WorldWideScience

Sample records for previous exact methods

  1. Improved exact method for the double TSP with multiple stacks

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper

    2011-01-01

    and delivery problems. The results suggest an impressive improvement, and we report, for the first time, optimal solutions to several unsolved instances from the literature containing 18 customers. Instances with 28 customers are also shown to be solvable within a few percent of optimality. © 2011 Wiley...... the first delivery, and the container cannot be repacked once packed. In this paper we improve the previously proposed exact method of Lusby et al. (Int Trans Oper Res 17 (2010), 637–652) through an additional preprocessing technique that uses the longest common subsequence between the respective pickup...

  2. Exact solutions to some nonlinear PDEs, travelling profiles method

    Directory of Open Access Journals (Sweden)

    Noureddine Benhamidouche

    2008-04-01

    \\end{equation*} by a new method that we call the travelling profiles method. This method allows us to find several forms of exact solutions including the classical forms such as travelling-wave and self-similar solutions.

  3. Exact and useful optimization methods for microeconomics

    NARCIS (Netherlands)

    Balder, E.J.

    2011-01-01

    This paper points out that the treatment of utility maximization in current textbooks on microeconomic theory is deficient in at least three respects: breadth of coverage, completeness-cum-coherence of solution methods and mathematical correctness. Improvements are suggested in the form of a

  4. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  5. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  6. A simple method for generating exactly solvable quantum mechanical potentials

    CERN Document Server

    Williams, B W

    1993-01-01

    A simple transformation method permitting the generation of exactly solvable quantum mechanical potentials from special functions solving second-order differential equations is reviewed. This method is applied to Gegenbauer polynomials to generate an attractive radial potential. The relationship of this method to the determination of supersymmetric quantum mechanical superpotentials is discussed, and the superpotential for the radial potential is also derived. (author)

  7. The functional variable method for finding exact solutions of some ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we implemented the functional variable method and the modified. Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled. KdV system. This method is extremely simple ...

  8. Path Following in the Exact Penalty Method of Convex Programming.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  9. Exact Methods for Solving the Train Departure Matching Problem

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Bull, Simon Henry

    In this paper we consider the train departure matching problem which is an important subproblem of the Rolling Stock Unit Management on Railway Sites problem introduced in the ROADEF/EURO Challenge 2014. The subproblem entails matching arriving train units to scheduled departing trains at a railway...... site while respecting multiple physical and operational constraints. In this paper we formally define that subproblem, prove its NP- hardness, and present two exact method approaches for solving the problem. First, we present a compact Mixed Integer Program formulation which we solve using a MIP solver...

  10. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  11. Exact extraction method for road rutting laser lines

    Science.gov (United States)

    Hong, Zhiming

    2018-02-01

    This paper analyzes the importance of asphalt pavement rutting detection in pavement maintenance and pavement administration in today's society, the shortcomings of the existing rutting detection methods are presented and a new rutting line-laser extraction method based on peak intensity characteristic and peak continuity is proposed. The intensity of peak characteristic is enhanced by a designed transverse mean filter, and an intensity map of peak characteristic based on peak intensity calculation for the whole road image is obtained to determine the seed point of the rutting laser line. Regarding the seed point as the starting point, the light-points of a rutting line-laser are extracted based on the features of peak continuity, which providing exact basic data for subsequent calculation of pavement rutting depths.

  12. Exact rebinning methods for three-dimensional PET.

    Science.gov (United States)

    Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D

    1999-08-01

    The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.

  13. The modified simplest equation method to look for exact solutions of nonlinear partial differential equations

    OpenAIRE

    Efimova, Olga Yu.

    2010-01-01

    The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.

  14. The generalized tanh method to obtain exact solutions of nonlinear partial differential equation

    OpenAIRE

    Gómez, César

    2007-01-01

    In this paper, we present the generalized tanh method to obtain exact solutions of nonlinear partial differential equations, and we obtain solitons and exact solutions of some important equations of the mathematical physics.

  15. Multishell method: Exact treatment of a cluster in an effective medium

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1977-01-01

    A method is presented for the exact determination of the Green's function of a cluster embedded in a given effective medium. This method, the multishell method, is applicable even to systems with off-diagonal disorder, extended-range hopping, multiple bands, and/or hybridization, and is computationally practicable for any system described by a tight-binding or interpolation-scheme Hamiltonian. It allows one to examine the effects of local environment on the densities of states and site spectral weight functions of disordered systems. For any given analytic effective medium characterized by a non-negative density of states the method yields analytic cluster Green's functions and non-negative site spectral weight functions. Previous methods used for the calculation of the Green's function of a cluster embedded in a given effective medium have not been exact. The results of numerical calculations for model systems show that even the best of these previous methods can lead to substantial errors, at least for small clusters in two- and three-dimensional lattices. These results also show that fluctuations in local environment have large effects on site spectral weight functions, even in cases in which the single-site coherent-potential approximation yields an accurate overall density of states

  16. EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIRECT ALGEBRAIC METHOD

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.

  17. Exact solution of some linear matrix equations using algebraic methods

    Science.gov (United States)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  18. Exact methods for time constrained routing and related scheduling problems

    DEFF Research Database (Denmark)

    Kohl, Niklas

    1995-01-01

    of customers. In the VRPTW customers must be serviced within a given time period - a so called time window. The objective can be to minimize operating costs (e.g. distance travelled), fixed costs (e.g. the number of vehicles needed) or a combination of these component costs. During the last decade optimization......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...... of J?rnsten, Madsen and S?rensen (1986), which has been tested computationally by Halse (1992). Both methods decompose the problem into a series of time and capacity constrained shotest path problems. This yields a tight lower bound on the optimal objective, and the dual gap can often be closed...

  19. Structures in the Universe by Exact Methods: Formation, Evolution, Interactions

    Science.gov (United States)

    Bolejko, Krzysztof; Krasiński, Andrzej; Hellaby, Charles; Célérier, Marie-Noëlle

    2009-10-01

    As the structures in our Universe are mapped out on ever larger scales, and with increasing detail, the use of inhomogeneous models is becoming an essential tool for analyzing and understanding them. This book reviews a number of important developments in the application of inhomogeneous solutions of Einstein's field equations to cosmology. It shows how inhomogeneous models can be employed to study the evolution of structures such as galaxy clusters and galaxies with central black holes, and to account for cosmological observations like supernovae dimming, the cosmic microwave background, baryon acoustic oscillations or the dependence of the Hubble parameter on redshift within classical general relativity. Whatever 'dark matter' and 'dark energy' turn out to be, inhomogeneities exist on many scales and need to be investigated with all appropriate methods. This book is of great value to all astrophysicists and researchers working in cosmology, from graduate students to academic researchers. - Presents inhomogeneous cosmological models, allowing readers to familiarise themselves with basic properties of these models - Shows how inhomogeneous models can be used to analyse cosmological observations such as supernovae, cosmic microwave background, and baryon acoustic oscillations - Reviews important developments in the application of inhomogeneous solutions of Einstein's field equations to cosmology

  20. Astronavigation a method for determining exact position by the stars

    CERN Document Server

    Zischka, K A

    2018-01-01

    This book acts as a manual for the ancient methods of navigating by the stars, which continue to provide the sailor or pilot with a timeless means of determining location. Despite the prevalence of GPS, a comprehensive set of formulae that can be evaluated on any inexpensive scientific calculator in the event of a catastrophic software or systems failure is a vital failsafe. It also serves as a living link to centuries of explorers from centuries past. Beginning with the basics of positional astronomy, this guide moves on to the more complex math necessary to understand the ephemerides, tables showing the future positions of the stars and planets. These astronomical almanacs were the satellite navigation of their day. The objective of this book is twofold: to provide the reader with a concise, comprehensible manual on positional astronomy as it applies to astro-navigation and to furnish the concise algorithms for finding the position of the Sun and various navigational stars at any given instant. In a worl...

  1. Performance comparison of a new hybrid conjugate gradient method under exact and inexact line searches

    Science.gov (United States)

    Ghani, N. H. A.; Mohamed, N. S.; Zull, N.; Shoid, S.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is one of iterative techniques prominently used in solving unconstrained optimization problems due to its simplicity, low memory storage, and good convergence analysis. This paper presents a new hybrid conjugate gradient method, named NRM1 method. The method is analyzed under the exact and inexact line searches in given conditions. Theoretically, proofs show that the NRM1 method satisfies the sufficient descent condition with both line searches. The computational result indicates that NRM1 method is capable in solving the standard unconstrained optimization problems used. On the other hand, the NRM1 method performs better under inexact line search compared with exact line search.

  2. Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods

    Directory of Open Access Journals (Sweden)

    Özkan Güner

    2014-01-01

    Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.

  3. Some remarks on exact methods for WL and 222Rn-daughter determination

    International Nuclear Information System (INIS)

    Groer, P.G.

    1977-01-01

    For an exact determination of the three 222 Rn-daughter concentrations (RaA, B and C) which properly weighted yield the Working Level, three equations relating observed counts (α or β) to these unknown concentrations have to be solved. The half-lives in the 222 Rn decay series, the type of decay and the counting errors, limit the suitable set of equations. Some aspects of two such exact methods are discussed

  4. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  5. The extended hyperbolic function method and exact solutions of the long-short wave resonance equations

    International Nuclear Information System (INIS)

    Shang Yadong

    2008-01-01

    The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions

  6. A Table Lookup Method for Exact Analytical Solutions of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Ji Juan-Juan

    2017-01-01

    Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.

  7. New Exact Solutions of Time Fractional Gardner Equation by Using New Version of F -Expansion Method

    International Nuclear Information System (INIS)

    Pandir, Yusuf; Duzgun, Hasan Huseyin

    2017-01-01

    In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained. (paper)

  8. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  9. Short overview of PSA quantification methods, pitfalls on the road from approximate to exact results

    International Nuclear Information System (INIS)

    Banov, Reni; Simic, Zdenko; Sterc, Davor

    2014-01-01

    Over time the Probabilistic Safety Assessment (PSA) models have become an invaluable companion in the identification and understanding of key nuclear power plant (NPP) vulnerabilities. PSA is an effective tool for this purpose as it assists plant management to target resources where the largest benefit for plant safety can be obtained. PSA has quickly become an established technique to numerically quantify risk measures in nuclear power plants. As complexity of PSA models increases, the computational approaches become more or less feasible. The various computational approaches can be basically classified in two major groups: approximate and exact (BDD based) methods. In recent time modern commercially available PSA tools started to provide both methods for PSA model quantification. Besides availability of both methods in proven PSA tools the usage must still be taken carefully since there are many pitfalls which can drive to wrong conclusions and prevent efficient usage of PSA tool. For example, typical pitfalls involve the usage of higher precision approximation methods and getting a less precise result, or mixing minimal cuts and prime implicants in the exact computation method. The exact methods are sensitive to selected computational paths in which case a simple human assisted rearrangement may help and even switch from computationally non-feasible to feasible methods. Further improvements to exact method are possible and desirable which opens space for a new research. In this paper we will show how these pitfalls may be detected and how carefully actions must be done especially when working with large PSA models. (authors)

  10. Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images

    Science.gov (United States)

    Mei, W. N.; Holloway, A.

    2005-01-01

    In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…

  11. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  12. An exactly conservative particle method for one dimensional scalar conservation laws

    International Nuclear Information System (INIS)

    Farjoun, Yossi; Seibold, Benjamin

    2009-01-01

    A particle scheme for scalar conservation laws in one space dimension is presented. Particles representing the solution are moved according to their characteristic velocities. Particle interaction is resolved locally, satisfying exact conservation of area. Shocks stay sharp and propagate at correct speeds, while rarefaction waves are created where appropriate. The method is variation diminishing, entropy decreasing, exactly conservative, and has no numerical dissipation away from shocks. Solutions, including the location of shocks, are approximated with second order accuracy. Source terms can be included. The method is compared to CLAWPACK in various examples, and found to yield a comparable or better accuracy for similar resolutions.

  13. Exact Solutions for Fractional Differential-Difference Equations by an Extended Riccati Sub-ODE Method

    International Nuclear Information System (INIS)

    Feng Qinghua

    2013-01-01

    In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann—Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established. (general)

  14. New exact solutions of coupled Boussinesq–Burgers equations by Exp-function method

    Directory of Open Access Journals (Sweden)

    L.K. Ravi

    2017-03-01

    Full Text Available In the present paper, we build the new analytical exact solutions of a nonlinear differential equation, specifically, coupled Boussinesq–Burgers equations by means of Exp-function method. Then, we analyze the results by plotting the three dimensional soliton graphs for each case, which exhibit the simplicity and effectiveness of the proposed method. The primary purpose of this paper is to employ a new approach, which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq–Burgers equations.

  15. An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations

    International Nuclear Information System (INIS)

    Wang Zhen; Zhang Hongqing

    2006-01-01

    In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).

  16. An FDTD method with FFT-accelerated exact absorbing boundary conditions

    KAUST Repository

    Sirenko, Kostyantyn

    2011-07-01

    An accurate and efficient finite-difference time-domain (FDTD) method for analyzing axially symmetric structures is presented. The method achieves its accuracy and efficiency using exact absorbing conditions (EACs) for terminating the computation domain and a blocked-FFT based scheme for accelerating the computation of the temporal convolutions present in non-local EACs. The method is shown to be especially useful in characterization of long-duration resonant wave interactions. © 2011 IEEE.

  17. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    Science.gov (United States)

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  18. Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation

    International Nuclear Information System (INIS)

    Wang Dengshan; Zhang Hongqing

    2005-01-01

    In this paper, with the aid of the symbolic computation we improve the extended F-expansion method in [Chaos, Solitons and Fractals 2004; 22:111] and propose the further improved F-expansion method. Using this method, we have gotten many new exact solutions which we have never seen before within our knowledge of the (2 + 1)-dimensional Konopelchenko-Dubrovsky equation. In addition,the solutions we get are more general than the solutions that the extended F-expansion method gets.The solutions we get include Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions and so on. Our method can also apply to other partial differential equations and can also get many new exact solutions

  19. Asymptotically exact calculation of the exchange energies of one-active-electron diatomic ions with the surface integral method

    International Nuclear Information System (INIS)

    Scott, Tony C; Aubert-Frecon, Monique; Hadinger, Gisele; Andrae, Dirk; Grotendorst, Johannes; III, John D Morgan

    2004-01-01

    We present a general procedure, based on the Holstein-Herring method, for calculating exactly the leading term in the exponentially small exchange energy splitting between two asymptotically degenerate states of a diatomic molecule or molecular ion. The general formulae we have derived are shown to reduce correctly to the previously known exact results for the specific cases of the lowest Σ and Π states of H + 2 . We then apply our general formulae to calculate the exchange energy splittings between the lowest states of the diatomic alkali cations K + 2 , Rb + 2 and Cs + 2 , which are isovalent to H + 2 . Our results are found to be in very good agreement with the best available experimental data and ab initio calculations

  20. Exact vibration analysis of a double-nanobeam-systems embedded in an elastic medium by a Hamiltonian-based method

    Science.gov (United States)

    Zhou, Zhenhuan; Li, Yuejie; Fan, Junhai; Rong, Dalun; Sui, Guohao; Xu, Chenghui

    2018-05-01

    A new Hamiltonian-based approach is presented for finding exact solutions for transverse vibrations of double-nanobeam-systems embedded in an elastic medium. The continuum model is established within the frameworks of the symplectic methodology and the nonlocal Euler-Bernoulli and Timoshenko beam beams. The symplectic eigenfunctions are obtained after expressing the governing equations in a Hamiltonian form. Exact frequency equations, vibration modes and displacement amplitudes are obtained by using symplectic eigenfunctions and end conditions. Comparisons with previously published work are presented to illustrate the accuracy and reliability of the proposed method. The comprehensive results for arbitrary boundary conditions could serve as benchmark results for verifying numerically obtained solutions. In addition, a study on the difference between the nonlocal beam and the nonlocal plate is also included.

  1. Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method

    International Nuclear Information System (INIS)

    Bekir Ahmet; Güner Özkan

    2013-01-01

    In this paper, we use the fractional complex transform and the (G′/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann—Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations

  2. Exact Solutions of Fractional Burgers and Cahn-Hilliard Equations Using Extended Fractional Riccati Expansion Method

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-01-01

    Full Text Available Based on a general fractional Riccati equation and with Jumarie’s modified Riemann-Liouville derivative to an extended fractional Riccati expansion method for solving the time fractional Burgers equation and the space-time fractional Cahn-Hilliard equation, the exact solutions expressed by the hyperbolic functions and trigonometric functions are obtained. The obtained results show that the presented method is effective and appropriate for solving nonlinear fractional differential equations.

  3. Bender-Dunne Orthogonal Polynomials, Quasi-Exact Solvability and Asymptotic Iteration Method for Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Yahiaoui, S.-A.; Bentaiba, M.

    2011-01-01

    We present a method for obtaining the quasi-exact solutions of the Rabi Hamiltonian in the framework of the asymptotic iteration method (AIM). The energy eigenvalues, the eigenfunctions and the associated Bender-Dunne orthogonal polynomials are deduced. We show (i) that orthogonal polynomials are generated from the upper limit (i.e., truncation limit) of polynomial solutions deduced from AIM, and (ii) prove to have nonpositive norm. (authors)

  4. New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods

    Science.gov (United States)

    S Saha, Ray

    2016-04-01

    In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.

  5. New analytical exact solutions of time fractional KdV–KZK equation by Kudryashov methods

    International Nuclear Information System (INIS)

    Saha Ray, S

    2016-01-01

    In this paper, new exact solutions of the time fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov (KdV–KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann–Liouville derivative is used to convert the nonlinear time fractional KdV–KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV–KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV–KZK equation. (paper)

  6. Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations

    International Nuclear Information System (INIS)

    Chen Yong; Wang Qi; Li Biao

    2005-01-01

    Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally

  7. A new sub-equation method applied to obtain exact travelling wave solutions of some complex nonlinear equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.

  8. The First-Integral Method and Abundant Explicit Exact Solutions to the Zakharov Equations

    Directory of Open Access Journals (Sweden)

    Yadong Shang

    2012-01-01

    Full Text Available This paper is concerned with the system of Zakharov equations which involves the interactions between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of the system of Zakharov equations are derived uniformly by using the first integral method. These exact solutions are include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the singular traveling wave solutions, periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions, and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.

  9. Generalized WKB method through an appropriate canonical transformation giving an exact invariant

    International Nuclear Information System (INIS)

    Guyard, J.; Nadeau, A.

    1976-01-01

    The solution of differential equations of the type d 2 q/dtau 2 +ω 2 (tau)q=0 is of great interest in Physics. Authors often introduce an auxiliary function w, solution of a differential equation which can be solved by a perturbation method. In fact this approach is nothing but an extension of the well known WKB method. Lewis has found an exact invariant of the motion given in closed form in terms in a much easier way. This method can now be used as a natural way of introducing the WKB extension [fr

  10. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  11. New method for the exact determination of the effective conductivity and the local field in RLC networks

    International Nuclear Information System (INIS)

    Zekri, L.; Zekri, N.; Bouamrane, R.

    1999-10-01

    We present a new numerical method for determining exactly the effective conductivity and the local field for random RLC networks. This method is compared to a real space renormalization group method and the Frank and Lobb method. Although our method is slower than the Frank and Lobb method, it also computes exactly the local field for large size systems. We also show that the renormalization group method fails in determining the local field. (author)

  12. The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2018-02-01

    Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.

  13. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    Science.gov (United States)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  14. Methods for constructing exact solutions of partial differential equations mathematical and analytical techniques with applications to engineering

    CERN Document Server

    Meleshko, Sergey V

    2005-01-01

    Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.

  15. A fast exact simulation method for a class of Markov jump processes.

    Science.gov (United States)

    Li, Yao; Hu, Lili

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  16. New method for exact measurement of thermal neutron distribution in elementary cell

    International Nuclear Information System (INIS)

    Takac, S.M.; Krcevinac, S.B.

