTs) can be used in the biological and biomedical fields as biosensors, drug delivery systems, etc., which makes research into processes for manufacturing modified CNTs quite important. In this paper, Co-60 gamma irradiation is shown to be an effective tool for fabricating functionalized and magnetized CNTs. After the Co-60 gamma irradiation, the presence of carboxylic functional groups on the CNT walls was confirmed by their Fourier transform infrared spectra, and the presence of Fe{sub 3}O{sub 4} was verified by the X-ray diffraction patterns. The functionalized and magnetized CNTs produced using Co-60 gamma irradiation have excellent dispersion properties. The techniques for functionalizing and magnetizing CNTs are introduced in this paper, and applications of the modified CNTs will be reported after more data are gathered. - Highlights: Dispersion ability of carbon nanotubes (CNTs) was improved by functionalization. CNTs were easily manipulated by precipitation of magnetic nanoparticles. Our product can be used as versatile biosensor substrate for biomarker screening.

  20. Amine-functionalized magnetic nanoparticles as robust support for ...

    Indian Academy of Sciences (India)

    their surface properties via introduction of functional groups holds great prospect in the field of ... Biomaterials; enzyme activity; enzyme biocatalysis; nanoparticles; surface properties. 1. .... lyzer (Pyris Diamond TG-DTA) with a heating rate. 8.

  1. Magnetic resonance in the assessment of renal function

    Energy Technology Data Exchange (ETDEWEB)

    Knesplova, L.; Krestin, G.P. [Department of Radiology, University Hospital Zurich (Switzerland)

    1998-03-01

    The kidneys are the most important organs to maintain homeostasis. In the assessment of renal functional disorders laboratory tests offer only indirect hints on location of the disease; radionuclide nephrography is hampered by low spatial resolution and radiologic methods provide only limited quantitative information. The MRI technique with fast pulse sequences and renally eliminated contrast agent has the capability of combining both anatomic and functional information. This article gives an overview on functional MRI of the kidneys with its possibilities and limitations. The clinical application of functional MRI allows a better understanding of some pathologic conditions such as urinary tract obstruction, renal insufficiency, effects of extracorporeal shock wave lithotripsy, different states of hydration, effects of drugs, vascular disorders, and effects of transplantation. (orig.) With 9 figs., 62 refs.

  2. Magnetic resonance in the assessment of renal function

    International Nuclear Information System (INIS)

    Knesplova, L.; Krestin, G.P.

    1998-01-01

    The kidneys are the most important organs to maintain homeostasis. In the assessment of renal functional disorders laboratory tests offer only indirect hints on location of the disease; radionuclide nephrography is hampered by low spatial resolution and radiologic methods provide only limited quantitative information. The MRI technique with fast pulse sequences and renally eliminated contrast agent has the capability of combining both anatomic and functional information. This article gives an overview on functional MRI of the kidneys with its possibilities and limitations. The clinical application of functional MRI allows a better understanding of some pathologic conditions such as urinary tract obstruction, renal insufficiency, effects of extracorporeal shock wave lithotripsy, different states of hydration, effects of drugs, vascular disorders, and effects of transplantation. (orig.)

  3. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    Science.gov (United States)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  4. 50-60 Hz electric and magnetic field effects on cognitive function in humans: A review

    International Nuclear Information System (INIS)

    Crasson, M.

    2003-01-01

    This paper reviews the effect of 50-60 Hz weak electric, magnetic and combined electric and magnetic field exposure on cognitive functions such as memory, attention, information processing and time perception, as determined by electroencephalographic methods and performance measures. Overall, laboratory studies, which have investigated the acute effects of power frequency fields on cognitive functioning in humans are heterogeneous, in terms of both electric and magnetic field (EMF) exposure and the experimental design and measures used. Results are inconsistent and difficult to interpret with regard to functional relevance for possible health risks. Statistically significant differences between field and control exposure, when they are found, are small, subtle, transitory, without any clear dose-response relationship and difficult to reproduce. The human performance or event related potentials (ERPs) measures that might specifically be affected by EMF exposure, as well as a possible cerebral structure or function that could be more sensitive to EMF, cannot be better determined. (author)

  5. Green's function for a neutral particle of spin 1/2 in a magnetic field

    International Nuclear Information System (INIS)

    Rodrigues, Rafael de Lima; Vaidya, Arvind Narayan

    2001-12-01

    Using the spectral theorema in context of Green's function in momentum space of neutrons in the magnetic field of a linear conductor with current the bound state energy spectrum and eigenfunctions are deduced. It's also pointed out that this problem present a new scenary of Green's function in non-relativistic quantum mechanics. (author)

  6. Group Theory of Wannier Functions Providing the Basis for a Deeper Understanding of Magnetism and Superconductivity

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2015-05-01

    Full Text Available The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the paper considers usual, as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors (Ekkehard Krüger in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the optimally-localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly-correlated localized electrons makes clear predictions of whether or not the system can possess superconducting or magnetic eigenstates.

  7. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    Science.gov (United States)

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  8. Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion

    International Nuclear Information System (INIS)

    Serenjeh, Fariba Nazari; Hashemi, Payman; Ghiasvand, Ali Reza; Naeimi, Hossein; Zakerzadeh, Elham

    2016-01-01

    The authors describe a method for magnetic solid phase extraction of uranyl ions from water samples. It is based on the use of spherical agarose-coated magnetic nanoparticles along with magnetic field agitation. The salen type Schiff base N,N’-bis(4-hydroxysalicylidene)-1,2-phenylenediamine was synthesized from resorcinol in two steps and characterized by infrared and nucleic magnetic resonance spectroscopies. The particles were then activated by an epichlorohydrin method and functionalized with the Schiff base which acts as a selective ligand for the extraction of UO 2 (II). Following preconcentration and elution with HCl, the ions were quantified by spectrophotometry using Arsenazo III as the indicator. The effects of pH value, ionic strength and amount of the adsorbent on the extraction of UO 2 (II) were optimized by a multivariate central composite design method. Six replicate analyses under optimized conditions resulted in a recovery of 96.6 % with a relative standard deviation of 3.4 % for UO 2 (II). The detection limit of the method (at a signal-to-noise ratio of 3σ) is 10 μg L -1 . The method was successfully applied to the determination of UO 2 (II) in spiked water samples. (author)

  9. Magnetic edge states in MoS2 characterized using density-functional theory

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Hinnemann, B.; Nørskov, Jens Kehlet

    2009-01-01

    It is known that the edges of a two-dimensional slab of insulating MoS2 exhibit one-dimensional metallic edge states, the so-called "brim states." Here, we find from density-functional theory calculations that several edge structures, which are relevant for the hydrodesulfurization process......, are magnetic. The magnetism is an edge phenomenon associated with certain metallic edge states. Interestingly, we find that among the two low-index edges, only the S edge displays magnetism under hydrodesulfurization conditions. In addition, the implications of this on the catalytic activity are investigated...

  10. ABC of the cardiac magnetic resonance. Part 1: anatomy and function

    International Nuclear Information System (INIS)

    Loureiro, Ricardo; Rached, Heron; Castro, Claudio C.; Cerri, Giovanni G.; Favaro, Daniele; Baptista, Luciana; Andrade, Joalbo; Rochitte, Carlos E.; Parga Filho, Jose; Avila, Luiz F.; Piva, Rosa M.V.

    2003-01-01

    The objective of this work is to demonstrate the fundamental concepts, the basic sequences and the clinical and potential applications of cardiac magnetic resonance as a diagnostic technique in updated radiology and cardiology practices. In this first part, we present the basic planning of the cardiac image acquisition, the nomenclature and standardized myocardial segmentation, image synchronization principles for electrocardiogram and the heart functional and anatomical evaluation by cardiac magnetic resonance. (author)

  11. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  12. Functionalization of magnetic nanoparticles with 3-aminopropyl silane

    International Nuclear Information System (INIS)

    Campelj, Stanislav; Makovec, Darko; Drofenik, Miha

    2009-01-01

    Superparamagnetic maghemite nanoparticles were functionalized with 3-aminopropyl triethoxy silane (APS). The influence of the different experimental parameters (temperature, pH, and reactant concentration) on the efficiency of the APS bonding directly to the maghemite nanoparticles or after their coating with a thin layer of silica was systematically studied. The functionalization was followed with measurements of the ζ-potential and direct measurements of the surface APS concentration on the nanoparticles. The surface concentration of the APS was much higher in the case when the APS was bonded to the silica-coated nanoparticles compared to bonding directly to the surfaces of the iron-oxide nanoparticles.

  13. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Density Functional Theory applied to magnetic materials: Mn{sub 3}O{sub 4} at different hybrid functionals

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@upeg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Pianaro, S.A. [Department of Materials Engineering, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-10-01

    Antiferromagnetic Mn{sub 3}O{sub 4} in spinel structure was investigated employing the Density Functional Theory at different hybrid functionals with default HF exchange percentage. Structural, electronic and magnetic properties were examined. Structural results were in agreement with experimental and Hartree–Fock results showing that the octahedral site was distorted by the Jahn–Teller effect, which changed the electron density distribution. Band-gap results for B3LYP and B3PW hybrid functionals were closer to the experimental when compared to PBE0. Mulliken Population Analysis revealed magnetic moments very close to ideal d{sup 4} and d{sup 5} electron configurations of Mn{sup 3+} and Mn{sup 2+}, respectively. Electron density maps are useful to determine that oxygen atoms mediate the electron transfer between octahedral and tetrahedral clusters. Magnetic properties were investigated from theoretical results for exchange coupling constants. Intratetrahedral and tetra-octahedral interactions were observed to be antiferromagnetic, whereas, octahedral sites presented antiferromagnetic interactions in the same layer and ferromagnetic in adjacent layers. Results showed that only default B3LYP was successful to describe magnetic properties of antiferromagnetic materials in agreement with experimental results. - Highlights: • We study structural, electronic and magnetic properties of antiferromagnetic Mn{sub 3}O{sub 4}. • B3LYP, B3PW and PBE0 hybrid functionals are compared. • B3LYP and B3PW hybrid functionals are better to band-gap calculations. • Only default B3LYP was successful to describe exchange interactions for Mn{sub 3}O{sub 4}.

  15. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.

    Science.gov (United States)

    Huang, Ping; Jing, Long; Zhu, Huarui; Gao, Xueyun

    2013-01-15

    The unique honeycomb lattice structure of graphene gives rise to its outstanding electronic properties such as ultrahigh carrier mobility, ballistic transport, and more. However, a crucial obstacle to its use in the electronics industry is its lack of an energy bandgap. A covalent chemistry strategy could overcome this problem, and would have the benefits of being highly controllable and stable in the ambient environment. One possible approach is aryl diazonium functionalization. In this Account, we investigate the micromolecular/lattice structure, electronic structure, and electron-transport properties of nitrophenyl-diazonium-functionalized graphene. We find that nitrophenyl groups mainly adopt random and inhomogeneous configurations on the graphene basal plane, and that their bonding with graphene carbon atoms leads to slight elongation of the graphene lattice spacing. By contrast, hydrogenated graphene has a compressed lattice. Low levels of functionalization suppressed the electric conductivity of the resulting functionalized graphene, while highly functionalized graphene showed the opposite effect. This difference arises from the competition between the charge transfer effect and the scattering enhancement effect introduced by nitrophenyl groups bonding with graphene carbon atoms. Detailed electron transport measurements revealed that the nitrophenyl diazonium functionalization locally breaks the symmetry of graphene lattice, which leads to an increase in the density of state near the Fermi level, thus increasing the carrier density. On the other hand, the bonded nitrophenyl groups act as scattering centers, lowering the mean free path of the charge carriers and suppressing the carrier mobility. In rare cases, we observed ordered configurations of nitrophenyl groups in local domains on graphene flakes due to fluctuations in the reaction processes. We describe one example of such a superlattice, with a lattice constant nearly twice of that of pristine graphene

  16. An agent harms a victim: A functional magnetic resonance imaging study on specific moral emotions

    International Nuclear Information System (INIS)

    Kedia, G.; Kedia, G.; Martinot, J.L.; Kedia, G.; Martinot, J.L.; Kedia, G.; Hilton, D.; Berthoz, S.; Wessa, M.

    2008-01-01

    The statement 'An agent harms a victim' depicts a situation that triggers moral emotions. Depending on whether the agent and the victim are the self or someone else, it can lead to four different moral emotions: self-anger ('I harm myself'), guilt ('I harm someone'), other-anger ('someone harms me'), and compassion ('someone harms someone'). In order to investigate the neural correlates of these emotions, we examined brain activation patterns elicited by variations in the agent (self vs. other) and the victim (self vs. other) of a harmful action. Twenty-nine healthy participants underwent functional magnetic resonance imaging while imagining being in situations in which they or someone else harmed themselves or someone else. Results indicated that the three emotional conditions associated with the involvement of other, either as agent or victim (guilt, other-anger, and compassion conditions), all activated structures that have been previously associated with the Theory of Mind (ToM, the attribution of mental states to others), namely, the dorsal medial prefrontal cortex, the precuneus, and the bilateral temporo-parietal junction. Moreover, the two conditions in which both the self and other were concerned by the harmful action (guilt and other-anger conditions) recruited emotional structures (i. e., the bilateral amygdala, anterior cingulate, and basal ganglia). These results suggest that specific moral emotions induce different neural activity depending on the extent to which they involve the self and other. (authors)

  17. Is a neutral expression also a neutral stimulus? A study with functional magnetic resonance.

    Science.gov (United States)

    Carvajal, Fernando; Rubio, Sandra; Serrano, Juan M; Ríos-Lago, Marcos; Alvarez-Linera, Juan; Pacheco, Lara; Martín, Pilar

    2013-08-01

    Although neutral faces do not initially convey an explicit emotional message, it has been found that individuals tend to assign them an affective content. Moreover, previous research has shown that affective judgments are mediated by the task they have to perform. Using functional magnetic resonance imaging in 21 healthy participants, we focus this study on the cerebral activity patterns triggered by neutral and emotional faces in two different tasks (social or gender judgments). Results obtained, using conjunction analyses, indicated that viewing both emotional and neutral faces evokes activity in several similar brain areas indicating a common neural substrate. Moreover, neutral faces specifically elicit activation of cerebellum, frontal and temporal areas, while emotional faces involve the cuneus, anterior cingulated gyrus, medial orbitofrontal cortex, posterior superior temporal gyrus, precentral/postcentral gyrus and insula. The task selected was also found to influence brain activity, in that the social task recruited frontal areas while the gender task involved the posterior cingulated, inferior parietal lobule and middle temporal gyrus to a greater extent. Specifically, in the social task viewing neutral faces was associated with longer reaction times and increased activity of left dorsolateral frontal cortex compared with viewing facial expressions of emotions. In contrast, in the same task emotional expressions distinctively activated the left amygdale. The results are discussed taking into consideration the fact that, like other facial expressions, neutral expressions are usually assigned some emotional significance. However, neutral faces evoke a greater activation of circuits probably involved in more elaborate cognitive processing.

  18. Functional magnetic resonance imaging of hippocampal activation during silent mantra meditation.

    Science.gov (United States)

    Engström, Maria; Pihlsgård, Johan; Lundberg, Peter; Söderfeldt, Birgitta

    2010-12-01

    The objective of the present study was to investigate whether moderately experienced meditators activate hippocampus and the prefrontal cortex during silent mantra meditation, as has been observed in earlier studies on subjects with several years of practice. Subjects with less than 2 years of meditation practice according to the Kundalini yoga or Acem tradition were examined by functional magnetic resonance imaging during silent mantra meditation, using an on-off block design. Whole-brain as well as region-of-interest analyses were performed. The most significant activation was found in the bilateral hippocampus/parahippocampal formations. Other areas with significant activation were the bilateral middle cingulate cortex and the bilateral precentral cortex. No activation in the anterior cingulate cortex was found, and only small activation clusters were observed in the prefrontal cortex. In conclusion, the main finding in this study was the significant activation in the hippocampi, which also has been correlated with meditation in several previous studies on very experienced meditators. We propose that the hippocampus is activated already after moderate meditation practice and also during different modes of meditation, including relaxation. The role of hippocampal activity during meditation should be further clarified in future studies, especially by investigating whether the meditation-correlated hippocampal activity is related to memory consolidation.

  19. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study.

    Science.gov (United States)

    Silva, Guilherme; Citterio, Alberto

    2017-10-01

    Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.

  20. Functional Magnetic Resonance in the Evaluation of Oesophageal Motility Disorders

    Directory of Open Access Journals (Sweden)

    Francesco Covotta

    2011-01-01

    Our aim is to assess the role of fMRI as a technique to assess morphological and functional parameters of the esophagus in patients with esophageal motor disorders and in healthy controls. Subsequently, we assessed the diagnostic efficiency of fMRI in comparison to videofluoroscopic and manometric findings in the investigation of patients with esophageal motor disorders. Considering that fMRI was shown to offer valuable information on bolus transit and on the caliber of the esophagus, variations of these two parameters in the different types of esophageal motor alterations have been assessed. fMRI, compared to manometry and videofluoroscopy, showed that a deranged or absent peristalsis is significantly associated with slower transit time and with increased esophageal diameter. Although further studies are needed, fMRI represents a promising noninvasive technique for the integrated functional and morphological evaluation of esophageal motility disorders.

  1. Caffeine and cognition in functional magnetic resonance imaging.

    Science.gov (United States)

    Koppelstaetter, Florian; Poeppel, Thorsten D; Siedentopf, Christian M; Ischebeck, Anja; Kolbitsch, Christian; Mottaghy, Felix M; Felber, Stephan R; Jaschke, Werner R; Krause, Bernd J

    2010-01-01

    Caffeine has been consumed since ancient times due to its beneficial effects on attention, psychomotor function, and memory. Caffeine exerts its action mainly through an antagonism of cerebral adenosine receptors, although there are important secondary effects on other neurotransmitter systems. Recently, functional MRI (fMRI) entered the field of neuropharmacology to explore the intracerebral sites and mechanisms of action of pharmacological agents. However, as caffeine possesses vasoconstrictive properties it may interfere with the mechanisms underlying the functional contrast in fMRI. Yet, only a limited number of studies dealt with the effect of caffeine on measures in fMRI. Even fewer neuroimaging studies examined the effects that caffeine exerts on cognition: Portas and colleagues used fMRI in an attentional task under different levels of arousal (sleep deprivation or caffeine administration), concluding that the thalamus is involved in mediating the interaction of attention and arousal. Bendlin and colleagues found caffeine to stabilize the extent of neuronal activation in repetitive word stem completion, counteracting the general task practice effect. Recently, Koppelstaetter and colleagues assessed the effect of caffeine on verbal working memory demonstrating a modulatory effect of caffeine on brain regions (medial frontopolar and anterior cingulate cortex) that have been associated with attentional and executive functions. This review surveys and discusses neuroimaging findings on 1) how caffeine affects the contrast underlying fMRI techniques, particularly the blood oxygen level dependent contrast (BOLD fMRI), and 2) how caffeine operates on neuronal activity underlying cognition, to understand the effect of caffeine on behavior and its neurobiological underpinnings.

  2. Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

    International Nuclear Information System (INIS)

    Mehran, E; Farjami Shayesteh, S; Sheykhan, M

    2016-01-01

    The structural and magnetic properties of the synthesized pure and functionalized CoFe 2 O 4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT–IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. (paper)

  3. Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

    Science.gov (United States)

    Mehran, E.; Farjami Shayesteh, S.; Sheykhan, M.

    2016-10-01

    The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. Project supported by the University of Guilan and the Iran Nanotechnology Initiative Council.

  4. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  5. Effect of subsequent vaginal delivery on bowel symptoms and anorectal function in women who sustained a previous obstetric anal sphincter injury.

    Science.gov (United States)

    Jordan, Polly A; Naidu, Madhu; Thakar, Ranee; Sultan, Abdul H

    2018-03-29

    Our primary objective was to prospectively evaluate anorectal symptoms, anal manometry and endoanal ultrasound (EAUS) in women who followed the recommended mode of subsequent delivery following index obstetric anal sphincter injuries (OASIs) using our unit's standardised protocol. Our secondary objectives were to evaluate the role of internal anal sphincter defects and also to compare outcomes in a subgroup of symptomatic women with normal anorectal physiology. This is a prospective follow-up study of pregnant women with previous OASIs who were counselled regarding subsequent mode of delivery between January 2003 and December 2014. Assessment involved the St Mark's Incontinence Score (SMIS), anal manometry and EAUS at both antepartum and 3-month postpartum visits. Data were analysed using Wilcoxon and Mann-Whitney U tests. Three hundred and fifty women attended the perineal clinic over the study period, of whom 122 met the inclusion criteria (99 vaginal delivery [VD], 23 caesarean section). No significant worsening of anorectal symptoms was observed following subsequent delivery in the VD group (p = 0.896), although a reduced squeeze pressure was observed at 3 months postpartum (p delivery. In the absence of a randomised study, use of this protocol can aid clinicians in their decision-making.

  6. Distribution functions of magnetic nanoparticles determined by a numerical inversion method

    International Nuclear Information System (INIS)

    Bender, P; Balceris, C; Ludwig, F; Posth, O; Bogart, L K; Szczerba, W; Castro, A; Nilsson, L; Costo, R; Gavilán, H; González-Alonso, D; Pedro, I de; Barquín, L Fernández; Johansson, C

    2017-01-01

    In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. (paper)

  7. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  8. Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles

    Science.gov (United States)

    Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.

    2018-04-01

    The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.

  9. Treatment response in psychotic patients classified according to social and clinical needs, drug side effects, and previous treatment; a method to identify functional remission

    DEFF Research Database (Denmark)

    Alenius, Malin; Hammarlund-Udenaes, Margareta; Honoré, Per Gustaf Hartvig

    2009-01-01

    , fewer psychotic symptoms, and higher rate of workers than those with the worst treatment outcome. CONCLUSION: In the evaluation, CANSEPT showed validity in discriminating the patients of interest and was well tolerated by the patients. CANSEPT could secure inclusion of correct patients in the clinic......BACKGROUND: Various approaches have been made over the years to classify psychotic patients according to inadequate treatment response, using terms such as treatment resistant or treatment refractory. Existing classifications have been criticized for overestimating positive symptoms......; underestimating residual symptoms, negative symptoms, and side effects; or being to open for individual interpretation. The aim of this study was to present and evaluate a new method of classification according to treatment response and, thus, to identify patients in functional remission. METHOD: A naturalistic...

