WorldWideScience

Sample records for previous dusty plasma

  1. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  2. Introduction to dusty plasma physics

    CERN Document Server

    Shukla, PK

    2001-01-01

    Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth''s mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

  3. Formation of cavities in dusty plasmas

    International Nuclear Information System (INIS)

    Kravchenko, O.Yu.; Chutov, Yu.Yi.; Yurchuk, M.M.

    2003-01-01

    The computer modeling of evolution one-dimensional dusty of sheaths which is taking place in unbounded argon plasma will be carried out. For examination the magneto-hydrodynamics equations for particles of a dusty particles and ions,and also equilibrium approach for electrons will be utilized. As a result of the carried out calculations the spatial distributions of parameters of plasma in different instants are obtained. It is shown,that in a series of modes of the dusty particles are collected in layers which separated by areas where dusty particles practically miss. At increasing of concentration of neutral particles this effect disappears owing to action of a frictional force between dusty particles and neutral component of plasma. It is shown,that depending on concentration of plasma the dusty particles can be dilated or be compressed under action of an ion wind force

  4. ''Dusty plasmas''

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bingham, R.; Angelis, U. de

    1989-09-01

    The field of ''dusty plasmas'' promises to be a very rewarding topic of research for the next decade or so, not only from the academic point of view where the emphasis is on developing the theory of the often complex collective and non-linear processes, but also from the point of view of applications in astrophysics, space physics, environmental and energy research. In this ''comment'' we should like to sketch the current development of this fast growing and potentially very important research area. We will discuss the new features of ''dusty'' plasmas in the most general terms and then briefly mention some successful applications and effects which have already been examined. (author)

  5. Dusty plasma phase in a steady state plasma device

    International Nuclear Information System (INIS)

    Liang Xiaoping; Zheng Jian; Ma Jinxiu; Liu Wangdong; Zhuang Ge; Xie Jinlin; Wang Congrong; Yu Changxuan

    2000-01-01

    A DC discharge dusty plasma device used for study of waves in dusty plasma is introduced. A dusty plasma column is produced with about 30 cm in length and about 8.4 cm in diameter. The electron saturation current of Langmuir probe is obviously decreasing while the dust grains are present in the plasma. The negative charge on dust grains is directly proportional to the rotation rate of the dispenser. And the dust grains carry up to 40% of the negative charges in the whole plasma

  6. Dusty Plasmas in Laboratory and in Space

    International Nuclear Information System (INIS)

    Fortov, Vladimir E.

    2013-01-01

    Investigations were directed on the study of dusty plasma structures and dynamics. Dusty plasma is a unique laboratory tool for the investigation of the physics of systems with strong Coulomb interaction. This is due to the fact that the interaction of micron-sized dust particles (usually 0.1-10 µm in diameter) with charges up to 10 2 -10 5 elementary charges may form the ordered structures of liquid and crystal types accessible to observe them at kinetic level, i.e. at level of behavior of separate particles of medium. Dusty plasma is affected by gravity, depending on the size of the solid particles gravity can be the dominating force. Under microgravity conditions in space much weaker forces become important and other new phenomena not achievable on Earth can be observed. In this report results are presented from the experimental studies of dusty plasmas under ground bounded and microgravity conditions. Structural and transport characteristics of the system of macroparticles in dusty plasma were measured in a set of experiments in rf gas-discharge plasmas in microgravity conditions on the board of International Space Station. A number of different phenomena were studied including self-excitation of dusty waves, formation of plasma crystal and plasma liquid regions, different vortices of charged dust grains. The experimental studies of the viscosity of a dust-plasma liquid were carried out. The results of analysis of the obtained data made it possible to estimate the coefficient of dynamic viscosity of a dust-plasma liquid. Dusty plasmas were also studied in a combined dc/rf discharge under microgravity conditions in parabolic flights. The chamber provided a particular advantage for investigation of different dynamical phenomena in dusty plasmas such as sheared laminar flow of a strongly coupled dusty liquid, nozzle flow, boundary layers and instabilities, shock waves formation and propagation, dust particle lane formation and space dust grain separation by their

  7. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  8. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  9. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  10. Screening length in dusty plasma crystals

    International Nuclear Information System (INIS)

    Nikolaev, V S; Timofeev, A V

    2016-01-01

    Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)

  11. White paper on dusty plasmas

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1986-04-01

    Dusty plasmas is the name given to plasmas heavily laden with charged dust grains which together with the surrounding ions and electrons constitute a kind of plasma regime. This field of study is receiving increased attention because of the observation of dust during recent spacecraft missions to the planets and comets, together with the dawning recognition that the evolution of dusty plasma clouds in space may be quite different from that of nondusty clouds. Recent work in this field is reviewed and recommendations are made on the kind of research that is needed in the immediate future

  12. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  13. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  14. Electro-acoustic shock waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Rahman, A.