    1966-06-01

    Exact measurement of thermal neutron density distribution in an elementary cell necessitates the knowledge of the perturbations involved in the cell by the measuring device. A new method has been developed in which a special stress is made to evaluate these perturbations by measuring the response from the perturbations introduced in the elementary cell. The unperturbed distribution was obtained by extrapolation to zero perturbation. The final distributions for different lattice pitches were compared with a THERMOS-type calculation. As a pleasing fact a very good agreement has been reached, which dissolves the long existing disagreement between THERMOS calculations and measured density distribution (author)

  17. New method for exact measurement of thermal neutron distribution in elementary cell

    Energy Technology Data Exchange (ETDEWEB)

    Takac, S M; Krcevinac, S B [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-06-15

    Exact measurement of thermal neutron density distribution in an elementary cell necessitates the knowledge of the perturbations involved in the cell by the measuring device. A new method has been developed in which a special stress is made to evaluate these perturbations by measuring the response from the perturbations introduced in the elementary cell. The unperturbed distribution was obtained by extrapolation to zero perturbation. The final distributions for different lattice pitches were compared with a THERMOS-type calculation. As a pleasing fact a very good agreement has been reached, which dissolves the long existing disagreement between THERMOS calculations and measured density distribution (author)

  18. Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-06-01

    Full Text Available We give a more generalized treatment of the 1D generalized Gross-Pitaevskii equation (GGPE with variable term coefficients. External harmonic trapping potential is fully considered and the nonlinear interaction term is of arbitrary polytropic index of superfluid wave function. We also eliminate the interdependence between variable coefficients of the equation terms avoiding the restrictions that occur in some other works. The exact soliton solutions of the GGPE are obtained through the delicate combined utilization of modified lens-type transformation and F-expansion method with dominant features like soliton type properties highlighted.

  19. Exact thermal representation of multilayer rectangular structures by infinite plate structures using the method of images

    Science.gov (United States)

    Palisoc, Arthur L.; Lee, Chin C.

    1988-12-01

    Using the method of images and the analytical temperature solution to the multilayer infinite plate structure, the thermal profile over finite rectangular multilayer integrated circuit devices can be calculated exactly. The advantage of using the image method lies in the enhanced capability of arriving at an analytical solution for structures where analytical solutions do not apparently exist, e.g., circular or arbitrarily oriented rectangular sources over multilayered rectangular structures. The new approach results in large savings in computer CPU time especially for small sources over large substrates. The method also finds very important applications to integrated circuit devices with heat dissipating elements close to the edge boundaries. Results from two examples indicate that the edge boundaries of a device may also be utilized to remove heat from it. This additional heat removing capability should have important applications in high power devices.

  20. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    Abreu, M.P. de

    1994-01-01

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (S n ) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  1. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  2. Exact milestoning

    International Nuclear Information System (INIS)

    Bello-Rivas, Juan M.; Elber, Ron

    2015-01-01

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied

  3. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Science.gov (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  4. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation

    International Nuclear Information System (INIS)

    Wolf, D.; Keblinski, P.; Phillpot, S.R.; Eggebrecht, J.

    1999-01-01

    Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb potential by direct summation over the r -1 Coulomb pair potential is presented. The key observation is that the problems encountered in determining the Coulomb energy by pairwise, spherically truncated r -1 summation are a direct consequence of the fact that the system summed over is practically never neutral. A simple method is developed that achieves charge neutralization wherever the r -1 pair potential is truncated. This enables the extraction of the Coulomb energy, forces, and stresses from a spherically truncated, usually charged environment in a manner that is independent of the grouping of the pair terms. The close connection of our approach with the Ewald method is demonstrated and exploited, providing an efficient method for the simulation of even highly disordered ionic systems by direct, pairwise r -1 summation with spherical truncation at rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems, such as free surfaces and grain boundaries. copyright 1999 American Institute of Physics

  5. Separable expansions of the NN t-matrix via exact half off the energy shell methods

    International Nuclear Information System (INIS)

    Pisent, G.; Amos, K.; Dortmans, P.J.

    1992-01-01

    Recently a method was proposed by which one can obtain rank 1 (for uncoupled channels) and rank 2 (for coupled channels), energy dependent t-matrix representations which are exact on- and half off of the energy shell. Fully off shell, this representation, though accurate at low energies, is flawed. For uncoupled channels, if the phase shift passes through zero, the representation has a pathology. Two methods which overcome this are investigated one due to Haberzettl which was extended to coupled channels, and the second which is based upon selective combination of the elements of Sturmian expansions. All methods of separation over a range of energies up to 250 MeV for the 1 S 0 and 3 S 1 channels are compared with the Paris interaction. Special attention is paid to the convergence of the higher order Haberzettl expansion and to the comparison of the extended methods for energies around the zero phase shift pathology for the 1 S 0 channel. The method describes well the fully off-shell properties of the t-matrices up to quite high energies, while keeping the rank of the separation as low as possible in order to be used in three or more body calculations. 39 refs., 10 figs

  6. A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation

    International Nuclear Information System (INIS)

    Ma Wenxiu; Lee, J.-H.

    2009-01-01

    A direct approach to exact solutions of nonlinear partial differential equations is proposed, by using rational function transformations. The new method provides a more systematical and convenient handling of the solution process of nonlinear equations, unifying the tanh-function type methods, the homogeneous balance method, the exp-function method, the mapping method, and the F-expansion type methods. Its key point is to search for rational solutions to variable-coefficient ordinary differential equations transformed from given partial differential equations. As an application, the construction problem of exact solutions to the 3+1 dimensional Jimbo-Miwa equation is treated, together with a Baecklund transformation.

  7. Free Vibration Analysis for Shells of Revolution Using an Exact Dynamic Stiffness Method

    Directory of Open Access Journals (Sweden)

    Xudong Chen

    2016-01-01

    Full Text Available An exact generalised formulation for the free vibration of shells of revolution with general shaped meridians and arbitrary boundary conditions is introduced. Starting from the basic shell theories, the vibration governing equations are obtained in the Hamilton form, from which dynamic stiffness is computed using the ordinary differential equations solver COLSYS. Natural frequencies and modes are determined by employing the Wittrick-Williams (W-W algorithm in conjunction with the recursive Newton’s method, thus expanding the applications of the abovementioned techniques from one-dimensional skeletal structures to two-dimensional shells of revolution. A solution for solving the number of clamped-end frequencies J0 in the W-W algorithm is presented for both uniform and nonuniform shell segment members. Based on these theories, a FORTRAN program is written. Numerical examples on circular cylindrical shells, hyperboloidal cooling tower shells, and spherical shells are given, and error analysis is performed. The convergence of the proposed method on J0 is verified, and comparisons with frequencies from existing literature show that the dynamic stiffness method is robust, reliable, and accurate.

  8. Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method

    Energy Technology Data Exchange (ETDEWEB)

    Fatalov, Vadim R [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2011-08-31

    We prove results on exact asymptotics as n{yields}{infinity} for the expectations E{sub a} exp{l_brace}-{theta}{Sigma}{sub k=0}{sup n-1}g(X{sub k}){r_brace} and probabilities P{sub a}{l_brace}(1/n {Sigma}{sub k=0}{sup n-1}g(X{sub k})=}1, is the corresponding random walk on R, g(x) is a positive continuous function satisfying certain conditions, and d>0, {theta}>0, a element of R are fixed numbers. Our results are obtained using a new method which is developed in this paper: the Laplace method for the occupation time of discrete-time Markov chains. For g(x) one can take |x|{sup p}, log (|x|{sup p}+1), p>0, |x| log (|x|+1), or e{sup {alpha}|x|}-1, 0<{alpha}<1/2, x element of R, for example. We give a detailed treatment of the case when g(x)=|x| using Bessel functions to make explicit calculations.

  9. The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions

    Directory of Open Access Journals (Sweden)

    Mehmet Tarik Atay

    2013-01-01

    Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

  10. Exact solutions of the dirac equation for an electron in magnetic field with shape invariant method

    International Nuclear Information System (INIS)

    Setare, M.R.; Hatami, O.

    2008-01-01

    Based on the shape invariance property we obtain exact solutions of the Virac equation for an electron moving in the presence of a certain varying magnetic Geld, then we also show its non-relativistic limit. (authors)

  11. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  12. Nonlinear evolution-type equations and their exact solutions using inverse variational methods

    International Nuclear Information System (INIS)

    Kara, A H; Khalique, C M

    2005-01-01

    We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painleve properties are also suggested

  13. Exact Solutions of the Time Fractional BBM-Burger Equation by Novel (G′/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Muhammad Shakeel

    2014-01-01

    Full Text Available The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method.

  14. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Directory of Open Access Journals (Sweden)

    Rahmatullah

    2018-03-01

    Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation

  15. Study of electron-molecule collision via finite-element method and r-matrix propagation technique: Exact exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Perez, L.; Gomez, P.

    1995-01-01

    The authors have applied the finite-element method to electron-molecule collision with the exchange effect implemented rigorously. All the calculations are done in the body-frame within the fixed-nuclei approximation, where the exact treatment of exchange as a nonlocal effect results in a set of coupled integro-differential equations. The method is applied to e-H 2 and e-N 2 scatterings and the cross sections obtained are in very good agreement with the corresponding results the authors have generated from the linear-algebraic approach. This confirms the significant difference observed between their results generated by linear-algebraic method and the previously published e-N 2 cross sections. Their studies show that the finite-element method is clearly superior to the linear-algebraic approach in both memory usage and CPU time especially for large systems such as e-N 2 . The system coefficient matrix obtained from the finite-element method is often sparse and smaller in size by a factor of 12 to 16, compared to the linear-algebraic technique. Moreover, the CPU time required to obtain stable results with the finite-element method is significantly smaller than the linear-algebraic approach for one incident electron energy. The usage of computer resources in the finite-element method can even be reduced much further when (1) scattering calculations involving multiple electron energies are performed in one computer run and (2) exchange, which is a short range effect, is approximated by a sparse matrix. 17 refs., 7 figs., 5 tabs

  16. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    International Nuclear Information System (INIS)

    Fye, R.M.; Benham, C.J.

    1999-01-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N 2 ) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements

  17. A computationally exact method of Dawson's model for hole dynamics of one-dimensional plasma

    International Nuclear Information System (INIS)

    Kitahara, Kazuo; Tanno, Kohki; Takada, Toshio; Hatori, Tadatsugu; Urata, Kazuhiro; Irie, Haruyuki; Nambu, Mitsuhiro; Saeki, Kohichi.

    1990-01-01

    We show a simple but computationally exact solution of the one-dimensional plasma model, so-called 'Dawson's model'. Using this solution, we can describe the evolution of the plasma and find the relative stabilization of a big hole after the instability of two streams. (author)

  18. Accurate characterization of 3D diffraction gratings using time domain discontinuous Galerkin method with exact absorbing boundary conditions

    KAUST Repository

    Sirenko, Kostyantyn

    2013-07-01

    Exact absorbing and periodic boundary conditions allow to truncate grating problems\\' infinite physical domains without introducing any errors. This work presents exact absorbing boundary conditions for 3D diffraction gratings and describes their discretization within a high-order time-domain discontinuous Galerkin finite element method (TD-DG-FEM). The error introduced by the boundary condition discretization matches that of the TD-DG-FEM; this results in an optimal solver in terms of accuracy and computation time. Numerical results demonstrate the superiority of this solver over TD-DG-FEM with perfectly matched layers (PML)-based domain truncation. © 2013 IEEE.

  19. Trial function method and exact solutions to the generalized nonlinear Schrödinger equation with time-dependent coefficient

    International Nuclear Information System (INIS)

    Cao Rui; Zhang Jian

    2013-01-01

    In this paper, the trial function method is extended to study the generalized nonlinear Schrödinger equation with time-dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrödinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrödinger equation with time-dependent coefficients under constraint conditions. (general)

  20. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  1. An exact method for computing the frustration index in signed networks using binary programming

    OpenAIRE

    Aref, Samin; Mason, Andrew J.; Wilson, Mark C.

    2016-01-01

    Computing the frustration index of a signed graph is a key step toward solving problems in many fields including social networks, physics, material science, and biology. The frustration index determines the distance of a network from a state of total structural balance. Although the definition of the frustration index goes back to 1960, its exact algorithmic computation, which is closely related to classic NP-hard graph problems, has only become a focus in recent years. We develop three new b...

  2. On the connection between the inverse transform method and the exact quantum eigenstates

    International Nuclear Information System (INIS)

    Honerkamp, J.; Weber, P.; Wiesler, A.

    1979-01-01

    The 'inverse scattering transformation', which has been used to solve certain nonlinear field theories classically, is discussed in the context of the quantized version of these theories. In particular the non-linear Schroedinger equation and the massive Thirring model are considered. It is found that certain Jost functions of the associated scattering problem lead already, in quantizing the theory, to creation operators for the exact eigenstates of the corresponding Hamiltonians. (Auth.)

  3. General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation

    International Nuclear Information System (INIS)

    Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing

    2005-01-01

    A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion

  4. Exact Solution of Space-Time Fractional Coupled EW and Coupled MEW Equations Using Modified Kudryashov Method

    International Nuclear Information System (INIS)

    Raslan, K. R.; Ali, Khalid K.; EL-Danaf, Talaat S.

    2017-01-01

    In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. (paper)

  5. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Science.gov (United States)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  6. New exact solutions of the(2+1-dimensional Broer-Kaup equation by the consistent Riccati expansion method

    Directory of Open Access Journals (Sweden)

    Jiang Ying

    2017-01-01

    Full Text Available In this work, we study the (2+1-D Broer-Kaup equation. The composite periodic breather wave, the exact composite kink breather wave and the solitary wave solutions are obtained by using the coupled degradation technique and the consistent Riccati expansion method. These results may help us to investigate some complex dynamical behaviors and the interaction between composite non-linear waves in high dimensional models

  7. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge

    2006-01-01

    In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method

  8. An Exact Method to Determine the Conductivity of Aqueous Solutions in Acid-Base Titrations

    Directory of Open Access Journals (Sweden)

    Norma Rodríguez-Laguna

    2015-01-01

    Full Text Available Several works in the literature show that it is possible to establish the analytic equations to estimate the volume V of a strong base or a strong acid (Vb and Va, resp. being added to a solution of a substance or a mix of substances during an acid-base titration, as well as the equations to estimate the first derivative of the titration plot dpH/dV, and algebraic expressions to determine the buffer β capacity with dilution βdil. This treatment allows establishing the conditions of thermodynamic equilibria for all species within a system containing a mix of species from one or from various polyacid systems. The present work shows that it is possible to determine exactly the electric conductivity of aqueous solutions for these Brønsted acid-base titrations, because the functional relation between this property and the composition of the system in equilibrium is well known; this is achieved using the equivalent conductivity λi values of each of the ions present in a given system. The model employed for the present work confirms the experimental outcomes with the H2SO4, B(OH3, CH3COOH, and H3PO4 aqueous solutions’ titration.

  9. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    Science.gov (United States)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  10. On a method of construction of exact solutions for equations of two-dimensional hydrodynamics of incompressible liquids

    International Nuclear Information System (INIS)

    Yurov, A.V.; Yurova, A.A.

    2006-01-01

    The simple algebraic method for construction of exact solutions of two-dimensional hydrodynamic equations of incompressible flow is proposed. This method can be applied both to nonviscous flow (Euler equations) and to viscous flow (Navier-Stokes equations). In the case of nonviscous flow, the problem is reduced to sequential solving of three linear partial differential equations. In the case of viscous flow, the Navier-Stokes equations are reduced to three linear partial differential equations and one differential equation of the first order [ru

  11. Exact solution of the Klein-Gordon equation for the PT-symmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Sever, R.

    2007-01-01

    The exact solution of the one-dimensional Klein-Gordon equation of the PT-symmetric generalized Woods-Saxon potential is obtained. The exact energy eigenvalues and wavefunctions are derived analytically by using the Nikiforov and Uvarov method. In addition, the positive and negative exact bound states of the s-states are also investigated for different types of complex generalized Woods-Saxon potentials. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Inclusion of exact exchange in the noniterative partial-differential-equation method of electron-molecule scattering - Application to e-N2

    Science.gov (United States)

    Weatherford, C. A.; Onda, K.; Temkin, A.

    1985-01-01

    The noniterative partial-differential-equation (PDE) approach to electron-molecule scattering of Onda and Temkin (1983) is modified to account for the effects of exchange explicitly. The exchange equation is reduced to a set of inhomogeneous equations containing no integral terms and solved noniteratively in a difference form; a method for propagating the solution to large values of r is described; the changes in the polarization potential of the original PDE method required by the inclusion of exact static exchange are indicated; and the results of computations for e-N2 scattering in the fixed-nuclei approximation are presented in tables and graphs and compared with previous calculations and experimental data. Better agreement is obtained using the modified PDE method.

  13. BOOK REVIEW: Structures in the Universe by Exact Methods: Formation, Evolutions, Interactions (Cambridge Monographs on Mathematical Physics) Structures in the Universe by Exact Methods: Formation, Evolutions, Interactions (Cambridge Monographs on Mathematical Physics)

    Science.gov (United States)

    Coley, Alan

    2010-05-01

    In this book the use of inhomogeneous models in cosmology, both in modelling structure formation and interpreting cosmological observations, is discussed. The authors concentrate on exact solutions, and particularly the Lemaitre-Tolman (LT) and Szekeres models (the important topic of averaging is not discussed). The book serves to demonstrate that inhomogeneous metrics can generate realistic models of cosmic structure formation and nonlinear evolution and shows that general relativity has a lot more to offer to cosmology than just the standard spatially homogeneous FLRW model. I would recommend this book to people working in theoretical cosmology. In the introduction (and in the concluding chapter and throughout the book) a reasonable discussion of the potential problems with the standard FLRW cosmology is presented, and a list of examples illustrating the limitations of standard FLRW cosmology are discussed (including potential problems with perturbation methods). In particular, the authors argue that the assumptions of isotropy and spatial homogeneity (and consequently the Copernican principle) must be properly challenged and revisited. Indeed, it is possible for `good old general relativity' to be used to explain cosmological observations without introducing speculative elements. In part I of the book the necessary background is presented (readers need a background in general relativity theory at an advanced undergraduate or graduate level). There is a good (and easy to read) review of the exact spherically symmetric dust Lemaitre-Tolman model (LT) (often denoted the LTB model) and the Lemaitre and Szekeres models. Light propogation (i.e. null geodesics, for both central and off-center observers) in exact inhomogeneous (LT) models is reviewed. In part II a number of applications of exact inhomogeneous models are presented (taken mainly from the authors' own work). In chapter 4, the evolution of exact inhomogeneous models (primarily the LT model, but also the

  14. New exact solutions of the (2 + 1)-dimensional breaking soliton system via an extended mapping method

    International Nuclear Information System (INIS)

    Ma Songhua; Fang Jianping; Zheng Chunlong

    2009-01-01

    By means of an extended mapping method and a variable separation method, a series of solitary wave solutions, periodic wave solutions and variable separation solutions to the (2 + 1)-dimensional breaking soliton system is derived.

  15. Exact solutions for nonlinear evolution equations using Exp-function method

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2008-01-01

    In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations

  16. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation

    Science.gov (United States)

    Ghanbari, Behzad; Inc, Mustafa

    2018-04-01

    The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.

  17. Implementing Families of Implicit Chebyshev Methods with Exact Coefficients for the Numerical Integration of First- and Second-Order Differential Equations

    National Research Council Canada - National Science Library

    Mitchell, Jason

    2002-01-01

    A method is presented for the generation of exact numerical coefficients found in two families of implicit Chebyshev methods for the numerical integration of first- and second-order ordinary differential equations...

  18. Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra

    Science.gov (United States)

    Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri

    2014-03-01

    We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  19. Exp-function method for constructing exact solutions of Sharma-Tasso-Olver equation

    International Nuclear Information System (INIS)

    Erbas, Baris; Yusufoglu, Elcin

    2009-01-01

    In this paper we use the Exp-function method for the analytic treatment of Sharma-Tasso-Olver equation. New solitonary solutions are formally derived. Change of parameters, which drastically changes the characteristics of the equations, is examined. It is shown that the Exp-function method provides a powerful mathematical tool for solving high-dimensional nonlinear evolutions in mathematical physics. The proposed schemes are reliable and manageable.