  10. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    Science.gov (United States)

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  11. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    Science.gov (United States)

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Stability of a pinned magnetic domain wall as a function of its internal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M. [Institut Jean Lamour, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre lès Nancy (France); Childress, J. R. [HGST San Jose Research Center, 3403 Yerba Buena Rd, San Jose, California 95135 (United States)

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  13. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    Science.gov (United States)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  14. Brain Activity in Patients With Adductor Spasmodic Dysphonia Detected by Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Kiyuna, Asanori; Kise, Norimoto; Hiratsuka, Munehisa; Kondo, Shunsuke; Uehara, Takayuki; Maeda, Hiroyuki; Ganaha, Akira; Suzuki, Mikio

    2017-05-01

    Spasmodic dysphonia (SD) is considered a focal dystonia. However, the detailed pathophysiology of SD remains unclear, despite the detection of abnormal activity in several brain regions. The aim of this study was to clarify the pathophysiological background of SD. This is a case-control study. Both task-related brain activity measured by functional magnetic resonance imaging by reading the five-digit numbers and resting-state functional connectivity (FC) measured by 150 T2-weighted echo planar images acquired without any task were investigated in 12 patients with adductor SD and in 16 healthy controls. The patients with SD showed significantly higher task-related brain activation in the left middle temporal gyrus, left thalamus, bilateral primary motor area, bilateral premotor area, bilateral cerebellum, bilateral somatosensory area, right insula, and right putamen compared with the controls. Region of interest voxel FC analysis revealed many FC changes within the cerebellum-basal ganglia-thalamus-cortex loop in the patients with SD. Of the significant connectivity changes between the patients with SD and the controls, the FC between the left thalamus and the left caudate nucleus was significantly correlated with clinical parameters in SD. The higher task-related brain activity in the insula and cerebellum was consistent with previous neuroimaging studies, suggesting that these areas are one of the unique characteristics of phonation-induced brain activity in SD. Based on FC analysis and their significant correlations with clinical parameters, the basal ganglia network plays an important role in the pathogenesis of SD. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Impaired emotion processing in functional (psychogenic tremor: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Alberto J. Espay

    2018-01-01

    Conclusions: In response to emotional stimuli, functional tremor is associated with alterations in activation and functional connectivity in networks involved in emotion processing and theory of mind. These findings may be relevant to the pathophysiology of functional movement disorders.

  16. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  17. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  18. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  19. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    Science.gov (United States)

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas

  20. Retrieval of long and short lists from long term memory: a functional magnetic resonance imaging study with human subjects.

    Science.gov (United States)

    Zysset, S; Müller, K; Lehmann, C; Thöne-Otto, A I; von Cramon, D Y

    2001-11-13

    Previous studies have shown that reaction time in an item-recognition task with both short and long lists is a quadratic function of list length. This suggests that either different memory retrieval processes are implied for short and long lists or an adaptive process is involved. An event-related functional magnetic resonance imaging study with nine subjects and list lengths varying between 3 and 18 words was conducted to identify the underlying neuronal structures of retrieval from long and short lists. For the retrieval and processing of word-lists a single fronto-parietal network, including premotor, left prefrontal, left precuneal and left parietal regions, was activated. With increasing list length, no additional regions became involved in retrieving information from long-term memory, suggesting that not necessarily different, but highly adaptive retrieval processes are involved.

  1. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

    Science.gov (United States)

    Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo

    2006-01-01

    We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.

  2. Decreased functional connectivity between ventral tegmental area and nucleus accumbens in Internet gaming disorder: evidence from resting state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Jin-Tao; Ma, Shan-Shan; Yip, Sarah W; Wang, Ling-Jiao; Chen, Chao; Yan, Chao-Gan; Liu, Lu; Liu, Ben; Deng, Lin-Yuan; Liu, Qin-Xue; Fang, Xiao-Yi

    2015-11-18

    Internet gaming disorder (IGD) has become an increasing mental health problem worldwide. Decreased resting-state functional connectivity (rsFC) between the ventral tegmental area (VTA) and the nucleus accumbens (NAcc) has been found in substance use and is thought to play an important role in the development of substance addiction. However, rsFC between the VTA and NAcc in a non-substance addiction, such as IGD, has not been assessed previously. The current study aimed to investigate: (1) if individuals with IGD exhibit alterations in VTA-NAcc functional connectivity; and (2) whether VTA-NAcc functional connectivity is associated with subjective Internet craving. Thirty-five male participants with IGD and 24 healthy control (HC) individuals participated in resting-state functional magnetic resonance imaging. Regions of interest (left NAcc, right NAcc and VTA) were selected based on the literature and were defined by placing spheres centered on Talairach Daemon coordinates. In comparison with HCs, individuals with IGD had significantly decreased rsFC between the VTA and right NAcc. Resting-state functional connectivity strength between the VTA and right NAcc was negatively correlated with self-reported subjective craving for the Internet. These results suggest possible neural functional similarities between individuals with IGD and individuals with substance addictions.

  3. Visual activation in infants and young children studied by functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Born, Alfred Peter; Leth, H; Miranda Gimenez-Ricco, Maria Jo

    1998-01-01

    The purpose of this study was to determine whether visual stimulation in sleeping infants and young children can be examined by functional magnetic resonance imaging. We studied 17 children, aged 3 d to 48 mo, and three healthy adults. Visual stimulation was performed with 8-Hz flickering light...... through the sleeping childs' closed eyelids. Functional magnetic resonance imaging was performed with a gradient echoplanar sequence in a l.5-T magnetic resonance scanner. Six subjects were excluded because of movement artifacts; the youngest infant showed no response. In 10 children, we could demonstrate...... flow during activation. The different response patterns in young children and adults can reflect developmental or behavioral differences. Localization of the activation seemed to be age-dependent. In the older children and the adults, it encompassed the whole length of the calcarine sulcus, whereas...

  4. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  5. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications

    Science.gov (United States)

    Wu, Wei; Wu, Zhaohui; Yu, Taekyung; Jiang, Changzhong; Kim, Woo-Sik

    2015-01-01

    This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed. PMID:27877761

  6. Study of human brain functions by functional magnetic resonance imaging (fMRI) and spectroscopy (fMRS)

    International Nuclear Information System (INIS)

    Jagannathan, N.R.

    1998-01-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool in the detection and assessment of cerebral pathophysiology and the regional mapping and characterization of cognitive processes such as motor skills, vision, language and memory. The results of the effect of motor cortex stimulation during repetitive hand squeezing task activation using in-vivo single voxel NMR spectroscopy carried out on normal volunteer subjects are presented

  7. Functional Magnetic Resonance Imaging of Cognitive Processing in Young Adults with Down Syndrome

    Science.gov (United States)

    Jacola, Lisa M.; Byars, Anna W.; Chalfonte-Evans, Melinda; Schmithorst, Vincent J.; Hickey, Fran; Patterson, Bonnie; Hotze, Stephanie; Vannest, Jennifer; Chiu, Chung-Yiu; Holland, Scott K.; Schapiro, Mark B.

    2011-01-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate neural activation during a semantic-classification/object-recognition task in 13 persons with Down syndrome and 12 typically developing control participants (age range = 12-26 years). A comparison between groups suggested atypical patterns of brain activation for the…

  8. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson's disease.

    NARCIS (Netherlands)

    Helmich, R.C.G.; Siebner, H.R.; Bakker, M.; Munchau, A.; Bloem, B.R.

    2006-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can produce lasting changes in excitability and activity in cortical regions underneath the stimulation coil (local effect), but also within functionally connected cortical or subcortical regions

  9. Functional Assessment of Corticospinal Conduction with Transcranial Magnetic Stimulation: Basic Principles

    DEFF Research Database (Denmark)

    Groppa, S.; Peller, M.; Siebner, Hartwig R.

    2010-01-01

    Here we review how transcranial magnetic stimulation (TMS) is used in clinical practice to examine the functional integrity of the fast conducting fibres of the human corticomotor path ways. We first summarise the technical and physiological principles of TMS that are relevant to its clinical use...

  10. Towards The Generation of Functionalized Magnetic Nanowires to Target Leukemic Cells

    KAUST Repository

    Alsharif, Nouf

    2016-01-01

    . In addition the NWs can be coated and functionalized to target cells of interest and, upon exposure to an alternating magnetic field, have been shown to induce cell death on several types of adherent cells, including several cancer cell types. For suspension

  11. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging

    NARCIS (Netherlands)

    T.J.H. White (Tonya); R.L. Muetzel (Ryan); M. Schmidt (Marcus); S.J.E. Langeslag (Sandra); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); V.D. Calhoun Vince D. (V.); F.C. Verhulst (Frank); H.W. Tiemeier (Henning)

    2014-01-01

    textabstractResting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of ∼5 to 6 min provide adequate sampling to produce stable spatial maps

  12. Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging.

    Science.gov (United States)

    Könönen, Mervi; Tamsi, Niko; Säisänen, Laura; Kemppainen, Samuli; Määttä, Sara; Julkunen, Petro; Jutila, Leena; Äikiä, Marja; Kälviäinen, Reetta; Niskanen, Eini; Vanninen, Ritva; Karjalainen, Pasi; Mervaala, Esa

    2015-06-15

    Navigated transcranial magnetic stimulation (nTMS) is a modern precise method to activate and study cortical functions noninvasively. We hypothesized that a combination of nTMS and functional magnetic resonance imaging (fMRI) could clarify the localization of functional areas involved with motor control and production of speech. Navigated repetitive TMS (rTMS) with short bursts was used to map speech areas on both hemispheres by inducing speech disruption during number recitation tasks in healthy volunteers. Two experienced video reviewers, blinded to the stimulated area, graded each trial offline according to possible speech disruption. The locations of speech disrupting nTMS trials were overlaid with fMRI activations of word generation task. Speech disruptions were produced on both hemispheres by nTMS, though there were more disruptive stimulation sites on the left hemisphere. Grade of the disruptions varied from subjective sensation to mild objectively recognizable disruption up to total speech arrest. The distribution of locations in which speech disruptions could be elicited varied among individuals. On the left hemisphere the locations of disturbing rTMS bursts with reviewers' verification followed the areas of fMRI activation. Similar pattern was not observed on the right hemisphere. The reviewer-verified speech disruptions induced by nTMS provided clinically relevant information, and fMRI might explain further the function of the cortical area. nTMS and fMRI complement each other, and their combination should be advocated when assessing individual localization of speech network. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    OpenAIRE

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present stu...

  14. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    OpenAIRE

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  15. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT

    International Nuclear Information System (INIS)

    2004-01-01

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results

  16. A multi-functional testing instrument for heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-01-01

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties

  17. Alterations in Spontaneous Brain Activity and Functional Network Reorganization following Surgery in Children with Medically Refractory Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    2017-08-01

    Full Text Available For some patients with medically refractory epilepsy (MRE, surgery is a safe and effective treatment for controlling epilepsy. However, the functional consequences of such surgery on brain activity and connectivity in children remain unknown. In the present study, we carried out a longitudinal study using resting-state functional magnetic resonance imaging in 10 children with MRE before and again at a mean of 79 days after surgery, as well as in a group of 28 healthy controls. Compared with the controls, children with epilepsy exhibited abnormalities in intrinsic activity in the thalamus, putamen, pallidum, insula, hippocampus, cerebellum, and cingulate gyrus both before and after surgery. Longitudinal analyses showed that the amplitude of low frequency fluctuations (ALFF increased in the parietal–frontal cortex and decreased in the deep nuclei from pre- to post-surgery. The percentage changes in ALFF values in the deep nuclei were positively correlated with the age of epilepsy onset. Functional connectivity (FC analyses demonstrated a reorganization of FC architecture after surgery. These changes in brain activity and FC after surgery might indicate that the previously disrupted functional interactions were reorganized after surgery. All these results provide preliminary evidence that the age of epilepsy onset may have some potential to predict the outcome of brain functional reorganization after surgery in children with MRE.

  18. Investigations of functional and structural changes in migraine with aura by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Hougaard, Anders

    2015-01-01

    technology to study these features of migraine with aura (MA) is functional magnetic resonance imaging (fMRI), which has the potential not only to detect, but also to localize hypersensitive cortex. The main objective of this thesis was to investigate the cortical responsivity of patients with MA during.......e. ≥= 90% of auras occurring in the same visual hemifield (study II). To circumvent bias relating to differences between right and left hemispheres (e.g. caused by physiological left/right bias, asymmetry of the visual stimulation or magnetic field inhomogeneity of the scanner), we included an equal number...

  19. Resting state functional connectivity magnetic resonance imaging integrated with intraoperative neuronavigation for functional mapping after aborted awake craniotomy

    Science.gov (United States)

    Batra, Prag; Bandt, S. Kathleen; Leuthardt, Eric C.

    2016-01-01

    Background: Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. Case Description: Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. Conclusion: Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy. PMID:26958419

  20. An agent harms a victim: A functional magnetic resonance imaging study on specific moral emotions

    Energy Technology Data Exchange (ETDEWEB)

    Kedia, G. [INSERM, Inst Hlth et Med Res, U797, Res Unit Neuroimaging Psychiat, F-91401 Orsay (France); Kedia, G.; Martinot, J.L. [CEA, DSV, I2BM, SHFJ, Orsay (France); Kedia, G.; Martinot, J.L. [Univ Paris Sud, U797, Paris (France); Kedia, G.; Hilton, D. [Univ Toulouse, Toulouse (France); Berthoz, S. [Paris Descartes Univ, U797, Paris (France); Wessa, M. [Univ Heidelber, Cent Inst Mental Hlth, D-6800 Mannheim (Germany)

    2008-07-01

    The statement 'An agent harms a victim' depicts a situation that triggers moral emotions. Depending on whether the agent and the victim are the self or someone else, it can lead to four different moral emotions: self-anger ('I harm myself'), guilt ('I harm someone'), other-anger ('someone harms me'), and compassion ('someone harms someone'). In order to investigate the neural correlates of these emotions, we examined brain activation patterns elicited by variations in the agent (self vs. other) and the victim (self vs. other) of a harmful action. Twenty-nine healthy participants underwent functional magnetic resonance imaging while imagining being in situations in which they or someone else harmed themselves or someone else. Results indicated that the three emotional conditions associated with the involvement of other, either as agent or victim (guilt, other-anger, and compassion conditions), all activated structures that have been previously associated with the Theory of Mind (ToM, the attribution of mental states to others), namely, the dorsal medial prefrontal cortex, the precuneus, and the bilateral temporo-parietal junction. Moreover, the two conditions in which both the self and other were concerned by the harmful action (guilt and other-anger conditions) recruited emotional structures (i. e., the bilateral amygdala, anterior cingulate, and basal ganglia). These results suggest that specific moral emotions induce different neural activity depending on the extent to which they involve the self and other. (authors)

  1. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.

    Science.gov (United States)

    Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J

    2010-03-03

    Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.

  2. Separating depressive comorbidity from panic disorder: A combined functional magnetic resonance imaging and machine learning approach.

    Science.gov (United States)

    Lueken, Ulrike; Straube, Benjamin; Yang, Yunbo; Hahn, Tim; Beesdo-Baum, Katja; Wittchen, Hans-Ulrich; Konrad, Carsten; Ströhle, Andreas; Wittmann, André; Gerlach, Alexander L; Pfleiderer, Bettina; Arolt, Volker; Kircher, Tilo

    2015-09-15

    Depression is frequent in panic disorder (PD); yet, little is known about its influence on the neural substrates of PD. Difficulties in fear inhibition during safety signal processing have been reported as a pathophysiological feature of PD that is attenuated by depression. We investigated the impact of comorbid depression in PD with agoraphobia (AG) on the neural correlates of fear conditioning and the potential of machine learning to predict comorbidity status on the individual patient level based on neural characteristics. Fifty-nine PD/AG patients including 26 (44%) with a comorbid depressive disorder (PD/AG+DEP) underwent functional magnetic resonance imaging (fMRI). Comorbidity status was predicted using a random undersampling tree ensemble in a leave-one-out cross-validation framework. PD/AG-DEP patients showed altered neural activation during safety signal processing, while +DEP patients exhibited generally decreased dorsolateral prefrontal and insular activation. Comorbidity status was correctly predicted in 79% of patients (sensitivity: 73%; specificity: 85%) based on brain activation during fear conditioning (corrected for potential confounders: accuracy: 73%; sensitivity: 77%; specificity: 70%). No primary depressed patients were available; only medication-free patients were included. Major depression and dysthymia were collapsed (power considerations). Neurofunctional activation during safety signal processing differed between patients with or without comorbid depression, a finding which may explain heterogeneous results across previous studies. These findings demonstrate the relevance of comorbidity when investigating neurofunctional substrates of anxiety disorders. Predicting individual comorbidity status may translate neurofunctional data into clinically relevant information which might aid in planning individualized treatment. The study was registered with the ISRCTN80046034. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pre-clinical functional magnetic resonance imaging. Pt. II. The heart

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Nadja M.; Zoellner, Frank G.; Kalayciyan, Raffi; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine

    2014-07-01

    One third of all deaths worldwide in 2008 were caused by cardiovascular diseases (CVD), and the incidence of CVD related deaths rises ever more. Thus, improved imaging techniques and modalities are needed for the evaluation of cardiac morphology and function. Cardiac magnetic resonance imaging (CMRI) is a minimally invasive technique that is increasingly important due to its high spatial and temporal resolution, its high soft tissue contrast and its ability of functional and quantitative imaging. It is widely accepted as the gold standard of cardiac functional analysis. In the short period of small animal MRI, remarkable progress has been achieved concerning new, fast imaging schemes as well as purpose-built equipment. Dedicated small animal scanners allow for tapping the full potential of recently developed animal models of cardiac disease. In this paper, we review state-of-the-art cardiac magnetic resonance imaging techniques and applications in small animals at ultra-high fields (UHF).

  4. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors

    Science.gov (United States)

    Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine

    2013-03-01

    The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.

  5. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death

    KAUST Repository

    Martinez Banderas, Aldo Isaac

    2016-10-24

    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  6. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death

    KAUST Repository

    Martinez Banderas, Aldo; Aires, Antonio; Teran, Francisco J.; Perez, Jose E.; Cadenas, Jael F.; Alsharif, Nouf; Ravasi, Timothy; Cortajarena, Aitziber L.; Kosel, Jü rgen

    2016-01-01

    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  7. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death.

    Science.gov (United States)

    Martínez-Banderas, Aldo Isaac; Aires, Antonio; Teran, Francisco J; Perez, Jose Efrain; Cadenas, Jael F; Alsharif, Nouf; Ravasi, Timothy; Cortajarena, Aitziber L; Kosel, Jürgen

    2016-10-24

    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  8. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Douaud, Gwenaëlle; Filippini, Nicola; Knight, Steven; Talbot, Kevin; Turner, Martin R

    2011-12-01

    Amyotrophic lateral sclerosis as a system failure is a concept supported by the finding of consistent extramotor as well as motor cerebral pathology. The functional correlates of the structural changes detected using advanced magnetic resonance imaging techniques such as diffusion tensor imaging and voxel-based morphometry have not been extensively studied. A group of 25 patients with amyotrophic lateral sclerosis was compared to healthy control subjects using a multi-modal neuroimaging approach comprising T(1)-weighted, diffusion-weighted and resting-state functional magnetic resonance imaging. Using probabilistic tractography, a grey matter connection network was defined based upon the prominent corticospinal tract and corpus callosum involvement demonstrated by white matter tract-based spatial statistics. This 'amyotrophic lateral sclerosis-specific' network included motor, premotor and supplementary motor cortices, pars opercularis and motor-related thalamic nuclei. A novel analysis protocol, using this disease-specific grey matter network as an input for a dual-regression analysis, was then used to assess changes in functional connectivity directly associated with this network. A spatial pattern of increased functional connectivity spanning sensorimotor, premotor, prefrontal and thalamic regions was found. A composite of structural and functional magnetic resonance imaging measures also allowed the qualitative discrimination of patients from controls. An integrated structural and functional connectivity approach therefore identified apparently dichotomous processes characterizing the amyotrophic lateral sclerosis cerebral network failure, in which there was increased functional connectivity within regions of decreased structural connectivity. Patients with slower rates of disease progression showed connectivity measures with values closer to healthy controls, raising the possibility that functional connectivity increases might not simply represent a

  9. Measurements of the longitudinal nuclear magnetic resonance in superfluid helium-3 B as a function of magnetic field

    International Nuclear Information System (INIS)

    Sherrill, D.S.

    1987-01-01

    These are the first measurements of the longitudinal NMR mode in a magnetic field large enough to cause an appreciable distortion of the energy gap. Measurements were made at pressures P = 3, 6, 12, 21, and 33 bar; at fields from 2 to 15 MHz; and over temperatures between 0.18 and 0.40 T/sub c/(P), where T/sub c/(P) is the superfluid transition temperature. Therefore, these experiments are in the collisionless regime in which the longitudinal resonance frequency is small compared to the quasiparticle collision frequency. The gap distortion causes a large shift in the longitudinal frequency. As the magnetic field increases from 2 to 15 MHz, the frequency decreases by about 20 kHz at all pressures. Thus, these experiments are a powerful probe of the field distortion of the energy gap. Pulsed NMR is used and, in addition to the resonance frequency, the amplitude and damping of the induced oscillations were obtained. Results are compared for the longitudinal frequency as a function of field, temperature, and pressure to a recent theory, and estimates of the theoretical parameters involved were obtained. At the lowest temperatures a startling behavior was observed, in which the resonance lineshape broadened with decreasing temperature

  10. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    Science.gov (United States)

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  11. Quantification of right and left ventricular function by cardiovascular magnetic resonance

    International Nuclear Information System (INIS)

    Bellenger, N.G.; Smith, G.C.; Pennell, D.J.; Grothues, F.