    2005-10-01

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  15. Non-linear collective phenomena in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E

    2004-01-01

    Dusty plasmas are unusual states of matter where the interactions between the dust grains can be collective and are not a sum of all pair particle interactions. This state of matter is appropriate to form non-linear dissipative collective self-organized structures. It is found that the potential around the grains can be over-screened leading to a new phenomenon-collective attraction of pairs of large charge grains of equal sign. The grain clouds can self-contract and their collapse is terminated at distances where the interaction becomes repulsive. The homogeneous dusty plasma distribution is universally unstable to form structures. The potential of the collective attraction is proportional to the square of the dimensionless parameter P = n d Z d /n i , where n d and n i are the average dust and ion densities, respectively, and Z d is the dust charge in units of electron charge. The collective attraction is determined by finite grain size and by the presence of absorption of plasma flux on grains. The physics of attraction is related to the space charge accumulation caused by collective flux disturbances. The collective attraction operates for systems with size larger than the mean free path for ion-dust absorption, the condition met in many existing low temperature dusty plasma experiments, in edge plasmas of fusion devices and in space dusty plasmas. The collective attraction exceeds the previously known non-collective attraction such as shadow attraction or wake attraction. The collective attraction can be responsible for pairing of dust grains (this process is completely classical in contrast to the known pairing in superconductivity) and can serve as the main process for the formation of more complicated dust complexes up to dust-plasma crystals. The equilibrium structures formed by collective attraction have universal properties and can exist in a limited domain of parameters (similar to the equilibrium balance known for stars). The balance conditions for

  16. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  17. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with ... Mamun et al [7] have also derived rarefactive solitary waves in low-temperature dusty plasmas such as those in laboratory and astrophysical environments. ... plasma environments that clearly indicate the presence of nonthermal electron pop-.

  18. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  19. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  20. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)

    2016-04-15

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  1. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui

    2016-01-01

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  2. Ion-acoustic dressed solitons in a dusty plasma

    International Nuclear Information System (INIS)

    Tiwari, R.S.; Mishra, M.K.

    2006-01-01

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived

  3. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  4. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  5. Low-frequency dust-lower-hybrid modes in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1995-10-01

    The existence of low-frequency dust-lower-hybrid modes in a magnetized dusty plasma has been examined. These modes arise on account of the inequalities of charge and number densities of electrons, ions, and dust particles, and finite Larmor radius effects in a dusty plasma. (author). 14 refs

  6. Progress in the study of dusty plasmas

    International Nuclear Information System (INIS)

    Mendis, D A

    2002-01-01

    While the study of dust-plasma interactions is by no means new, early progress in the field was slow and uneven. It received a major boost in the early 1980s with the Voyager spacecraft observations of peculiar features in the Saturnian ring system (e.g. the 'radial spokes') which could not be explained by gravitation alone and led to the development of the gravito-electrodynamic theory of dust dynamics. This theory scored another major success more recently in providing the only possible explanation of collimated high-speed beams of fine dust particles observed to sporadically emanate from Jupiter by the Ulysses and Galileo spacecrafts. These dynamical studies were complimented in the early 1990s by the study of collective processes in dusty plasmas. Not only has this led to the discovery of a whole slew of new wave modes and instabilities with wide ranging consequences for the space environment, it also spurred laboratory studies leading to the observation of several of them, including the very low frequency dust acoustic mode, which can be made strikingly visual by laser light scattering off the dust. The most fascinating new development in dusty plasmas, which occurred about 7 years ago, was the crystallization of dusty plasmas in several laboratories. In these so-called 'plasma crystals', micrometre-sized dust, which are either externally introduced or internally grown in the plasma, acquire large negative charges and form Coulomb lattices as was theoretically anticipated for some time. This entirely new material, whose crystalline structure is so strikingly observed by laser light scattering, could be a valuable tool for studying physical processes in condensed matter, such as melting, annealing and lattice defects. Recognizing the crucial role of gravity on the crystal structure, microgravity experiments have already been performed in aircraft, sounding rockets, the Mir Space Station, and most recently in the International Space Station, leading to

  7. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  8. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  9. Nonmodal phenomena in differentially rotating dusty plasmas

    Science.gov (United States)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  10. Nonmodal phenomena in differentially rotating dusty plasmas

    International Nuclear Information System (INIS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-01-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable

  11. Solitary Waves in Space Dusty Plasma with Dust of Opposite Polarity

    International Nuclear Information System (INIS)

    Elwakil, S.A.; Zahran, M.A.; El-Shewy, E.K.; Abdelwahed, H.G.