  20. A method for acetylcholinesterase staining of brain sections previously processed for receptor autoradiography.

    Science.gov (United States)

    Lim, M M; Hammock, E A D; Young, L J

    2004-02-01

    Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.

  1. Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs

    Science.gov (United States)

    Vitanov, Nikolay K.

    2011-03-01

    We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.

  2. Comparison of exact, efron and breslow parameter approach method on hazard ratio and stratified cox regression model

    Science.gov (United States)

    Fatekurohman, Mohamat; Nurmala, Nita; Anggraeni, Dian

    2018-04-01

    Lungs are the most important organ, in the case of respiratory system. Problems related to disorder of the lungs are various, i.e. pneumonia, emphysema, tuberculosis and lung cancer. Comparing all those problems, lung cancer is the most harmful. Considering about that, the aim of this research applies survival analysis and factors affecting the endurance of the lung cancer patient using comparison of exact, Efron and Breslow parameter approach method on hazard ratio and stratified cox regression model. The data applied are based on the medical records of lung cancer patients in Jember Paru-paru hospital on 2016, east java, Indonesia. The factors affecting the endurance of the lung cancer patients can be classified into several criteria, i.e. sex, age, hemoglobin, leukocytes, erythrocytes, sedimentation rate of blood, therapy status, general condition, body weight. The result shows that exact method of stratified cox regression model is better than other. On the other hand, the endurance of the patients is affected by their age and the general conditions.

  3. Exact and approximate interior corner problem in neutron diffusion by integral transform methods

    International Nuclear Information System (INIS)

    Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.

    1976-09-01

    The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem

  4. Sequence Matters but How Exactly? A Method for Evaluating Activity Sequences from Data

    Science.gov (United States)

    Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma

    2016-01-01

    How should a wide variety of educational activities be sequenced to maximize student learning? Although some experimental studies have addressed this question, educational data mining methods may be able to evaluate a wider range of possibilities and better handle many simultaneous sequencing constraints. We introduce Sequencing Constraint…

  5. Exact Travelling Wave Solutions for Isothermal Magnetostatic Atmospheres by Fan Subequation Method

    Directory of Open Access Journals (Sweden)

    Hossein Jafari

    2012-01-01

    ignorable coordinate corresponding to a uniform gravitational field in a plane geometry is carried out. These equations transform to a single nonlinear elliptic equation for the magnetic vector potential . This equation depends on an arbitrary function of that must be specified. With choices of the different arbitrary functions, we obtain analytical solutions of elliptic equation using the Fan subequation method.

  6. Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method

    International Nuclear Information System (INIS)

    Saddique, I.; Nazar, K.

    2009-01-01

    In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)

  7. [A brief history of resuscitation - the influence of previous experience on modern techniques and methods].

    Science.gov (United States)

    Kucmin, Tomasz; Płowaś-Goral, Małgorzata; Nogalski, Adam

    2015-02-01

    Cardiopulmonary resuscitation (CPR) is relatively novel branch of medical science, however first descriptions of mouth-to-mouth ventilation are to be found in the Bible and literature is full of descriptions of different resuscitation methods - from flagellation and ventilation with bellows through hanging the victims upside down and compressing the chest in order to stimulate ventilation to rectal fumigation with tobacco smoke. The modern history of CPR starts with Kouwenhoven et al. who in 1960 published a paper regarding heart massage through chest compressions. Shortly after that in 1961Peter Safar presented a paradigm promoting opening the airway, performing rescue breaths and chest compressions. First CPR guidelines were published in 1966. Since that time guidelines were modified and improved numerously by two leading world expert organizations ERC (European Resuscitation Council) and AHA (American Heart Association) and published in a new version every 5 years. Currently 2010 guidelines should be obliged. In this paper authors made an attempt to present history of development of resuscitation techniques and methods and assess the influence of previous lifesaving methods on nowadays technologies, equipment and guidelines which allow to help those women and men whose life is in danger due to sudden cardiac arrest. © 2015 MEDPRESS.

  8. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  9. A comparison of two exact methods for passenger railway rolling stock (re)scheduling

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Wagenaar, Joris C.; Veelenturf, Lucas P.

    2016-01-01

    The assignment of rolling stock units to timetable services in passenger railways is an important optimization problem that has been addressed by many papers in different forms. Solution approaches have been proposed for different planning phases: strategic, tactical, operational, and real...... is solved using a column and row generation approach. In this paper, we benchmark the performance of the methods on networks of two countries (Denmark and The Netherlands). We use the approaches to make daily schedules and we test their real time applicability by performing tests with different disruption...... scenarios. The computational experiments demonstrate that both models can be used on both networks and are able to find optimal rolling stock circulations in the different planning phases. Furthermore, the results show that both approaches are sufficiently fast to be used in a real-time setting....

  10. A Comparison between Effective Cross Section Calculations using the Intermediate Resonance Approximation and More Exact Methods

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1969-02-15

    In order to investigate some aspects of the 'Intermediate Resonance Approximation' developed by Goldstein and Cohen, comparative calculations have been made using this method together with more accurate methods. The latter are as follows: a) For homogeneous materials the slowing down equation is solved in the fundamental mode approximation with the computer programme SPENG. All cross sections are given point by point. Because the spectrum can be calculated for at most 2000 energy points, the energy regions where the resonances are accurately described are limited. Isolated resonances in the region 100 to 240 eV are studied for {sup 238}U/Fe and {sup 238}U/Fe/Na mixtures. In the regions 161 to 251 eV and 701 to 1000 eV, mixtures of {sup 238}U and Na are investigated. {sup 239}Pu/Na and {sup 239}Pu/{sup 238}U/Na mixtures are studied in the region 161 to 251 eV. b) For heterogeneous compositions in slab geometry the integral transport equation is solved using the FLIS programme in 22 energy groups. Thus, only one resonance can be considered in each calculation. Two resonances are considered, namely those belonging to {sup 238}U at 190 and 937 eV. The compositions are lattices of {sup 238}U and Fe plates. The computer programme DORIX is used for the calculations using the Intermediate Resonance Approximation. Calculations of reaction rates and effective cross sections are made at 0, 300 and 1100 deg K for homogeneous media and at 300 deg K for heterogeneous media. The results are compared to those obtained by using the programmes SPENG and FLIS and using the narrow resonance approximation.

  11. New method for the exact determination of phenols in low-temperature tar and tar oils

    Energy Technology Data Exchange (ETDEWEB)

    Lambris, G; Haferkorn, H

    1949-01-01

    A 3-gram sample of water-free tar or tar oil containing approximately 50% phenols is dissolved in a mixture of benzene and xylene and a known excess of a 20% KOH solution of known normality saturated with benzene and xylene is added. Weight of the KOH is determined by difference. This mixture is shaken repeatedly in a 300-milliliter separatory funnel. After standing for 0.5 h, the dark or almost black phenolate solution containing the major portion is separated and weighed. Care must be taken to prevent the induction of solids. The phenolate in the residue is extracted with hot water and titrated with 0.2N HCl and 1 ml. Congo red (1:100). If water is present in the tar or tar oil, 100 ml of xylene is added immediately after weighing and the water separated by distillation the weight of which must be determined. Any phenols carried over are dissolved in the small quantity of xylene in the distillate. This quantity is added to the bulk of the xylene. After any remaining phenols are extracted from the tar residue with boiling benzene, the benzene-xylene mixture is treated with KOH as above. The accuracy of the method is estimated to be +-1% as shown by experiments with phenol; o-, m-, and p-cresol; cresol mixture; and pyrocatechol. The weight of the dissolved phenols X is determined by X = c - a + cd/(ab - d) where a = weight of KOH, b = HCl used per gram of KOH, C = weight of major portion of phenolate solution, which is formed by shaking the phenol solution with KOH, d = HCl used for titration of phenolate residue.

  12. Exact solution of a key equation in a finite stellar atmosphere by the method of Laplace transform and linear singular operators

    International Nuclear Information System (INIS)

    Das, R.N.

    1980-01-01

    The key equation which commonly appears for radiative transfer in a finite stellar atmosphere having ground reflection according to Lambert's law is considered in this paper. The exact solution of this equation is obtained for surface quantities in terms of the X-Y equations of Chandrasekhar by the method of Laplace transform and linear singular operators. This exact method is widely applicable for obtaining the solution for surface quantities in a finite atmosphere. (orig.)

  13. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    International Nuclear Information System (INIS)

    Gurin, Péter; Varga, Szabolcs

    2015-01-01

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluid layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore

  14. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    Science.gov (United States)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  15. Exact solitary waves of the Fisher equation

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given

  16. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    Science.gov (United States)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  17. New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method

    International Nuclear Information System (INIS)

    Kong Cuicui; Wang Dan; Song Lina; Zhang Hongqing

    2009-01-01

    In this paper, with the aid of symbolic computation and a general ansaetz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansaetz. The method can also be applied to other nonlinear partial differential equations.

  18. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  19. A Lie-admissible method of integration of Fokker-Planck equations with non-linear coefficients (exact and numerical solutions)

    International Nuclear Information System (INIS)

    Fronteau, J.; Combis, P.

    1984-08-01

    A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type

  20. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    Science.gov (United States)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  1. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    International Nuclear Information System (INIS)

    Sabry, R.; Zahran, M.A.; Fan Engui

    2004-01-01

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found

  2. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    Science.gov (United States)

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  3. Method for restoring contaminants to base levels in previously leached formations

    International Nuclear Information System (INIS)

    Strom, E.T.; Espencheid, W.F.

    1983-01-01

    The present invention relates to a method for restoring to environmentally acceptable levels the soluble contaminants in a subterranean formation that has been subjected to oxidative leaching. The contaminants are defined as those ionic species that when subjected to calcium ions form precipitates which are insoluble in the formation fluids. In accordance with the present invention, soluble calcium values are introduced into the formation. The level of contaminants is monitored and when such reaches the desired level, the introduction of soluble calcium values is stopped. The introduction of calcium values may be achieved in several ways one of which is to inject into the formation an aqueous solution containing therein solubilized calcium values. Another method of introducing calcium values into a formation, is to inject into the formation an aqueous solution containing carbon dioxide to solubilize calcium values, such as calcium carbonates, found in the formation

  4. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  5. New lumps of Veselov-Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schroedinger equation via ∂-macron-dressing method

    International Nuclear Information System (INIS)

    Dubrovsky, V.G.; Formusatik, I.B.

    2003-01-01

    The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular

  6. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing

  7. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  8. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    Science.gov (United States)

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  9. Method of solving conformal models in D-dimensional space 2: A family of exactly solvable models in D > 2

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Ya.

    1996-02-01

    We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Q s , s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Q s (x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Q s (x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs

  10. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    Science.gov (United States)

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  11. The influence of previous subject experience on interactions during peer instruction in an introductory physics course: A mixed methods analysis

    Science.gov (United States)

    Vondruska, Judy A.

    Over the past decade, peer instruction and the introduction of student response systems has provided a means of improving student engagement and achievement in large-lecture settings. While the nature of the student discourse occurring during peer instruction is less understood, existing studies have shown student ideas about the subject, extraneous cues, and confidence level appear to matter in the student-student discourse. Using a mixed methods research design, this study examined the influence of previous subject experience on peer instruction in an introductory, one-semester Survey of Physics course. Quantitative results indicated students in discussion pairs where both had previous subject experience were more likely to answer clicker question correctly both before and after peer discussion compared to student groups where neither partner had previous subject experience. Students in mixed discussion pairs were not statistically different in correct response rates from the other pairings. There was no statistically significant difference between the experience pairs on unit exam scores or the Peer Instruction Partner Survey. Although there was a statistically significant difference between the pre-MPEX and post-MPEX scores, there was no difference between the members of the various subject experience peer discussion pairs. The qualitative study, conducted after the quantitative study, helped to inform the quantitative results by exploring the nature of the peer interactions through survey questions and a series of focus groups discussions. While the majority of participants described a benefit to the use of clickers in the lecture, their experience with their discussion partners varied. Students with previous subject experience tended to describe peer instruction more positively than students who did not have previous subject experience, regardless of the experience level of their partner. They were also more likely to report favorable levels of comfort with

  12. Reference Values for Spirometry Derived Using Lambda, Mu, Sigma (LMS) Method in Korean Adults: in Comparison with Previous References.

    Science.gov (United States)

    Jo, Bum Seak; Myong, Jun Pyo; Rhee, Chin Kook; Yoon, Hyoung Kyu; Koo, Jung Wan; Kim, Hyoung Ryoul

    2018-01-15

    The present study aimed to update the prediction equations for spirometry and their lower limits of normal (LLN) by using the lambda, mu, sigma (LMS) method and to compare the outcomes with the values of previous spirometric reference equations. Spirometric data of 10,249 healthy non-smokers (8,776 females) were extracted from the fourth and fifth versions of the Korea National Health and Nutrition Examination Survey (KNHANES IV, 2007-2009; V, 2010-2012). Reference equations were derived using the LMS method which allows modeling skewness (lambda [L]), mean (mu [M]), and coefficient of variation (sigma [S]). The outcome equations were compared with previous reference values. Prediction equations were presented in the following form: predicted value = e{a + b × ln(height) + c × ln(age) + M - spline}. The new predicted values for spirometry and their LLN derived using the LMS method were shown to more accurately reflect transitions in pulmonary function in young adults than previous prediction equations derived using conventional regression analysis in 2013. There were partial discrepancies between the new reference values and the reference values from the Global Lung Function Initiative in 2012. The results should be interpreted with caution for young adults and elderly males, particularly in terms of the LLN for forced expiratory volume in one second/forced vital capacity in elderly males. Serial spirometry follow-up, together with correlations with other clinical findings, should be emphasized in evaluating the pulmonary function of individuals. Future studies are needed to improve the accuracy of reference data and to develop continuous reference values for spirometry across all ages. © 2018 The Korean Academy of Medical Sciences.

  13. Analysis of noise properties of a class of exact methods of inverting the 2-D exponential radon transform

    International Nuclear Information System (INIS)

    Pan, X.; Metz, C.E.

    1995-01-01

    A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction

  14. Semi-exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian's decomposition methods. Part I: Elastic solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2008-01-01

    In this work, two powerful analytical methods, namely homotopy perturbation method (HPM) and Adomian's decomposition method (ADM), are introduced to obtain distributions of stresses and displacements in rotating annular elastic disks with uniform and variable thicknesses and densities. The results obtained by these methods are then compared with the verified variational iteration method (VIM) solution. He's homotopy perturbation method which does not require a 'small parameter' has been used and a homotopy with an imbedding parameter p element of [0,1] is constructed. The method takes the full advantage of the traditional perturbation methods and the homotopy techniques and yields a very rapid convergence of the solution. Adomian's decomposition method is an iterative method which provides analytical approximate solutions in the form of an infinite power series for nonlinear equations without linearization, perturbation or discretization. Variational iteration method, on the other hand, is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. This study demonstrates the ability of the methods for the solution of those complicated rotating disk cases with either no or difficult to find fairly exact solutions without the need to use commercial finite element analysis software. The comparison among these methods shows that although the numerical results are almost the same, HPM is much easier, more convenient and efficient than ADM and VIM

  15. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  16. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  17. Quasi-exact solvability

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1992-01-01

    This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite

  18. New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method

    International Nuclear Information System (INIS)

    Chen Yong; Yan Zhenya

    2005-01-01

    In this paper (2 + 1)-dimensional Gardner equation is investigated using a sine-Gordon equation expansion method, which was presented via a generalized sine-Gordon reduction equation and a new transformation. As a consequence, it is shown that the method is more powerful to obtain many types of new doubly periodic solutions of (2 + 1)-dimensional Gardner equation. In particular, solitary wave solutions are also given as simple limits of doubly periodic solutions

  19. Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods.

    Science.gov (United States)

    Berke, Ethan M; Shi, Xun

    2009-04-29

    Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.

  20. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  1. Comparison of ray methods with the exact solution in the 1-D anisotropic "simplified twisted crystal" model

    Czech Academy of Sciences Publication Activity Database

    Bulant, P.; Klimeš, L.; Pšenčík, Ivan; Vavryčuk, Václav

    2004-01-01

    Roč. 48, č. 4 (2004), s. 675-688 ISSN 0039-3169 R&D Projects: GA ČR GA205/04/1104; GA AV ČR IAA3012309; GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : coupling ray theory * quasi-isotropic approximation * ray methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.447, year: 2004

  2. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  3. A two-dimensional method of manufactured solutions benchmark suite based on variations of Larsen's benchmark with escalating order of smoothness of the exact solution

    International Nuclear Information System (INIS)

    Schunert, Sebastian; Azmy, Yousry Y.

    2011-01-01

    The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally ne mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite rst eliminates the aforementioned limitation of ne mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme. (author)

  4. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    Science.gov (United States)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  5. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-01-01

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N 2 , O 2 , and the polyyne C 10 H 2 ) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions

  6. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form

    Science.gov (United States)

    Delzanno, G. L.

    2015-11-01

    A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.

  7. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  8. Exact models for isotropic matter

    Science.gov (United States)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  9. Solving the competitive facility location problem considering the reactions of competitor with a hybrid algorithm including Tabu Search and exact method

    Science.gov (United States)

    Bagherinejad, Jafar; Niknam, Azar

    2018-03-01

    In this paper, a leader-follower competitive facility location problem considering the reactions of the competitors is studied. A model for locating new facilities and determining levels of quality for the facilities of the leader firm is proposed. Moreover, changes in the location and quality of existing facilities in a competitive market where a competitor offers the same goods or services are taken into account. The competitor could react by opening new facilities, closing existing ones, and adjusting the quality levels of its existing facilities. The market share, captured by each facility, depends on its distance to customer and its quality that is calculated based on the probabilistic Huff's model. Each firm aims to maximize its profit subject to constraints on quality levels and budget of setting up new facilities. This problem is formulated as a bi-level mixed integer non-linear model. The model is solved using a combination of Tabu Search with an exact method. The performance of the proposed algorithm is compared with an upper bound that is achieved by applying Karush-Kuhn-Tucker conditions. Computational results show that our algorithm finds near the upper bound solutions in a reasonable time.

  10. Locating previously unknown patterns in data-mining results: a dual data- and knowledge-mining method

    Directory of Open Access Journals (Sweden)

    Knaus William A

    2006-03-01

    Full Text Available Abstract Background Data mining can be utilized to automate analysis of substantial amounts of data produced in many organizations. However, data mining produces large numbers of rules and patterns, many of which are not useful. Existing methods for pruning uninteresting patterns have only begun to automate the knowledge acquisition step (which is required for subjective measures of interestingness, hence leaving a serious bottleneck. In this paper we propose a method for automatically acquiring knowledge to shorten the pattern list by locating the novel and interesting ones. Methods The dual-mining method is based on automatically comparing the strength of patterns mined from a database with the strength of equivalent patterns mined from a relevant knowledgebase. When these two estimates of pattern strength do not match, a high "surprise score" is assigned to the pattern, identifying the pattern as potentially interesting. The surprise score captures the degree of novelty or interestingness of the mined pattern. In addition, we show how to compute p values for each surprise score, thus filtering out noise and attaching statistical significance. Results We have implemented the dual-mining method using scripts written in Perl and R. We applied the method to a large patient database and a biomedical literature citation knowledgebase. The system estimated association scores for 50,000 patterns, composed of disease entities and lab results, by querying the database and the knowledgebase. It then computed the surprise scores by comparing the pairs of association scores. Finally, the system estimated statistical significance of the scores. Conclusion The dual-mining method eliminates more than 90% of patterns with strong associations, thus identifying them as uninteresting. We found that the pruning of patterns using the surprise score matched the biomedical evidence in the 100 cases that were examined by hand. The method automates the acquisition of

  11. Qualitative Research Methods to Advance Research on Health Inequities among Previously Incarcerated Women Living with HIV in Alabama

    Science.gov (United States)

    Sprague, Courtenay; Scanlon, Michael L.; Pantalone, David W.