    2000-01-01

    Cardiac dysfunction is a major cause of cardiovascular morbidity and mortality. Accurate and reproducible assessment of cardiac function is essential for the diagnosis, the assessment of prognosis and evaluation of a patient's response to therapy. Cardiovascular magnetic resonance (CMR) provides a measure of global and regional function that is not only accurate and reproducible but is noninvasive, free of ionising radiation, and independent of the geometric assumptions and acoustic windows that limit echocardiography. With the advent of faster scanners, automated analysis, increasing availability and reducing costs, CMR is fast becoming a clinically tenable reference standard for the measurement of cardiac function. (orig.) [de

  12. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  13. [Functional connectivity of temporal parietal junction in online game addicts:a resting-state functional magnetic resonance imaging study].

    Science.gov (United States)

    Yuan, Ji; Qian, Ruobing; Lin, Bin; Fu, Xianming; Wei, Xiangpin; Weng, Chuanbo; Niu, Chaoshi; Wang, Yehan

    2014-02-11

    To explore the functions of temporal parietal junction (TPJ) as parts of attention networks in the pathogenesis of online game addiction using resting-state functional magnetic resonance imaging (fMRI). A total of 17 online game addicts (OGA) were recruited as OGA group and 17 healthy controls during the same period were recruited as CON group. The neuropsychological tests were performed for all of them to compare the inter-group differences in the results of Internet Addiction Test (IAT) and attention functions. All fMRI data were preprocessed after resting-state fMRI scanning. Then left and right TPJ were selected as regions of interest (ROIs) to calculate the linear correlation between TPJ and entire brain to compare the inter-group differences. Obvious differences existed between OGA group (71 ± 5 scores) and CON group (19 ± 7 scores) in the IAT results and attention function (P online game addicts showed decreased functional connectivity with bilateral ventromedial prefrontal cortex (VMPFC), bilateral hippocampal gyrus and bilateral amygdaloid nucleus, but increased functional connectivity with right cuneus.However, left TPJ demonstrated decreased functional connectivity with bilateral superior frontal gyrus and bilateral middle frontal gyrus, but increased functional connectivity with bilateral cuneus (P online game addicts.It suggests that TPJ is an important component of attention networks participating in the generation of online game addiction.

  14. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    Science.gov (United States)

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  15. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.

    Science.gov (United States)

    Arias, Sandra L; Shetty, Akshath R; Senpan, Angana; Echeverry-Rendón, Mónica; Reece, Lisa M; Allain, Jean Paul

    2016-05-26

    In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies.

  16. Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.

    Science.gov (United States)

    Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W

    2013-08-01

    Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.

  17. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  18. Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters

    Science.gov (United States)

    Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.

    2017-10-01

    The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.

  19. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    International Nuclear Information System (INIS)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli; Yanez-Sedeno, Paloma; Pingarron, Jose M.

    2011-01-01

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL -1 with a slope value of 7.0 nA mL ng -1 . The limit of detection was 3.74 ng mL -1 . Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  20. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma, E-mail: yseo@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain)

    2011-04-29

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL{sup -1} with a slope value of 7.0 nA mL ng{sup -1}. The limit of detection was 3.74 ng mL{sup -1}. Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  1. Isolation of N-linked glycopeptides by hydrazine-functionalized magnetic particles.

    Science.gov (United States)

    Sun, Shisheng; Yang, Ganglong; Wang, Ting; Wang, Qinzhe; Chen, Chao; Li, Zheng

    2010-04-01

    We introduce a novel combination of magnetic particles with hydrazine chemistry, dubbed as hydrazine-functionalized magnetic particles (HFMP) for isolation of glycopeptides. Four methods have been developed and compared for the production of HFMP by hydrazine modification of the surface of the carboxyl and epoxy-silanized magnetic particles, respectively. The evaluation of the capability and specificity of HFMP as well as the optimization of the coupling condition for capturing of glycoproteins were systematically investigated. The results showed that HFMP prepared by adipic dihydrazide functionalization from carboxyl-silanized magnetic particles (HFCA) displayed the maximum capture capacity and isolated efficiency for glycoprotein. When measured with glycoproteins, the capacity of the HFCA (1 g) for coupling bovine fetuin was 130 +/- 5.3 mg. The capability of this method was also confirmed by successful isolation of all formerly glycosylated peptides from standard glycoproteins and identification of their glycosylation sites, which demonstrated the feasibility of the HFCA as an alternative solid support for isolation of glycoproteins/glycopeptides.

  2. Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism.

    Directory of Open Access Journals (Sweden)

    Sina Ghiassian

    Full Text Available A clinical tool that can diagnose psychiatric illness using functional or structural magnetic resonance (MR brain images has the potential to greatly assist physicians and improve treatment efficacy. Working toward the goal of automated diagnosis, we propose an approach for automated classification of ADHD and autism based on histogram of oriented gradients (HOG features extracted from MR brain images, as well as personal characteristic data features. We describe a learning algorithm that can produce effective classifiers for ADHD and autism when run on two large public datasets. The algorithm is able to distinguish ADHD from control with hold-out accuracy of 69.6% (over baseline 55.0% using personal characteristics and structural brain scan features when trained on the ADHD-200 dataset (769 participants in training set, 171 in test set. It is able to distinguish autism from control with hold-out accuracy of 65.0% (over baseline 51.6% using functional images with personal characteristic data when trained on the Autism Brain Imaging Data Exchange (ABIDE dataset (889 participants in training set, 222 in test set. These results outperform all previously presented methods on both datasets. To our knowledge, this is the first demonstration of a single automated learning process that can produce classifiers for distinguishing patients vs. controls from brain imaging data with above-chance accuracy on large datasets for two different psychiatric illnesses (ADHD and autism. Working toward clinical applications requires robustness against real-world conditions, including the substantial variability that often exists among data collected at different institutions. It is therefore important that our algorithm was successful with the large ADHD-200 and ABIDE datasets, which include data from hundreds of participants collected at multiple institutions. While the resulting classifiers are not yet clinically relevant, this work shows that there is a signal in

  3. Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Roberta V. [Federal Center of Technological Education of Minas Gerais, Department of Materials (Brazil); Silva-Caldeira, Priscila P. [Federal Center of Technological Education of Minas Gerais, Department of Chemistry (Brazil); Pereira-Maia, Elene C.; Fabris, José D.; Cavalcante, Luis Carlos D. [Federal University of Minas Gerais (UFMG), Department of Chemistry – ICEx (Brazil); Ardisson, José D. [Nuclear Technology Development Center (CDTN) (Brazil); Domingues, Rosana Z., E-mail: rosanazd@yahoo.com.br, E-mail: rosanazd@ufmg.br [Federal University of Minas Gerais (UFMG), Department of Chemistry – ICEx (Brazil)

    2016-04-15

    Magnetic fluids, more specifically aqueous colloidal suspensions containing certain magnetic nanoparticles (MNPs), have recently been gaining special interest due to their potential use in clinical treatments of cancerous formations in mammalians. The technological application arises mainly from their hyperthermic behavior, which means that the nanoparticles dissipate heat upon being exposed to an alternating magnetic field (AMF). If the temperature is raised to slightly above 43 °C, cancer cells are functionally inactivated or killed; however, normal cells tend to survive under those same conditions, entirely maintaining their bioactivity. Recent in vitro studies have revealed that under simultaneous exposure to an AMF and magnetic nanoparticles, certain lines of cancer cells are bio-inactivated even without experiencing a significant temperature increase. This non-thermal effect is cell specific, indicating that MNPs, under alternating magnetic fields, may effectively kill cancer cells under conditions that were previously thought to be implausible, considering that the temperature does not increase more than 5 °C, which is also true in cases for which the concentration of MNPs is too low. To experimentally test for this effect, this study focused on the feasibility of inducing K562 cell death using an AMF and aqueous suspensions containing very low concentrations of MNPs. The assay was designed for a ferrofluid containing magnetite nanoparticles, which were obtained through the co-precipitation method and were functionalized with citric acid; the particles had an average diameter of 10 ± 2 nm and a mean hydrodynamic diameter of approximately 40 nm. Experiments were first performed to test for the ability of the ferrofluid to release heat under an AMF. The results show that for concentrations ranging from 2.5 to 1.0 × 10{sup 3} mg L{sup −1}, the maximum temperature increase was actually less than 2 °C. However, the in vitro test results from K

  4. Quantifying confidence in density functional theory predictions of magnetic ground states

    Science.gov (United States)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there

  5. Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica

    Science.gov (United States)

    Radecki, Guillaume; Nargeot, Romuald; Jelescu, Ileana Ozana; Le Bihan, Denis; Ciobanu, Luisa

    2014-01-01

    In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn2+ concentrations. We establish that Mn2+ accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus. We also show that we can distinguish between neuronal activities elicited by different types of stimuli. This method opens up a new avenue into probing the functional organization and plasticity of neuronal networks involved in goal-directed behaviors with single-cell resolution. PMID:24872449

  6. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    Science.gov (United States)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  7. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-11-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann`s areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann`s areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  8. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-01-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann's areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann's areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  9. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    International Nuclear Information System (INIS)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian; Lu Chunhua; Xu Zhongzi

    2008-01-01

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  10. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  11. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    OpenAIRE

    Reginold, William; Luedke, Angela C.; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    Background/Aims: This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods: Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tes...

  12. Green's function for electrons in a narrow quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J. Morgenstern; Glasser, M. Lawrence; Dong Bing

    2005-01-01

    Electron dynamics in a narrow quantum well in a parallel magnetic field of arbitrary strength are examined here. We derive an explicit analytical closed-form solution for the Green's function of Landau-quantized electrons in skipping states of motion between the narrow well walls coupled with in-plane translational motion and hybridized with the zero-field lowest subband energy eigenstate. Such Landau-quantized modes are not uniformly spaced

  13. Visual Imagery and False Memory for Pictures: A Functional Magnetic Resonance Imaging Study in Healthy Participants

    OpenAIRE

    Stephan-Otto, Christian; Siddi, Sara; Senior, Carl; Mu?oz-Samons, Daniel; Ochoa, Susana; S?nchez-Laforga, Ana Mar?a; Br?bion, Gildas

    2017-01-01

    BACKGROUND: Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. METHODS: A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, ...

  14. Cognitive Modules Utilized for Narrative Comprehension in Children: A Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Schmithorst, Vincent J.; Holland, Scott K.; Plante, Elena

    2005-01-01

    The ability to comprehend narratives constitutes an important component of human development and experience. The neural correlates of auditory narrative comprehension in children were investigated in a large-scale functional magnetic resonance imaging (fMRI) study involving 313 subjects ages 5–18. Using group Independent Component Analysis (ICA), bilateral task-related components were found comprising the primary auditory cortex, the mid-superior temporal gyrus, the hippocampus, the angular g...

  15. Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    OpenAIRE

    Mitchell, Teresa V.; Morey, Rajendra A.; Inan, Seniha; Belger, Aysenil

    2005-01-01

    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust acti...

  16. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    Science.gov (United States)

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  17. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  18. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  19. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  20. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4

    Science.gov (United States)

    Zhuang, Houlong L.; Zhou, Jia

    2016-11-01

    Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.

  1. A novel passive paradigm for functional magnetic resonance imaging (fMRI) to localize brain functions

    International Nuclear Information System (INIS)

    Gasser, T.; Sandalcioglu, I.E.; Skwarek, V.; Gizewski, E.; Stolke, D.; Hans, V.

    2003-01-01

    The design of a shielded stimulation-device for electrical stimulation of peripheral nerves in the MRI-environment as passive fMRI-paradigm is content of this study. Especially the technical aspects and selection criteria of the stimulation-parameters are discussed. The clinical value for neurosurgical patients is outlined by supplying data from clinical studies, evaluating this novel paradigm. Thus neurosurgeons are supplied with superior information about functional anatomy, therefore being able to preserve functionally relevant brain-structures. (orig.) [de

  2. Functional magnetic resonance imaging of the kidneys; Funktionelle Magnetresonanztomographie der Nieren

    Energy Technology Data Exchange (ETDEWEB)

    Lanzman, R.S.; Wittsack, H.J. [Universitaetsklinik Duesseldorf, Institut fuer Diagnostische und Interventionelle Radiologie, Duesseldorf (Germany); Notohamiprodjo, M. [Universitaetsklinik Tuebingen, Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany)

    2015-12-15

    Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors. (orig.) [German] Die funktionelle MRT der Nieren hat in den letzten Jahren zunehmend an Bedeutung gewonnen. In diesem Uebersichtsartikel werden die wichtigsten funktionellen Untersuchungstechniken vorgestellt und deren potenzielle klinische Bedeutung zur Evaluation von Nieren und Transplantatnieren hervorgehoben, wobei ein besonderes Augenmerk auf die Abklaerung von Nierentumoren gelegt wird. (orig.)

  3. Physiological and technical limitations of functional magnetic resonance imaging (fMRI) - consequences for clinical use

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Jordan, K.; Giesel, F.L.; Villringer, A.

    2003-01-01

    Functional magnetic resonance imaging (fMRI) is the most common noninvasive technique in functional neuroanatomy. The capabilities and limitations of the method will be discussed based on a short review of the current knowledge about the neurovascular relationship. The focus of this article is on current methodical and technical problems regarding fMRI-based detection and localization of neuronal activity. Main error sources and their influence on the reliability and validity of fMRI-methods are presented. Appropriate solution strategies will be proposed and evaluated. Finally, the clinical relevance of MR-based diagnostic methods are discussed. (orig.) [de

  4. A new spin-functional MOSFET based on magnetic tunnel junction technology: pseudo-spin-MOSFET

    OpenAIRE

    Shuto, Yusuke; Nakane, Ryosho; Wang, Wenhong; Sukegawa, Hiroaki; Yamamoto, Shuu'ichirou; Tanaka, Masaaki; Inomata, Koichiro; Sugahara, Satoshi

    2009-01-01

    We fabricated and characterized a new spin-functional MOSFET referred to as a pseudo-spin-MOSFET (PS-MOSFET). The PS-MOSFET is a circuit using an ordinary MOSFET and magnetic tunnel junction (MTJ) for reproducing functions of spin-transistors. Device integration techniques for a bottom gate MOSFET using a silicon-on-insulator (SOI) substrate and for an MTJ with a full-Heusler alloy electrode and MgO tunnel barrier were developed. The fabricated PS-MOSFET exhibited high and low transconductanc...

  5. Functional magnetic resonances imaging of psychological functions with experimentally induced emotion

    International Nuclear Information System (INIS)

    Grodd, W.; Schneider, F.; Klose, U.; Naegele, T.

    1995-01-01

    In this study a T 2 * FLASH sequence (TR 240 ms, TE 60 ms, slice thickness 4 mm, α=40 , matrix 64x128) was used to investigate changes in signal intensity within the temporal lobe and the amygdala during experimentally induced emotions. Visual stimuli of happy [sad] facial portraits were presented to volunteers to induce changes in the subjects' mood while lying in the tomograph. In agreement with a previous PET study, a significant increase in signal intensity in the left amygdala was found during induction of a sad mood, while no comparable effect was visible during induction of a happy mood. (orig.) [de

  6. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    International Nuclear Information System (INIS)

    Xie Jining; Chen Linfeng; Varadan, Vijay K; Yancey, Justin; Srivatsan, Malathi

    2008-01-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration

  7. "Chess-board pattern" spatial modulation of magnetization. Assessment of myocardial function

    DEFF Research Database (Denmark)

    Thomsen, C

    1992-01-01

    . Through spatial modulation of the magnetization the entire image can be labeled in different patterns. Two new pulse sequences are presented, giving a chess-board like spatial modulation. These pulse sequences have several advantages compared with the previously published methods, as the modulation time...... is half that required to obtain a 2-dimensional grid, the area in the image with high signal intensity was significantly larger, and the radiofrequency power deposition was substantially decreased. By labeling the heart at diastole the chess-board pattern tagging of the heart wall could be followed...

  8. Functional magnetic resonance imaging of the brain - a link between brain morphology and function, imaging of the functional status of the brain on a detailed anatomic background

    International Nuclear Information System (INIS)

    Obenberger, J.; Seidl, Z.; Ruzicka, E.; Jech, R.; Krasensky, J.

    1998-01-01

    The basic principles of functional magnetic resonance imaging are outlined. The current status of knowledge and ideas for a future development are highlighted. The application fields of this technique include neurosurgery, neurology, psychiatry. The method also serves as a research tool, where it may prove helpful in solving problems of sleep disorder and the generation and perception of speech. A brief overview of the requirements and the necessary background is given for those wishing to start their own activity in this field

  9. Prediction of d^0 magnetism in self-interaction corrected density functional theory

    Science.gov (United States)

    Das Pemmaraju, Chaitanya

    2010-03-01

    Over the past couple of years, the phenomenon of ``d^0 magnetism'' has greatly intrigued the magnetism community [1]. Unlike conventional magnetic materials, ``d^0 magnets'' lack any magnetic ions with open d or f shells but surprisingly, exhibit signatures of ferromagnetism often with a Curie temperature exceeding 300 K. Current research in the field is geared towards trying to understand the mechanism underlying this observed ferromagnetism which is difficult to explain within the conventional m-J paradigm [1]. The most widely studied class of d^0 materials are un-doped and light element doped wide gap Oxides such as HfO2, MgO, ZnO, TiO2 all of which have been put forward as possible d0 ferromagnets. General experimental trends suggest that the magnetism is a feature of highly defective samples leading to the expectation that the phenomenon must be defect related. In particular, based on density functional theory (DFT) calculations acceptor defects formed from the O-2p states in these Oxides have been proposed as being responsible for the ferromagnetism [2,3]. However. predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. DFT calculations based on semi-local functionals such as the local spin-density approximation (LSDA) can lead to qualitative failures on several fronts. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all as the Hund's coupling might be under estimated. Furthermore, polaronic distortions which are often a feature of acceptor defects in Oxides are not predicted [4,5]. In this presentation, we argue that the self interaction error (SIE) inherent to semi-local functionals is responsible for the failures of LSDA and demonstrate through various examples that beyond

  10. Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing

    KAUST Repository

    Zhou, BingPu; Xu, Wei; Syed, Ahad; Chau, Yeungyeung; Chen, Longqing; Chew, Basil; Yassine, Omar; Wu, Xiaoxiao; Gao, Yibo; Zhang, Jingxian; Xiao, Xiao; Kosel, Jü rgen; Zhang, Xixiang; Yao, Zhaohui; Wen, Weijia

    2015-01-01

    Magnetically functionalized PDMS-based micropillar arrays have been successfully designed, fabricated and implanted for controllable microfluidic mixing. The arrangement of PDMS micropillar arrays inside the microchannel can be flexibly controlled by an external magnetic field. As a consequence, the flow fields inside the microchannel can be regulated at will via magnetic activation conveniently. When a microchannel is implanted with such micropillar arrays, two microstreams can be mixed easily and controllably upon the simple application of an on/off magnetic signal. Mixing efficiencies based on micropillar arrays with different densities were investigated and compared. It was found that micropillar arrays with higher density (i.e. smaller pillar pitch) would render better mixing performance. Our microfluidic system is capable of generating highly reproducible results within many cycles of mixing/non-mixing conversion. We believe that the simple mixing-triggering method together with rapid and controllable mixing control will be extraordinarily valuable for various biological or chemical applications in the future. This journal is © The Royal Society of Chemistry 2015.

  11. Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing

    KAUST Repository

    Zhou, BingPu

    2015-03-25

    Magnetically functionalized PDMS-based micropillar arrays have been successfully designed, fabricated and implanted for controllable microfluidic mixing. The arrangement of PDMS micropillar arrays inside the microchannel can be flexibly controlled by an external magnetic field. As a consequence, the flow fields inside the microchannel can be regulated at will via magnetic activation conveniently. When a microchannel is implanted with such micropillar arrays, two microstreams can be mixed easily and controllably upon the simple application of an on/off magnetic signal. Mixing efficiencies based on micropillar arrays with different densities were investigated and compared. It was found that micropillar arrays with higher density (i.e. smaller pillar pitch) would render better mixing performance. Our microfluidic system is capable of generating highly reproducible results within many cycles of mixing/non-mixing conversion. We believe that the simple mixing-triggering method together with rapid and controllable mixing control will be extraordinarily valuable for various biological or chemical applications in the future. This journal is © The Royal Society of Chemistry 2015.

  12. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    OpenAIRE

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include...

  13. Effect of the double-counting functional on the electronic and magnetic properties of half-metallic magnets using the GGA+U method

    International Nuclear Information System (INIS)

    Tsirogiannis, Christos; Galanakis, Iosif

    2015-01-01

    Methods based on the combination of the usual density functional theory (DFT) codes with the Hubbard models are widely used to investigate the properties of strongly correlated materials. Using first-principle calculations we study the electronic and magnetic properties of 20 half-metallic magnets performing self-consistent GGA+U calculations using both the atomic-limit (AL) and around-mean-field (AMF) functionals for the double counting term, used to subtract the correlation part from the DFT total energy, and compare these results to the usual generalized-gradient-approximation (GGA) calculations. Overall the use of AMF produces results similar to the GGA calculations. On the other hand the effect of AL is diversified depending on the studied material. In general the AL functional produces a stronger tendency towards magnetism leading in some cases to unphysical electronic and magnetic properties. Thus the choice of the adequate double-counting functional is crucial for the results obtained using the GGA+U method. - Highlights: • Ab initio study of half-metallic magnets. • Role of electronic correlations. • Double-counting term. • Atomic-limit vs around-mean-field functionals

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  15. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  16. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  18. Systolic function evaluated with cardiovascular magnetic resonance imaging in HIV-infected patients

    Directory of Open Access Journals (Sweden)

    Leonie Scholtz

    2016-11-01

    Objectives: To ascertain whether there were any morphological abnormalities or systolic functional impairments on CMR in untreated asymptomatic HIV-infected patients, compared with HIV-uninfected control individuals. Methods: The CMR studies were performed using a 1.5-T whole-body clinical magnetic resonance 16-channel scanner (Achieva, Philips Medical Systems, Best, The Netherlands, using a cardiac five-element phased-array receiver coil (SENSE coil. Functional assessment was performed on 36 HIV-infected patients and the findings compared with 35 HIV-uninfected control patients who were matched for age and sex. Results: There was no significant difference in systolic function between the HIV-uninfected and the HIV-infected patients. The left ventricular end diastolic mass (LVEDM was slightly higher in the HIV-infected group, but this was statistically insignificant. Conclusion: No significant differences were found regarding the CMR systolic functional analysis and morphological parameters between the HIV-infected and the healthy volunteers.