    2009-01-01

    The nonlinear propagation of small but finite amplitude dust-acoustic solitary waves (DAWs) in an unmagnetized, collisionless dusty plasma has been investigated. The fluid model is a generalize to the model of Mamun and Shukla to a more realistic space dusty plasma in different regions of space viz.., cometary tails, mesosphere, Jupiter s magnetosphere, etc., by considering a four component dusty plasma consists of charged dusty plasma of opposite polarity, isothermal electrons and vortex like ion distributions in the ambient plasma. A reductive perturbation method were employed to obtain a modified Korteweg-de Vries (mKdV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of positively charged dust fluid, the specific charge ratioμ, temperature of the positively charged dust fluid, the ratio of constant temperature of free hot ions and the constant temperature of trapped ions and ion temperature are also discussed.

  12. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  13. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  14. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R K

    2017-01-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma. (paper)

  15. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  16. THERMODYNAMIC REASONS OF AGGLOMERATION OF DUST PARTICLES IN THE THERMAL DUSTY PLASMA

    Directory of Open Access Journals (Sweden)

    V.I.Vishnyakov

    2003-01-01

    Full Text Available The thermodynamic equilibrium of thermal dusty plasmas consisting of ionized gas (plasma and solid particles (dust grains, which interact with each other, is studied. The tendency of grains in dusty plasmas to agglomerate corresponds to the tendency of dusty plasmas to balanced states. When grains agglomerate, electrical perturbations generated by each grain concentrate inside the agglomerate. The plasma is perturbed only by the agglomerate's exterior surface. The greater number of possible states for electrons and ions in plasma depends on the volume of perturbation of grains. The fewer are the perturbations the greater is the amount of possible states for electrons and ions in plasma. If the grains collected from a distance smaller than 8 Debye lengths, the total volume of perturbations is minimized; the free energy of the plasma is also minimized.

  17. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  18. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  19. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  20. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  1. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  2. Dynamic and optical characterization of dusty plasmas for use as solar sails

    International Nuclear Information System (INIS)

    Sheldon, Robert; Thomas, Edward Jr.; Abbas, Mian; Gallagher, Dennis; Adrian, Mark; Craven, Paul

    2002-01-01

    Solar sails presently have mass loadings of 5 gm/m2 that, when including the support structure and payload, could easily average to >10 gm/m2. For reasonably sized spacecraft, the critical parameter is the total mass per total area, which when combined with the reflectivity, yield the true acceleration. We propose that dusty plasmas trapped in a 'Mini-Magnetosphere' (Winglee, 2000) can produce a solar sail with a total mass loading <0.01 gm/m2, and reflectivities of ∼1%. This configuration provides an acceleration equivalent to a standard sail of 95% reflectivity with <1 gm/m2. However, the physics of dusty plasma sails is not mature and several important questions need to be resolved before a large scale effort is warranted. Foremost among these questions are, what is the largest force a dusty plasma can sustain before it demagnetizes and separates from the binding magnetic field; what are the charging properties of dust under solar UV conditions; what is the light scattering cross section for the dust; what is the optimum dust grain size for magnetization and scattering; and, what are the optimum dust grain materials? We outline what we know about dusty plasmas, and what we are hoping to learn from two existing dusty plasma experiments at the National Space Science and Technology Center (NSSTC) and Auburn University

  3. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  4. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    Science.gov (United States)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  5. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  6. Dust-lower-hybrid waves in a magnetized self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Roy Chowdhury, A.; Dasgupta, B.