    2017-01-01

    Justice-involved HIV-positive women have poor health outcomes that constitute health inequities. Researchers have yet to embrace the range of qualitative methods to elucidate how psychosocial histories are connected to pathways of vulnerability to HIV and incarceration for this key population. We used life course narratives and…

  12. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  13. THE INFLUENCE OF THE ASSESSMENT MODEL AND METHOD TOWARD THE SCIENCE LEARNING ACHIEVEMENT BY CONTROLLING THE STUDENTS? PREVIOUS KNOWLEDGE OF MATHEMATICS.

    OpenAIRE

    Adam rumbalifar; I. g. n. Agung; Burhanuddin tola.

    2018-01-01

    This research aims to study the influence of the assessment model and method toward the science learning achievement by controlling the students? previous knowledge of mathematics. This study was conducted at SMP East Seram district with the population of 295 students. This study applied a quasi-experimental method with 2 X 2 factorial design using the ANCOVA model. The findings after controlling the students\\' previous knowledge of mathematics show that the science learning achievement of th...

  14. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  15. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  16. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  17. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  18. New exact wave solutions for Hirota equation

    Indian Academy of Sciences (India)

    2Department of Engineering Sciences, Faculty of Technology and Engineering,. University ... of nonlinear partial differential equations (NPDEs) in mathematical physics. Keywords. ... This method has been successfully applied to obtain exact.

  19. A new determination of cross sections in methane and silane by using an exact method of solution ot the Boltzmann equation

    International Nuclear Information System (INIS)

    Segur, P.; Balaguer, J.P.

    1984-01-01

    We use a modified form of the SN method to solve the Boltzmann equation. We are then able to take into account the strong anisotropy of the distribution function which is known to occur in methane and silane. For a given set of cross-sections, the swarm parameters calculated with this method are very different from these published by previous authors (obtained with the standard two term Legendre expansion of the distribution function). The cross sections which we deduce by comparing experimental and calculated values for drift velocity and transversal diffusion coefficient are very different from these of Pollock or Duncan and Walker. With these two new sets of cross sections we make some calculations in mixtures of methane and silane, methane and argon, silane and argon. We note that our results for swarm parameters (at low E/N) are in good agreement with experimental values when they are available

  20. New exact solutions of the mBBM equation

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Desheng

    2013-01-01

    The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)

  1. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  2. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  3. A geometric method of constructing exact solutions in modified f(R,T)-gravity with Yang-Mills and Higgs interactions

    CERN Document Server

    Vacaru, Sergiu I.; Yazici, Enis

    2014-01-01

    We show that a geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in $f(R,T)$--modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. There are provided and analyzed some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations.

  4. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  5. Exact Slater integrals

    International Nuclear Information System (INIS)

    Golden, L.B.

    1968-01-01

    In atomic structure calculations, one has to evaluate the Slater integrals. In the present program, the authors evaluate exactly the Slater integral when hydrogenic wave functions are used for the bound-state orbitals. When hydrogenic wave functions are used, the Slater integrals involve integrands which can be written in the form of a product of an exponential, exp(ax) and a known analytic polynomial function, f(x). By repeated partial integration such an integral can be expressed in terms of a finite series involving the exponential, the polynomial function and its derivatives. PL/1-FORMAC has a built-in subroutine that will analytically find the derivatives of any multinomial. Thus, the finite series and hence the Slater integral can be evaluated analytically. (Auth.)

  6. An optimized method for neurotransmitters and their metabolites analysis in mouse hypothalamus by high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry.

    Science.gov (United States)

    Yang, Zong-Lin; Li, Hui; Wang, Bing; Liu, Shu-Ying

    2016-02-15

    Neurotransmitters (NTs) and their metabolites are known to play an essential role in maintaining various physiological functions in nervous system. However, there are many difficulties in the detection of NTs together with their metabolites in biological samples. A new method for NTs and their metabolites detection by high performance liquid chromatography coupled with Q Exactive hybrid quadruple-orbitrap high-resolution accurate mass spectrometry (HPLC-HRMS) was established in this paper. This method was a great development of the applying of Q Exactive MS in the quantitative analysis. This method enabled a rapid quantification of ten compounds within 18min. Good linearity was obtained with a correlation coefficient above 0.99. The concentration range of the limit of detection (LOD) and the limit of quantitation (LOQ) level were 0.0008-0.05nmol/mL and 0.002-25.0nmol/mL respectively. Precisions (relative standard deviation, RSD) of this method were at 0.36-12.70%. Recovery ranges were between 81.83% and 118.04%. Concentrations of these compounds in mouse hypothalamus were detected by Q Exactive LC-MS technology with this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  8. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  9. Exact solitary waves of the Korteveg - de Vries - Burgers equation

    OpenAIRE

    Kudryashov, N. A.

    2004-01-01

    New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.

  10. Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Science.gov (United States)

    Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina

    2018-03-01

    Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  11. Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Directory of Open Access Journals (Sweden)

    J. Caesar

    2018-03-01

    Full Text Available Chlorophyll concentrations of biological soil crust (biocrust samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual. Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  12. arXiv Integrable flows between exact CFTs

    CERN Document Server

    Georgiou, George

    2017-11-14

    We explicitly construct families of integrable σ-model actions smoothly inter-polating between exact CFTs. In the ultraviolet the theory is the direct product of two current algebras at levels k$_{1}$ and k$_{2}$. In the infrared and for the case of two deformation matrices the CFT involves a coset CFT, whereas for a single matrix deformation it is given by the ultraviolet direct product theories but at levels k$_{1}$ and k$_{2}$ − k$_{1}$. For isotropic deformations we demonstrate integrability. In this case we also compute the exact beta-function for the deformation parameters using gravitational methods. This is shown to coincide with previous results obtained using perturbation theory and non-perturbative symmetries.

  13. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  14. An automated patient recognition method based on an image-matching technique using previous chest radiographs in the picture archiving and communication system environment

    International Nuclear Information System (INIS)

    Morishita, Junji; Katsuragawa, Shigehiko; Kondo, Keisuke; Doi, Kunio

    2001-01-01

    An automated patient recognition method for correcting 'wrong' chest radiographs being stored in a picture archiving and communication system (PACS) environment has been developed. The method is based on an image-matching technique that uses previous chest radiographs. For identification of a 'wrong' patient, the correlation value was determined for a previous image of a patient and a new, current image of the presumed corresponding patient. The current image was shifted horizontally and vertically and rotated, so that we could determine the best match between the two images. The results indicated that the correlation values between the current and previous images for the same, 'correct' patients were generally greater than those for different, 'wrong' patients. Although the two histograms for the same patient and for different patients overlapped at correlation values greater than 0.80, most parts of the histograms were separated. The correlation value was compared with a threshold value that was determined based on an analysis of the histograms of correlation values obtained for the same patient and for different patients. If the current image is considered potentially to belong to a 'wrong' patient, then a warning sign with the probability for a 'wrong' patient is provided to alert radiology personnel. Our results indicate that at least half of the 'wrong' images in our database can be identified correctly with the method described in this study. The overall performance in terms of a receiver operating characteristic curve showed a high performance of the system. The results also indicate that some readings of 'wrong' images for a given patient in the PACS environment can be prevented by use of the method we developed. Therefore an automated warning system for patient recognition would be useful in correcting 'wrong' images being stored in the PACS environment

  15. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  16. Exact statistical analysis of nonlinear dynamic power reactor models by the Fokker--Planck method. Part II. Reactor with on-off control

    International Nuclear Information System (INIS)

    Debosscher, A.F.; Dutre, W.L.

    1979-01-01

    The paper deals with the exact stochastic analysis of the low-frequency neutron density fluctuations in an on-off controlled nuclear power reactor without delayed neutrons and perturbed by Gaussian white reactivity noise. The stochastic process, being Markovian, is completely characterized by its first-order probability density function (pdf) and the transition pdf. The first-order pdf is the normalized solution to the time-independent Fokker--Planck equation (FPE). Using this pdf, a general expression for the moments is obtained. The conditions for stochastic stability in probability, in the mean, and in the mean-square are derived. The time-dependent FPE is solved using the Laplace transform technique, which results in four distinct expressions for the transition pdf, according to the relative magnitude of initial and final reactor power with respect to the regulator level. After Laplace inversion, a physical interpretation of the controller's effect on the stochastic process becomes possible. Finally, making use of the obtained pdf's, the spectral density of the reactor power fluctuations is calculated

  17. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  18. Not Exactly Rocket Science.

    Science.gov (United States)

    Barbian, Jeff

    2001-01-01

    Explains how low-tech experiential methods thrive in companies interested in fostering the human touch. Examples include NASA's paper airplane simulation, total immersion simulation, and fantasy multisensory environments. (JOW)

  19. CONDITIONS FOR EXACT CAVALIERI ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mónica Tinajero-Bravo

    2014-03-01

    Full Text Available Exact Cavalieri estimation amounts to zero variance estimation of an integral with systematic observations along a sampling axis. A sufficient condition is given, both in the continuous and the discrete cases, for exact Cavalieri sampling. The conclusions suggest improvements on the current stereological application of fractionator-type sampling.

  20. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins.

    Science.gov (United States)

    Ghose, R; Fushman, D; Cowburn, D

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.

  1. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  2. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  3. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  4. Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave

    International Nuclear Information System (INIS)

    Witte, N.S.

    1997-01-01

    The exact solution to the problem of reflection and diffraction of atomic de Broglie waves by a travelling evanescent wave is found starting with a bare-state formulation. The solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies, thus generalizing previous approximate methods. Furthermore we give the limiting cases of all amplitudes in the uniform semiclassical limit, which is valid in all regions including near the classical turning points, and in the large and weak coupling cases. Exact results for the zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical limit to be closer to the exact result over the full range of parameter values than the previously reported calculations. The current knowledge of hyper-Bessel function properties is reviewed in order to apply this to the physical problems imposed

  5. Treatment response in psychotic patients classified according to social and clinical needs, drug side effects, and previous treatment; a method to identify functional remission.

    Science.gov (United States)

    Alenius, Malin; Hammarlund-Udenaes, Margareta; Hartvig, Per; Sundquist, Staffan; Lindström, Leif

    2009-01-01

    Various approaches have been made over the years to classify psychotic patients according to inadequate treatment response, using terms such as treatment resistant or treatment refractory. Existing classifications have been criticized for overestimating positive symptoms; underestimating residual symptoms, negative symptoms, and side effects; or being to open for individual interpretation. The aim of this study was to present and evaluate a new method of classification according to treatment response and, thus, to identify patients in functional remission. A naturalistic, cross-sectional study was performed using patient interviews and information from patient files. The new classification method CANSEPT, which combines the Camberwell Assessment of Need rating scale, the Udvalg for Kliniske Undersøgelser side effect rating scale (SE), and the patient's previous treatment history (PT), was used to group the patients according to treatment response. CANSEPT was evaluated by comparison of expected and observed results. In the patient population (n = 123), the patients in functional remission, as defined by CANSEPT, had higher quality of life, fewer hospitalizations, fewer psychotic symptoms, and higher rate of workers than those with the worst treatment outcome. In the evaluation, CANSEPT showed validity in discriminating the patients of interest and was well tolerated by the patients. CANSEPT could secure inclusion of correct patients in the clinic or in research.

  6. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  7. New exact travelling wave solutions for the Ostrovsky equation

    International Nuclear Information System (INIS)

    Kangalgil, Figen; Ayaz, Fatma

    2008-01-01

    In this Letter, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. In order to illustrate the validity and the advantages of the method we choose the Ostrovsky equation. As a result, many new and more general exact solutions have been obtained for the equation

  8. Exact traveling wave solutions of the Boussinesq equation

    International Nuclear Information System (INIS)

    Ding Shuangshuang; Zhao Xiqiang

    2006-01-01

    The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained

  9. Characteristic frequencies of a non-Maxwellian plasma - A method for localizing the exact frequencies of magnetospheric intense natural waves near fpe

    International Nuclear Information System (INIS)

    Belmont, G.

    1981-01-01

    Intense natural waves are commonly observed onboard satellites in the outer earth's magnetosphere, inside a narrow frequency range, including the electron plasma and upper hybrid frequencies. In order to progress in the understanding of their emission processes, it is necessary to determine precisely the relationship which exists between their frequencies and the characteristic frequencies of the magnetospheric plasma. For this purpose, it is necessary to take into account the fact that some of these characteristic frequencies, which are provided by active sounding of the plasma, not only depend on the total density, but also on the shape of the distribution function (which has generally been assumed to be Maxwellian). A method providing a fine diagnosis of general non-Maxwellian plasmas is developed. This method of analysis of the experimental data is based on a theoretical study which points out the influence of the shape of the distribution function on the dispersion curves (for wave vectors perpendicular to the static magnetic field)

  10. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  11. On an Approximate Solution Method for the Problem of Surface and Groundwater Combined Movement with Exact Approximation on the Section Line

    Directory of Open Access Journals (Sweden)

    L.L. Glazyrina

    2016-12-01

    Full Text Available In this paper, the initial-boundary problem for two nonlinear parabolic combined equations has been considered. One of the equations is set on the bounded domain Ω from R2, another equation is set along the curve lying in Ω. Both of the equations are parabolic equations with double degeneration. The degeneration can be present at the space operator. Furthermore, the nonlinear function which is under the sign of partial derivative with respect to the variable t, can be bound to zero. This problem has an applied character: such structure is needed to describe the process of surface and ground water combined movement. In this case, the desired function determines the level of water above the given impenetrable bottom, the section simulates the riverbed. The Bussinesk equation has been used for mathematical description of the groundwater filtration process in the domain Ω; a diffusion analogue of the Saint-Venant's system has been used on the section for description of the process of water level change in the open channel. Earlier, the authors proved the theorems of generalized solution existence and uniqueness for the considered problem from the functions classes which are called strengthened Sobolev spaces in the literature. To obtain these results, we used the technique which was created by the German mathematicians (H.W. Alt, S. Luckhaus, F. Otto to establish the correctness of the problems with a double degeneration. In this paper, we have proposed and investigated an approximate solution method for the above-stated problem. This method has been constructed using semidiscretization with respect to the variable t and the finite element method for space variables. Triangulation of the domain has been accomplished by triangles. The mesh has been set on the section line. On each segment of the line section lying between the nearby mesh points, on both side of this segment we have constructed the triangles with a common side which matches with

  12. A method to determine exactly the effective atomic number, electron density and absorbtion coefficient of materials from two Computer-Tomography measurement

    International Nuclear Information System (INIS)

    Christ, G.

    1981-01-01

    By the method of computer tomography, which is in use since about 10 years, X-ray images of a layer of interest can be produced without interference from the material present above this layer. An integral measurement of the attenuation of continuous X-radiation is sufficient to record the different attenuation behaviour in a layer for the purpose of image formation. For more information, however, can be obtained by taking into account the spectral distribution of the X-ray source and the energy dependence of the attenuation, which varies for different materials. In the experimental part of this work the measurement of the spectral distribution is described together with the necessary corrections, and the possible application of the cross sections for the relevant interaction processes, which are known from the literature is studied. As shown in the theoretical part, the attenuation coefficient can be described by an effective atomic number and the electron density of the absorber in the case of an arbitrary mixture of absorbing materials and a continuous X-ray spectrum. These two unknown material parameters can be determined by a method based on the measurement of two spectra with different spectral distribution. This is demonstrated by a one-dimensional and a two-dimensional computer simulation. (orig./WU) [de

  13. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  14. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  15. Exactly energy conserving semi-implicit particle in cell formulation

    International Nuclear Information System (INIS)

    Lapenta, Giovanni

    2017-01-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These

  16. Exactly energy conserving semi-implicit particle in cell formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be

    2017-04-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These

  17. Exactly and completely integrable nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Leznov, A.N.; Savel'ev, M.V.

    1987-01-01

    The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions

  18. Exactly soluble problems in statistical mechanics

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    In the last few years, a number of two-dimensional classical and one-dimensional quantum mechanical problems in statistical mechanics have been exactly solved. Although these problems range over models of diverse physical interest, their solutions were obtained using very similar mathematical methods. In these lectures, the main points of the methods are discussed. In this introductory lecture, an overall survey of all these problems without going into the detailed method of solution is given. In later lectures, they shall concentrate on one particular problem: the delta function interaction in one dimension, and go into the details of that problem

  19. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  20. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  1. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  2. Criteria for exact qudit universality

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; O'Leary, Dianne P.; Bullock, Stephen S.

    2005-01-01

    We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H jk x =(ℎ/2π)Ω(vertical bar k> jk y =(ℎ/2π)Ω(i vertical bar k> jk x,y are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(ℎ/2π)Ω vertical bar d-1,d-1> 87 Rb and construct an optimal gate sequence using Raman laser pulses

  3. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  4. Exact theory of freeze-out

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2015-01-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x * = m χ /T * . The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y 0 , is where the maximum departure of the WIMPs abundance Y from the thermal value Y 0 is reached. For each mass m χ and total annihilation cross section left angle σ ann υ r right angle, the temperature x * and the actual WIMPs abundance Y(x * ) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x * . The matching of the two abundances at x * is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  5. Exact theory of freeze-out

    Science.gov (United States)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  6. Exact solutions of nonlinear differential equations using continued fractions

    International Nuclear Information System (INIS)

    Ditto, W.L.; Pickett, T.J.

    1990-01-01

    The continued-fraction conversion method (J. Math. Phys. (N.Y.), 29, 1761 (1988)) is used to generate a homologous family of exact solutions to the Lane-Emden equation φ(r) '' + 2φ(r)'/r + αφ(r) p = 0, for p=5. An exact solution is also obtained for a generalization of the Lane-Emden equation of the form -φ '' (r) -2φ(r)'/r + αφ(r) 2p+1 + λφ(r) 4p+1 = 0 for arbitrary α, γ and p. A condition is established for the generation of exact solutions from the method

  7. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  8. New exact travelling wave solutions of bidirectional wave equations

    Indian Academy of Sciences (India)

    Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.

  9. Exact travelling wave solutions for some important nonlinear ...

    Indian Academy of Sciences (India)

    The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering fields. In particular ... In [16–18], the author applied this method to construct the exact solutions of.

  10. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  11. A procedure to construct exact solutions of nonlinear evolution ...

    Indian Academy of Sciences (India)

    Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...

  12. Dissociation between exact and approximate addition in developmental dyslexia.

    Science.gov (United States)

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  14. Treatment response in psychotic patients classified according to social and clinical needs, drug side effects, and previous treatment; a method to identify functional remission

    DEFF Research Database (Denmark)

    Alenius, Malin; Hammarlund-Udenaes, Margareta; Honoré, Per Gustaf Hartvig

    2009-01-01

    , fewer psychotic symptoms, and higher rate of workers than those with the worst treatment outcome. CONCLUSION: In the evaluation, CANSEPT showed validity in discriminating the patients of interest and was well tolerated by the patients. CANSEPT could secure inclusion of correct patients in the clinic......BACKGROUND: Various approaches have been made over the years to classify psychotic patients according to inadequate treatment response, using terms such as treatment resistant or treatment refractory. Existing classifications have been criticized for overestimating positive symptoms......; underestimating residual symptoms, negative symptoms, and side effects; or being to open for individual interpretation. The aim of this study was to present and evaluate a new method of classification according to treatment response and, thus, to identify patients in functional remission. METHOD: A naturalistic...