  19. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  20. Are trinuclear superhalogens promising candidates for building blocks of novel magnetic materials? A theoretical prospect from combined broken-symmetry density functional theory and ab initio study.

    Science.gov (United States)

    Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2013-08-07

    The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.

  1. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    Science.gov (United States)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  2. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    Science.gov (United States)

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  3. Cardiac Function After Multimodal Breast Cancer Therapy Assessed With Functional Magnetic Resonance Imaging and Echocardiography Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heggemann, Felix, E-mail: felix.heggemann@umm.de [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Grotz, Hanna; Welzel, Grit [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Dösch, Christina [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Hansmann, Jan [Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Kraus-Tiefenbacher, Uta [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Attenberger, Ulrike; Schönberg, Stephan Oswald [German Center for Cardiovascular Research, Mannheim (Germany); Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Borggrefe, Martin [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Papavassiliu, Theano [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

    2015-11-15

    Purpose: Breast intensity modulated radiation therapy (IMRT) reduces high-dose heart volumes but increases low-dose volumes. We prospectively assessed heart changes after 3D conformal RT (3DCRT) and IMRT for left-sided breast cancer. Heart dose was analyzed individually, 3DCRT patients were moderately exposed, and IMRT was performed only in patients with unacceptably high heart doses upon 3DCRT planning. Methods and Materials: In 49 patients (38 patients received 3DCRT; 11 patients received IMRT; and 20 patients received neoadjuvant or adjuvant chemotherapy) magnetic resonance imaging (MRI) and echocardiography were performed before and at 6, 12, and 24 months after treatment. Results: Mean heart dose for IMRT was 12.9 ± 3.9 Gy versus 4.5 ± 2.4 Gy for 3DCRT. Heart volumes receiving >40 Gy were 2.6% (3DCRT) versus 1.3% (IMRT); doses were >50 Gy only with 3DCRT. Temporary ejection fraction (EF) decrease was observed on MRI after 6 months (63%-59%, P=.005) resolving at 24 months. Only 3 patients had pronounced largely transient changes of EF and left ventricular enddiastolic diameter (LVEDD). Mitral (M) and tricuspid (T) annular plane systolic excursion (MAPSE and TAPSE) were reduced over the whole cohort (still within normal range). After 24 months left ventricular remodeling index decreased in patients receiving chemotherapy (0.80 vs 0.70, P=.028). Neither wall motion abnormalities nor late enhancements were found. On echocardiography, in addition to EF findings that were similar to those on MRI, global strain was unchanged over the whole cohort at 24 months after a transient decrease at 6 and 12 months. Longitudinal strain decreased in the whole cohort after 24 months in some segments, whereas it increased in others. Conclusions: Until 24 months after risk-adapted modern multimodal adjuvant therapy, only subclinical cardiac changes were observed in both 3DCRT patients with inclusion of small to moderate amounts of heart volume in RT tangents and

  4. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia

    Science.gov (United States)

    Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.

    2017-04-01

    Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.

  5. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  6. A portable single-sided magnet system for remote NMR measurements of pulmonary function.

    Science.gov (United States)

    Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko

    2014-12-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.

  7. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  8. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy.

    Science.gov (United States)

    Barnard, Alison M; Willcocks, Rebecca J; Finanger, Erika L; Daniels, Michael J; Triplett, William T; Rooney, William D; Lott, Donovan J; Forbes, Sean C; Wang, Dah-Jyuu; Senesac, Claudia R; Harrington, Ann T; Finkel, Richard S; Russman, Barry S; Byrne, Barry J; Tennekoon, Gihan I; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2018-01-01

    To provide evidence for quantitative magnetic resonance (qMR) biomarkers in Duchenne muscular dystrophy by investigating the relationship between qMR measures of lower extremity muscle pathology and functional endpoints in a large ambulatory cohort using a multicenter study design. MR spectroscopy and quantitative imaging were implemented to measure intramuscular fat fraction and the transverse magnetization relaxation time constant (T2) in lower extremity muscles of 136 participants with Duchenne muscular dystrophy. Measures were collected at 554 visits over 48 months at one of three imaging sites. Fat fraction was measured in the soleus and vastus lateralis using MR spectroscopy, while T2 was assessed using MRI in eight lower extremity muscles. Ambulatory function was measured using the 10m walk/run, climb four stairs, supine to stand, and six minute walk tests. Significant correlations were found between all qMR and functional measures. Vastus lateralis qMR measures correlated most strongly to functional endpoints (|ρ| = 0.68-0.78), although measures in other rapidly progressing muscles including the biceps femoris (|ρ| = 0.63-0.73) and peroneals (|ρ| = 0.59-0.72) also showed strong correlations. Quantitative MR biomarkers were excellent indicators of loss of functional ability and correlated with qualitative measures of function. A VL FF of 0.40 was an approximate lower threshold of muscle pathology associated with loss of ambulation. Lower extremity qMR biomarkers have a robust relationship to clinically meaningful measures of ambulatory function in Duchenne muscular dystrophy. These results provide strong supporting evidence for qMR biomarkers and set the stage for their potential use as surrogate outcomes in clinical trials.

  9. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  10. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2014-01-01

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe 3 O 4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  11. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  12. Neural Correlates of Symptom Dimensions in Pediatric Obsessive-Compulsive Disorder: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Gilbert, Andrew R.; Akkal, Dalila; Almeida, Jorge R. C.; Mataix-Cols, David; Kalas, Catherine; Devlin, Bernie; Birmaher, Boris; Phillips, Mary L.

    2009-01-01

    The use of functional magnetic resonance imaging on a group of pediatric subjects with obsessive compulsive disorder reveals that this group has reduced activity in neural regions underlying emotional processing, cognitive processing, and motor performance as compared to control subjects.

  13. Organization of the human motor system as studied by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mattay, Venkata S.; Weinberger, Daniel R.

    1999-01-01

    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI), because of its superior resolution and unlimited repeatability, can be particularly useful in studying functional aspects of the human motor system, especially plasticity, and somatotopic and temporal organization. In this survey, while describing studies that have reliably used BOLD fMRI to examine these aspects of the motor system, we also discuss studies that investigate the neural substrates underlying motor skill acquisition, motor imagery, production of motor sequences; effect of rate and force of movement on brain activation and hemispheric control of motor function. In the clinical realm, in addition to the presurgical evaluation of neurosurgical patients, BOLD fMRI has been used to explore the mechanisms underlying motor abnormalities in patients with neuropsychiatric disorders and the mechanisms underlying reorganization or plasticity of the motor system following a cerebral insult

  14. Uncomplicated obesity is associated with abnormal aortic function assessed by cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Channon Keith M

    2008-02-01

    Full Text Available Abstract Aims Obese subjects with insulin resistance and hypertension have abnormal aortic elastic function, which may predispose them to the development of left ventricular dysfunction. We hypothesised that obesity, uncomplicated by other cardiovascular risk factors, is independently associated with aortic function. Methods and results We used magnetic resonance imaging to measure aortic compliance, distensibility and stiffness index in 27 obese subjects (BMI 33 kg/m2 without insulin resistance and with normal cholesterol and blood pressure, and 12 controls (BMI 23 kg/m2. Obesity was associated with reduced aortic compliance (0.9 ± 0.1 vs. 1.5 ± 0.2 mm2/mmHg in controls, p -1 × 10-3, p Conclusion Aortic elastic function is abnormal in obese subjects without other cardiovascular risk factors. These findings highlight the independent importance of obesity in the development of cardiovascular disease.

  15. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Yoshino, Atsuo; Okamoto, Yasumasa; Doi, Mitsuru; Okada, Go; Takamura, Masahiro; Ichikawa, Naho; Yamawaki, Shigeto

    2017-01-01

    Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS). However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder. PMID:29163243

  17. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Atsuo Yoshino

    2017-11-01

    Full Text Available Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS. However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder.

  18. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  19. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  20. Spin and orbital magnetism of coinage metal trimers (Cu3, Ag3, Au3: A relativistic density functional theory study

    Directory of Open Access Journals (Sweden)

    Mahdi Afshar

    2013-11-01

    Full Text Available We have demonstrated electronic structure and magnetic properties of Cu3, Ag3 and Au3 trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21μB was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.

  1. Pre-clinical functional magnetic resonance imaging. Pt. I. The kidney

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, Frank G.; Kalayciyan, Raffi; Chacon-Caldera, Jorge; Zimmer, Fabian; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine

    2014-07-01

    The prevalence of chronic kidney disease (CKD) is increasing worldwide. In Europe alone, at least 8% of the population currently has some degree of CKD. CKD is associated with serious comorbidity, reduced life expectancy, and high economic costs; hence, the early detection and adequate treatment of kidney disease is important. Pre-clinical research can not only give insights into the mechanisms of the various kidney diseases but it also allows for investigating the outcome of new drugs developed to treat kidney disease. Functional magnetic resonance imaging provides non-invasive access to tissue and organ function in animal models. Advantages over classical animal research approaches are numerous: the same animal might be repeatedly imaged to investigate a progress or a treatment of disease over time. This has also a direct impact on animal welfare and the refinement of classical animal experiments as the number of animals in the studies might be reduced. In this paper, we review current state of the art in functional magnetic resonance imaging with a focus on pre-clinical kidney imaging.

  2. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  3. Pre-clinical functional magnetic resonance imaging. Pt. I. The kidney

    International Nuclear Information System (INIS)

    Zoellner, Frank G.; Kalayciyan, Raffi; Chacon-Caldera, Jorge; Zimmer, Fabian; Schad, Lothar R.

    2014-01-01

    The prevalence of chronic kidney disease (CKD) is increasing worldwide. In Europe alone, at least 8% of the population currently has some degree of CKD. CKD is associated with serious comorbidity, reduced life expectancy, and high economic costs; hence, the early detection and adequate treatment of kidney disease is important. Pre-clinical research can not only give insights into the mechanisms of the various kidney diseases but it also allows for investigating the outcome of new drugs developed to treat kidney disease. Functional magnetic resonance imaging provides non-invasive access to tissue and organ function in animal models. Advantages over classical animal research approaches are numerous: the same animal might be repeatedly imaged to investigate a progress or a treatment of disease over time. This has also a direct impact on animal welfare and the refinement of classical animal experiments as the number of animals in the studies might be reduced. In this paper, we review current state of the art in functional magnetic resonance imaging with a focus on pre-clinical kidney imaging.

  4. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  5. Density functional calculation of the electronic and magnetic properties of α-CoV2O6

    Science.gov (United States)

    Saul, Andres; Radtke, Guillaume

    2012-02-01

    In this work, the magnetic properties of the low dimensional α-CoV2O6 system have been investigated using density-functional calculations. This system is constituted of CoO6 octahedra connected by the edges and forming one dimensional linear chains. The experimental magnetization curves recorded at very low temperature show a surprising magnetization plateau at one-third of the saturation magnetization and a strong anisotropy. The estimated Co magnetic moment is large reaching a value of 4.5 μB suggesting a large orbital contribution. Our calculations show that three different magnetic configurations for the Co are possible, the lowest energy one being a high spin configuration in agreement with the S=3/2 character of the Co+2 ion observed in this compound. Spin-orbit interactions have been included in order to calculate the magnetic anisotropy and the orbital contribution to the magnetic moment. The results are discussed in terms of crystal field splitting of the 3d orbital and a tight-binding Hamiltonian. Using a broken-symmetry formalism we have evaluated the effective exchange interactions of the Heisenberg Hamiltonian. They allow us to propose the magnetic structures corresponding to the ground state and to the observed magnetization plateaus.

  6. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops

    International Nuclear Information System (INIS)

    Baikov, P.

    2013-07-01

    The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.

  7. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  8. Magnetic resonance imaging biomarkers of gastrointestinal motor function and fluid distribution

    Institute of Scientific and Technical Information of China (English)

    Asseel; Khalaf; Caroline; L; Hoad; Robin; C; Spiller; Penny; A; Gowland; Gordon; W; Moran; Luca; Marciani

    2015-01-01

    Magnetic resonance imaging(MRI) is a well established technique that has revolutionized diagnostic radiology. Until recently, the impact that MRI has had in the assessment of gastrointestinal motor function and bowel fluid distribution in health and in disease has been more limited, despite the novel insights that MRI can provide along the entire gastrointestinal tract. MRI biomarkers include intestinal motility indices, small bowel water content and whole gut transit time. The present review discusses new developments and applications of MRI in the upper gastrointestinal tract, the small bowel and the colon reported in the literature in the last 5 years.

  9. Interaction of electromagnetic radiation with magnetically functionalized CNT nanocomposite in the subterahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Atdaev, A.; Danilyuk, A. L.; Labunov, V. A.; Prischepa, S. L., E-mail: prischepa@bsuir.by [Belarusian State University of Informatics and Radioelectronics (Belarus); Pavlov, A. A. [Russian Academy of Sciences, Institute of Microelectronics Nanotechnologies (Russian Federation); Basaev, A. S.; Shaman, Yu. P. [SMC Technological Center (Russian Federation)

    2016-12-15

    The interaction of electromagnetic radiation with a magnetically functionalized nanocomposite based on carbon nanotubes (CNTs) is considered using the model of random distribution of ferromagnetic nanoparticles in the carbon matrix characterized by the presence of resistive–inductive–capacitive coupling (contours). The model is based on the representation of the nanocomposite as a system consisting of the CNT matrix, ferromagnetic nanoparticles, and the interfaces between CNTs and nanoparticles. The wide range of possible resonant phenomena caused both by the presence of contours and the properties of the CNT nanocomposite is shown.

  10. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  11. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  12. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Solbrig, Stefan

    2008-01-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  13. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  14. The relationship between functional magnetic resonance imaging activation, diffusion tensor imaging, and training effects.

    Science.gov (United States)

    Farrar, Danielle; Budson, Andrew E

    2017-04-01

    While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.

  15. Identification and adjustment of experimental occlusal interference using functional magnetic resonance imaging

    OpenAIRE

    Oda, Masafumi; Yoshino, Kenichi; Tanaka, Tatsurou; Shiiba, Shunji; Makihara, Eri; Miyamoto, Ikuya; Nogami, Shinnosuke; Kito, Shinji; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishimura, Shun; Murakami, Keita; Koga, Masahiro; Kawagishi, Shigenori; Yoshioka, Izumi

    2014-01-01

    Background The purpose of this study was to use functional magnetic resonance imaging (fMRI) to quantify changes in brain activity during experimental occlusal interference. Methods Fourteen healthy volunteers performed a rhythmical tapping occlusion task with experimental occlusal interference of the right molar tooth at 0 mm (no occlusion), 0.5 mm, and 0.75 mm. The blood-oxygen-level dependent (BOLD) signal was quantified using statistical parametric mapping and compared between rest period...

  16. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P. [Moscow State Univ. (Russian Federation). D.V. Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen, Garching (Germany). Physics Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-07-15

    The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.

  17. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Hashida, Masahiro; Yamauchi, Syuichi; Wu, Jing-Long

    2001-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  18. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  19. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  20. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  2. Gadolinium-DTPA-enhanced magnetic resonance imaging and functional outcome in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Kitamura, Jun; Shimada, Toshio; Murakami, Yo; Ochiai, Koichi; Inoue, Shin-ichi; Ishibashi, Yutaka; Kinoshita, Yoshihisa; Sano, Kazuya; Murakami, Rinji

    1999-01-01

    This study was designed to test the hypothesis that Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced magnetic resonance images (MRI) reflect the severity of ischemic injury during the acute and chronic phases of myocardial infarction (MI). Twenty-nine patients with their first acute MI underwent Gd-DTPA-enhanced MRI in the first week (4.2±0.3 days) and at 1 month after onset. Pairs of left ventriculograms were compared with Gd-DTPA-enhanced magnetic resonance images, classified into 3 pattern groups: hyper-enhancement, with and without a central hypo-enhanced region (P1 and P2, respectively), and non-enhancement (P3). In the acute phase of MI, P1 was found in 10, P2 in 11, and P3 in 8 patients. One month later, the image pattern had changed from P1 to P2 in a single patient, from P2 to P3 in 4 patients, and had remained identical in the others. Patients with P3 showed improvement of anterior wall motion in the 1-month follow-up study, and had higher TIMI flow grades and lower peak creatine kinase values than those without recovery. Thus, Gd-DTPA-enhanced magnetic resonance images, closely reflecting the severity of myocardial injury, are useful in predicting myocardial functional recovery after MI. (author)

  3. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  4. Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

    Directory of Open Access Journals (Sweden)

    Arūnas Jagminas

    2017-08-01

    Full Text Available Biocompatible superparamagnetic iron oxide nanoparticles (NPs through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM, atomic force microscopy (AFM, FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS, and X-ray photoelectron spectroscopy (XPS of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.

  5. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica

    International Nuclear Information System (INIS)

    Li Guoliang; Zhao Zongshan; Liu Jiyan; Jiang Guibin

    2011-01-01

    A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe 3 O 4 ), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N 2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe 3 O 4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 10 5 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe 3 O 4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe 3 O 4 is suitable for repeated use in heavy metal removal from different water matrices.

  6. Does polycystic ovary syndrome affect cognition? A functional magnetic resonance imaging study exploring working memory.

    Science.gov (United States)

    Soleman, Remi S; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Hompes, Peter G A; Drent, Madeleine L; Lambalk, Cornelis B

    2016-05-01

    To study effects of overexposure to androgens and subsequent antiandrogenic treatment on brain activity during working memory processes in women with polycystic ovary syndrome (PCOS). In this longitudinal study, working memory function was evaluated with the use of functional magnetic resonance imaging (MRI) in women with PCOS before and after antiandrogenic treatment. Department of reproductive medicine, university medical center. Fourteen women with PCOS and with hyperandrogenism and 20 healthy control women without any features of PCOS or other hormonal disorders. Antiandrogenic hormone treatment. Functional MRI response during a working memory task. At baseline women with PCOS showed more activation than the control group within the right superior parietal lobe and the inferior parietal lobe during task (all memory conditions). Task performance (speed and accuracy) did not differ between the groups. After antiandrogenic treatment the difference in overall brain activity between the groups disappeared and accuracy in the high memory load condition of the working memory task increased in women with PCOS. Women with PCOS may need additional neural resources during a working memory task compared with women without PCOS, suggesting less efficient executive functioning. This inefficiency may have effects on daily life functioning of women with PCOS. Antiandrogenic treatment appears to have a beneficial effect on this area of cognitive functioning. NTR2493. Copyright © 2016. Published by Elsevier Inc.

  7. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    International Nuclear Information System (INIS)

    McClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O'Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B.T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-01-01

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  8. Evaluation of cerebral blood flow, cerebral metabolism and cerebral function by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro; Naruse, Shoji; Horikawa, Yoshiharu; Ueda, Satoshi; Furuya, Seiichi.