    1997-11-01

    General dispersion relation for a self-gravitating magnetized and finite temperature dusty plasma has been derived using the Vlasov-kinetic theory in guiding center technique. Results of earlier studies in unmagnetized situations turn out to be special cases of our general dispersion relation. In addition to the usual dust-acoustic waves in unmagnetized plasmas, we find an ultra-low-frequency mode in the frequency range between cyclotron frequencies of ions and charged dust particles and the Jean's instability of the self-gravitating dusty plasma systems. (author)

  7. Nonlinear screening of dust grains and structurization of dusty plasma

    International Nuclear Information System (INIS)

    Tsytovich, V. N.; Gusein-zade, N. G.

    2013-01-01

    equilibrium between plasma components when analyzing equilibrium structures. The effect of plasma screening nonlinearity on both the diffusion processes and the forces of dust drag by plasma fluxes is analyzed. It is shown how self-organized dust structures form in these processes. In the limit of very small dust grain charges, the forces acting on the dusty plasma components and the set of basic equations for stationary dust structures (with allowance for nonlinear screening) take a standard form. New qualitative effects, such as the suppression of diffusion due to ion scattering from dust grains and the formation of structures of different configurations, are described. A detailed comparison with previous results is performed. It is shown that the solution of basic nonlinear equations for dust structures yields new qualitative effects. A number of new effects to be studied in future dusty plasma experiments with the formation of structures in spherical chambers are predicted (it is assumed that diffusion will play a significant role under microgravity conditions). Recent ground-based experiments, as well as experiments carried out onboard the International Space Station, directly confirm the nonlinear character of screening and the significant role played by this nonlinearity in the structurization of dusty plasma. Experiments on the formation of structures consisting of smaller dust grains within structures formed of larger grains are discussed. It is shown that those experiments can be interpreted only using the concept of nonlinear screening

  8. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  9. Jeans instability of an inhomogeneous streaming dusty plasma

    Indian Academy of Sciences (India)

    The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the density ...

  10. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  11. Electro-acoustic solitary waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Sayed, F.

    2005-10-01

    present a rigorous theoretical investigation of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] solitary waves in dusty plasmas. We employ the reductive perturbation method for small but finite amplitude solitary waves as well as the pseudo-potential approach for arbitrary amplitude ones. We also analyze the effects of non-planar geometry and dust charge fluctuations on both DIA and DA solitary waves, the effect of finite ion-temperature on DIA solitary waves, and the effects of dust-fluid temperature and non-isothermal ion distributions on DA solitary waves. It has been reported that these effects do not only significantly modify the basic features of DIA or DA solitary waves, but also introduce some important new features. The basic features and the underlying physics of DIA and DA solitary waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  12. Ultra-low-frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Amin, M.R.; Roy Chowdhury, A.R.; Salahuddin, M.

    1997-11-01

    A study on the extremely low-frequency possible electrostatic modes in a finite temperature magnetized dusty plasma taking the charged dust grains as the third component has been carried out using the appropriate Vlasov-kinetic theory for the dynamics of the electrons, ions and the dust particles. It is found that the inequalities of charge and number density of plasma species, and the finite-Larmor-radius thermal kinetic effects of the mobile charged dust grains, introduce the existence of very low-frequency electrostatic eigenmodes in the three-component homogeneous magnetized dusty plasma. The relevance of the present investigation to space and astrophysical situations as well as laboratory experiments for dust Coulomb crystallization has been pointed out. (author)

  13. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  14. Streaming instabilities in a collisional dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2000-01-01

    A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)

  15. Nanodiamonds in dusty low-pressure plasmas

    International Nuclear Information System (INIS)

    Vandenbulcke, L.; Gries, T.; Rouzaud, J. N.

    2009-01-01

    Dusty plasmas composed of carbon, hydrogen, and oxygen have been evidenced by optical emission spectroscopy and microwave interferometry, due to the increase in electron energy and the decrease in electron density. These plasmas allow homogeneous synthesis of nanodiamond grains composed of either pure diamond nanocrystals only (2-10 nm in size) or of diamond nanocrystals and some sp 2 -hybridized carbon entities. The control of their size and their microstructure could open ways for a wide range of fields. Their formation from a plasma-activated gaseous phase is also attractive because the formation of nanodiamonds in the universe is still a matter of controversy

  16. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  17. Large amplitude ion-acoustic solitons in dusty plasmas

    International Nuclear Information System (INIS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-01-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail

  18. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  19. Evolution of perturbation in charge-varying dusty plasmas

    International Nuclear Information System (INIS)

    Popel, S.I.; Golub, A.P.; Losseva, T.V.; Bingham, R.; Benkadda, S.