  15. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  16. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  17. Modelling of near-field radionuclide transport phenomena in a KBS-3V type of repository for nuclear waste with Goldsim Code - and verification against previous methods

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2010-03-01

    Traditional radionuclide transport models overestimate significantly some phenomena, or completely ignore them. This motivates the development of new more precise models. As a result, this work is a description of commissioning of a new KBS-3V near-field radionuclide transport model, which has been done with a commercial software called GoldSim. According to earlier models, GoldSim model uses rz coordinates, but the solubilities of radionuclides have been treated more precisely. To begin with, the physical phenomena concerning near-field transport have been introduced according to GoldSim way of thinking. Also, the computational methods of GoldSim have been introduced and compared to methods used earlier. The actual verification of GoldSim model has been carried out by comparing the GoldSim results from simple cases to the corresponding results obtained with REPCOM, a software developed by VTT and used in several safety assessments. The results agree well. Finally, a few complicated cases were studied. In these cases, the REPCOM's limitations in handling of some phenomena become evident. The differences in the results are caused especially by the extension of the solubility limit to the whole computational domain, and the element-wise treatment of the solubilities which was used instead of nuclide-wise treatment. This work has been carried out as a special assignment to the former laboratory of Advanced Energy Systems in Helsinki University of Technology. The work was done at VTT. (orig.)

  18. Exact Solutions of a High-Order Nonlinear Wave Equation of Korteweg-de Vries Type under Newly Solvable Conditions

    Directory of Open Access Journals (Sweden)

    Weiguo Rui

    2014-01-01

    Full Text Available By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.

  19. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  20. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  1. Constructing a paleo-DEM in an urban area by the example of the city of Aachen, Germany: Methods and previous results

    Science.gov (United States)

    Pröschel, Bernhard; Lehmkuhl, Frank

    2017-04-01

    Reconstructing paleo-landscapes in urban areas is always a special challenge since the research area often witnessed constant human impact over long time periods. Dense building development is a major difficulty, particularly in regard to accessibility to in-situ soils and archaeological findings. It is therefore necessary to use data from various sources and combine methods from different fields to gain a detailed picture of the former topography. The area, which is occupied by the city of Aachen today, looks back on a long history of human influence. Traces of human activity can be dated back to Neolithic time. The first architectural structures and the first road network were built by the Romans about 2000 years ago. From then on, the area of Aachen was more or less continuously inhabited forming today's city. This long history is represented by archaeological findings throughout the city. Several meters of settlement deposits, covering different eras, are present in many locations. Therefore, it can be assumed that the modern topography significantly differs from the pre-roman topography. The main objective of this project is a reconstruction of the paleo-topography of Aachen in order to gain new insights on the spatial preconditions that the first settlers found. Moreover, further attention is given to the question whether and to what extent a paleo-DEM can help to clarify specific open archaeological and historical questions. The main database for the reconstruction are the archaeological excavation reports of the past 150 years, provided by municipal and regional archives. After analyzing these written accounts, we linked this information to drill data, provided by the Geological Service of North Rhine-Westphalia. Together with additional sources like geological and hydrological maps, we generated a GIS-based terrain model. The result is a high-resolution terrain model, representing the undisturbed pre-roman topography of the inner city of Aachen without any

  2. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  3. Exact theory of freeze-out

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature x{sub *} = m{sub χ}/T{sub *}. The point x., which coincides with the stationary point of the equation for the quantity Δ = Y-Y{sub 0}, is where the maximum departure of the WIMPs abundance Y from the thermal value Y{sub 0} is reached. For each mass m{sub χ} and total annihilation cross section left angle σ{sub ann}υ{sub r} right angle, the temperature x{sub *} and the actual WIMPs abundance Y(x{sub *}) are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval x ≥ x{sub *}. The matching of the two abundances at x{sub *} is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1.2 % in the case of S-wave and P-wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics. (orig.)

  4. The asymptotic and exact Fisher information matrices of a vector ARMA process

    NARCIS (Netherlands)

    Klein, A.; Melard, G.; Saidi, A.

    2008-01-01

    The exact Fisher information matrix of a Gaussian vector autoregressive-moving average (VARMA) process has been considered for a time series of length N in relation to the exact maximum likelihood estimation method. In this paper it is shown that the Gaussian exact Fisher information matrix

  5. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  6. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  7. Exact Solutions to a Combined sinh-cosh-Gordon Equation

    International Nuclear Information System (INIS)

    Wei Long

    2010-01-01

    Based on a transformed Painleve property and the variable separated ODE method, a function transformation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient ordinary differential equations, then we seek for solutions to the resulting equations by some methods. As an application, exact solutions for the combined sinh-cosh-Gordon equation are formally derived. (general)

  8. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  9. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  10. APPLICATION OF A PRIMAL-DUAL INTERIOR POINT ALGORITHM USING EXACT SECOND ORDER INFORMATION WITH A NOVEL NON-MONOTONE LINE SEARCH METHOD TO GENERALLY CONSTRAINED MINIMAX OPTIMISATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    INTAN S. AHMAD

    2008-04-01

    Full Text Available This work presents the application of a primal-dual interior point method to minimax optimisation problems. The algorithm differs significantly from previous approaches as it involves a novel non-monotone line search procedure, which is based on the use of standard penalty methods as the merit function used for line search. The crucial novel concept is the discretisation of the penalty parameter used over a finite range of orders of magnitude and the provision of a memory list for each such order. An implementation within a logarithmic barrier algorithm for bounds handling is presented with capabilities for large scale application. Case studies presented demonstrate the capabilities of the proposed methodology, which relies on the reformulation of minimax models into standard nonlinear optimisation models. Some previously reported case studies from the open literature have been solved, and with significantly better optimal solutions identified. We believe that the nature of the non-monotone line search scheme allows the search procedure to escape from local minima, hence the encouraging results obtained.

  11. Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM

    Directory of Open Access Journals (Sweden)

    Chenchao Zhao

    2018-01-01

    Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.

  12. On truncations of the exact renormalization group

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.

  13. Exact solutions to operator differential equations

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    In this talk we consider the Heisenberg equations of motion q = -i(q, H), p = -i(p, H), for the quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held belief that such operator differential equations are intractable. However, a technique is presented here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This technique, which is a generalization of the classical action-angle variable methods, allows us to solve, albeit formally and implicitly, the operator differential equations of two anharmonic oscillators whose Hamiltonians are H = p 2 /2 + q 4 /4 and H = p 4 /4 + q 4 /4

  14. Exact solutions to chaotic and stochastic systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.; Guerrero, L. E.

    2001-03-01

    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.

  15. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  16. New exact solutions of the generalized Zakharov–Kuznetsov ...

    Indian Academy of Sciences (India)

    In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the ...

  17. Exact solutions of some coupled nonlinear diffusion-reaction ...

    Indian Academy of Sciences (India)

    certain coupled diffusion-reaction (D-R) equations of very general nature. In recent years, various direct methods have been proposed to find the exact solu- tions not only of nonlinear partial differential equations but also of their coupled versions. These methods include unified ansatz approach [3], extended hyperbolic func ...

  18. Exact Solutions of the Harry-Dym Equation

    International Nuclear Information System (INIS)

    Mokhtari, Reza

    2011-01-01

    The aim of this paper is to generate exact travelling wave solutions of the Harry-Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation. (general)

  19. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

    2008-04-14

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  20. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2008-01-01

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  1. Exact solutions of the neutron slowing down equation

    International Nuclear Information System (INIS)

    Dawn, T.Y.; Yang, C.N.

    1976-01-01

    The problem of finding the exact analytic closed-form solution for the neutron slowing down equation in an infinite homogeneous medium is studied in some detail. The existence and unique properties of the solution of this equation for both the time-dependent and the time-independent cases are studied. A direct method is used to determine the solution of the stationary problem. The final result is given in terms of a sum of indefinite multiple integrals by which solutions of some special cases and the Placzek-type oscillation are examined. The same method can be applied to the time-dependent problem with the aid of the Laplace transformation technique, but the inverse transform is, in general, laborious. However, the solutions of two special cases are obtained explicitly. Results are compared with previously reported works in a variety of cases. The time moments for the positive integral n are evaluated, and the conditions for the existence of the negative moments are discussed

  2. Exact, almost and delayed fault detection: An observer based approach

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    This paper consider the problem of fault detection and isolation in continuous- and discrete-time systems while using zero or almost zero threshold. A number of different fault detections and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability...... conditions are given for the formulated design problems together with methods for appropriate design of observer based fault detectors. The l-step delayed fault detection problem is also considered for discrete-time systems . Moreover, certain indirect fault detection methods such as unknown input observers...

  3. Disease clusters, exact distributions of maxima, and P-values.

    Science.gov (United States)

    Grimson, R C

    1993-10-01

    This paper presents combinatorial (exact) methods that are useful in the analysis of disease cluster data obtained from small environments, such as buildings and neighbourhoods. Maxwell-Boltzmann and Fermi-Dirac occupancy models are compared in terms of appropriateness of representation of disease incidence patterns (space and/or time) in these environments. The methods are illustrated by a statistical analysis of the incidence pattern of bone fractures in a setting wherein fracture clustering was alleged to be occurring. One of the methodological results derived in this paper is the exact distribution of the maximum cell frequency in occupancy models.

  4. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  5. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  6. Exact shock profile for the ASEP with sublattice-parallel update

    International Nuclear Information System (INIS)

    Jafarpour, F H; Ghafari, F E; Masharian, S R

    2005-01-01

    We analytically study the one-dimensional asymmetric simple exclusion process with open boundaries under sublattice-parallel updating scheme. We investigate the stationary state properties of this model conditioned on finding a given particle number in the system. Recent numerical investigations have shown that the model possesses three different phases in this case. Using a matrix product method we calculate both the exact canonical partition function and also density profiles of the particles in each phase. Application of the Yang-Lee theory reveals that the model undergoes two second-order phase transitions at critical points. These results confirm the correctness of our previous numerical studies

  7. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  8. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  9. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  10. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  11. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  12. Exact Monte Carlo for molecules

    International Nuclear Information System (INIS)

    Lester, W.A. Jr.; Reynolds, P.J.

    1985-03-01

    A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs

  13. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  14. Exact solution of matricial Φ23 quantum field theory

    Science.gov (United States)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  15. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  16. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  17. Exact analytical solutions for nonlinear reaction-diffusion equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way

  18. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  19. Exact Synthesis of Reversible Circuits Using A* Algorithm

    Science.gov (United States)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  20. The exact probability law for the approximated similarity from the ...

    African Journals Online (AJOL)

    The exact probability law for the approximated similarity from the Minhashing method. Soumaila Dembele, Gane Samb Lo. Abstract. We propose a probabilistic setting in which we study the probability law of the Rajaraman and Ullman RU algorithm and a modied version of it denoted by RUM. These algorithms aim at ...

  1. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  2. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  3. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  4. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  5. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  6. Previously unknown species of Aspergillus.

    Science.gov (United States)

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. Copyright © 2016 European Society of Clinical Microbiology and

  7. Some exact solutions to the potential Kadomtsev-Petviashvili equation and to a system of shallow water wave equations

    International Nuclear Information System (INIS)

    Inan, Ibrahim E.; Kaya, Dogan

    2006-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found

  8. Algebraic aspects of exact models

    International Nuclear Information System (INIS)

    Gaudin, M.

    1983-01-01

    Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method

  9. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  10. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  11. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  12. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  13. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  14. On exactly soluble model in quantum electrodynamics

    International Nuclear Information System (INIS)

    Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien

    1984-01-01

    Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated

  15. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  16. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  17. New explicit and exact solutions of the Benney–Kawahara–Lin equation

    International Nuclear Information System (INIS)

    Yuan-Xi, Xie

    2009-01-01

    In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney–Kawahara–Lin equation and derive its many explicit and exact solutions which are all new solutions. (general)

  18. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    OpenAIRE

    Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.

    2013-01-01

    In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  19. Products of composite operators in the exact renormalization group formalism

    Science.gov (United States)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  20. New exact travelling wave solutions for two potential coupled KdV equations with symbolic computation

    International Nuclear Information System (INIS)

    Yang Zonghang

    2007-01-01

    We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed

  1. On nonlinear differential equation with exact solutions having various pole orders

    International Nuclear Information System (INIS)

    Kudryashov, N.A.

    2015-01-01

    We consider a nonlinear ordinary differential equation having solutions with various movable pole order on the complex plane. We show that the pole order of exact solution is determined by values of parameters of the equation. Exact solutions in the form of the solitary waves for the second order nonlinear differential equation are found taking into account the method of the logistic function. Exact solutions of differential equations are discussed and analyzed

  2. On the exact interpolating function in ABJ theory

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2016-12-16

    Based on the recent indications of integrability in the planar ABJ model, we conjecture an exact expression for the interpolating function h(λ{sub 1},λ{sub 2}) in this theory. Our conjecture is based on the observation that the integrability structure of the ABJM theory given by its Quantum Spectral Curve is very rigid and does not allow for a simple consistent modification. Under this assumption, we revised the previous comparison of localization results and exact all loop integrability calculations done for the ABJM theory by one of the authors and Grigory Sizov, fixing h(λ{sub 1},λ{sub 2}). We checked our conjecture against various weak coupling expansions, at strong coupling and also demonstrated its invariance under the Seiberg-like duality. This match also gives further support to the integrability of the model. If our conjecture is correct, it extends all the available integrability results in the ABJM model to the ABJ model.

  3. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  4. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  5. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  6. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  7. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  8. Symmetries and exact solutions of the nondiagonal Einstein-Rosen metrics

    International Nuclear Information System (INIS)

    Goyal, N; Gupta, R K

    2012-01-01

    We seek exact solutions of the nondiagonal Einstein-Rosen metrics. The method of Lie symmetry of differential equations is utilized to obtain new exact solutions of Einstein vacuum equations obtained from the nondiagonal Einstein-Rosen metric. Four cases arise depending on the nature of the Lie symmetry generator. In all cases, we find reductions in terms of ordinary differential equations and exact solutions of the nonlinear system of partial differential equations (PDEs) are derived. For this purpose, first we check the Painlevé property and then corresponding to the nonlinear system of PDEs, symmetries and exact solutions are obtained.

  9. Exactly solvable birth and death processes

    International Nuclear Information System (INIS)

    Sasaki, Ryu

    2009-01-01

    Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q x (with x being the population) corresponding to the q-Racah polynomial.

  10. Exact Closed-form Solutions for Lamb's Problem

    Science.gov (United States)

    Feng, X.

    2017-12-01

    In this work, we report on an exact closedform solution for the displacement at the surfaceof an elastic halfspace elicited by a buried point source that acts at some point underneath thatsurface. This is commonly referred to as the 3D Lamb's problem, for which previous solutionswere restricted to sources and receivers placed at the free surface. By means of the reciprocitytheorem, our solution should also be valid as a means to obtain the displacements at interior pointswhen the source is placed at the free surface. We manage to obtain explicit results by expressingthe solution in terms of elementary algebraic expression as well as elliptic integrals. We anchorour developments on Poissons ratio 0.25 starting from Johnson's numerical, integral transformsolutions. Furthermore, the spatial derivatives of our solutions can be easily acquired in termsof our methods. In the end, our closed-form results agree perfectly with the numerical results ofJohnson, which strongly conrms the correctness of our explicit formulas. It is hoped that in duetime, these formulas may constitute a valuable canonical solution that will serve as a yardstickagainst which other numerical solutions can be compared and measured.In addition, we abstract some terms from our solutions as the generator of the Rayleigh waves.Some basic properties of the Rayleigh waves in the time domain will be indicated in terms of thegenerator. The fareld radiation patterns of P-wave and S-wave elicited by the double-couple forcein the uniform half-space medium could also be acquired from our results.

  11. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  12. Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)

    2011-10-07

    We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)

  13. Exact solutions to sine-Gordon-type equations

    International Nuclear Information System (INIS)

    Liu Shikuo; Fu Zuntao; Liu Shida

    2006-01-01

    In this Letter, sine-Gordon-type equations, including single sine-Gordon equation, double sine-Gordon equation and triple sine-Gordon equation, are systematically solved by Jacobi elliptic function expansion method. It is shown that different transformations for these three sine-Gordon-type equations play different roles in obtaining exact solutions, some transformations may not work for a specific sine-Gordon equation, while work for other sine-Gordon equations

  14. Exact results on diffusion in a piecewise linear potential with a time-dependent sink

    Energy Technology Data Exchange (ETDEWEB)

    Diwaker, E-mail: diwakerphysics@gmail.com [Central University of Himachal Pradesh, School of Physical and Astronomical Sciences (India); Chakraborty, Aniruddha [Indian Institute of Technology Mandi (India)

    2016-02-15

    The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.

  15. New Exact Solutions for (1 + 1)-Dimensional Dispersion-Less System

    International Nuclear Information System (INIS)

    Naranmandula; Hu Jianguo; Bao Gang; Tubuxin

    2008-01-01

    Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately

  16. Exact relativistic cylindrical solution of disordered radiation

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da; Wolk, I.; Som, M.M.

    1976-05-01

    A source free disordered distribution of electromagnetic radiation is considered in Einstein' theory, and a time independent exact solution with cylindrical symmetry is obtained. The gravitation and pressure effects of the radiation alone are sufficient to give the distribution an equilibrium. A finite maximum concentration is found on the axis of symmetry, and decreases monotonically to zero outwards. Timelike and null geodesics are discussed

  17. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  18. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  19. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  20. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  1. Exact solutions of Lovelock-Born-Infeld black holes

    International Nuclear Information System (INIS)

    Aiello, Matias; Ferraro, Rafael; Giribet, Gaston

    2004-01-01

    The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the literature. It is shown how the conical singularity of the metric around the origin can be removed by a proper choice of the black hole parameters. The differences existing with the Reissner-Nordstroem black holes are discussed. In particular, we show the existence of charged black holes with a unique horizon

  2. Exactly solvable irreversible processes on one-dimensional lattices

    International Nuclear Information System (INIS)

    Wolf, N.O.; Evans, J.W.; Hoffman, D.K.

    1984-01-01

    We consider the kinetics of a process where the sites of an infinite 1-D lattice are filled irreversibly and, in general, cooperatively by N-mers (taking N consecutive sites at a time). We extend the previously available exact solution for nearest neighbor cooperative effects to range N cooperative effects. Connection with the continuous ''cooperative car parking problem'' is indicated. Both uniform and periodic lattices, and empty and certain partially filled lattice initial conditions are considered. We also treat monomer ''filling in stages'' for certain highly autoinhibitory cooperative effects of arbitrary range

  3. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  4. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  5. Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations

    Science.gov (United States)

    Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.

    2018-05-01

    The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.

  6. Exact wavefunctions for a time-dependent Coulomb potential

    International Nuclear Information System (INIS)

    Menouar, S; Maamache, M; Saadi, Y; Choi, J R

    2008-01-01

    The one-dimensional Schroedinger equation associated with a time-dependent Coulomb potential is studied. The invariant operator method (Lewis and Riesenfeld) and unitary transformation approach are employed to derive quantum solutions of the system. We obtain an ordinary second-order differential equation whose analytical exact solution has been unknown. It is confirmed that the form of this equation is similar to the radial Schroedinger equation for the hydrogen atom in a (arbitrary) strong magnetic field. The qualitative properties for the eigenstates spectrum are described separately for the different values of the parameter ω 0 appearing in the x 2 term, x being the position, i.e., ω 0 > 0, ω 0 0 = 0. For the ω 0 = 0 case, the eigenvalue equation of invariant operator reduces to a solvable form and, consequently, we have provided exact eigenstates of the time-dependent Hamiltonian system

  7. Computing exact bundle compliance control charts via probability generating functions.

    Science.gov (United States)

    Chen, Binchao; Matis, Timothy; Benneyan, James

    2016-06-01

    Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.