    1995-01-01

    The magnetic resonance (MR) method has the unique potentiality of detecting cerebral metabolites, cerebral blood flow and brain functions in a noninvasive fashion. We have developed several MR techniques to detect these cerebral parameters with the use of clinical MRI scanners. By modifying the MR spectroscopy (MRS) technique, both 31 P- and 1 H-MRS data can be obtained from multiple, localized regions (multi-voxel method) of the brain, and the distribution of each metabolite in the brain can be readily visualized by metabolite mapping. The use of diffusion weighted images (DWI) permits visualization of the anisotropy of water diffusion in white matter, and based on the difference of diffusion coefficiency, the differential diagnosis between epidermoid tumor and arachnoid cyst can be made. By employing dynamic-MRI (Dyn-MRI) with Gd-DTPA administration, it is possible to examine the difference in blood circulation between brain tumor tissue and normal tissue, as well as among different types of brain tumors. By using magnetization transfer contrast (MTC) imaging, it has become possible to detect brain tumors, and with a small dose of Gd-DTPA, to visualize the vascular system. Functional MRI (fMRI) visualizes the activated brain by using conventional gradient echo technique on conventional MRI scanners. This method has the unique characteristic of detecting a brain function with high spatial and temporal resolution by using the intrinsic substance. Moreover, the localization of motor and sensory areas was detected by noninvasive means within few minutes. The fMRI procedure will be used in the future to analyze the higher and complex brain functions. In conclusion, multi-modality MR is a powerful technique that is useful for investigating the pathogenesis of many diseases, and provides a noninvasive analytic modality for studying brain function. (author)

  9. Evaluation of long-term effects of 50-Hz magnetic fields on immune functions in humans

    Energy Technology Data Exchange (ETDEWEB)

    Touitou, Y.; Auzeby, A.; Camus, F. [Faculty of Medicine Pierre et Marie Curie, 75 - Paris (France); Lambrozo, J.; Souques, M.; Verrier, A. [Gaz de France (EDF/GDF), SEM, 75 - Paris (France)

    2006-07-01

    The relationship between exposure to 50-Hz magnetic fields (E.L.F.) and human health is of increasing interest since this exposure has been implicated in many different diseases including cancers in epidemiological studies, though the results are controversial. The identification of possible mechanisms of interaction between E.L.F. and biological systems that could provide a biological plausibility to the observed effects has failed so far. In this study we investigate the possible chronic effects of exposure to E.L.F. in humans. We examine the circadian rhythm of CD{sub 3}, CD{sub 4}, CD{sub 8}, Nk cells and B cells in 15 men (38.0{+-}8.9 yrs) exposed chronically and daily for a period of 1-20 years, in the workplace and at home, to a 50-Hz magnetic field in search of any cumulative effect from those chronic conditions of exposure. The weekly geometric mean of individual exposures ranged from 0.1 to 2.6 {mu}T. The results are compared to those for 15 unexposed men similar in a (39.4 {+-}1.2 yrs), with the same synchronization and physical activity who served as controls (individual exposures ranged from 0.004 to 0.092 {mu}T). Blood samples were taken hourly from 2000 to 0800. This work shows that subjects exposed over a long period (up to 20 years) and on a daily basis to magnetic fields experienced no changes in their plasma immune variables. Our data suggest therefore that magnetic fields have no cumulative effects on immune functions, at least for the variables under study. (authors)

  10. Towards The Generation of Functionalized Magnetic Nanowires to Target Leukemic Cells

    KAUST Repository

    Alsharif, Nouf

    2016-04-01

    In recent years, magnetic nanowires (NWs) have been widely used for their therapeutic potential in biomedical applications. The use of iron (Fe) NWs combines two important properties, biocompatibility and remote manipulation by magnetic fields. In addition the NWs can be coated and functionalized to target cells of interest and, upon exposure to an alternating magnetic field, have been shown to induce cell death on several types of adherent cells, including several cancer cell types. For suspension cells, however, using these NWs has been much less effective primarily due to the free-floating nature of the cells minimizing the interaction between them and the NWs. Leukemic cells express higher levels of the cell surface marker CD44 (Braumüller, Gansauge, Ramadani, & Gansauge, 2000), compared to normal blood cells. The goal of this study was to functionalize Fe NWs with a specific monoclonal antibody towards CD44 in order to target leukemic cells (HL-60 cells). This approach is expected to increase the probability of a specific binding to occur between HL-60 cells and Fe NWs. Fe NWs were fabricated with an average diameter of 30-40 nm and a length around 3-4 μm. Then, they were coated with both 3-Aminopropyl-triethoxysilane and bovine serum albumin (BSA) in order to conjugate them with an anti-CD44 antibody (i.e. anti-CD44-iron NWs). The antibody interacts with the amine group in the BSA via the 1-Ethyl-3-3-dimethylaminopropyl-carbodiimide and N-Hydroxysuccinimide coupling. The NWs functionalization was confirmed using a number of approaches including: infrared spectroscopy, Nanodrop to measure the concentration of CD44 antibody, as well as fluorescent-labeled secondary antibody staining to detect the primary CD44 antibody. To confirm that the anti-CD44-iron NWs and bare Fe NWs, in the absence of a magnetic field, were not toxic to HL-60 cells, cytotoxicity assays using XTT (2,3-Bis-2-Methoxy-4-Nitro-5-Sulfophenyl-2H-Tetrazolium-5-Carboxanilide) were performed and

  11. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    Science.gov (United States)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  12. Functional Magnetic Stimulation of Inspiratory and Expiratory Muscles in Subjects With Tetraplegia.

    Science.gov (United States)

    Zhang, Xiaoming; Plow, Ela; Ranganthan, Vinoth; Huang, Honglian; Schmitt, Melissa; Nemunaitis, Gregory; Kelly, Clay; Frost, Frederick; Lin, Vernon

    2016-07-01

    Respiratory complications are major causes of morbidity and mortality in persons with a spinal cord injury, partly because of respiratory muscle paralysis. Earlier investigation has demonstrated that functional magnetic stimulation (FMS) can be used as a noninvasive technology for activating expiratory muscles, thus producing useful expiratory functions (simulated cough) in subjects with spinal cord injury. To evaluate the effectiveness of FMS for conditioning inspiratory and expiratory muscles in persons with tetraplegia. A prospective before and after trial. FMS Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH. Six persons with tetraplegia. Each subject participated in a 6-week FMS protocol for conditioning the inspiratory and expiratory muscles. A magnetic stimulator was used with the center of a magnetic coil placed at the C7-T1 and T9-T10 spinous processes, respectively. Pulmonary function tests were performed before, during, and after the protocol. Respiratory variables included maximal inspiratory pressure (MIP), inspiratory reserve volume (IRV), peak inspiratory flow (PIF), maximal expiratory pressure (MEP), expiratory reserve volume (ERV), and peak expiratory flow (PEF). After 6 weeks of conditioning, the main outcome measurements (mean ± standard error) were as follows: MIP, 89.6 ± 7.3 cm H2O; IRV, 1.90 ± 0.34 L; PIF, 302.4 ± 36.3 L/min; MEP, 67.4 ± 11.1 cm H2O; ERV, 0.40 ± 0.06 L; and PEF, 372.4 ± 31.9 L/min. These values corresponded to 117%, 107%, 136%, 109%, 130%, and 124% of pre-FMS conditioning values, respectively. Significant improvements were observed in MIP (P = .022), PIF (P = .0001), and PEF (P = .0006), respectively. When FMS was discontinued for 4 weeks, these values showed decreases from their values at the end of the conditioning protocol, which suggests that continual FMS may be necessary to maintain improved respiratory functions. FMS conditioning of the inspiratory and expiratory muscles improved

  13. Quantitative evaluations of left ventricular function obtained by electrocardiographically-gated magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takeda, Tohru; Iida, Kaname; Sugishita, Yasuro; Anno, Izumi; Akisada, Masayoshi; Matsuda, Mitsuo; Akatsuka, Takao; Koseki, Susumu.

    1989-01-01

    Using electrocardiographically-gated magnetic resonance imaging, regional cardiac function was evaluated in 12 normal volunteers and in 10 cases of old myocardial infarction. The optimal short axis of the left ventricle was selected at the chordae tendineae level. The left ventricle was divided into 12 segments using a computer-aided system, and percentile shortening fraction (%SF) and percentile wall thickening (%WT) were calculated in each segment by the fixed coordinate method. In the normal volunteers, heterogeneity of both %FS and %WT was observed, ranging from 25±13% and 37±13%, respectively in the septal segment, to 49±13% and 60±21%, respectively in the posterior segment. In the cases of myocardial infarction, decreased %FS and %WT were detected at the affected regions. The abnormal regions revealed by %WT tended to be narrower than those revealed by %FS. Thus the MR technique at the optimal axis may be useful for quantitative evaluations of regional cardiac function. (author)

  14. Functional magnetic resonance imaging-controlled neuronavigator-guided brain surgery: a case report.

    Science.gov (United States)

    Morioka, J; Nishizaki, T; Tokumaru, T; Uesugi, S; Yamashita, K; Ito, H; Suzuki, M

    2001-05-01

    The effectiveness of functional magnetic resonance imaging (f-MRI)-controlled and navigator-guided brain surgery for a patient with a recurrent astrocytoma is demonstrated. Preoperative f-MRI was performed in order to identify the motor area and ensure that the tumour was in the left prefrontal area. A more aggressive operation was planned for the recurrent tumour. The f-MRI data were input to the MKM navigation system and during the operation the contours of the tumour and motor area were visualised b y the microscope of the navigation system. The tumour and surrounding gliotic brain tissue were removed completely. The diagnosis was a grade III astrocytoma. The combination of the navigation system and f-MRI was useful for preoperative design of the surgical strategy, and tumour orientation during the operation, enabling aggressive surgery to be performed without functional deficits ensuing. Copyright 2001 Harcourt Publishers Ltd.

  15. Functional and magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction

    DEFF Research Database (Denmark)

    Knudsen, H B; Gelineck, J; Søjbjerg, Jens Ole

    1999-01-01

    The aim of this study was to investigate tendon integrity after surgical repair of single-tendon rotator cuff lesions. In 31 patients, 31 single-tendon repairs were evaluated. Thirty-one patients were available for clinical assessment and magnetic resonance imaging (MRI) at follow-up. A standard...... series of MR images was obtained for each. The results of functional assessment were scored according to the system of Constant. According to MRI evaluation, 21 (68%) patients had an intact or thinned rotator cuff and 10 (32%) had recurrence of a full-thickness cuff defect at follow-up. Patients...... with an intact or thinned rotator cuff had a median Constant score of 75.5 points; patients with a full-thickness cuff defect had a median score of 62 points. There was no correlation between tendon integrity on postoperative MR images and functional outcome. Patients with intact or thinned cuffs did not have...

  16. Magnetic induction pneumography: a planar coil system for continuous monitoring of lung function via contactless measurements

    Directory of Open Access Journals (Sweden)

    Doga Gursoy

    2010-11-01

    Full Text Available Continuous monitoring of lung function is of particular interest to the mechanically ventilated patients during critical care. Recent studies have shown that magnetic induction measurements with single coils provide signals which are correlated with the lung dynamics and this idea is extended here by using a 5 by 5 planar coil matrix for data acquisition in order to image the regional thoracic conductivity changes. The coil matrix can easily be mounted onto the patient bed, and thus, the problems faced in methods that use contacting sensors can readily be eliminated and the patient comfort can be improved. In the proposed technique, the data are acquired by successively exciting each coil in order to induce an eddy-current density within the dorsal tissues and measuring the corresponding response magnetic field strength by the remaining coils. The recorded set of data is then used to reconstruct the internal conductivity distribution by means of algorithms that minimize the residual norm between the estimated and measured data. To investigate the feasibility of the technique, the sensitivity maps and the point spread functions at different locations and depths were studied. To simulate a realistic scenario, a chest model was generated by segmenting the tissue boundaries from NMR images. The reconstructions of the ventilation distribution and the development of an edematous lung injury were presented. The imaging artifacts caused by either the incorrect positioning of the patient or the expansion of the chest wall due to breathing were illustrated by simulations.

  17. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  18. Proton nuclear magnetic resonance study on the barrier function of pig corneal epithelium and endothelium

    International Nuclear Information System (INIS)

    Yokoi, Norihiko; Kinoshita, Shigeru; Morimoto, Taketoshi; Yoshizaki, Kazuo.

    1995-01-01

    Using gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) as a tracer, the barrier function of the corneal epithelium and endothelium was evaluated by proton nuclear magnetic resonance. Whole pig eyes and cornea excised with scleral rim, which had been incubated in dextran-added Gd-DTPA solution, were subjected to T 1 relaxation measurement and magnetic resonance imaging (MRI). After incubation, the T 1 relaxation rate (1/T 1 ) of the excised cornea increased to a steady value, whereas that of the cornea from the whole eye increased only slightly. These results indicated that the increase in the T 1 relaxation rate of the excised cornea was attributable to Gd-DTPA penetration from the corneal endothelium and that the corneal epithelium exhibited a strong barrier function against Gd-DTPA entry. The MRI study also confirmed the strong barrier, enhanced signals being detected within the aqueous fluid in the T 1 -weighted image only when the corneal epithelium was abraded. Since Gd-DTPA scarcely penetrates the intact corneal epithelium, Gd-DTPA-enhanced MRI shows potential as a quantitative tracer in evaluating epithelial barrier disruption. (author)

  19. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    Chalbot, Marie-Cecile G.; Kavouras, Ilias G.

    2014-01-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1 H- and 13 C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  20. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  1. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude (L = 7)

    International Nuclear Information System (INIS)

    Singh, N.; Raitt, W.J.; Yasuhara, F.

    1982-01-01

    By using averaged data from ATS 6, ion energy and pitch angle distribution functions were examined for a magnetically quiet day (July 18, 1974). The data showed that for both field-aligned and perpendicular fluxes, the population had a mixture of characteristic energies. It was found that over three different energy bands in the range 3-600 eV the distribution functions could be fairly well approximated by Maxwellian distributions with temperatures in the ranges 3-10 eV, 30-50 eV, and approximately 70 eV in energy bands of 3-30 eV, 30-140 eV, and 140-600 eV, respectively. Pitch angle distributions were found to vary the local time; strong field-aligned particle fluxes were measured in the midnight and afternoon sectors, minor field-aligned components persisted to some extent at all times, especially at low energies (E 0 was seen. By using the assumption that the plasma was corotating with the satellite, we have examined pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution. It was found that a magnetic noise of power spectral density b 2 -3 γ 2 /Hz belonging to electromagnetic ion cyclotron mode (L mode) near the ion cyclotron frequency could be very effective in trapping the field-aligned fluxes by pitch angle scattering

  2. Recombination yield of geminate radical pairs in low magnetic fields - A Green's function method

    International Nuclear Information System (INIS)

    Doktorov, A.B.; Hansen, M.J.; Pedersen, J. Boiden

    2006-01-01

    An analytic expression for the recombination yield of a geminate radical pair with a single spin one half nuclei is derived. The expression is valid for any field strength of the static magnetic field. It is assumed that the spin mixing is caused solely by the hyperfine interaction of the nuclear spin and the difference in Zeeman energies of the two radical partners, that the recombination occurs at the distance of closest approach, and that there is a locally strong dephasing at contact. This is a special result of a new general approach where a Green's function technique is used to recast the stochastic Liouville equation into a low dimensional matrix equation that is particularly convenient for locally strong dephasing systems. The equation is expressed in terms of special values (determined by the magnetic parameters) of the Green's function for the relative motion of the radicals and it is therefore valid for any motional model, e.g. diffusion, one and two site models. The applicability of the strong dephasing approximation is illustrated by comparison with numerical exact results

  3. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review.

    Science.gov (United States)

    Young, Kymberly D; Zotev, Vadim; Phillips, Raquel; Misaki, Masaya; Drevets, Wayne C; Bodurka, Jerzy

    2018-04-23

    Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy. © 2018 The Author. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  4. Functional magnetic resonance imaging with ultra-high fields; Funktionelle Magnetresonanztomographie bei ultrahohen Feldern

    Energy Technology Data Exchange (ETDEWEB)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E. [Medizinische Universitaet Wien, Exzellenzzentrum Hochfeld-MR, Wien (Austria); Medizinische Universitaet Wien, Zentrum fuer Medizinische Physik und Biomedizinische Technik, Wien (Austria); Fischmeister, F.P.S. [Medizinische Universitaet Wien, Exzellenzzentrum Hochfeld-MR, Wien (Austria); Universitaet Wien, Fakultaet fuer Psychologie, Wien (Austria)

    2010-02-15

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [German] Die funktionelle Magnetresonanztomographie (fMRT) stellt zurzeit die wichtigste Methode zur nichtinvasiven Funktionslokalisation im Gehirn dar. Mit der Verfuegbarkeit von MRT-Geraeten mit Magnetfeldstaerken von 4 Tesla (T) und darueber ergeben sich neue Moeglichkeiten, mittels fMRT die neuronale Aktivitaet in bislang unerreichter Genauigkeit zu untersuchen. In diesem Artikel zeigen wir anhand mehrerer Studien bei 7 T, in wieweit die Zugewinne an Sensitivitaet und Spezifitaet verwendet werden koennen, um die bisherigen Grenzen der fMRT-Aufloesung in raeumlicher und zeitlicher Hinsicht auszuweiten. Die neuen Herausforderungen, die mit dem Schritt zu ultrahohen Magnetfeldern einhergehen, werden dabei ebenso diskutiert wie moegliche Ansaetze zu deren Loesung. (orig.)

  5. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  6. Effect of midazolam on memory: a study of process dissociation procedure and functional magnetic resonance imaging.

    Science.gov (United States)

    Tian, S Y; Zou, L; Quan, X; Zhang, Y; Xue, F S; Ye, T H

    2010-06-01

    To assess the effects of midazolam on explicit and implicit memories, 12 volunteers were randomly divided into the two groups: one with an Observer's Assessment of Alertness/Sedation score of 3 (mild sedation) and one with a score of 1 (deep sedation). Blood oxygen-level-dependent functional magnetic resonance imaging was measured before and during an auditory stimulus, then with midazolam sedation, and then during a second auditory stimulus with continuous midazolam sedation. After 4 h, explicit and implicit memories were assessed. There was no evidence of explicit memory at the two levels of midazolam sedation. Implicit memory was retained at a mild level of midazolam sedation but absent at a deep level of midazolam sedation. At a mild level of midazolam sedation, activation of all brain areas by auditory stimulus (as measured by functional magnetic resonance imaging) was uninhibited. However, a deep level of midazolam sedation depressed activation of the superior temporal gyrus by auditory stimulus. We conclude that midazolam does not abolish implicit memory at a mild sedation level, but can abolish both explicit and implicit memories at a deep sedation level. The superior temporal gyrus may be one of the target areas.

  7. Investigations of the human visual system using functional magnetic resonance imaging (FMRI)

    International Nuclear Information System (INIS)

    Kollias, Spyros S.

    2004-01-01

    The application of functional magnetic resonance imaging (fMRI) in studies of the visual system provided significant advancement in our understanding of the organization and functional properties of visual areas in the human cortex. Recent technological and methodological improvements allowed studies to correlate neuronal activity with visual perception and demonstrated the ability of fMRI to observe distributed neural systems and to explore modulation of neural activity during higher cognitive processes. Preliminary applications in patients with visual impairments suggest that this method provides a powerful tool for the assessment and management of brain pathologies. Recent research focuses on obtaining new information about the spatial localization, organization, functional specialization and participation in higher cognitive functions of visual cortical areas in the living human brain and in further establishment of the method as a useful clinical tool of diagnostic and prognostic significance for various pathologic processes affecting the integrity of the visual system. It is anticipated that the combined neuroimaging approach in patients with lesions and healthy controls will provide new insight on the topography and functional specialization of cortical visual areas and will further establish the clinical value of the method for improving diagnostic accuracy and treatment planning

  8. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: A practical approach

    Directory of Open Access Journals (Sweden)

    Vido Diane

    2008-07-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR has excellent capabilities to assess ventricular systolic function. Current clinical scenarios warrant routine evaluation of ventricular diastolic function for complete evaluation, especially in congestive heart failure patients. To our knowledge, no systematic assessment of diastolic function over a range of lusitropy has been performed using CMR. Methods and Results Left ventricular diastolic function was assessed in 31 subjects (10 controls who underwent CMR and compared with Transthoracic echocardiogram (TTE evaluation of mitral valve (MV and pulmonary vein (PV blood flow. Blood flow in the MV and PV were successfully imaged by CMR for all cases (31/31,100% while TTE evaluated flow in all MV (31/31,100% but only 21/31 PV (68% cases. Velocities of MV flow (E and A measured by CMR correlated well with TTE (r = 0.81, p Conclusion We have shown that there is homology between CMR and TTE for the assessment of diastolic inflow over a wide range of conditions, including normal, impaired relaxation and restrictive. There is excellent agreement of quantitative velocity measurements between CMR and TTE. Diastolic blood flow assessment by CMR can be performed in a single scan, with times ranging from 20 sec to 3 min, and we show that there is good indication for applying CMR to assess diastolic conditions, either as an adjunctive test when evaluating systolic function, or even as a primary test when TTE data cannot be obtained.

  9. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  10. The effects of rehearsal on the functional neuroanatomy of episodic autobiographical and semantic remembering: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Svoboda, Eva; Levine, Brian

    2009-03-11

    This study examined the effects of rehearsal on the neural substrates supporting episodic autobiographical and semantic memory. Stimuli were collected prospectively using audio recordings, thereby bringing under experimental control ecologically valid, naturalistic autobiographical stimuli. Participants documented both autobiographical and semantic stimuli over a period of 6-8 months, followed by a rehearsal manipulation during the 3 d preceding scanning. During functional magnetic resonance imaging scanning, participants were exposed to recordings that they were hearing for the first, second, or eighth time. Rehearsal increased the rated vividness with which information was remembered, particularly for autobiographical events. Neuroimaging findings revealed rehearsal-related suppression of activation in regions supporting episodic autobiographical and semantic memory. Episodic autobiographical and semantic memory produced distinctly different patterns of regional activation that held even after eight repetitions. Region of interest analyses further indicated a functional anatomical dissociation in response to rehearsal and memory conditions. These findings revealed that the hippocampus was specifically engaged by episodic autobiographical memory, whereas both memory conditions engaged the parahippocampal cortex. Our data suggest that, when retrieval cues are potent enough to engage a vivid episodic recollection, the episodic/semantic dissociation within medial temporal lobe structures endure even with multiple stimulus repetitions. These findings support the multiple trace theory, which predicts that the hippocampus is engaged in the retrieval of rich episodic recollection regardless of repeated reactivation such as that occurring with the passage of time.

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  12. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  13. Magnetic properties of spinels GeNi2-xCoxO4 systems: Green's function and high-temperature series expansions

    Science.gov (United States)

    El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.

    2018-06-01

    The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? and associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.

  14. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    Science.gov (United States)

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  15. Density functional theory investigation of the magnetism of 1,3,5-trithia-2,4,6-triazapentalenyl

    International Nuclear Information System (INIS)

    Zou Weidong; Liu Zuli; Wu Minghu; Yao Kailun

    2004-01-01

    An accurate full-potential density-functional method is used to study the mechanism of the origin of magnetism and of the magnetic interactions in 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA). The results shown that because of the spin polarization effect and the spin exchange coupling interactions of these atoms, the net spin magnetic moment is formed in the molecule and the spontaneous magnetic moments for the TTTA mainly come from N 1 , S 1 , S 2 atoms and the N 2 , N 3 and S 3 atoms give a little contribution to the magnetism. Our results also revealed that there exists ferromagnetic interaction in the intramolecular of TTTA

  16. Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory.

    Science.gov (United States)

    Cao, Dan; Cai, Meng-Qiu; Hu, Wang-Yu; Yu, Ping; Huang, Hai-Tao

    2011-03-14

    The origin of magnetism induced by vacancies on BaTiO(3)(001) surfaces is investigated systematically by first-principles calculations within density-functional theory. The calculated results show that O vacancy is responsible for the magnetism of the BaO-terminated surface and the magnetism of the TiO(2)-terminated surface is induced by Ti vacancy. For the BaO-terminated surface, the magnetism mainly arises from the unpaired electrons that are localized in the O vacancy basin. In contrast, for the TiO(2)-terminated surface, the magnetism mainly originates from the partially occupied O-2p states of the first nearest neighbor O atoms surrounding the Ti vacancy. These results suggest the possibility of implementing magneto-electric coupling in conventional ferroelectric materials.