    2001-01-01

    The nonstationary problem of the evolution of perturbation and its transformation into nonlinear wave structure in dusty plasmas is considered. For this purpose two one-dimensional models based on a set of fluid equations, Poisson's equation, and a charging equation for dust are developed. The first (simplified) model corresponds to the case [Popel et al., Phys. Plasmas 3, 4313 (1996)] when exact steady-state shock wave solutions can exist. This simplified model includes variable-charged dust grains, Boltzmann electrons, and inertial ions. The second (ionization source) model takes into account the variation of the ion density and the ion momentum dissipation due to dust particle charging as well as the source of plasma particles due to ionization process. The computational method for solving the set of equations which describe the evolution in time of a nonlinear structure in a charge-varying dusty plasma is developed. The case of the evolution of an intensive initial nonmoving region with a constant enhanced ion density is investigated on the basis of these two models. The consideration within the ionization source model is performed for the data of the laboratory experiment [Luo et al., Phys. Plasmas 6, 3455 (1999)]. It is shown that the ionization source model allows one to obtain shock structures as a result of evolution of an initial perturbation and to explain the experimental value of the width of the shock wave front. Comparison of the numerical data obtained on the basis of the ionization source model and the simplified model shows that the main characteristic features of the shock structure are the same for both models. Nevertheless, the ionization source model is much more sensitive to the form of the initial perturbation than the simplified model. The solution of the problem of the evolution of perturbation and its transformation into shock wave in charge-varying dusty plasmas opens up possibilities for description of the real phenomena like supernova

  20. Solitons in dusty plasmas with positive dust grains

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.; Mace, R. L.

    2008-01-01

    Although ''typical'' micrometer-sized dust grains in a space or laboratory plasma are often negatively charged because of collisions with the mobile electrons, there are environments in which grains may take on a positive charge. We consider a dusty plasma composed of electrons, positive ions and positive dust grains, and use the fluid dynamic paradigm to identify existence domains in parameter space for both dust-acoustic (DA) and dust-modified ion-acoustic (DIA) solitons. Only positive potential DA solitons are found. This represents an expected antisymmetry with the case of negative dust, where previously only negative solitons were reported. However, whereas for negative dust DIA solitons of either sign of potential may exist, we find that for the case of positive dust, DIA solitons are restricted to positive potentials only. The results for both positive and negative dust are consistent with an hypothesis that, in the absence of flows, the sign(s) of the soliton potential coincide(s) with the sign(s) of the species whose inertia is included in the calculation; i.e., the cold, supersonic species present in the plasma

  1. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  2. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  3. New aspects of the Jeans instability in dusty plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A; Mace, Richard L

    1998-01-01

    In contrast to a gas, a dusty plasma can support a variety of wave modes each in principle able to impart to the dust grains the randomizing energy necessary to avoid Jeans collapse on some length scale. Consequently, the stability to Jeans collapse is more complex in a dusty plasma than it is for a charge-neutral gas. After recalling some of the fundamental ideas related to the ordinary Jeans instability in neutral gases, we will extend the discussion to plasmas containing charged dust grains. Besides the usual Jeans criterion based upon thermal agitation, various other ways of countering the gravitational collapse can be considered. One is via excitation of electrostatic dust-acoustic modes, the other via novel Alfven-Jeans instabilities for perpendicularly propagating electromagnetic waves on the extraordinary mode branch. The wavelengths that are unstable are modified due to the presence of a magnetic field and of charged particles. These mechanisms yield different minimum threshold length scales for the onset of instability/condensation

  4. Merging and Splitting of Plasma Spheroids in a Dusty Plasma

    Science.gov (United States)

    Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas

    2012-12-01

    Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.

  5. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Lynch, Brian; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California–San Diego, La Jolla, California 92093 (United States)

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  7. Arbitrary amplitude dust-acoustic solitary structures in a three-component dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A rigorous theoretical investigation has been made of arbitrary amplitude dust-acoustic solitary structures in an unmagnetized three-component dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann distributed ions and electrons. The pseudo-potential approach and the reductive perturbation technique are employed for this study. It is found from both weakly and highly nonlinear analyses that the dusty plasma model can support solitary waves only with negative potential but not with positive potential. The effects of equilibrium free electron density and its temperature on these solitary structures are discussed. The implications of these results to some astrophysical and space plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  8. Complex (dusty) plasmas: Current status, open issues, perspectives

    International Nuclear Information System (INIS)

    Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E.