  8. Exact results for Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu; Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2014-01-08

    We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of N=4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

  9. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  10. Exactly averaged equations for flow and transport in random media

    International Nuclear Information System (INIS)

    Shvidler, Mark; Karasaki, Kenzi

    2001-01-01

    It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)

  11. Conhecimento, atitude e prática sobre métodos anticoncepcionais entre adolescentes gestantes Knowledge, attitudes, and practices on previous use of contraceptive methods among pregnant teenagers

    Directory of Open Access Journals (Sweden)

    Márcio Alves Vieira Belo

    2004-08-01

    describe the knowledge, attitudes and practices related to previous contraceptive methods used among pregnant teenagers as well as to outline some sociodemographic characteristics and sexual practices. METHODS: An observational study associated to the KAP (Knowledge, Attitudes, and Practices survey was carried out in 156 pregnant teenagers aged 19 years or more. A structured questionnaire was applied before their first prenatal visit from October 1999 to August 2000. Univariate and bivariate analyses were performed using Pearson's and Yates' chi-square test and logistic regression. RESULTS: The adolescents had an average age of 16.1 years and most were in their first pregnancy (78.8%. Average age of menarche was 12.2 years and their first sexual intercourse was at the age of 14.5 years. Condoms (99.4% and oral contraceptives (98% were the most common contraceptive methods known. Of all, 67.3% were not using any contraceptive method before getting pregnant. The main reason reported for not using any contraceptive method was wanting to get pregnant (24.5%. The older ones who reported having religious beliefs and had a higher socioeconomic status had better knowledge on contraceptive methods. Teenagers who had had previous pregnancies reported more often use of contraceptive methods before getting pregnant. CONCLUSIONS: The pregnant teenagers showed to have adequate knowledge of contraceptive methods and agreed to use them throughout their teenage years. Religion, age group, and socioeconomic status were directly related to their knowledge on contraceptive methods, and multiple pregnancies brought more awareness on that. Of all, 54% had used any contraceptive on first sexual intercourse but their use decreased over time and shortly after their first intercourse the studied teenagers got pregnant.

  12. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  13. Exact computation of the 9-j symbols

    International Nuclear Information System (INIS)

    Lai Shantao; Chiu Jingnan

    1992-01-01

    A useful algebraic formula for the 9-j symbol has been rewritten for convenient use on a computer. A simple FORTRAN program for the exact computation of 9-j symbols has been written for the VAX with VMS version V5,4-1 according to this formula. The results agree with the approximate values in existing literature. Some specific values of 9-j symbols needed for the intensity and alignments of three-photon nonresonant transitions are tabulated. Approximate 9-j symbol values beyond the limitation of the computer can also be computed by this program. The computer code of the exact computation of 3-j, 6-j and 9-j symbols are available through electronic mail upon request. (orig.)

  14. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  15. Model checking exact cost for attack scenarios

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Nielson, Flemming

    2017-01-01

    Attack trees constitute a powerful tool for modelling security threats. Many security analyses of attack trees can be seamlessly expressed as model checking of Markov Decision Processes obtained from the attack trees, thus reaping the benefits of a coherent framework and a mature tool support....... However, current model checking does not encompass the exact cost analysis of an attack, which is standard for attack trees. Our first contribution is the logic erPCTL with cost-related operators. The extended logic allows to analyse the probability of an event satisfying given cost bounds and to compute...... the exact cost of an event. Our second contribution is the model checking algorithm for erPCTL. Finally, we apply our framework to the analysis of attack trees....

  16. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  17. New exact solutions of the Dirac equation

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.

    1980-01-01

    Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely

  18. Exact BPS bound for noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco

    2013-01-01

    The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory

  19. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  20. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  1. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  2. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in

  3. Exact, multiple soliton solutions of the double sine Gordon equation

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)

  4. Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection

    KAUST Repository

    Ghinita, Gabriel; Kalnis, Panos; Kantarcioǧlu, Murâ t; Bertino, Elisa

    2010-01-01

    Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010

  5. Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection

    KAUST Repository

    Ghinita, Gabriel

    2010-12-15

    Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010

  6. New exact approaches to the nuclear eigenvalue problem

    International Nuclear Information System (INIS)

    Andreozzi, F.; Lo Iudice, N.; Porrino, A.; Knapp, F.; Kvasil, J.

    2005-01-01

    In a recent past some of us have developed a new algorithm for diagonalizing the shell model Hamiltonian which consists of an iterative sequence of diagonalization of sub-matrices of small dimensions. The method, apart from being easy to implement, is robust, yielding always stable numerical solutions, and free of ghost eigenvalues. Subsequently, we have endowed the algorithm with an importance sampling, which leads to a drastic truncation of the shell model space, while keeping the accuracy of the solutions under control. Applications to typical nuclei show that the sampling yields also an extrapolation law to the exact eigenvalues. Complementary to the shell model algorithm is a method we are developing for studying collective and non collective excitations. To this purpose we solve the nuclear eigenvalue problem in a space which is the direct sum of Tamm-Dancoff n-phonon subspaces (n=0,1, ...N). The multiphonon basis is constructed by an iterative equation of motion method, which generates an over complete set of n-phonon states from the (n-1)-phonon basis. The redundancy is removed completely and exactly by a method based on the Choleski decomposition. The full Hamiltonian matrix comes out to have a simple structure and, therefore, can be drastically truncated before diagonalization by the mentioned importance sampling method. The phonon composition of the basis states allows removing naturally and maximally the spurious admixtures induced by the centre of mass motion. An application of the method to 16 O will be given for illustrative purposes. (authors)

  7. Exact scattering solutions in an energy sudden (ES) representation

    International Nuclear Information System (INIS)

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  8. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  9. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    Science.gov (United States)

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  10. Exact analytic solutions generated from stipulated Morse and trigonometric Scarf potentials

    International Nuclear Information System (INIS)

    Saikia, N; Ahmed, S A S

    2011-01-01

    The extended transformation method has been applied to the exactly solvable stipulated Morse potential and trigonometric Scarf potential, to generate a set of exactly solvable quantum systems (QSs) in any chosen dimension. Bound state solutions of the exactly solvable potentials are given. The generated QSs are generally of Sturmian form. We also report a system case-specific regrouping technique to convert a Sturmian QS to a normal QS. A second-order application of the transformation method is given. The normalizability of the generated QSs is generally given in Sturmian form.

  11. Exactly complete solutions of the Schroedinger equation with a spherically harmonic oscillatory ring-shaped potential

    International Nuclear Information System (INIS)

    Zhang Mincang; Sun Guohua; Dong Shihai

    2010-01-01

    A spherically harmonic oscillatory ring-shaped potential is proposed and its exactly complete solutions are presented by the Nikiforov-Uvarov method. The effect of the angle-dependent part on the radial solutions is discussed.

  12. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  13. Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres

    International Nuclear Information System (INIS)

    Liu Chunping

    2005-01-01

    First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed

  14. A fast, exact code for scattered thermal radiation compared with a two-stream approximation

    International Nuclear Information System (INIS)

    Cogley, A.C.; Pandey, D.K.

    1980-01-01

    A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media

  15. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  16. Exact simulation of Brown-Resnick random fields at a finite number of locations

    DEFF Research Database (Denmark)

    Dieker, Ton; Mikosch, Thomas Valentin

    2015-01-01

    We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure.......We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure....

  17. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    Directory of Open Access Journals (Sweden)

    Lunyov A.V.

    2016-01-01

    Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  18. Off-diagonal Bethe ansatz for exactly solvable models

    CERN Document Server

    Wang, Yupeng; Cao, Junpeng; Shi, Kangjie

    2015-01-01

    This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix.  These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.

  19. An exact solution in Einstein-Cartan

    International Nuclear Information System (INIS)

    Roque, W.L.

    1982-01-01

    The exact solution of the field equations of the Einstein-Cartan theory is obtained for an artificial dust of radially polarized spins, with spherical symmetry and static. For a best estimation of the effect due the spin, the energy-momentum metric tensor is considered null. The gravitational field dynamics is studied for several torsion strengths, through the massive and spinless test-particle moviment, in particular for null torsion Schwarzschild solutions is again obtained. It is observed that the gravitational effects related to the torsin (spin) sometimes are attractives sometimes are repulsives, depending of the torsion values and of the test-particle position and velocity. (L.C.) [pt

  20. Exactly solvable models of material breakdown

    International Nuclear Information System (INIS)

    Duxbury, P.M.; Leath, P.L.

    1994-01-01

    We present the solutions to two simple models for the brittle failure of materials containing random flaws. These solutions provide support for simple scaling theories we had previously developed for more complex models, and refute recent claims that models with random dilution scale in a manner similar to a disorderless material. In particular, we find that for these models, the asymptotic size effect in the average strength is logarithmic, and the failure distribution is of an exponential of an exponential form (often with an algebraic prefactor). The method of solution is also interesting. The failure probability of the quasi-one-dimensional models we solve can be written in terms of a transition matrix introduced by Harlow. For large sample sizes, the largest eigenvalue of this transition matrix approaches one, and our solution rests on a perturbative expansion of the largest eigenvalue about one. The small and intermediate lattice behavior of the model is analyzed by using sparse matrix methods to find the largest eigenvalue of the transition matrix, and the trace of powers of the transition matrix

  1. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Directory of Open Access Journals (Sweden)

    Matthew J Simpson

    Full Text Available Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i the rate at which the domain elongates, (ii the diffusivity associated with the spreading density profile, (iii the reaction rate, and (iv the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t.

  2. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Science.gov (United States)

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).

  3. Transversal magnetotransport in Weyl semimetals: Exact numerical approach

    Science.gov (United States)

    Behrends, Jan; Kunst, Flore K.; Sbierski, Björn

    2018-02-01

    Magnetotransport experiments on Weyl semimetals are essential for investigating the intriguing topological and low-energy properties of Weyl nodes. If the transport direction is perpendicular to the applied magnetic field, experiments have shown a large positive magnetoresistance. In this work we present a theoretical scattering matrix approach to transversal magnetotransport in a Weyl node. Our numerical method confirms and goes beyond the existing perturbative analytical approach by treating disorder exactly. It is formulated in real space and is applicable to mesoscopic samples as well as in the bulk limit. In particular, we study the case of clean and strongly disordered samples.

  4. 5D Lovelock gravity: New exact solutions with torsion

    Science.gov (United States)

    Cvetković, B.; Simić, D.

    2016-10-01

    Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.

  5. Exact and Heuristic Algorithms for Runway Scheduling

    Science.gov (United States)

    Malik, Waqar A.; Jung, Yoon C.

    2016-01-01

    This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.

  6. Exact combinatorial approach to finite coagulating systems

    Science.gov (United States)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  7. Exact simulation of max-stable processes.

    Science.gov (United States)

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  8. Explicitly broken supersymmetry with exactly massless moduli

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Freedman, Daniel Z. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Zhao, Yue [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-16

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a supergravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  9. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua; Aissa, Sonia; Wu, Yik-Chung

    2012-01-01

    to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  10. Exact vacuum polarization in 1 + 1 dimensional finite nuclei

    International Nuclear Information System (INIS)

    Ferree, T.C.

    1992-01-01

    There is considerable interest in the use of renormalizable quantum field theories to describe nuclear structure. In particular, theories which employ hadronic degrees of freedom are used widely and lead to efficient models which allow self-consistent solutions of the many-body problem. An interesting feature inherent to relativistic field theories (like QHD) is the presence of an infinite sea of negative energy fermion (nucleon) states, which interact dynamically with positive energy fermions via other fields. Such interactions give rise to, for example, vacuum polarization effects, in which virtual particle-antiparticle pairs interact with positive energy valence nucleons as well as with each other, and can significantly influence the ground and excited states of nuclear systems. Several authors have addressed this question in various approximations for finite nuclei, mostly based on extensions of results derived for a uniform system of nucleons. Some attempts have also been made to include vacuum effects in finite systems exactly, but the presence of a vector potential can be problematic when working in a spectral representation. In this paper, the author presents a computational method by which vacuum polarization effects in finite nuclei can be calculated exactly in the RHA by employing matrix diagonalization methods in a discrete Fourier representation of the Dirac equation, and an approximate method for including deep negative energy states based on a derivative expansion of the effective action. This efficient approach is shown to provide well-behaved vacuum polarization densities which remain so even in the presence of strong vector potential

  11. The exact effects of radiation and joule heating on magnetohydrodynamic Marangoni convection over a flat surface

    Directory of Open Access Journals (Sweden)

    Khaled S.M.

    2018-01-01

    Full Text Available In this paper, we re-investigate the problem describing effects of radiation, Joule heating, and viscous dissipation on magnetohydrodynamic Marangoni convection boundary layer over a flat surface with suction/injection. The analytical solution obtained for the reduced system of non-linear-coupled differential equations governing the problem. Laplace transform successfully implemented to get the exact expression for the temperature profile. Furthermore, comparing the current exact results with approximate numerical results obtained using Runge-Kutta-Fehlberg method is introduced. These comparisons declare that the published numerical results agree with the current exact results. In addition, the effects of various parameters on the temperature profile are discussed graphically.

  12. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  13. The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping; Liu Xiaoping

    2004-01-01

    First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions

  14. Enhanced exact solution methods for the Team Orienteering Problem

    NARCIS (Netherlands)

    Keshtkaran, M.; Ziarati, K.; Bettinelli, A.; Vigo, D.

    2016-01-01

    The Team Orienteering Problem (TOP) is one of the most investigated problems in the family of vehicle routing problems with profits. In this paper, we propose a Branch-and-Price approach to find proven optimal solutions to TOP. The pricing sub-problem is solved by a bounded bidirectional dynamic

  15. Multiuser detection and channel estimation: Exact and approximate methods

    DEFF Research Database (Denmark)

    Fabricius, Thomas

    2003-01-01

    subtractive interference cancellation with hyperbolic tangent tentative decision device, in statistical mechanics and machine learning called the naive mean field approach. The differences between the proposed algorithms lie in how the bias is estimated/approximated. We propose approaches based on a second...... propose here to use accurate approximations borrowed from statistical mechanics and machine learning. These give us various algorithms that all can be formulated in a subtractive interference cancellation formalism. The suggested algorithms can e ectively be seen as bias corrections to standard...... of the Junction Tree Algorithm, which is a generalisation of Pearl's Belief Propagation, the BCJR, sum product, min/max sum, and Viterbi's algorithm. Although efficient algoithms, they have an inherent exponential complexity in the number of users when applied to CDMA multiuser detection. For this reason we...

  16. An Exact Method for the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    2010-01-01

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used...

  17. An Exact Method for the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Larsen, Jesper; Lusby, Richard Martin; Ehrgott, Matthias

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used...

  18. Exact Molecular Typing of Aspergillus fumigatus. Methods and Applications.

    NARCIS (Netherlands)

    Valk-van Haren, J.A. de

    2008-01-01

    Aspergillus species are widely distributed fungi that release large amounts of airborne conidia that are dispersed in the environment. Aspergillus fumigatus is the species most frequently isolated from human infections. In this thesis a novel assay for fingerprinting A. fumigatus is described and

  19. Partial transpose of random quantum states: Exact formulas and meanders

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)

    2013-04-15

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  20. Partial transpose of random quantum states: Exact formulas and meanders

    Science.gov (United States)

    Fukuda, Motohisa; Śniady, Piotr

    2013-04-01

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  1. Exact marginality in open string field theory. A general framework

    International Nuclear Information System (INIS)

    Kiermaier, M.

    2007-07-01

    We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)

  2. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  3. Exact Solution and Exotic Fluid in Cosmology

    Directory of Open Access Journals (Sweden)

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  4. A search for exact superstring vacua

    CERN Document Server

    Peterman, Andreas; Zichichi, Antonino

    1994-01-01

    We investigate $2d$ sigma-models with a $2+N$ dimensional Minkowski signature target space metric and Killing symmetry, specifically supersymmetrized, and see under which conditions they might lead to corresponding exact string vacua. It appears that the issue relies heavily on the properties of the vector $M_{\\mu}$, a reparametrization term, which needs to possess a definite form for the Weyl invariance to be satisfied. We give, in the $n = 1$ supersymmetric case, two non-renormalization theorems from which we can relate the $u$ component of $M_{\\mu}$ to the $\\beta^G_{uu}$ function. We work out this $(u,u)$ component of the $\\beta^G$ function and find a non-vanishing contribution at four loops. Therefore, it turns out that at order $\\alpha^{\\prime 4}$, there are in general non-vanishing contributions to $M_u$ that prevent us from deducing superstring vacua in closed form.

  5. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  6. Exact iterative reconstruction for the interior problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2009-01-01

    There is a trend in single photon emission computed tomography (SPECT) that small and dedicated imaging systems are becoming popular. For example, many companies are developing small dedicated cardiac SPECT systems with different designs. These dedicated systems have a smaller field of view (FOV) than a full-size clinical system. Thus data truncation has become the norm rather than the exception in these systems. Therefore, it is important to develop region of interest (ROI) reconstruction algorithms using truncated data. This paper is a stepping stone toward this direction. This paper shows that the common generic iterative image reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the convex ROI is fully sampled and the image value in a sub-region within the ROI is known. If the ROI includes a sub-region that is outside the patient body, then the conditions can be easily satisfied.

  7. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  8. Erlotinib-induced rash spares previously irradiated skin

    International Nuclear Information System (INIS)

    Lips, Irene M.; Vonk, Ernest J.A.; Koster, Mariska E.Y.; Houwing, Ronald H.

    2011-01-01

    Erlotinib is an epidermal growth factor receptor inhibitor prescribed to patients with locally advanced or metastasized non-small cell lung carcinoma after failure of at least one earlier chemotherapy treatment. Approximately 75% of the patients treated with erlotinib develop acneiform skin rashes. A patient treated with erlotinib 3 months after finishing concomitant treatment with chemotherapy and radiotherapy for non-small cell lung cancer is presented. Unexpectedly, the part of the skin that had been included in his previously radiotherapy field was completely spared from the erlotinib-induced acneiform skin rash. The exact mechanism of erlotinib-induced rash sparing in previously irradiated skin is unclear. The underlying mechanism of this phenomenon needs to be explored further, because the number of patients being treated with a combination of both therapeutic modalities is increasing. The therapeutic effect of erlotinib in the area of the previously irradiated lesion should be assessed. (orig.)

  9. Exact classical scaling formalism for nonreactive processes

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1981-01-01

    A general nonreactive collision system is considered with internal molecular variables (p, r) and/or (I, theta) of arbitrary dimensions and relative translational variables (P, R) of three or less dimensions. We derive an exact classical scaling formalism which relates the collisional change in any function of molecular variables directly to the initial values of these variables. The collision dynamics is then described by an explicit function of the initial point in the internal molecular phase space, for a fixed point in the relative translational phase space. In other words, the systematic variation of the internal molecular properties (e.g., actions and average internal kinetic energies) is given as a function of the initial internal action-angle variables. A simple three term approximation to the exact formalism is derived, the natural variables of which are the internal action I and internal linear momenta p. For the final average internal kinetic energies T, the result is T-T/sup( 0 ) = α+βp/sup( 0 )+γI/sup( 0 ), where the superscripted ''0'' indicates the initial value. The parameters α, β, and γ in this scaling theory are directly related to the moments of the change in average internal kinetic energy. Utilizing a very limited number of input moments generated from classical trajectory calculations, the scaling can be used to predict the entire distribution of final internal variables as a function of initial internal actions and linear momenta. Initial examples for atom--collinear harmonic oscillator collision systems are presented in detail, with the scaling predictions (e.g., moments and quasiclassical histogram transition probabilities) being generally very good to excellent quantitatively

  10. INDEFINITE COPOSITIVE MATRICES WITH EXACTLY ONE POSITIVE EIGENVALUE OR EXACTLY ONE NEGATIVE EIGENVALUE

    NARCIS (Netherlands)

    Jargalsaikhan, Bolor

    Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out

  11. Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics

    International Nuclear Information System (INIS)

    Niven, Robert K.

    2005-01-01

    The exact Maxwell-Boltzmann (MB), Bose-Einstein (BE) and Fermi-Dirac (FD) entropies and probabilistic distributions are derived by the combinatorial method of Boltzmann, without Stirling's approximation. The new entropy measures are explicit functions of the probability and degeneracy of each state, and the total number of entities, N. By analysis of the cost of a 'binary decision', exact BE and FD statistics are shown to have profound consequences for the behaviour of quantum mechanical systems

  12. The exact equation of motion of a simple pendulum of arbitrary amplitude: a hypergeometric approach

    International Nuclear Information System (INIS)

    Qureshi, M I; Rafat, M; Azad, S Ismail

    2010-01-01

    The motion of a simple pendulum of arbitrary amplitude is usually treated by approximate methods. By using generalized hypergeometric functions, it is however possible to solve the problem exactly. In this paper, we provide the exact equation of motion of a simple pendulum of arbitrary amplitude. A new and exact expression for the time of swinging of a simple pendulum from the vertical position to an arbitrary angular position θ is given by equation (3.10). The time period of such a pendulum is also exactly expressible in terms of hypergeometric functions. The exact expressions thus obtained are used to plot the graphs that compare the exact time period T(θ 0 ) with the time period T(0) (based on simple harmonic approximation). We also compare the relative difference between T(0) and T(θ 0 ) found from the exact equation of motion with the usual perturbation theory estimate. The treatment is intended for graduate students, who have acquired some familiarity with the hypergeometric functions. This approach may also be profitably used by specialists who encounter during their investigations nonlinear differential equations similar in form to the pendulum equation. Such nonlinear differential equations could arise in diverse fields, such as acoustic vibrations, oscillations in small molecules, turbulence and electronic filters, among others.