  17. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes.

    Science.gov (United States)

    Czerniak, Suzanne M; Sikoglu, Elif M; Liso Navarro, Ana A; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M

    2015-06-01

    Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to 'work harder' than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.

  18. Long-time tails of the heat-conductivity time correlation functions for a magnetized plasma - a kinetic theory approach

    NARCIS (Netherlands)

    Schoolderman, A.J.; Suttorp, L.G.

    1989-01-01

    The long-time behaviour of the longitudinal and the transverse heat conductivity time correlation functions for a magnetized one-component plasma is studied by means of kinetic theory. To that end these correlation functions, which are defined as the inverse Laplace transforms of the dynamic heat

  19. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics

    International Nuclear Information System (INIS)

    Eichinger, Monika; Tetzlaff, Ralf; Puderbach, Michael; Woodhouse, Neil; Kauczor, H.-U.

    2007-01-01

    Since many pulmonary diseases present with a variable regional involvement, modalities for assessment of regional lung function gained increasing attention over the last years. Together with lung perfusion and gas exchange, ventilation, as a result of the interaction of the respiratory pump and the lungs, is an indispensable component of lung function. So far, this complex mechanism is still mainly assessed indirectly and globally. A differentiation between the individual determining factors of ventilation would be crucial for precise diagnostics and adequate treatment. By dynamic imaging of the respiratory pump, the mechanical components of ventilation can be assessed regionally. Amongst imaging modalities applicable to this topic, magnetic resonance imaging (MRI), as a tool not relying on ionising radiation, is the most attractive. Recent advances in MRI technology have made it possible to assess diaphragmatic and chest wall motion, static and dynamic lung volumes, as well as regional lung function. Even though existing studies show large heterogeneity in design and applied methods, it becomes evident that MRI is capable to visualise pulmonary function as well as diaphragmatic and thoracic wall movement, providing new insights into lung physiology. Partly contradictory results and conclusions are most likely caused by technical limitations, limited number of studies and small sample size. Existing studies mainly evaluate possible imaging techniques and concentrate on normal physiology. The few studies in patients with lung cancer and emphysema already give a promising outlook for these techniques from which an increasing impact on improved and quantitative disease characterization as well as better patient management can be expected

  20. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  1. Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease.

    Science.gov (United States)

    Pinto, Serge; Mancini, Laura; Jahanshahi, Marjan; Thornton, John S; Tripoliti, Elina; Yousry, Tarek A; Limousin, Patricia

    2011-10-01

    Among the repertoire of motor functions, although hand movement and speech production tasks have been investigated widely by functional neuroimaging, paradigms combining both movements have been studied less so. Such paradigms are of particular interest in Parkinson's disease, in which patients have specific difficulties performing two movements simultaneously. In 9 unmedicated patients with Parkinson's disease and 15 healthy control subjects, externally cued tasks (i.e., hand movement, speech production, and combined hand movement and speech production) were performed twice in a random order and functional magnetic resonance imaging detected cerebral activations, compared to the rest. F-statistics tested within-group (significant activations at P values 10 voxels). For control subjects, the combined task activations comprised the sum of those obtained during hand movement and speech production performed separately, reflecting the neural correlates of performing movements sharing similar programming modalities. In patients with Parkinson's disease, only activations underlying hand movement were observed during the combined task. We interpreted this phenomenon as patients' potential inability to recruit facilitatory activations while performing two movements simultaneously. This lost capacity could be related to a functional prioritization of one movement (i.e., hand movement), in comparison with the other (i.e., speech production). Our observation could also reflect the inability of patients with Parkinson's disease to intrinsically engage the motor coordination necessary to perform a combined task. Copyright © 2011 Movement Disorder Society.

  2. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Hermans Mieke CE

    2012-07-01

    Full Text Available Abstract Background Myotonic dystrophy type 1 (MD1 is a neuromuscular disorder with potential involvement of the heart and increased risk of sudden death. Considering the importance of cardiomyopathy as a predictor of prognosis, we aimed to systematically evaluate and describe structural and functional cardiac alterations in patients with MD1. Methods Eighty MD1 patients underwent physical examination, electrocardiography (ECG, echocardiography and cardiovascular magnetic resonance (CMR. Blood samples were taken for determination of NT-proBNP plasma levels and CTG repeat length. Results Functional and structural abnormalities were detected in 35 patients (44%. Left ventricular systolic dysfunction was found in 20 cases, left ventricular dilatation in 7 patients, and left ventricular hypertrophy in 6 patients. Myocardial fibrosis was seen in 10 patients (12.5%. In general, patients had low left ventricular mass indexes. Right ventricular involvement was uncommon and only seen together with left ventricular abnormalities. Functional or structural cardiac involvement was associated with age (p = 0.04, male gender (p Conclusions CMR can be useful to detect early structural and functional myocardial abnormalities in patients with MD1. Myocardial involvement is strongly associated with conduction abnormalities, but a normal ECG does not exclude myocardial alterations. These findings lend support to the hypothesis that MD1 patients have a complex cardiac phenotype, including both myocardial and conduction system alteration.

  3. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tae, Woo Suk; Yakunina, Natalia; Nam, Eui-Cheol; Kim, Tae Su; Kim, Sam Soo

    2014-01-01

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  4. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  5. Relationship between external anal sphincter atrophy at endoanal magnetic resonance imaging and clinical, functional, and anatomic characteristics in patients with fecal incontinence

    NARCIS (Netherlands)

    Terra, Maaike P.; Deutekom, Marije; Beets-Tan, Regina G. H.; Engel, Alexander F.; Janssen, Lucas W. M.; Boeckxstaens, Guy E. E.; Dobben, Annette C.; Baeten, Cor G. M. I.; de Priester, Jacobus A.; Bossuyt, Patrick M. M.; Stoker, Jaap

    2006-01-01

    PURPOSE: External anal sphincter atrophy at endoanal magnetic resonance imaging has been associated with poor outcome of anal sphincter repair. We studied the relationship between external anal sphincter atrophy on endoanal magnetic resonance imaging and clinical, functional, and anatomic

  6. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    Science.gov (United States)

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya; Schwingenschlö gl, Udo; Manchon, Aurelien

    2012-01-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  8. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed

    2012-04-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  9. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads.

    Directory of Open Access Journals (Sweden)

    Andras Franko

    Full Text Available To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined. The usual isolation methods such as differential centrifugation result in isolates of highly variable quality and quantity. To fulfill the need of a reproducible isolation method from solid tissues, which is suitable to handle parallel samples simultaneously, we developed a protocol based on anti-TOM22 (translocase of outer mitochondrial membrane 22 homolog antibody-coupled magnetic beads. To measure oxygen consumption rate in isolated mitochondria from various mouse tissues, a traditional Clark electrode and the high-throughput XF Extracellular Flux Analyzer were used. Furthermore, Western blots, transmission electron microscopic and proteomic studies were performed to analyze the purity and integrity of the mitochondrial preparations. Mitochondrial fractions isolated from liver, brain and skeletal muscle by anti-TOM22 magnetic beads showed oxygen consumption capacities comparable to previously reported values and little contamination with other organelles. The purity and quality of isolated mitochondria using anti-TOM22 magnetic beads was compared to traditional differential centrifugation protocol in liver and the results indicated an obvious advantage of the magnetic beads method compared to the traditional differential centrifugation technique.

  10. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent.

    Science.gov (United States)

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia

    2017-11-17

    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Ma, Xiangdong; Ding, Chun; Jia, Li, E-mail: jiali@scnu.edu.cn

    2015-03-03

    Highlights: • PDA@Fe{sub 3}O{sub 4} were prepared and applied for efficient extraction of DNA from pathogens. • The DNA capture and release by PDA@Fe{sub 3}O{sub 4} was pH-induced. • The adsorption capacity of PDA@Fe{sub 3}O{sub 4} for DNA was 161 mg g{sup −1}. • PDA@Fe{sub 3}O{sub 4} based MSPE was combined with PCR and CE for rapid detection of pathogens. - Abstract: Polydopamine functionalized magnetic nanoparticles (PDA@Fe{sub 3}O{sub 4}) were prepared and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential and vibrating sample magnetometry. They were found to enable highly efficient capture of genomic deoxyribonucleic acid (DNA). The adsorption capacity of PDA@Fe{sub 3}O{sub 4} for genomic DNA can reach 161 mg g{sup −1}. The extraction protocol used aqueous solutions for DNA binding to and releasing from the surface of the magnetic particles based on the pH inducing the charge switch of amino and phenolic hydroxyl groups on PDA@Fe{sub 3}O{sub 4}. The extracted DNA with high quality (A{sub 260}/A{sub 280} = 1.80) can be directly used as templates for polymerase chain reaction (PCR) followed by capillary electrophoresis (CE) analysis. None of the toxic chemical reagents and PCR inhibitors was used throughout the whole procedure. PDA@Fe{sub 3}O{sub 4} based magnetic solid phase extraction (MSPE) method was superior to those using commercial kit and traditional phenol–chloroform extraction methods in yield of DNA. The developed PDA@Fe{sub 3}O{sub 4} based MSPE-PCR-CE method was applied for simultaneous and fast detection of Listeria monocytogenes and Escherichia coli O157:H7 in milk.

  12. Electromagnetic design and development of a combined function horizontal and vertical dipole steerer magnet for medium energy beam transport line

    International Nuclear Information System (INIS)

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Teotia, Vikas; Kumar, Prashant; Malhotra, Sanjay; Taly, Y.K.

    2013-01-01

    Medium Energy Beam Transport (MEBT) line is required to match the optical functions between the RFQ and SRF cavities/DTL cavities.The primary function of the MEBT lines is to keep the emittance growth of the output beam as low as possible in a highly space charge environment at low energies. The transverse focusing of the beam is achieved by strong focusing quadrupoles and the longitudinal dynamics is achieved by the buncher cavities. The Dipole Steerers serve the function of a control element to achieve the desired transverse beam position. To minimize the emittance growth high magnetic field rigidity is required in a highly constrained longitudinal space for these corrector magnets. The design and development of an air-cooled dipole steerer magnet has been done for an integral dipole field of 2.1mT-m in a Good Field Region (GFR) of 23 mm diameter with Integral Field homogeneity better than 0.5%. Electromagnetic field simulations were done using 3D-FEM simulation software OPERA. Error sensitivity studies have been carried out to specify the manufacturing tolerances to estimate and minimize the beam transmission loss due to likely misalignments and rotation of the magnet. A combined function dipole corrector magnet has been designed and fabricated at the Control Instrumentation Division, BARC. This paper discusses measurement results of a combined function dipole steerer for MEBT line for Proton (H + ) beam at 2.5 MeV. (author)

  13. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in

  14. Seeking tools for image fusion between computed tomography, structural and functional magnetic resonance methods for applications in neurosurgery; Ferramentas para fusao de imagens dos metodos de tomografia computadorizada, ressonancia magnetica e ressonancia magnetica funcional para aplicacao pre-neurocirurgica

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Liana Guerra Sanches da, E-mail: liana@einstein.br [Departamento de Diagnostico por Imagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo (SP) (Brazil); Amaro Junior, Edson [Faculdade de Medicina, Universidade de Sao Paulo - USP, Sao Paulo, SP (Brazil). Deptartamento de Diagnostico por Imagem; Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil)

    2012-04-15

    To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. Methods: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. Results: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. Conclusion: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery. (author)

  15. Atypical Learning in Autism Spectrum Disorders: A Functional Magnetic Resonance Imaging Study of Transitive Inference.

    Science.gov (United States)

    Solomon, Marjorie; Ragland, J Daniel; Niendam, Tara A; Lesh, Tyler A; Beck, Jonathan S; Matter, John C; Frank, Michael J; Carter, Cameron S

    2015-11-01

    To investigate the neural mechanisms underlying impairments in generalizing learning shown by adolescents with autism spectrum disorder (ASD). A total of 21 high-functioning individuals with ASD aged 12 to 18 years, and 23 gender-, IQ-, and age-matched adolescents with typical development (TYP), completed a transitive inference (TI) task implemented using rapid event-related functional magnetic resonance imaging (fMRI). Participants were trained on overlapping pairs in a stimulus hierarchy of colored ovals where A>B>C>D>E>F and then tested on generalizing this training to new stimulus pairings (AF, BD, BE) in a "Big Game." Whole-brain univariate, region of interest, and functional connectivity analyses were used. During training, the TYP group exhibited increased recruitment of the prefrontal cortex (PFC), whereas the group with ASD showed greater functional connectivity between the PFC and the anterior cingulate cortex (ACC). Both groups recruited the hippocampus and caudate comparably; however, functional connectivity between these regions was positively associated with TI performance for only the group with ASD. During the Big Game, the TYP group showed greater recruitment of the PFC, parietal cortex, and the ACC. Recruitment of these regions increased with age in the group with ASD. During TI, TYP individuals recruited cognitive control-related brain regions implicated in mature problem solving/reasoning including the PFC, parietal cortex, and ACC, whereas the group with ASD showed functional connectivity of the hippocampus and the caudate that was associated with task performance. Failure to reliably engage cognitive control-related brain regions may produce less integrated flexible learning in individuals with ASD unless they are provided with task support that, in essence, provides them with cognitive control; however, this pattern may normalize with age. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All

  16. Strain-encoding cardiovascular magnetic resonance for assessment of right-ventricular regional function

    Directory of Open Access Journals (Sweden)

    Abraham M Roselle

    2008-07-01

    Full Text Available Abstract Background Tissue tagging by cardiovascular magnetic resonance (CMR is a comprehensive method for the assessment of cardiac regional function. However, imaging the right ventricle (RV using this technique is problematic due to the thin wall of the RV relative to tag spacing which limits assessment of regional function using conventional in-plane tagging. Hypothesis We hypothesize that the use of through-plane tags in the strain-encoding (SENC CMR technique would result in reproducible measurements of the RV regional function due to the high image quality and spatial resolution possible with SENC. Aim To test the intra- and inter-observer variabilities of RV peak systolic strain measurements with SENC CMR for assessment of RV regional function (systolic strain in healthy volunteers. Methods Healthy volunteers (n = 21 were imaged using SENC. A four-chamber view was acquired in a single breath-hold. Circumferential strain was measured during systole at six equidistant points along the RV free wall. Peak contraction is defined as the maximum value of circumferential strain averaged from the six points, and regional function is defined as the strain value at each point at the time of peak contraction. Results Mean values for peak circumferential strain (± standard deviation of the basal, mid, and apical regions of the RV free wall were -20.4 ± 2.9%, -18.8 ± 3.9%, and -16.5 ± 5.7%, Altman plots showed good intra- and inter-observer agreements with mean difference of 0.11% and 0.32% and limits of agreement of -4.038 to 4.174 and -4.903 to 5.836, respectively. Conclusion SENC CMR allows for rapid quantification of RV regional function with low intra- and inter-observer variabilities, which could permit accurate quantification of regional strain in patients with RV dysfunction.

  17. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Wang Hesheng [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Johnson, Timothy D. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hussain, Hero [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  18. Functional Magnetic Resonance Imaging of Goal-Directed Reaching in Children with Autism Spectrum Disorders: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Nicole M. G. Salowitz

    2014-04-01

    Full Text Available An unanswered question concerning the neural basis of autism spectrum disorders (ASD is how sensorimotor deficits in individuals with ASD are related to abnormalities of brain function. We previously described a robotic joystick and video game system that allows us to record functional magnetic resonance images (FMRI while adult humans make goal-directed wrist motions. We anticipated several challenges in extending this approach to studying goal-directed behaviors in children with ASD and in typically developing (TYP children. In particular we were concerned that children with autism may express increased levels of anxiety as compared to typically developing children due to the loud sounds and small enclosed space of the MRI scanner. We also were concerned that both groups of children might become restless during testing, leading to an unacceptable amount of head movement. Here we performed a pilot study evaluating the extent to which autistic and typically developing children exhibit anxiety during our experimental protocol as well as their ability to comply with task instructions. Our experimental controls were successful in minimizing group differences in drop-out due to anxiety. Kinematic performance and head motion also were similar across groups. Both groups of children engaged cortical regions (frontal, parietal, temporal, occipital while making goal-directed movements. In addition, the ASD group exhibited task-related correlations in subcortical regions (cerebellum, thalamus, whereas correlations in the TYP group did not reach statistical significance in subcortical regions. Four distinct regions in frontal cortex showed a significant group difference such that TYP children exhibited positive correlations between the hemodynamic response and movement, whereas children with ASD exhibited negative correlations. These findings demonstrate feasibility of simultaneous application of robotic manipulation and functional imaging to study goal

  19. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kiessling, Fabian; Jugold, Manfred; Woenne, Eva C.; Brix, Gunnar

    2007-01-01

    The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications. (orig.)

  20. Principles of Functional Magnetic Resonance Imaging and its Applications in Cognitive Neuroscience

    Directory of Open Access Journals (Sweden)

    Şule Tınaz

    2005-02-01

    Full Text Available Functional magnetic resonance imaging (fMRI is a neuroimaging technique that provides brain activation maps with a spatial resolution of a few millimeters. The BOLD (blood oxygenation level dependent fMRI method is the most commonly used technique. It measures the hemodynamic response to neural activity. The BOLD fMRI signal is based on the magnetic properties of the oxygenated / deoxygenated hemoglobin which is the oxygen carrier in blood. FMRI is noninvasive, and unlike in positron emission tomography (PET individuals are not exposed to radiation. This allows data collection from the same individual over multiple sessions. The relatively high temporal resolution of fMRI compared to PET provides flexibility in experimental designs of cognitive tasks. In this paper we review the key principles of MRI physics, and the underlying metabolic, hemodynamic, and electrophysiological mechanisms of BOLD signal. We introduce frequently used experimental design paradigms and present examples. Next, we give an overview of theoretical considerations and applications of analysis methods in fMRI time series. Neural network modeling based on fMRI data is also discussed. Finally, we present an ongoing study in our laboratory to demonstrate the application of design types and analysis methods

  1. Copper ferrocyanide functionalized magnetic nanoparticles using polyelectrolyte for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Man; Lee, Kune Woo; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, magnetite nanoparticles were coated with copper ferrocyanide for the adsorption of radioactive Cs-137 in an aqueous solution through the grafting of polyethyleneimine. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate Cs-137 from water was also evaluated. Magnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. Since the nuclear accident at the Fukushima Daiichi nuclear power station in 2011, a huge amount of radioactive contaminants has been released into the environment. Among the various radioactive contaminants, cesium (Cs)-137 (137Cs) is the most apprehensive element owing to its long half-life (30.2 years), high solubility in water, and strong radiation emission in the form of gamma rays (γ-rays). Various methods such as ion exchange solvent extraction and precipitation are applied for the remediation of Cs-137 contaminated water. In particular, metal ferrocyanides show a high selectivity toward Cs-137. However, the very fine powder form of metal ferrocyanide causes a difficult separation from water through filtration.

  2. Electromagnetic Processing of Materials Materials Processing by Using Electric and Magnetic Functions

    CERN Document Server

    Asai, Shigeo

    2012-01-01

    This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrica...

  3. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells

    International Nuclear Information System (INIS)

    Villanueva, Angeles; Canete, Magdalena; Calero, Macarena; Roca, Alejandro G; Veintemillas-Verdaguer, Sabino; Serna, Carlos J; Del Puerto Morales, Maria; Miranda, Rodolfo

    2009-01-01

    The internalization and biocompatibility of iron oxide nanoparticles surface functionalized with four differently charged carbohydrates have been tested in the human cervical carcinoma cell line (HeLa). Neutral, positive, and negative iron oxide nanoparticles were obtained by coating with dextran, aminodextran, heparin, and dimercaptosuccinic acid, resulting in colloidal suspensions stable at pH 7 with similar aggregate size. No intracellular uptake was detected in cells incubated with neutral charged nanoparticles, while negative particles showed different behaviour depending on the nature of the coating. Thus, dimercaptosuccinic-coated nanoparticles showed low cellular uptake with non-toxic effects, while heparin-coated particles showed cellular uptake only at high nanoparticle concentrations and induced abnormal mitotic spindle configurations. Finally, cationic magnetic nanoparticles show excellent properties for possible in vivo biomedical applications such as cell tracking by magnetic resonance imaging (MRI) and cancer treatment by hyperthermia: (i) they enter into cells with high effectiveness, and are localized in endosomes; (ii) they can be easily detected inside cells by optical microscopy, (iii) they are retained for relatively long periods of time, and (iv) they do not induce any cytotoxicity.

  4. Highlights from the previous volumes

    Science.gov (United States)

    Vergini Eduardo, G.; Pan, Y.; al., Vardi R. et; al., Akkermans Eric et; et al.

    2014-01-01

    Semiclassical propagation up to the Heisenberg time Superconductivity and magnetic order in the half-Heusler compound ErPdBi An experimental evidence-based computational paradigm for new logic-gates in neuronal activity Universality in the symmetric exclusion process and diffusive systems

  5. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  6. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Functional segregation of the inferior frontal gyrus for syntactic processes: a functional magnetic-resonance imaging study.

    Science.gov (United States)

    Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro

    2008-07-01

    We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.

  8. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: 1H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies

    OpenAIRE

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-01-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using 1H-magnetic resonance spectroscopy (1H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was use...