    2005-01-01

    The field of complex (dusty) plasmas-low-temperature plasmas containing charged microparticles-is reviewed: The major types of experimental complex plasmas are briefly discussed. Various elementary processes, including grain charging in different regimes, interaction between charged particles, and momentum exchange between different species are investigated. The major forces on microparticles and features of the particle dynamics in complex plasmas are highlighted. An overview of the wave properties in different phase states, as well as recent results on the phase transitions between different crystalline and liquid states are presented. Fluid behaviour of complex plasmas and the onset of cooperative phenomena are discussed. Properties of the magnetized complex plasmas and plasmas with nonspherical particles are briefly mentioned. In conclusion, possible applications of complex plasmas, interdisciplinary aspects, and perspectives are discussed

  9. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Department of Physics, Cotton College, Guwahati 781 001, India. Abstract. Considering the Boltzmann response of the ions ... respect to normal electronic charge (q ~105. –106e). The mass of the dust grains can have very high value too, up to ... degrees of plasma dynamics. Thus, the theoretical modeling of a dusty plasma ...

  10. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  11. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  12. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  13. Screening in weakly ionized dusty plasmas; effect of dust density perturbations

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.

    2013-01-01

    The screening of the charge of a non-emitting dust grain immersed in a weakly ionized dusty plasma is studied on the basis of a self-consistent hydrodynamic description. The dust number density is considered large enough so that the test grain is not isolated from other grains and dust collective effects are important. Not only dust charge perturbations but also dust density perturbations are taken into account, the latter are shown to have a strong effect on both the short and long range part of the potential. The realization of collective attraction via the newly obtained potential is discussed, a mechanism that could be central to the understanding of phase-transitions and self-organization processes in dusty plasmas.

  14. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  15. Sectional modeling of nanoparticle size and charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    Agarwal, Pulkit; Girshick, Steven L

    2012-01-01

    Sectional models of the dynamics of aerosol populations are well established in the aerosol literature but have received relatively less attention in numerical models of dusty plasmas, where most modeling studies have assumed the existence of monodisperse dust particles. In the case of plasmas in which nanoparticles nucleate and grow, significant polydispersity can exist in particle size distributions, and stochastic charging can cause particles of given size to have a broad distribution of charge states. Sectional models, while computationally expensive, are well suited to treating such distributions. This paper presents an overview of sectional modeling of nanodusty plasmas, and presents examples of simulation results that reveal important qualitative features of the spatiotemporal evolution of such plasmas, many of which could not be revealed by models that consider only monodisperse dust particles and average particle charge. These features include the emergence of bimodal particle populations consisting of very small neutral particles and larger negatively charged particles, the effects of size and charge distributions on coagulation, spreading and structure of the particle cloud, and the dynamics of dusty plasma afterglows. (paper)

  16. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  17. Observations of dusty plasmas with magnetized dust grains

    Science.gov (United States)

    Luo, Q.-Z.; D'Angelo, N.

    2000-11-01

    We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.

  18. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Science.gov (United States)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  19. The effect of dust size distribution on the damping of the solitary waves in a dusty plasma

    International Nuclear Information System (INIS)

    Yang, Xue; Xu, Yan-Xia; Qi, Xin; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    The effect of the dust size distribution on the damping rate of the solitary wave in a dusty plasma is investigated in the present paper. It is found that the damping rate increases as either the mean radius of dust grains increases or as the total number density of the dust grains increases. The damping rate is less for usual dusty plasma (about which the number density of the smaller dust grains is larger than that of the larger dust grains) than that of the unusual dusty plasma (about which the number density of the larger dust grains is larger than that of the smaller dust grains)

  20. Collisional effect on lower hybrid waves instability in a dusty plasma ...

    African Journals Online (AJOL)

    The effect of particle collisions on lower hybrid modes in a dusty plasma is studied. The dispersion relation derived from fluid theory is numerically solved for plasma parameters relevant to determine the modification in wave propagation due to collisions. This study is relevant to the earth's lower atmosphere, in particular, the ...

  1. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  2. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  3. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  4. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  5. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  6. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  7. Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities

    International Nuclear Information System (INIS)

    Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.