  13. Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops

    CERN Document Server

    Drozd, Aleksandra; Quevillon, Jeremie; You, Tevong

    2015-01-01

    We develop a universal approach to the one-loop effective field theory (EFT) using the Covariant Derivative Expansion (CDE) method. We generalise previous results to include broader classes of UV models, showing how expressions previously obtained assuming degenerate heavy-particle masses can be extended to non-degenerate cases. We apply our method to the general MSSM with non-degenerate stop squarks, illustrating our approach with calculations of the coefficients of dimension-6 operators contributing to the $hgg$ and $h\\gamma\\gamma$ couplings, and comparing with exact calculations of one-loop Feynman diagrams. We then use present and projected future sensitivities to these operator coefficients to obtain present and possible future indirect constraints on stop masses. The current sensitivity is already comparable to that of direct LHC searches, and future FCC-ee measurements could be sensitive to stop masses above a TeV. The universality of our one-loop EFT approach facilitates extending these constraints to...

  14. MCNP HPGe detector benchmark with previously validated Cyltran model.

    Science.gov (United States)

    Hau, I D; Russ, W R; Bronson, F

    2009-05-01

    An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.

  15. On a revisit to the Painlevé test for integrability and exact solutions ...

    Indian Academy of Sciences (India)

    ... the same equations and keeping the singularity manifold completely general in nature. It has been found that the equations, in real form, pass the Painlevé test for integrability. The truncation procedure of the same analysis leads to non-trivial exact solutions obtained previously and auto-Backlund transformation between ...

  16. Propagation of nuclear data uncertainty: Exact or with covariances

    Directory of Open Access Journals (Sweden)

    van Veen D.

    2010-10-01

    Full Text Available Two distinct methods of propagation for basic nuclear data uncertainties to large scale systems will be presented and compared. The “Total Monte Carlo” method is using a statistical ensemble of nuclear data libraries randomly generated by means of a Monte Carlo approach with the TALYS system. These libraries are then directly used in a large number of reactor calculations (for instance with MCNP after which the exact probability distribution for the reactor parameter is obtained. The second method makes use of available covariance files and can be done in a single reactor calculation (by using the perturbation method. In this exercise, both methods are using consistent sets of data files, which implies that covariance files used in the second method are directly obtained from the randomly generated nuclear data libraries from the first method. This is a unique and straightforward comparison allowing to directly apprehend advantages and drawbacks of each method. Comparisons for different reactions and criticality-safety benchmarks from 19F to actinides will be presented. We can thus conclude whether current methods for using covariance data are good enough or not.

  17. Generation of exact solutions to the Einstein field equations for homogeneous space--time

    International Nuclear Information System (INIS)

    Hiromoto, R.E.

    1978-01-01

    A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon

  18. Exact solutions for a system of nonlinear plasma fluid equations

    International Nuclear Information System (INIS)

    Prahovic, M.G.; Hazeltine, R.D.; Morrison, P.J.

    1991-04-01

    A method is presented for constructing exact solutions to a system of nonlinear plasma fluid equations that combines the physics of reduced magnetohydrodynamics and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation. The system has nonlinearities that take the form of Poisson brackets involving the fluid field variables. The method relies on modifying a class of simple equilibrium solutions, but no approximations are made. A distinguishing feature is that the original nonlinear problem is reduced to the solution of two linear partial differential equations, one fourth-order and the other first-order. The first-order equation has Hamiltonian characteristics and is easily integrated, supplying information about the general structure of solutions. 6 refs

  19. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    Science.gov (United States)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  20. Exact Finite-Difference Schemes for d-Dimensional Linear Stochastic Systems with Constant Coefficients

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2013-01-01

    Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.

  1. Pure N=2 super Yang-Mills and exact WKB

    International Nuclear Information System (INIS)

    Kashani-Poor, Amir-Kian; Troost, Jan

    2015-01-01

    We apply exact WKB methods to the study of the partition function of pure N=2ϵ i -deformed gauge theory in four dimensions in the context of the 2d/4d correspondence. We study the partition function at leading order in ϵ 2 /ϵ 1 (i.e. at large central charge) and in an expansion in ϵ 1 . We find corrections of the form ∼exp [−((/tiny SW periods)/(ϵ 1 ))] to this expansion. We attribute these to the exchange of the order of summation over gauge instanton number and over powers of ϵ 1 when passing from the Nekrasov form of the partition function to the topological string theory inspired form. We conjecture that such corrections should be computable from a worldsheet perspective on the partition function. Our results follow upon the determination of the Stokes graphs associated to the Mathieu equation with complex parameters and the application of exact WKB techniques to compute the Mathieu characteristic exponent.

  2. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  3. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  4. Duality invariant class of exact string backgrounds

    CERN Document Server

    Klimcík, C

    1994-01-01

    We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.

  5. Exact-exchange-based quasiparticle calculations

    International Nuclear Information System (INIS)

    Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas

    2000-01-01

    One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society

  6. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  7. Duality and self-duality (energy reflection symmetry) of quasi-exactly solvable periodic potentials

    International Nuclear Information System (INIS)

    Dunne, Gerald V.; Shifman, M.

    2002-01-01

    A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation interchanges bands at the bottom (top) of the spectrum of one potential with gaps at the top (bottom) of the spectrum of the other, dual, potential. Thus, the duality transformation provides an exact mapping between the weak coupling (perturbative) and semiclassical (nonperturbative) sectors

  8. The exact solution of self-consistent equations in the scanning near-field optic microscopy problem

    DEFF Research Database (Denmark)

    Lozovski, Valeri; Bozhevolnyi, Sergey I.

    1999-01-01

    The macroscopic approach that allows one to obtain an exact solution of the self-consistent equation of the Lippmann-Schwinger type is developed. The main idea of our method consist in usage of diagram technque for exact summation of the infinite series corresponding to the iteration procedure fo...

  9. Comments on a direct approach to finding exact invariants for one-dimensional time-dependent classical hamiltonian

    International Nuclear Information System (INIS)

    Castro Moreira, I. de.

    1983-01-01

    A method introduced by Lewis and Leach for the obtention of exact invariants of the form I = Σ p sup(n) F sub(n) (q,t) for hamiltonian systems, is generalized and applied directly on the equations of motion. It gives us a general procedure to generates exact invariants also for non hamiltonian systems. (Author) [pt

  10. Exact solutions to the time-fractional differential equations via local fractional derivatives

    Science.gov (United States)

    Guner, Ozkan; Bekir, Ahmet

    2018-01-01

    This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.

  11. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  12. Exact association test for small size sequencing data.

    Science.gov (United States)

    Lee, Joowon; Lee, Seungyeoun; Jang, Jin-Young; Park, Taesung

    2018-04-20

    Recent statistical methods for next generation sequencing (NGS) data have been successfully applied to identifying rare genetic variants associated with certain diseases. However, most commonly used methods (e.g., burden tests and variance-component tests) rely on large sample sizes. Notwithstanding, due to its-still high cost, NGS data is generally restricted to small sample sizes, that cannot be analyzed by most existing methods. In this work, we propose a new exact association test for sequencing data that does not require a large sample approximation, which is applicable to both common and rare variants. Our method, based on the Generalized Cochran-Mantel-Haenszel (GCMH) statistic, was applied to NGS datasets from intraductal papillary mucinous neoplasm (IPMN) patients. IPMN is a unique pancreatic cancer subtype that can turn into an invasive and hard-to-treat metastatic disease. Application of our method to IPMN data successfully identified susceptible genes associated with progression of IPMN to pancreatic cancer. Our method is expected to identify disease-associated genetic variants more successfully, and corresponding signal pathways, improving our understanding of specific disease's etiology and prognosis.

  13. EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.

  14. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    International Nuclear Information System (INIS)

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-01-01

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  15. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  16. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  17. Efficient Exact Inference With Loss Augmented Objective in Structured Learning.

    Science.gov (United States)

    Bauer, Alexander; Nakajima, Shinichi; Muller, Klaus-Robert

    2016-08-19

    Structural support vector machine (SVM) is an elegant approach for building complex and accurate models with structured outputs. However, its applicability relies on the availability of efficient inference algorithms--the state-of-the-art training algorithms repeatedly perform inference to compute a subgradient or to find the most violating configuration. In this paper, we propose an exact inference algorithm for maximizing nondecomposable objectives due to special type of a high-order potential having a decomposable internal structure. As an important application, our method covers the loss augmented inference, which enables the slack and margin scaling formulations of structural SVM with a variety of dissimilarity measures, e.g., Hamming loss, precision and recall, Fβ-loss, intersection over union, and many other functions that can be efficiently computed from the contingency table. We demonstrate the advantages of our approach in natural language parsing and sequence segmentation applications.

  18. An Exact Analytical Solution to Exponentially Tapered Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    H. Salmani

    2015-01-01

    Full Text Available It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.

  19. Mathematics of epidemics on networks from exact to approximate models

    CERN Document Server

    Kiss, István Z; Simon, Péter L

    2017-01-01

    This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...

  20. Symbolic computation of exact solutions for a nonlinear evolution equation

    International Nuclear Information System (INIS)

    Liu Yinping; Li Zhibin; Wang Kuncheng

    2007-01-01

    In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here

  1. Dolan Grady relations and noncommutative quasi-exactly solvable systems

    Science.gov (United States)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2003-11-01

    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.

  2. An Exactly Solvable Supersymmetric Model of Semimagic Nuclei

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac

    2008-01-01

    A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.

  3. An exact algorithm for optimal MAE stack filter design.

    Science.gov (United States)

    Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior

    2007-02-01

    We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.

  4. Time measurement - technical importance of most exact clocks

    International Nuclear Information System (INIS)

    Goebel, E.O.; Riehle, F.

    2004-01-01

    The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de

  5. Efficiently computing exact geodesic loops within finite steps.

    Science.gov (United States)

    Xin, Shi-Qing; He, Ying; Fu, Chi-Wing

    2012-06-01

    Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.

  6. Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model

    Science.gov (United States)

    Pont, Federico M.; Osenda, Omar; Serra, Pablo

    2018-05-01

    The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.

  7. Upper bounds on minimum cardinality of exact and approximate reducts

    KAUST Repository

    Chikalov, Igor

    2010-01-01

    In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.

  8. Exact gravitational quasinormal frequencies of topological black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2006-01-01

    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies

  9. Pressure in an exactly solvable model of active fluid

    Science.gov (United States)

    Marini Bettolo Marconi, Umberto; Maggi, Claudio; Paoluzzi, Matteo

    2017-07-01

    We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

  10. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  11. Nonlinear differential equations with exact solutions expressed via the Weierstrass function

    NARCIS (Netherlands)

    Kudryashov, NA

    2004-01-01

    A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear

  12. Exact norm-conserving stochastic time-dependent Hartree-Fock

    International Nuclear Information System (INIS)

    Tessieri, Luca; Wilkie, Joshua; Cetinbas, Murat

    2005-01-01

    We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method, we calculate the low energy spectrum of helium. An extension of the method to bosons is outlined

  13. Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK ...

    Indian Academy of Sciences (India)

    In this paper, the new generalized (′/)-expansion method is executed to find the travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation. The efficiency of this method for finding exact and travelling wave solutions has been demonstrated. It is shown ...

  14. New exact solutions of the KdV-Burgers-Kuramoto equation

    International Nuclear Information System (INIS)

    Zhang Sheng

    2006-01-01

    A generalized F-expansion method is proposed and applied to the KdV-Burgers-Kuramoto equation. As a result, many new and more general exact travelling wave solutions are obtained including combined non-degenerate Jacobi elliptic function solutions, solitary wave solutions and trigonometric function solutions. The method can be applied to other nonlinear partial differential equations in mathematical physics

  15. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  16. The exact wavefunction factorization of a vibronic coupling system

    International Nuclear Information System (INIS)

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-01-01

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation

  17. Exact solutions of (3 + 1-dimensional generalized KP equation arising in physics

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    Full Text Available In this work, we have obtained some exact solutions to (3 + 1-dimensional generalized KP Equation. The improved tanϕ(ξ2-expansion method has been introduced to construct the exact solutions of nonlinear evolution equations. The obtained solutions include hyperbolic function solutions, trigonometric function solutions, exponential solutions, and rational solutions. Our study has added some new varieties of solutions to already available solutions. It is also worth mentioning that the computational work has been reduced significantly. Keywords: Improved tanϕ(ξ2-expansion method, Hyperbolic function solution, Trigonometric function solution, Rational solution, (3 + 1-dimensional generalized KP equation

  18. Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers

    Science.gov (United States)

    Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru

    2018-06-01

    The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.

  19. Exact Solutions of the Hierarchical Korteweg-de Vries Equation of Micro structured Granular Materials

    International Nuclear Information System (INIS)

    Abourabia, A.M.; El-Danaf, T.S.; Morad, A.M.

    2008-01-01

    The problem under consideration are related to wave propagation in micro structured materials, characterized by higher-order nonlinear and higher-order dispersive effects; particularly, the wave propagation in dilatant granular materials. In the present paper the model equation is solved analytically by exact method called Jacobi elliptic method. The types of solutions are defined and discussed over a wide range of material parameters (two dispersion parameters and one microstructure parameter). The dispersion properties and the relation between group and phase velocities of the model equation are studied. The diagrams are drawn to illustrate the physical properties of the exact solutions

  20. Exact RG flow equations and quantum gravity

    Science.gov (United States)

    de Alwis, S. P.

    2018-03-01

    We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg's asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.

  1. Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams

    Science.gov (United States)

    Nguyen, Tien Long; Sansour, Carlo; Hjiaj, Mohammed

    2017-05-01

    In this paper, an energy-momentum method for geometrically exact Timoshenko-type beam is proposed. The classical time integration schemes in dynamics are known to exhibit instability in the non-linear regime. The so-called Timoshenko-type beam with the use of rotational degree of freedom leads to simpler strain relations and simpler expressions of the inertial terms as compared to the well known Bernoulli-type model. The treatment of the Bernoulli-model has been recently addressed by the authors. In this present work, we extend our approach of using the strain rates to define the strain fields to in-plane geometrically exact Timoshenko-type beams. The large rotational degrees of freedom are exactly computed. The well-known enhanced strain method is used to avoid locking phenomena. Conservation of energy, momentum and angular momentum is proved formally and numerically. The excellent performance of the formulation will be demonstrated through a range of examples.

  2. Previous medical history of diseases in children with attention deficit hyperactivity disorder and their parents

    Directory of Open Access Journals (Sweden)

    Ayyoub Malek

    2014-02-01

    Full Text Available Introduction: The etiology of Attention deficit hyperactivity disorder (ADHD is complex and most likely includes genetic and environmental factors. This study was conducted to evaluatethe role of previous medical history of diseases in ADHD children and their parents during theearlier years of the ADHD children's lives. Methods: In this case-control study, 164 ADHD children attending to Child and AdolescentPsychiatric Clinics of Tabriz University of Medical Sciences, Iran, compared with 166 normal children selected in a random-cluster method from primary and guidance schools. ADHDrating scale (Parents version and clinical interview based on schedule for Schedule forAffective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version(K-SADS were used to diagnose ADHD cases and to select the control group. Two groupswere compared for the existence of previous medical history of diseases in children andparents. Fisher's exact test and logistic regression model were used for data analysis. Results: The frequency of maternal history of medical disorders (28.7% vs. 12.0%; P = 0.001was significantly higher in children with ADHD compared with the control group. The frequency of jaundice, dysentery, epilepsy, asthma, allergy, and head trauma in the medicalhistory of children were not significantly differed between the two groups. Conclusion: According to this preliminary study, it may be concluded that the maternal historyof medical disorders is one of contributing risk factors for ADHD.

  3. Some exact results for the three-layer Zamolodchikov model

    International Nuclear Information System (INIS)

    Boos, H.E.; Mangazeev, V.V.

    2001-01-01

    In this paper we continue the study of the three-layer Zamolodchikov model started in our previous works (H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 3041-3054 and H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298). We analyse numerically the solutions to the Bethe ansatz equations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We consider two regimes I and II which differ by the signs of the spherical sides (a 1 ,a 2 ,a 3 )→(-a 1 ,-a 2 ,-a 3 ). We accept the two-line hypothesis for the regime I and the one-line hypothesis for the regime II. In the thermodynamic limit we derive integral equations for distribution densities and solve them exactly. We calculate the partition function for the three-layer Zamolodchikov model and check a compatibility of this result with the functional relations obtained in H.E. Boos, V.V. Mangazeev, J. Phys. A 32 (1999) 5285-5298. We also do some numeric checkings of our results

  4. Optimizing communication satellites payload configuration with exact approaches

    Science.gov (United States)

    Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi

    2015-12-01

    The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.

  5. Exact solutions of a nonpolynomially nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R.; Tan, H.S.

    2007-01-01

    A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics

  6. Exact Boundary Controllability of Electromagnetic Fields in a General Region

    International Nuclear Information System (INIS)

    Eller, M. M.; Masters, J. E.

    2002-01-01

    We prove exact controllability for Maxwell's system with variable coefficients in a bounded domain by a current flux in the boundary. The proof relies on a duality argument which reduces the proof of exact controllability to the proof of continuous observability for the homogeneous adjoint system. There is no geometric restriction imposed on the domain

  7. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  8. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  9. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  10. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  11. New exact solutions of the Dirac equation. 11

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Noskov, M.D.

    1984-01-01

    Investigations into determining new exact solutions of relativistic wave equations started in another paper were continued. Exact solutions of the Dirac, Klein-Gordon equations and classical relativistic equations of motion in four new types of external electromagnetic fields were found

  12. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...

  13. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  14. Exact simulation of conditioned Wright-Fisher models.

    Science.gov (United States)

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2014-12-21

    Forward and backward simulations play an increasing role in population genetics, in particular when inferring the relative importance of evolutionary forces. It is therefore important to develop fast and accurate simulation methods for general population genetics models. Here we present an exact simulation method that generates trajectories of an allele׳s frequency in a finite population, as described by a general Wright-Fisher model. The method generates conditioned trajectories that start from a known frequency at a known time, and which achieve a specific final frequency at a known final time. The simulation method applies irrespective of the smallness of the probability of the transition between the initial and final states, because it is not based on rejection of trajectories. We illustrate the method on several different populations where a Wright-Fisher model (or related) applies, namely (i) a locus with 2 alleles, that is subject to selection and mutation; (ii) a locus with 3 alleles, that is subject to selection; (iii) a locus in a metapopulation consisting of two subpopulations of finite size, that are subject to selection and migration. The simulation method allows the generation of conditioned trajectories that can be used for the purposes of visualisation, the estimation of summary statistics, and the development/testing of new inferential methods. The simulated trajectories provide a very simple approach to estimating quantities that cannot easily be expressed in terms of the transition matrix, and can be applied to finite Markov chains other than the Wright-Fisher model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    Science.gov (United States)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  16. New version of PLNoise: a package for exact numerical simulation of power-law noises

    Science.gov (United States)

    Milotti, Edoardo

    2007-08-01

    installed on the target machine. No. of lines in distributed program, including test data, etc.:2975 No. of bytes in distributed program, including test data, etc.:194 588 Distribution format:tar.gz Catalogue identifier of previous version: ADXV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 212 Does the new version supersede the previous version?: Yes Nature of problem: Exact generation of different types of colored noise. Solution method: Random superposition of relaxation processes [E. Milotti, Phys. Rev. E 72 (2005) 056701], possibly followed by an integration step to produce noise with spectral index >2. Reasons for the new version: Extension to 1/f noises with spectral index 2<α⩽4: the new version generates both noises with spectral with spectral index 0<α⩽2 and with 2<α⩽4. Summary of revisions: Although the overall structure remains the same, one routine has been added and several changes have been made throughout the code to include the new integration step. Unusual features: The algorithm is theoretically guaranteed to be exact, and unlike all other existing generators it can generate samples with uneven spacing. Additional comments: The program requires an initialization step; for some parameter sets this may become rather heavy. Running time: Running time varies widely with different input parameters, however in a test run like the one in Section 3 in the long write-up, the generation routine took on average about 75 μs for each sample.