  9. Characteristics of brain functional alterations and task functional magnetic resonance imaging in patients with Cushing’s disease

    Directory of Open Access Journals (Sweden)

    Dan-dan LIU

    2017-08-01

    Full Text Available Objective To analyze the relationship between the brain functional alterations of patients with Cushing's disease (CD and patients' mental symptom by applying the Evaluating Emotional Scales and task functional magnetic resonance imaging (Task fMRI. Methods Task fMRI was performed on 8 patients with diagnosed CD admitted in the Department of Endocrinology of Chinese PLA General Hospital from Nov. 2015 to Nov. 2016 and 21 healthy people with matched age, gender and education level as control. Meanwhile, Self-Rating Depression Scale (SDS, Self-Rating Anxiety Scale (SAS, Positive and Negative Affective Scale (PANAS and Cushing Quality of Life Scale (Cushing QOL were obtained to assess the brain functions. Results Significant depression and anxiety were observed in patients with CD, and their positive affective score was substantially lower while the negative affective score was relatively higher compared with that in the controls. Task fMRI revealed that, when watching the positive pictures, the activation degree of left cerebellum and right postcentral gyrus weakened in CD patients than in the controls, and the positive correlations existed between the activation degree of left cerebellum and the 16 o'clock adrenocorticotrophic hormone (ACTH level, and between the activation degree of right postcentral gyrus and the urinary free cortisol (UFC level in CD patients. In contrast, when watching the negative pictures, the activation degree of left cerebellum, bilateral parahippocampal gyrus and left inferior frontal gyrus was weakened in CD patients than in the controls, and the activation degree of left cerebellum was negatively correlated to the 0 o'clock cortisol level and SAS score, but is positively correlated to the UFC level. When watching the neutral pictures, the activation degree of left cerebellum and left parahippocampal gyrus was weakened in CD patients than in the controls. Conclusions CD patients may have impaired brain function with

  10. Different patterns of auditory cortex activation revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Formisano, E; Pepino, A; Bracale, M [Department of Electronic Engineering, Biomedical Unit, Universita di Napoli, Federic II, Italy, Via Claudio 21, 80125 Napoli (Italy); Di Salle, F [Department of Biomorphological and Functional Sciences, Radiologucal Unit, Universita di Napoli, Federic II, Italy, Via Claudio 21, 80125 Napoli (Italy); Lanfermann, H; Zanella, F E [Department of Neuroradiology, J.W. Goethe Universitat, Frankfurt/M. (Germany)

    1999-12-31

    In the last few years, functional Magnetic Resonance Imaging (fMRI) has been widely accepted as an effective tool for mapping brain activities in both the sensorimotor and the cognitive field. The present work aims to assess the possibility of using fMRI methods to study the cortical response to different acoustic stimuli. Furthermore, we refer to recent data collected at Frankfurt University on the cortical pattern of auditory hallucinations. Healthy subjects showed broad bilateral activation, mostly located in the transverse gyrus of Heschl. The analysis of the cortical activation induced by different stimuli has pointed out a remarkable difference in the spatial and temporal features of the auditory cortex response to pulsed tones and pure tones. The activated areas during episodes of auditory hallucinations match the location of primary auditory cortex as defined in control measurements with the same patients and in the experiments on healthy subjects. (authors) 17 refs., 4 figs.

  11. Preparation of magnetic latexes functionalized with chloromethyl groups via emulsifier-free miniemulsion polymerization

    International Nuclear Information System (INIS)

    Faridi-Majidi, Reza; Sharifi-Sanjani, Naser

    2007-01-01

    Functionalized crosslinked polystyrene-co-divinylbenzene-co-chloromethylstyrene magnetic latex particles were prepared via emulsifier-free miniemulsion polymerization using 2, 2' azobis (2-amidinopropane) dihydrochloride (V-50) as an initiator and in the presence of magnetite nanoparticles in the monomers. Transmission electron microscopy (TEM) proved the presence of magnetite nanoparticles in polymer particles. Differential scanning calorimetery (DSC) analysis of the product showed an exothermic signal due to crosslinking of chains through electrophilic aromatic substitution of phenyl groups with chloromethyl groups in the presence of the dispersed Fe 3 O 4 as Lewis acid. This was proven by thermogravimetric analysis (TGA) via the loss of gaseous HCl. The results were also compared with those of magnetite-free miniemulsion polymerization using V-50

  12. Preparation of magnetic latexes functionalized with chloromethyl groups via emulsifier-free miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Faridi-Majidi, Reza [School of Chemistry, University College of Science, Tehran University, Tehran (Iran, Islamic Republic of)]. E-mail: refaridi@khayam.ut.ac.ir; Sharifi-Sanjani, Naser [School of Chemistry, University College of Science, Tehran University, Tehran (Iran, Islamic Republic of)

    2007-04-15

    Functionalized crosslinked polystyrene-co-divinylbenzene-co-chloromethylstyrene magnetic latex particles were prepared via emulsifier-free miniemulsion polymerization using 2, 2' azobis (2-amidinopropane) dihydrochloride (V-50) as an initiator and in the presence of magnetite nanoparticles in the monomers. Transmission electron microscopy (TEM) proved the presence of magnetite nanoparticles in polymer particles. Differential scanning calorimetery (DSC) analysis of the product showed an exothermic signal due to crosslinking of chains through electrophilic aromatic substitution of phenyl groups with chloromethyl groups in the presence of the dispersed Fe{sub 3}O{sub 4} as Lewis acid. This was proven by thermogravimetric analysis (TGA) via the loss of gaseous HCl. The results were also compared with those of magnetite-free miniemulsion polymerization using V-50.

  13. Identifying thematic roles from neural representations measured by functional magnetic resonance imaging.

    Science.gov (United States)

    Wang, Jing; Cherkassky, Vladimir L; Yang, Ying; Chang, Kai-Min Kevin; Vargas, Robert; Diana, Nicholas; Just, Marcel Adam

    2016-01-01

    The generativity and complexity of human thought stem in large part from the ability to represent relations among concepts and form propositions. The current study reveals how a given object such as rabbit is neurally encoded differently and identifiably depending on whether it is an agent ("the rabbit punches the monkey") or a patient ("the monkey punches the rabbit"). Machine-learning classifiers were trained on functional magnetic resonance imaging (fMRI) data evoked by a set of short videos that conveyed agent-verb-patient propositions. When tested on a held-out video, the classifiers were able to reliably identify the thematic role of an object from its associated fMRI activation pattern. Moreover, when trained on one subset of the study participants, classifiers reliably identified the thematic roles in the data of a left-out participant (mean accuracy = .66), indicating that the neural representations of thematic roles were common across individuals.

  14. Functionally Graded Ceramics Fabricated with Side-by-Side Tape Casting for Use in Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Bulatova, Regina; Bahl, Christian; Andersen, Kjeld Bøhm

    2015-01-01

    Functionally graded ceramic tapes have been fabricated by a side-by-side tape casting technique. This study shows the possibility and describes the main principles of adjacent coflow of slurries resulting in formation of thin plates of graded ceramic material. Results showed that the small...... variations of solvent and binder system concentrations have a substantial effect on slurry viscosity. Varying these parameters showed that side-by-side tape casting with a well-defined interface area is possible for slurries with viscosities above 3500 mPa s at a casting shear rate of 3.3 s -1...... of developing this graded ceramic tape casting was applications of these specific magnetocaloric properties within the magnetic refrigeration technology....

  15. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Hougaard, Anders; Ahmadi, Khazar

    2017-01-01

    Objective: Migraine aura is sparsely studied due to the highly challenging task of capturing patients during aura. Cortical spreading depression (CSD) is likely the underlying phenomenon of aura. The possible correlation between the multifaceted phenomenology of aura symptoms and the effects of CSD...... on the brain has not been ascertained. Methods: Five migraine patients were studied during various forms of aura symptoms induced by hypoxia, sham hypoxia, or physical exercise with concurrent photostimulation. The blood oxygenation level–dependent (BOLD) functional magnetic resonance imaging (fMRI) signal...... response to visual stimulation was measured in retinotopic mapping–defined visual cortex areas V1 to V4. Results: We found reduced BOLD response in patients reporting scotoma and increased response in patients who only experienced positive symptoms. Furthermore, patients with bilateral visual symptoms had...

  16. Spatial and verbal working memory: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Blaž Koritnik

    2004-08-01

    Full Text Available According to numerous studies, working memory is not a unitary system. Baddeley's model of working memory includes besides central executive also two separate systems for verbal and visuo-spatial information processing. A modality- and process-specific specialization presumably exists in working memory system of the frontal lobes. In our preliminary study, we have used functional magnetic resonance imaging to study the pattern of cortical activation during spatial and verbal n-back task in six healthy subjects. A bilateral fronto-parietal cortical network was activated in both tasks. There was larger activation of right parietal and bilateral occipital areas in spatial than in vebal task. Activation of left sensorimotor area was larger in verbal compared to spatial task. No task-specific differences were found in the prefrontal cortex. Our results support the assumption that modality-specific processes exist within the working-memory system.

  17. Different patterns of auditory cortex activation revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Formisano, E.; Pepino, A.; Bracale, M.; Di Salle, F.; Lanfermann, H.; Zanella, F.E.

    1998-01-01

    In the last few years, functional Magnetic Resonance Imaging (fMRI) has been widely accepted as an effective tool for mapping brain activities in both the sensorimotor and the cognitive field. The present work aims to assess the possibility of using fMRI methods to study the cortical response to different acoustic stimuli. Furthermore, we refer to recent data collected at Frankfurt University on the cortical pattern of auditory hallucinations. Healthy subjects showed broad bilateral activation, mostly located in the transverse gyrus of Heschl. The analysis of the cortical activation induced by different stimuli has pointed out a remarkable difference in the spatial and temporal features of the auditory cortex response to pulsed tones and pure tones. The activated areas during episodes of auditory hallucinations match the location of primary auditory cortex as defined in control measurements with the same patients and in the experiments on healthy subjects. (authors)

  18. [Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].

    Science.gov (United States)

    Ji, B B; Li, M; Zhang, J N

    2018-02-07

    Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.

  19. Functional magnetic resonance imaging of the normal and abnormal visual system in early life

    DEFF Research Database (Denmark)

    Born, A.P.; Miranda Gimenez-Ricco, Maria Jo; Rostrup, Egill

    2000-01-01

    in very young infants and in infants with brain damage. We examined 15 preterm infants, 12 children suspected of having a cerebral visual impairment and 10 children with a normal visual system, all of whom were either spontaneously asleep or sedated with chloral hydrate. Cortical response to stroboscopic...... showed a signal decrease. The activated cortical volumes showed a linear relation to age for healthy children younger than 90 weeks PMA, but were small in children with visual impairment. In two children with unilateral damage to the optic radiations, activation was strongly asymmetrical with greatest......Functional magnetic resonance imaging (fMRI) in young children may provide information about the development of the visual cortex, and may have predictive value for later visual performance. The purpose of this study was to evaluate the usefulness of fMRI for examining cerebral processing of vision...

  20. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  2. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  4. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Tabei

    Full Text Available Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI, we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  5. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Tabei, Ken-Ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  6. Functional magnetic resonance imaging study of neuronal activation during cognitive tasks related to frontal lobe functions in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Koizumi, Hazuki

    2010-01-01

    Previous neurological studies and brain activation studies using functional magnetic resonance imaging (f-MRI) have suggested frontal lobe dysfunctions in patients with obsessive-compulsive disorder (OCD). However, no f-MRI study has used cognitive tasks reflecting fluency of ideas and memory related to frontal lobe functions. The purposes of this study are to assess the neuropsychological examinations and brain activities of OCD patients using f-MRI, as well as, to investigate the relationship between the severity of obsessive-compulsive symptoms and frontal lobe functions. The subjects were 22 right-handed persons consisting of 11 outpatients who had received a diagnosis of OCD based on diagnostic and statistical manual of mental disorders-fourth edition (DMS-IV) and age- and sex-matched 11 healthy controls. All subjects were examined using Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Wechsler Adult Intelligence Scale-3 rd edition (WAIS-III), Wisconsin Card Sorting Test (WCST), Modified Stroop Test (MST), Verbal Fluency Test (VFT), Idea Fluency Test (IFT), and Rey-Auditory Verbal Learning Test (RAVLT). The brain activities were measured with f-MRI during three cognitive tasks; Task 1: idea generation (IFT), Task 2: word generation (VFT), and Task 3: remembrance of words (RAVLT). The block design was used in the trials, in which rest and activating tasks were alternated for five times in each task. The neuropsychological examinations revealed significant differences in the numbers of categories achieved and total errors in WCST, times of Part I in MST, scores of VFT and IFT, and the results of RAVLT between the OCD patients and healthy controls. Using functional brain imaging with f-MRI, noticeable activations were found in the superior, middle, inferior frontal gyri, and the cingulate gyrus during all tasks in both the OCD and control groups. The OCD patients had significantly higher activation in the cingulate gyrus than normal controls during Task 1 (IFT

  7. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    Science.gov (United States)

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  8. Functional magnetic resonance imaging to determine hemispheric language dominance prior to carotid endarterectomy.

    Science.gov (United States)

    Smits, M; Wieberdink, R G; Bakker, S L M; Dippel, D W J

    2011-04-01

    We describe a left-handed patient with transient aphasia and bilateral carotid stenosis. Computed tomography (CT) arteriography showed a 90% stenosis of the right and 30% stenosis of the left internal carotid artery. Head CT and magnetic resonance imaging (MRI) of the brain showed no recent ischemic changes. As only the symptomatic side would require surgical intervention, and because hemispheric dominance for language in left-handed patients may be either left or right sided, a preoperative assessment of hemispheric dominance was required. We used functional MRI to determine hemispheric dominance for language and hence to establish the indication for carotid endarterectomy surgery. Functional MRI demonstrated right hemispheric dominance for language and right-sided carotid endarterectomy was performed. We propose that the clinical use of functional MRI as a noninvasive imaging technique for the assessment of hemispheric language dominance may be extended to the assessment of hemispheric language dominance prior to carotid endarterectomy. Copyright © 2010 by the American Society of Neuroimaging.

  9. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  10. Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations.

    Science.gov (United States)

    Sack, Alexander T; Linden, David E J

    2003-09-01

    Transcranial magnetic stimulation (TMS) is a widely used tool for the non-invasive study of basic neurophysiological processes and the relationship between brain and behavior. We review the physical and physiological background of TMS and discuss the large body of perceptual and cognitive studies, mainly in the visual domain, that have been performed with TMS in the past 15 years. We compare TMS with other neurophysiological and neuropsychological research tools and propose that TMS, compared with the classical neuropsychological lesion studies, can make its own unique contribution. As the main focus of this review, we describe the different approaches of combining TMS with functional neuroimaging techniques. We also discuss important shortcomings of TMS, especially the limited knowledge concerning its physiological effects, which often make the interpretation of TMS results ambiguous. We conclude with a critical analysis of the resulting conceptual and methodological limitations that the investigation of functional brain-behavior relationships still has to face. We argue that while some of the methodological limitations of TMS applied alone can be overcome by combination with functional neuroimaging, others will persist until its physical and physiological effects can be controlled.

  11. Migraine classification using magnetic resonance imaging resting-state functional connectivity data.

    Science.gov (United States)

    Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J

    2017-08-01

    Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.

  12. Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Callicott, Joseph H.; Weinberger, Daniel R.

    1999-01-01

    Functional magnetic resonance imaging (fMRI) is poised to make significant contributions to the study of neuropsychiatric illnesses. Whatever neural pathology attends such illnesses has proven subtle at best. By identifying predictable, regionally specific deficits in brain function, fMRI can suggest brain regions for detailed cellular analyses, provide valuable in vivo data regarding effective connectivity, provide a means to model the effects of various drug challenge paradigms, and characterize intermediate phenotypes in the search for the genes underlying mental illness. Nonetheless, as promising as fMRI appears to be in terms of its relative safety, repeatability, ability to generate individual brain maps and widespread availability, it is still subject to a number of unresolved conceptual conundrums inherited from earlier neuroimaging work. For example, functional neuroimaging has not generated any pathognomic findings in mental illness, has not established a clear link between neurophysiology and observable behavior, and has not resolved the potential confounds of medication. In this article, we will review the relevant historical background preceding fMRI, address methodological considerations in fMRI, and summarize recent fMRI findings in psychiatry. Finally, fMRI is being used to simplify the complex genetics of neuropsychiatric illness by generating quantitative and qualitative brain phenotypes

  13. Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Callicott, Joseph H. E-mail: callicoj@intra.nimh.nih.gov; Weinberger, Daniel R

    1999-05-01

    Functional magnetic resonance imaging (fMRI) is poised to make significant contributions to the study of neuropsychiatric illnesses. Whatever neural pathology attends such illnesses has proven subtle at best. By identifying predictable, regionally specific deficits in brain function, fMRI can suggest brain regions for detailed cellular analyses, provide valuable in vivo data regarding effective connectivity, provide a means to model the effects of various drug challenge paradigms, and characterize intermediate phenotypes in the search for the genes underlying mental illness. Nonetheless, as promising as fMRI appears to be in terms of its relative safety, repeatability, ability to generate individual brain maps and widespread availability, it is still subject to a number of unresolved conceptual conundrums inherited from earlier neuroimaging work. For example, functional neuroimaging has not generated any pathognomic findings in mental illness, has not established a clear link between neurophysiology and observable behavior, and has not resolved the potential confounds of medication. In this article, we will review the relevant historical background preceding fMRI, address methodological considerations in fMRI, and summarize recent fMRI findings in psychiatry. Finally, fMRI is being used to simplify the complex genetics of neuropsychiatric illness by generating quantitative and qualitative brain phenotypes.

  14. Functional magnetic resonance imaging: basic principles and application in the neurosciences.

    Science.gov (United States)

    Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C

    2018-03-12

    Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Functional Magnetic Resonance Imaging Correlates of First-Episode Psychoses during Attentional and Memory Task Performance.

    Science.gov (United States)

    Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Sorice, Serena; Girardi, Nicoletta; Ferracuti, Stefano; Girardi, Paolo

    2016-01-01

    The nature of the alteration of the response to cognitive tasks in first-episode psychosis (FEP) still awaits clarification. We used activation likelihood estimation, an increasingly used method in evaluating normal and pathological brain function, to identify activation changes in functional magnetic resonance imaging (fMRI) studies of FEP during attentional and memory tasks. We included 11 peer-reviewed fMRI studies assessing FEP patients versus healthy controls (HCs) during performance of attentional and memory tasks. Our database comprised 290 patients with FEP, matched with 316 HCs. Between-group analyses showed that HCs, compared to FEP patients, exhibited hyperactivation of the right middle frontal gyrus (Brodmann area, BA, 9), right inferior parietal lobule (BA 40), and right insula (BA 13) during attentional task performances and hyperactivation of the left insula (BA 13) during memory task performances. Right frontal, parietal, and insular dysfunction during attentional task performance and left insular dysfunction during memory task performance are significant neural functional FEP correlates. © 2016 S. Karger AG, Basel.

  16. Functional and quantitative magnetic resonance myelography of symptomatic stenoses of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Knut [District Hospital Castle of Werneck, MRI Center of Excellence, Werneck (Germany); Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Stadlbauer, Andreas [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Medical University Vienna, Department of Radiology and Nuclear Medicine, Vienna (Austria)

    2014-12-15

    The objective of this study was to demonstrate that functional, quantitative magnetic resonance myelography (MRM) allows standardized diagnosis of symptomatic lumbar spinal stenoses which show at least equal detectability compared to functional myelography and postmyelographic CT (pmCT) based on intra- and postoperative findings. We investigated 43 volunteers and 47 patients with symptomatic lumbar spinal stenoses using MRM in normal position as well as in flexion and extension in a standard whole-body MR scanner. Twenty volunteers were additionally examined under axial loading. All patients were investigated by functional myelography and pmCT and 10 patients had a functional lumbar MRM postoperatively. Range of motion and cerebrospinal fluid (CSF) volumes in normal position, flexion, extension, and under axial loading (volunteers) were assessed for each segment. Detectability was determined by using intraoperative findings, and postoperative freedom of symptoms was correlated with CSF volume changes in MRM. The ranges of motion in a standard whole-body MR scanner provide adequate scope for investigations into function (flexion and extension) in both volunteers and patients. Axial loading was associated with a mechanism of extension, albeit to a far smaller extent. Detectability of lumbar stenoses was 100 % for MRM, 58 % for conventional myelography, and 68 % for pmCT. Postoperative changes in CSF volume of levels with stenoses in MRM strongly correlated with freedom of symptoms (R = 0.772). This MRM method allows for exact diagnosis and reproducible quantification of stenoses, motion-related changes, and spondylolistheses of the lumbar spine. It may be useful for early detection of alterations in order to avoid neuronal compression. (orig.)

  17. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  18. Functional rearrangement of language areas in patients with tumors of the central nervous system using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kośla, Katarzyna; Pfajfer, Lucjan; Bryszewski, Bartosz; Jaskólski, Dariusz; Stefańczyk, Ludomir; Majos, Agata

    2012-01-01

    The aim of this study was to determine the reorganization of the language areas in patients with tumors located near speech centers using functional magnetic resonance imaging (fMRI). fMRI was performed prior to the surgical treatment of 11 right-handed patients with tumors located close to the Broca’s or Wernicke’s areas of the left hemisphere. The analysis included a record of the activity in four regions of interest (ROIs): Broca’s and Wernicke’s areas, and their anatomic homologues in the right hemisphere. For each patient a regional lateralization index was calculated separately for Broca’s area versus its right-hemisphere homolog and Wernicke’s area versus its right-hemisphere homolog. The results were correlated with the histopathological type of the tumor and its size. Our fMRI examinations showed activation of the Broca’s area in the right hemisphere in 3/4 cases of low grade gliomas (LGG) localized in the left frontal lobe. In one case of the high grade glioma (HGG) only the left hemisphere Broca’s area was activated (LI=1). Activation in Wernicke’s area in both hemispheres was obtained irrespective of the size and histological type of the tumor. All tumors localized in the left temporal lobe were HGG. We obtained activation only in the right hemisphere Wernicke’s area in 4/5 of the cases. In 4/5 of the cases activation in Broca’s area was present- in 2 cases in the left hemisphere, in 1 case in the right hemisphere and in 1 case bilateral. The presence of a neoplastic lesion in close topographic relationship to language areas induces their functional reorganization. fMRI is an useful method for determination of language areas localization in pre-operative planning. HGG tumors localized near Wernicke’s area lead to transfer its function to the healthy hemisphere and/or to decreased activity in the affected hemisphere

  19. Highlights from the previous volumes

    Science.gov (United States)

    Jacopo, Iacovacci; Takahiro, Kohsokabe; Kunihiko, Kaneko; al., Lange Steffen et; al., Helden Laurent et; et al.

    2017-04-01

    Functional Multiplex PageRank: The centrality is a functionPattern formation induced by fixed boundary conditionPower-law distributed Poincaré recurrences in higher-dimensional systemsMeasurement of second-order response without perturbation

  20. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    Directory of Open Access Journals (Sweden)

    Shenoy Vivek

    2011-01-01

    Full Text Available Abstract The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage.

  1. Generation of Internal-Image Functional Aptamers of Okadaic Acid via Magnetic-Bead SELEX

    Directory of Open Access Journals (Sweden)

    Chao Lin

    2015-12-01

    Full Text Available Okadaic acid (OA is produced by Dinophysis and Prorocentrum dinoflagellates and primarily accumulates in bivalves, and this toxin has harmful effects on consumers and operators. In this work, we first report the use of aptamers as novel non-toxic probes capable of binding to a monoclonal antibody against OA (OA-mAb. Aptamers that mimic the OA toxin with high affinity and selectivity were generated by the magnetic bead-assisted systematic evolution of ligands by exponential enrichment (SELEX strategy. After 12 selection rounds, cloning, sequencing and enzyme-linked immunosorbent assay (ELISA analysis, four candidate aptamers (O24, O31, O39, O40 were selected that showed high affinity and specificity for OA-mAb. The affinity constants of O24, O31, O39 and O40 were 8.3 × 108 M−1, 1.47 × 109 M−1, 1.23 × 109 M−1 and 1.05 × 109 M−1, respectively. Indirect competitive ELISA was employed to determine the internal-image function of the aptamers. The results reveal that O31 has a similar competitive function as free OA toxin, whereas the other three aptamers did not bear the necessary internal-image function. Based on the derivation of the curvilinear equation for OA/O31, the equation that defined the relationship between the OA toxin content and O31 was Y = 2.185X − 1.78. The IC50 of O31 was 3.39 ng·mL−1, which was close to the value predicted by the OA ELISA (IC50 = 4.4 ng·mL−1; the IC10 was 0.33 ng·mL−1. The above data provides strong evidence that internal-image functional aptamers could be applicable as novel probes in a non-toxic assay.

  2. Magnetic resonance imaging of respiratory movement and lung function; Magnetresonanztomographie der Atembewegung und Lungenfunktion

    Energy Technology Data Exchange (ETDEWEB)

    Tetzlaff, R. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie (E010), Heidelberg (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Medizinische und Biologische Informatik, Heidelberg (Germany); Eichinger, M. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie (E010), Heidelberg (Germany)

    2009-08-15

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [German] Die Lungenfunktion wird bislang hauptsaechlich durch die Spirometrie oder Plethysmographie untersucht. Diese Methoden sind zwar sehr leistungsfaehig zur Diagnostik von Lungenerkrankungen, sind jedoch globale Messmethoden, deren Messparameter immer die Summe aller funktionellen Einheiten der Lunge beschreiben. Veraenderungen, die auf eine Teilkomponente der Atempumpe beschraenkt sind oder kleine Teile des Lungengewebes betreffen, koennen durch gesunde Lungenanteile kompensiert werden. Mit dynamischen bildgebenden Verfahren koennten solche regionalen Veraenderungen erfasst und so eine fruehere Therapie ermoeglicht werden. Die Magnetresonanztomographie (MRT) bietet sich hier ideal an, da sie als Schnittbildverfahren weder die Probleme der Bildverzerrung, der Projektionsverfahren noch die Strahlenbelastung der Computertomographie hat. Allerdings wird die MRT der Lunge durch das geringe Signal des

  3. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti

    2013-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  4. Etiopathophysiological assessment of cases with chronic daily headache: A functional magnetic resonance imaging included investigation

    Science.gov (United States)

    Hashemi, Akram; Nami, Mohammad Torabi; Oghabian, Mohammad Ali; Ganjgahi, Habib; Vahabi, Zahra

    2012-01-01

    Background Chronic daily headache (CDH) has gained little attention in functional neuro-imaging. When no structural abnormality is found in CDH, defining functional correlates between activated brain regions during headache bouts may provide unique insights towards understanding the pathophysiology of this type of headache. Methods We recruited four CDH cases for comprehensive assessments, including history taking, physical examinations and neuropsychological evaluations (The Addenbrooke's Cognitive Evaluation, Beck's Anxiety and Depression Inventories, Pittsburg Sleep Quality Index and Epworth Sleepiness Scale). Visual analogue scale (VAS) was used to self-rate the intensity of headache. Patients then underwent electroencephalography (EEG), transcranial Doppler (TCD) and functional magnetic resonance imaging (fMRI) evaluations during maximal (VAS = 8-10/10) and off-headache (VAS = 0-3/10) conditions. Data were used to compare in both conditions. We also used BOLD (blood oxygen level dependent) -group level activation map fMRI to possibly locate headache-related activated brain regions. Results General and neurological examinations as well as conventional MRIs were unremarkable. Neuropsychological assessments showed moderate anxiety and depression in one patient and minimal in others. Unlike three patients, maximal and off-headache TCD evaluation in one revealed increased middle cerebral artery blood flow velocity, at the maximal pain area. Although with no seizure history, the same patient's EEG showed paroxysmal epileptic discharges during maximal headache intensity, respectively. Group level activation map fMRI showed activated classical pain matrix regions upon headache bouts (periaqueductal grey, substantia nigra and raphe nucleus), and markedly bilateral occipital lobes activation. Conclusion The EEG changes were of note. Furthermore, the increased BOLD signals in areas outside the classical pain matrix (i.e. occipital lobes) during maximal headaches may

  5. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.

    Science.gov (United States)

    O'Malley, Marcia K; Ro, Tony; Levin, Harvey S

    2006-12-01

    To describe 2 new ways of assessing and inducing neuroplasticity in the human brain--transcranial magnetic stimulation (TMS) and robotics--and to investigate and promote the recovery of motor function after brain damage. We identified recent articles and books directly bearing on TMS and robotics. Articles using these tools for purposes other than rehabilitation were excluded. From these studies, we emphasize the methodologic and technical details of these tools as applicable for assessing and inducing plasticity. Because both tools have only recently been used for rehabilitation, the majority of the articles selected for this review have been published only within the last 10 years. We used the PubMed and Compendex databases to find relevant peer-reviewed studies for this review. The studies were required to be relevant to rehabilitation and to use TMS or robotics methodologies. Guidelines were applied via independent extraction by multiple observers. Despite the limited amount of research using these procedures for assessing and inducing neuroplasticity, there is growing evidence that both TMS and robotics can be very effective, inexpensive, and convenient ways for assessing and inducing rehabilitation. Although TMS has primarily been used as an assessment tool for motor function, an increasing number of studies are using TMS as a tool to directly induce plasticity and improve motor function. Similarly, robotic devices have been used for rehabilitation because of their suitability for delivery of highly repeatable training. New directions in robotics-assisted rehabilitation are taking advantage of novel measurements that can be acquired via the devices, enabling unique methods of assessment of motor recovery. As refinements in technology and advances in our knowledge continue, TMS and robotics should play an increasing role in assessing and promoting the recovery of function. Ongoing and future studies combining TMS and robotics within the same populations may

  6. Analytical Calculation of D- and Q-axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory

    Directory of Open Access Journals (Sweden)

    Peixin Liang

    2016-07-01

    Full Text Available Interior permanent magnet (IPM motors are widely used in electric vehicles (EVs, benefiting from the excellent advantages of a more rational use of energy. For further improvement of energy utilization, this paper presents an analytical method of d- and q-axis inductance calculation for IPM motors with V-shaped rotor in no-load condition. A lumped parameter magnetic circuit model (LPMCM is adopted to investigate the saturation and nonlinearity of the bridge. Taking into account the influence of magnetic field distribution on inductance, the winding function theory (WFT is employed to accurately calculate the armature reaction airgap magnetic field and d- and q-axis inductances. The validity of the analytical technique is verified by the finite element method (FEM.

  7. Functional magnetic resonance imaging study of external source memory and its relation to cognitive insight in non-clinical subjects.

    Science.gov (United States)

    Buchy, Lisa; Hawco, Colin; Bodnar, Michael; Izadi, Sarah; Dell'Elce, Jennifer; Messina, Katrina; Lepage, Martin

    2014-09-01

    Previous research has linked cognitive insight (a measure of self-reflectiveness and self-certainty) in psychosis with neurocognitive and neuroanatomical disturbances in the fronto-hippocampal neural network. The authors' goal was to use functional magnetic resonance imaging (fMRI) to investigate the neural correlates of cognitive insight during an external source memory paradigm in non-clinical subjects. At encoding, 24 non-clinical subjects travelled through a virtual city where they came across 20 separate people, each paired with a unique object in a distinct location. fMRI data were then acquired while participants viewed images of the city, and completed source recognition memory judgments of where and with whom objects were seen, which is known to involve prefrontal cortex. Cognitive insight was assessed with the Beck Cognitive Insight Scale. External source memory was associated with neural activity in a widespread network consisting of frontal cortex, including ventrolateral prefrontal cortex (VLPFC), temporal and occipital cortices. Activation in VLPFC correlated with higher self-reflectiveness and activation in midbrain correlated with lower self-certainty during source memory attributions. Neither self-reflectiveness nor self-certainty significantly correlated with source memory accuracy. By means of virtual reality and in the context of an external source memory paradigm, the study identified a preliminary functional neural basis for cognitive insight in the VLPFC in healthy people that accords with our fronto-hippocampal theoretical model as well as recent neuroimaging data in people with psychosis. The results may facilitate the understanding of the role of neural mechanisms in psychotic disorders associated with cognitive insight distortions. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  8. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    Science.gov (United States)

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  9. Individual differences in decision making and reward processing predict changes in cannabis use: a prospective functional magnetic resonance imaging study.

    Science.gov (United States)

    Cousijn, Janna; Wiers, Reinout W; Ridderinkhof, K Richard; van den Brink, Wim; Veltman, Dick J; Porrino, Linda J; Goudriaan, Anna E

    2013-11-01

    Decision-making deficits are thought to play an important role in the development and persistence of substance use disorders. Individual differences in decision-making abilities and their underlying neurocircuitry may, therefore, constitute an important predictor for the course of substance use and the development of substance use disorders. Here, we investigate the predictive value of decision making and neural mechanisms underlying decision making for future cannabis use and problem severity in a sample of heavy cannabis users. Brain activity during a monetary decision-making task (Iowa gambling task) was compared between 32 heavy cannabis users and 41 matched non-using controls using functional magnetic resonance imaging. In addition, within the group of heavy cannabis users, associations were examined between task-related brain activations, cannabis use and cannabis use-related problems at baseline, and change in cannabis use and problem severity after a 6-month follow-up. Despite normal task performance, heavy cannabis users compared with controls showed higher activation during wins in core areas associated with decision making. Moreover, within the group of heavy cannabis users, win-related activity and activity anticipating loss outcomes in areas generally involved in executive functions predicted change in cannabis use after 6 months. These findings are consistent with previous studies and point to abnormal processing of motivational information in heavy cannabis users. A new finding is that individuals who are biased toward immediate rewards have a higher probability of increasing drug use, highlighting the importance of the relative balance between motivational processes and regulatory executive processes in the development of substance use disorders. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  10. Functional magnetic resonance imaging of story listening in adolescents and young adults with Down syndrome: evidence for atypical neurodevelopment.

    Science.gov (United States)

    Jacola, L M; Byars, A W; Hickey, F; Vannest, J; Holland, S K; Schapiro, M B

    2014-10-01

    Previous studies have documented differences in neural activation during language processing in individuals with Down syndrome (DS) in comparison with typically developing individuals matched for chronological age. This study used functional magnetic resonance imaging (fMRI) to compare activation during language processing in young adults with DS to typically developing comparison groups matched for chronological age or mental age. We hypothesised that the pattern of neural activation in the DS cohort would differ when compared with both typically developing cohorts. Eleven persons with DS (mean chronological age = 18.3; developmental age range = 4-6 years) and two groups of typically developing individuals matched for chronological (n = 13; mean age = 18.3 years) and developmental (mental) age (n = 12; chronological age range = 4-6 years) completed fMRI scanning during a passive story listening paradigm. Random effects group comparisons were conducted on individual maps of the contrast between activation (story listening) and rest (tone presentation) conditions. Robust activation was seen in typically developing groups in regions associated with processing auditory information, including bilateral superior and middle temporal lobe gyri. In contrast, the DS cohort demonstrated atypical spatial distribution of activation in midline frontal and posterior cingulate regions when compared with both typically developing control groups. Random effects group analyses documented reduced magnitude of activation in the DS cohort when compared with both control groups. Activation in the DS group differed significantly in magnitude and spatial extent when compared with chronological and mental age-matched typically developing control groups during a story listening task. Results provide additional support for an atypical pattern of functional organisation for language processing in this population. © 2013 MENCAP and International Association of the

  11. ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Dalmasse, Kevin; Nychka, Douglas W.; Gibson, Sarah E.; Fan, Yuhong; Flyer, Natasha

    2016-01-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 and 10798 lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analog. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  12. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study

    OpenAIRE

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-01-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revea...

  13. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  14. Measurement of single-kidney glomerular filtration function from magnetic resonance perfusion renography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Meiying; Cheng, Yingsheng [Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhao, Binghui, E-mail: binghuizhao@163.com [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China)

    2015-08-15

    Highlights: • MRPR monitors the transit of contrast material through nephron. • MRPR could reveal renal physiological characteristics in quality and quantity. • This review outlines the basics and future challenges of DCE MRPR. - Abstract: Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney, and is considered to be the reference standard in the evaluation of renal function. There are many ways to test the GFR clinically, such as serum creatinine concentration, blood urea nitrogen and SPECT renography, however, they’re all not a good standard to evaluate the early damage of renal function. In recent years, the improvement of MRI hardware and software makes it possible to reveal physiological characteristics such as renal blood flow or GFR by dynamic contrast enhancement magnetic resonance perfusion renography (DEC MRPR). MRPR is a method used to monitor the transit of contrast material, typically a gadolinium chelate, through the renal cortex, the medulla, and the collecting system. This review outlines the basics of DCE MRPR included acquisition of dynamic MR perfusion imaging, calculation of the contrast concentration from signal intensity and compartment models, and some challenges of MRPR method faced in prospective clinical application.

  15. Reward Abnormalities Among Women with Full and Subthreshold Bulimia Nervosa: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Bohon, Cara; Stice, Eric

    2010-01-01

    Objective To test the hypothesis that women with full and subthreshold bulimia nervosa show abnormal neural activation in response to food intake and anticipated food intake relative to healthy control women. Method Females with and without full/subthreshold bulimia nervosa recruited from the community (N = 26) underwent functional magnetic resonance imaging (fMRI) during receipt and anticipated receipt of chocolate milkshake and a tasteless control solution. Results Women with bulimia nervosa showed trends for less activation than healthy controls in the right anterior insula in response to anticipated receipt of chocolate milkshake (versus tasteless solution) and in the left middle frontal gyrus, right posterior insula, right precentral gyrus, and right mid dorsal insula in response to consumptions of milkshake (versus tasteless solution). Discussion Bulimia nervosa may be related to potential hypo-functioning of the brain reward system, which may lead these individuals to binge eat to compensate for this reward deficit, though the hypo-responsivity might be a result of a history of binge eating highly palatable foods. PMID:21997421

  16. Emotional conflict processing in adolescent chronic fatigue syndrome: A pilot study using functional magnetic resonance imaging.

    Science.gov (United States)

    Wortinger, Laura Anne; Endestad, Tor; Melinder, Annika Maria D; Øie, Merete Glenne; Sulheim, Dag; Fagermoen, Even; Wyller, Vegard Bruun

    2017-05-01

    Studies of neurocognition suggest that abnormalities in cognitive control contribute to the pathophysiology of chronic fatigue syndrome (CFS) in adolescents, yet these abnormalities remain poorly understood at the neurobiological level. Reports indicate that adolescents with CFS are significantly impaired in conflict processing, a primary element of cognitive control. In this study, we examine whether emotional conflict processing is altered on behavioral and neural levels in adolescents with CFS and a healthy comparison group. Fifteen adolescent patients with CFS and 24 healthy adolescent participants underwent functional magnetic resonance imaging (fMRI) while performing an emotional conflict task that involved categorizing facial affect while ignoring overlaid affect labeled words. Adolescent CFS patients were less able to engage the left amygdala and left midposterior insula (mpINS) in response to conflict than the healthy comparison group. An association between accuracy interference and conflict-related reactivity in the amygdala was observed in CFS patients. A relationship between response time interference and conflict-related reactivity in the mpINS was also reported. Neural responses in the amygdala and mpINS were specific to fatigue severity. These data demonstrate that adolescent CFS patients displayed deficits in emotional conflict processing. Our results suggest abnormalities in affective and cognitive functioning of the salience network, which might underlie the pathophysiology of adolescent CFS.

  17. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus

    2015-01-01

    Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740

  18. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Martin Ulrich

    Full Text Available Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area. Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes.

  19. Effective Uranium (VI) Sorption from Alkaline Solutions Using Bi-Functionalized Silica-Coated Magnetic Nanoparticles

    International Nuclear Information System (INIS)

    Chen, X.; He, L.; Liu, B.; Tang, Y.

    2015-01-01

    High temperature gas reactor is one of generation IV reactors that can adapt the future energy market, of which the preparation of fuel elements will produce a large amount of radioactive wastewater with uranium and high-level ammonia. Sorption treatment is one of the most important method to recover uranium from wastewater. However, there are few report on uranium sorbent that can directly be applied in wastewater with ammonia. Therefore, the development of a sorbent that can recover uranium in basic environment will greatly decrease the cost of fuel element production and the risk of radioactive pollution. In this work, ammonium-phosphonate-bifunctionalized silica-coated magnetic nanoparticles has been developed for effective sorption of uranium from alkaline media, which are not only advantaged in the uranium separation from liquid phase, but also with satisfactory adsorption rate, amount and reusability. The as-prepared sorbent is found to show a maximum uranium sorption capacity of 70.7 mg/g and a fast equilibrium time of 2 h at pH 9.5 under room temperature. Compared with the mono-functionalized (phosphonate alone and ammonium alone) particles, the combination of the bi-functionalized groups gives rise to an excellent ability to remove uranium from basic environment. The sorbent can be used as a promising solid phase candidate for highly-efficient removal of uranium from basic solution. (author)

  20. Dissociation of writing processes: functional magnetic resonance imaging during writing of Japanese ideographic characters.

    Science.gov (United States)

    Matsuo, K; Nakai, T; Kato, C; Moriya, T; Isoda, H; Takehara, Y; Sakahara, H

    2000-06-01

    Dissociation between copying letters and writing to dictation has been reported in the clinical neuropsychological literature. Functional magnetic resonance imaging (fMRI) was conducted in normal volunteers to detect the neurofunctional differences between 'copying Kanji', the Japanese ideographic characters, and 'writing Kanji corresponding to phonological information'. Four tasks were conducted: the copying-Kanji task, the writing-Kanji-corresponding-to-phonogram task, the Kanji-grapheme-puzzle task, and the control task. The right superior parietal lobule was extensively activated during the copying-Kanji task (a model of the copying letters process) and the Kanji-grapheme-puzzle task. These observations suggested that this area was involved in referring the visual stimuli closely related to the ongoing handwriting movements. On the other hand, Broca's area, which is crucial for language production, was extensively activated during the writing-Kanji-corresponding-to-phonogram task (a model of the writing-to-dictation process). The Kanji-grapheme-puzzle task activated the bilateral border portions between the inferior parietal lobule and the occipital lobe, the left premotor area, and the bilateral supplementary motor area (SMA). Since the Kanji-grapheme-puzzle task involved manipulospatial characteristics, these results suggested cooperation between visuospatial and motor executive functions, which may be extensively utilized in demanding visual language processing. The neurofunctional difference between 'copying Kanji' and 'writing Kanji corresponding to phonogram' was efficiently demonstrated by this fMRI experiment.

  1. Methods for modeling and quantification in functional imaging by positron emissions tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Costes, Nicolas

    2017-01-01

    This report presents experiences and researches in the field of in vivo medical imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI). In particular, advances in terms of reconstruction, quantification and modeling in PET are described. The validation of processing and analysis methods is supported by the creation of data by simulation of the imaging process in PET. The recent advances of combined PET/MRI clinical cameras, allowing simultaneous acquisition of molecular/metabolic PET information, and functional/structural MRI information opens the door to unique methodological innovations, exploiting spatial alignment and simultaneity of the PET and MRI signals. It will lead to an increase in accuracy and sensitivity in the measurement of biological phenomena. In this context, the developed projects address new methodological issues related to quantification, and to the respective contributions of MRI or PET information for a reciprocal improvement of the signals of the two modalities. They open perspectives for combined analysis of the two imaging techniques, allowing optimal use of synchronous, anatomical, molecular and functional information for brain imaging. These innovative concepts, as well as data correction and analysis methods, will be easily translated into other areas of investigation using combined PET/MRI. (author) [fr

  2. Cognitive dysfunction and functional magnetic resonance imaging in systemic lupus erythematosus.

    Science.gov (United States)

    Barraclough, M; Elliott, R; McKie, S; Parker, B; Bruce, I N

    2015-10-01

    Cognitive dysfunction is a common aspect of systemic lupus erythematosus (SLE) and is increasingly reported as a problem by patients. In many cases the exact cause is unclear. Limited correlations between specific autoantibodies or structural brain abnormalities and cognitive dysfunction in SLE have been reported. It may be that the most appropriate biomarkers have yet to be found. Functional magnetic resonance imaging (fMRI) is a technique used in many other conditions and provides sensitive measures of brain functionality during cognitive tasks. It is now beginning to be employed in SLE studies. These studies have shown that patients with SLE often perform similar