  17. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  18. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  19. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei

    2013-07-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  20. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  1. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Shanker, Balasubramaniam; Lu, Mingyu; Michielssen, Eric

    2013-01-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  2. Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law

    Science.gov (United States)

    Torres-Cordoba, Rafael; Martinez-Garcia, Edgar

    2017-10-01

    This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.

  3. Regarding on the exact solutions for the nonlinear fractional differential equations

    Directory of Open Access Journals (Sweden)

    Kaplan Melike

    2016-01-01

    Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.

  4. Relativistic plasma dielectric tensor evaluation based on the exact plasma dispersion functions concept

    International Nuclear Information System (INIS)

    Castejon, F.; Pavlov, S. S.

    2006-01-01

    The fully relativistic plasma dielectric tensor for any wave and plasma parameter is estimated on the basis of the exact plasma dispersion functions concept. The inclusion of this concept allows one to write the tensor in a closed and compact form and to reduce the tensor evaluation to the calculation of those functions. The main analytical properties of these functions are studied and two methods are given for their evaluation. The comparison between the exact dielectric tensor with the weakly relativistic approximation, widely used presently in plasma waves calculations, is given as well as the range of plasma temperature, harmonic number, and propagation angle in which the weakly relativistic approximation is valid

  5. On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach

    International Nuclear Information System (INIS)

    Kaur, Lakhveer; Gupta, R K

    2013-01-01

    Using the Lie symmetry approach, we have examined herein the system of partial differential equations corresponding to the Einstein–Maxwell equations for a static axially symmetric spacetime. The method used reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations is all optimal subgroups. The system of ordinary differential equations is further solved in general to obtain exact solutions. Several new physically important families of exact solutions are derived. (paper)

  6. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  7. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  8. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Science.gov (United States)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  9. Exact solution to the moment problem for the XY chain

    International Nuclear Information System (INIS)

    Witte, N.S.

    1996-01-01

    We present the exact solution to the moment problem for the spin-1/2 isotropic antiferromagnetic XY chain with explicit forms for the moments with respect to the Neel state, the cumulant generating function, and the Resolvent Operator. We verify the correctness of the Horn-Weinstein Theorems, but the analytic structure of the generating function (e -tH ) in the complex t-plane is quite different from that assumed by the t-Expansion and the Connected Moments Expansion due to the vanishing gap. This function has a finite radius of convergence about t = 0, and for large 't' has a leading descending algebraic series E(t)-E o ∼ At -2 . The Resolvent has a branch cut and essential singularity near the ground state energy of the form G(s)/s∼B|s+1| -3/4 exp(C|s+1| 1/2 ). Consequently extrapolation strategies based on these assumptions are flawed and in practice we find that the CMX methods are pathological and cannot be applied, while numerical evidence for two of the t-expansion methods indicates a clear asymptotic convergence behaviour with truncation order. (author). 28 refs., 2 figs

  10. Multiplicity fluctuations in a hadron gas with exact conservation laws

    International Nuclear Information System (INIS)

    Becattini, Francesco; Keraenen, Antti; Ferroni, Lorenzo; Gabbriellini, Tommaso

    2005-01-01

    The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus it is of uttermost importance to describe the baseline of statistical fluctuations in the hadron gas phase in a correct way. We performed a comprehensive study of multiplicity distributions in the full ideal hadron-resonance gas in different ensembles, namely grand canonical, canonical, and microcanonical, by using two different methods: Asymptotic expansions and full Monte Carlo simulations. The method based on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron gas with three conserved charges at the primary hadron level, while the Monte Carlo simulation is suitable for studying the effect of resonance decays. Even though mean multiplicities converge to the same values, major differences in fluctuations for these ensembles persist in the thermodynamic limit, as pointed out in recent studies. We observe that this difference is ultimately related to the nonadditivity of the variances in the ensembles with exact conservation of extensive quantities

  11. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  12. Global, exact cosmic microwave background data analysis using Gibbs sampling

    International Nuclear Information System (INIS)

    Wandelt, Benjamin D.; Larson, David L.; Lakshminarayanan, Arun

    2004-01-01

    We describe an efficient and exact method that enables global Bayesian analysis of cosmic microwave background (CMB) data. The method reveals the joint posterior density (or likelihood for flat priors) of the power spectrum C l and the CMB signal. Foregrounds and instrumental parameters can be simultaneously inferred from the data. The method allows the specification of a wide range of foreground priors. We explicitly show how to propagate the non-Gaussian dependency structure of the C l posterior through to the posterior density of the parameters. If desired, the analysis can be coupled to theoretical (cosmological) priors and can yield the posterior density of cosmological parameter estimates directly from the time-ordered data. The method does not hinge on special assumptions about the survey geometry or noise properties, etc., It is based on a Monte Carlo approach and hence parallelizes trivially. No trace or determinant evaluations are necessary. The feasibility of this approach rests on the ability to solve the systems of linear equations which arise. These are of the same size and computational complexity as the map-making equations. We describe a preconditioned conjugate gradient technique that solves this problem and demonstrate in a numerical example that the computational time required for each Monte Carlo sample scales as n p 3/2 with the number of pixels n p . We use our method to analyze the data from the Differential Microwave Radiometer on the Cosmic Background Explorer and explore the non-Gaussian joint posterior density of the C l from the Differential Microwave Radiometer on the Cosmic Background Explorer in several projections

  13. Hyperkaehlerian manifolds and exact β functions of two-dimensional N=4 supersymmetric σ models

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Perelomov, A.M.

    1984-01-01

    Two-dimensional supersymmetric sigma-models on cotangent bundles over CPsup(n) are investigated. These mannfolds are supplied with hyperkaehlerian metrics, and the corresponding σ-models possess N=4 supersymmetry. Also they admit instantonic solutions, which permits to apply the Novikov-Shifman-Vainshtein-Zakharov method and calculate exact β-functions. βsup(gsup(2)) = 0, as was expected

  14. The fractional coupled KdV equations: Exact solutions and white noise functional approach

    International Nuclear Information System (INIS)

    Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah

    2013-01-01

    Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)

  15. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    International Nuclear Information System (INIS)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T.; Santos, Marcio G.

    2015-01-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  16. Equivariant Homotopy Theory and K-Theory of Exact Categories with Duality

    DEFF Research Database (Denmark)

    Moi, Kristian Jonsson

    This thesis has two main parts. The first part, which consists of two papers, is concerned with the role of equivariant loop spaces in the K-theory of exact categories with duality. We prove a group completion-type result for topological monoids with anti-involution. The methods in this proof als...

  17. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Science.gov (United States)

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  18. Bifurcations of Exact Traveling Wave Solutions for (2+1)-Dimensional HNLS Equation

    International Nuclear Information System (INIS)

    Xu Yuanfen

    2012-01-01

    For the (2+1)-Dimensional HNLS equation, what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems. Ten exact explicit parametric representations of the traveling wave solutions are given. (general)

  19. An hp-adaptive strategy for the solution of the exact kernel curved wire Pocklington equation

    NARCIS (Netherlands)

    D.J.P. Lahaye (Domenico); P.W. Hemker (Piet)

    2007-01-01

    textabstractIn this paper we introduce an adaptive method for the numerical solution of the Pocklington integro-differential equation with exact kernel for the current induced in a smoothly curved thin wire antenna. The hp-adaptive technique is based on the representation of the discrete solution,

  20. Exact traveling wave solutions for a new nonlinear heat transfer equation

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2017-01-01

    Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.

  1. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies

    Science.gov (United States)

    Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.

    2018-04-01

    We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.

  2. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  3. Exact solution of the Ising model in a fully frustrated two-dimensional lattice

    International Nuclear Information System (INIS)

    Silva, N.R. da; Medeiros e Silva Filho, J.

    1983-01-01

    A straightforward extension of the Onsager method allows us to solve exactly the Ising problem in a fully frustated square lattice in the absence of external magnetic field. It is shown there is no singularity in the thermodynamic functions for non-zero temperature. (Author) [pt

  4. Exact explicit travelling wave solutions for (n + 1)-dimensional Klein-Gordon-Zakharov equations

    International Nuclear Information System (INIS)

    Li Jibin

    2007-01-01

    Using the methods of dynamical systems for the (n + 1)-dimensional KGS nonlinear wave equations, five classes of exact explicit parametric representations of the bounded travelling solutions are obtained. To guarantee the existence of the above solutions, all parameter conditions are given

  5. Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2012-01-01

    Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.

  6. Exact Sampling and Decoding in High-Order Hidden Markov Models

    NARCIS (Netherlands)

    Carter, S.; Dymetman, M.; Bouchard, G.

    2012-01-01

    We present a method for exact optimization and sampling from high order Hidden Markov Models (HMMs), which are generally handled by approximation techniques. Motivated by adaptive rejection sampling and heuristic search, we propose a strategy based on sequentially refining a lower-order language

  7. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  8. Mean field approximation versus exact treatment of collisions in few-body systems

    International Nuclear Information System (INIS)

    Lemm, J.; Weiguny, A.; Giraud, B.G.

    1990-01-01

    A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)

  9. Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation

    International Nuclear Information System (INIS)

    Lu Hailing; Liu Xiqiang

    2009-01-01

    In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+1)-dimensional KK equation by the symmetry method and the (G'/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions. (general)

  10. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon

    Aggregating formulations is a powerful approach for transforming problems into taking more tractable forms. Aggregated formulations can, though, have drawbacks: some information may get lost in the aggregation and { put in a branch-and-bound context { branching may become very di_cult and even....... The paper includes general considerations on types of problems for which the method is of particular interest. Furthermore, we prove the correctness of the procedure and consider how to include extensions such as cutting planes and advanced branching strategies....

  11. Underestimation of Severity of Previous Whiplash Injuries

    Science.gov (United States)

    Naqui, SZH; Lovell, SJ; Lovell, ME

    2008-01-01

    INTRODUCTION We noted a report that more significant symptoms may be expressed after second whiplash injuries by a suggested cumulative effect, including degeneration. We wondered if patients were underestimating the severity of their earlier injury. PATIENTS AND METHODS We studied recent medicolegal reports, to assess subjects with a second whiplash injury. They had been asked whether their earlier injury was worse, the same or lesser in severity. RESULTS From the study cohort, 101 patients (87%) felt that they had fully recovered from their first injury and 15 (13%) had not. Seventy-six subjects considered their first injury of lesser severity, 24 worse and 16 the same. Of the 24 that felt the violence of their first accident was worse, only 8 had worse symptoms, and 16 felt their symptoms were mainly the same or less than their symptoms from their second injury. Statistical analysis of the data revealed that the proportion of those claiming a difference who said the previous injury was lesser was 76% (95% CI 66–84%). The observed proportion with a lesser injury was considerably higher than the 50% anticipated. CONCLUSIONS We feel that subjects may underestimate the severity of an earlier injury and associated symptoms. Reasons for this may include secondary gain rather than any proposed cumulative effect. PMID:18201501

  12. Exact Cover Problem in Milton Babbitt's All-partition Array

    OpenAIRE

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving ...

  13. The exact mass-gaps of the principal chiral models

    CERN Document Server

    Hollowood, Timothy J

    1994-01-01

    An exact expression for the mass-gap, the ratio of the physical particle mass to the $\\Lambda$-parameter, is found for the principal chiral sigma models associated to all the classical Lie algebras. The calculation is based on a comparison of the free-energy in the presence of a source coupling to a conserved charge of the theory computed in two ways: via the thermodynamic Bethe Ansatz from the exact scattering matrix and directly in perturbation theory. The calculation provides a non-trivial test of the form of the exact scattering matrix.

  14. Prosodic Zhafat based in an exact discipline

    Directory of Open Access Journals (Sweden)

    Ali Heydari

    2015-04-01

    Full Text Available Abstract Zahf means farness from the orgion and delay from the purpose and goal. In term of prosody, every change that is occurred in afaeel pricipals is called zahaf.   In ancient prosody books, sometime zahafs of persion prosody have been classified in a particular method and approximately scientific, but this method used as a sample for the earliest accoding to different reasons such as: unuseful complications, being of little importance in learning prosody, etc.  Maybe these matters are the reason why honorable authors didn’t try to classify them.   Among predecessors, Khaja Nasir od-Din has done useful efforts. But his efforts are not enough. The fact is that learning prosodic zahafs in the way mentioned in the most of prosody books is very difficult and probably impossible. Paying attention to these classifications, we can consider zahafs as one of prosody problems in zahafs section.   In this essay, to facilitate learning and more importantly to make it long-lasting in the memory, we divide these zahafs in a different way. In a general classification, changes of zahafs in prosody afa’eel are either singular or compound. Singular zahaf: In this case one or some of syllables (short or long in the beginning or at the end are deleted. One syllable is added. One syllebe from beginning, middle or end is changed to a short one. Compound zahaf: In this cases two or three zahaf which have been concurrent by the methods of part one simultanously occurred in a foot, or all of the changes are from one method (for example long different syllable have been shortened two times, or simultaneously a syllable deleted and other syllable is shortened and… that in the most cases for this zahaf obtained from all of those zahafs is created another name or sometimes is not. It’s clear that in the part one (1.1 (shortening long syllable which are the most famous and practical in prosodic zahaf in Persian, each of prosody afaeel (Mafa’eelon, Faelaton

  15. Prosodic Zhafat based in an exact discipline

    Directory of Open Access Journals (Sweden)

    Ali Heydari

    2015-03-01

    Full Text Available Abstract Zahf means farness from the orgion and delay from the purpose and goal. In term of prosody, every change that is occurred in afaeel pricipals is called zahaf.   In ancient prosody books, sometime zahafs of persion prosody have been classified in a particular method and approximately scientific, but this method used as a sample for the earliest accoding to different reasons such as: unuseful complications, being of little importance in learning prosody, etc.  Maybe these matters are the reason why honorable authors didn’t try to classify them.   Among predecessors, Khaja Nasir od-Din has done useful efforts. But his efforts are not enough. The fact is that learning prosodic zahafs in the way mentioned in the most of prosody books is very difficult and probably impossible. Paying attention to these classifications, we can consider zahafs as one of prosody problems in zahafs section.   In this essay, to facilitate learning and more importantly to make it long-lasting in the memory, we divide these zahafs in a different way. In a general classification, changes of zahafs in prosody afa’eel are either singular or compound. Singular zahaf: In this case one or some of syllables (short or long in the beginning or at the end are deleted. One syllable is added. One syllebe from beginning, middle or end is changed to a short one. Compound zahaf: In this cases two or three zahaf which have been concurrent by the methods of part one simultanously occurred in a foot, or all of the changes are from one method (for example long different syllable have been shortened two times, or simultaneously a syllable deleted and other syllable is shortened and… that in the most cases for this zahaf obtained from all of those zahafs is created another name or sometimes is not. It’s clear that in the part one (1.1 (shortening long syllable which are the most famous and practical in prosodic zahaf in Persian, each of prosody afaeel

  16. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from

  17. Exact solutions to the Lienard equation and its applications

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2004-01-01

    In this paper, a kind of explicit exact solutions to the Lienard equation is obtained, and the applications of the result in seeking traveling solitary wave solution of the nonlinear Schroedinger equation are presented

  18. Exact Analysis of the Cache Behavior of Nested Loops

    National Research Council Canada - National Science Library

    Chatterjee, Siddhartha; Parker, Erin; Hanlon, Philip J; Lebeck, Alvin R

    2001-01-01

    The authors develop from first principles an exact model of the behavior of loop nests executing in a memory hierarchy by using a nontraditional classification of misses that has the key property of composability...

  19. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    Jefta M Sunzu

    2017-09-05

    Sep 5, 2017 ... The exact solutions corresponding to our models are found explicitly in terms of elementary ...... PD extends his appre- ciation to the President Office (Local Governments and ... Kwazulu-Natal, Howard College, April 2004).

  20. Fast and Exact Fiber Surfaces for Tetrahedral Meshes.

    Science.gov (United States)

    Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng

    2017-07-01

    Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.

  1. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  2. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  3. Corollary from the Exact Expression for Enthalpy of Vaporization

    OpenAIRE

    A. A. Sobko

    2011-01-01

    A problem on determining effective volumes for atoms and molecules becomes actual due to rapidly developing nanotechnologies. In the present study an exact expression for enthalpy of vaporization is obtained, from which an exact expression is derived for effective volumes of atoms and molecules, and under certain assumptions on the form of an atom (molecule) it is possible to find their linear dimensions. The accuracy is only determined by the accuracy of measurements of thermodynamic paramet...

  4. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  5. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

    Science.gov (United States)

    Dimitroglou Rizell, Georgios

    2015-04-01

    We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.

  6. Exact sampling of graphs with prescribed degree correlations

    Science.gov (United States)

    Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán

    2015-08-01

    Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.

  7. Blocked inverted indices for exact clustering of large chemical spaces.

    Science.gov (United States)

    Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver

    2014-09-22

    The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.

  8. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  9. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  10. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    Science.gov (United States)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  11. Preoperative screening: value of previous tests.

    Science.gov (United States)

    Macpherson, D S; Snow, R; Lofgren, R P

    1990-12-15

    To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.

  12. Some new exact solitary wave solutions of the van der Waals model arising in nature

    Science.gov (United States)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  13. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  14. Exact traveling wave solution of nonlinear variants of the RLW and the PHI-four equations

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College, Bisha, P.O. Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com

    2007-08-27

    By means of the modified extended tanh-function (METF) method the multiple traveling wave solutions of some different kinds of nonlinear partial differential equations are presented and implemented in a computer algebraic system. The solutions for the nonlinear equations such as variants of the RLW and variant of the PHI-four equations are exactly obtained and so the efficiency of the method can be demonstrated.

  15. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  16. Exact solutions with solitary patterns for the Zakharov-Kuznetsov equations with fully nonlinear dispersion

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2007-01-01

    In this paper, the nonlinear dispersive Zakharov-Kuznetsov ZK(m, n, k) equations are solved exactly by using the Adomian decomposition method. The two special cases, ZK(2, 2, 2) and ZK(3, 3, 3), are chosen to illustrate the concrete scheme of the decomposition method in ZK(m, n, k) equations. General formulas for the solutions of ZK(m, n, k) equations are established

  17. Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.

    Science.gov (United States)

    Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I

    2007-03-23

    The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.

  18. Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations

    International Nuclear Information System (INIS)

    Xu Guiqiong; Li Zhibin

    2005-01-01

    In this paper, an interesting fact is found that the auxiliary equation method is also applicable to a coupled system of two different equations involving both even-order and odd-order partial derivative terms. Furthermore, singular travelling wave solutions can also be obtained by considering other types of exact solutions of auxiliary equation. The Whitham-Broer-Kaup and the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equations are chosen as examples to illustrate the effectiveness of the auxiliary equation method

  19. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  20. Exact Solutions of a Fractional-Type Differential-Difference Equation Related to Discrete MKdV Equation

    International Nuclear Information System (INIS)

    Aslan İsmail

    2014-01-01

    The extended simplest equation method is used to solve exactly a new differential-difference equation of fractional-type, proposed by Narita [J. Math. Anal. Appl. 381 (2011) 963] quite recently, related to the discrete MKdV equation. It is shown that the model supports three types of exact solutions with arbitrary parameters: hyperbolic, trigonometric and rational, which have not been reported before. (general)