    2004-01-01

    It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas

  8. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  9. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    Science.gov (United States)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of

  10. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  11. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of two new ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of both of these two electrostatic modes. It is also found that under certain conditions, this self-gravitational effect can destabilize these ultra-low-frequency electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  12. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  13. Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility

    Science.gov (United States)

    Zhukhovitskii, Dmitry I.; Petrov, Oleg F.; Hyde, Truell W.; Herdrich, Georg; Laufer, Rene; Dropmann, Michael; Matthews, Lorin S.

    2015-05-01

    We discuss the inductively heated plasma generator (IPG) facility in application to the generation of the thermal dusty plasma formed by the positively charged dust particles and the electrons emitted by them. We develop a theoretical model for the calculation of plasma electrical conductivity under typical conditions of the IPG. We show that the electrical conductivity of dusty plasma is defined by collisions with the neutral gas molecules and by the electron number density. The latter is calculated in the approximations of an ideal and strongly coupled particle system and in the regime of weak and strong screening of the particle charge. The maximum attainable electron number density and corresponding maximum plasma electrical conductivity prove to be independent of the particle emissivity. Analysis of available experiments is performed, in particular, of our recent experiment with plasma formed by the combustion products of a propane-air mixture and the CeO2 particles injected into it. A good correlation between the theory and experimental data points to the adequacy of our approach. Our main conclusion is that a level of the electrical conductivity due to the thermal ionization of the dust particles is sufficiently high to compete with that of the potassium-doped plasmas.

  14. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  15. Instability of dust ion-acoustic waves in a dusty plasma containing elongated and rotating charged dust grains

    International Nuclear Information System (INIS)

    Shukla, P.K.; Tskhakaya, D.D.

    2001-01-01

    The dispersion properties of the dust ion-acoustic waves (DIAWs) in an unmagnetized dusty plasma is examined when the plasma constituents are electrons, ions, and charged dust grains which are elongated and rotating. Since the dipole moment of elongated and rotating dust grains is nonzero, significant modifications of the DIAW spectrum emerge. It is found that the DIAWs are subjected to an instability when the DIAW frequency approximately equals the angular rotation frequency of the elongated dust grains. The relevance of our investigation to enhanced fluctuations in space and laboratory dusty plasmas is pointed out

  16. Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions

    Science.gov (United States)

    Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly

    The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in

  17. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...

  18. (KP) equation in warm dusty plasma with variable dust charge, two ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained ...

  19. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  20. Effect of polarization force on the Jeans instability of self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2011-01-01

    The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system. -- Highlights: → Jeans instability of gravitating dusty plasma with polarization force is investigated. → The fundamental Jeans instability criterion is modified due to polarization effect. → The critical Jeans length decreases due to increase in polarization force. → Polarization force destabilizes the unstable Jeans mode. → The collapsing of interstellar dusty cloud is discussed.

  1. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  2. Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas

    International Nuclear Information System (INIS)

    Eliasson, B.; Shukla, P.K.

    2005-01-01

    Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments

  3. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    International Nuclear Information System (INIS)

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  4. Propagation of dust electro-acoustic modes in dusty plasma

    International Nuclear Information System (INIS)

    Avinash, K.

    2001-01-01

    The propagation of the dust electro-acoustic (DEA) mode in dusty plasma with different electron and ion temperatures T e and T i and different ion species is studied. The critical ratio of the dust space charge to the ion space charge ε for the excitation of DEA mode is found to decrease with increasing T e /T i and increase with m i /m e (m i and m e are the ion and electron masses). Thus experiments with hydrogen plasma where electrons are sufficiently hotter than ions and where the reduction in the dust charge with ε is more than 50% are essential for the observation of self-shielding and the DEA mode

  5. Dusty plasma in the region of the lunar terminator

    Energy Technology Data Exchange (ETDEWEB)

    Popel, S. I., E-mail: popel@iki.rssi.ru; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Atamaniuk, B. [Polish Academy of Sciences, Space Research Center (Poland)

    2016-05-15

    Dusty plasma in the region of the lunar terminator is considered. It is shown that, in this region, a structure resembling a plasma sheath forms near the lunar surface. This sheath creates a potential barrier, due to which electrons over the illuminated part of the Moon are confined by electrostatic forces. The width of the sheath-like structure is on the order of the ion Debye length. In this structure, significant (about several hundred V/m) electric fields arise, which lift charged micron-size dust grains to heights of several tens of centimeters. The suggested effect may be used to explain the glow observed by the Surveyor spacecraft over the lunar terminator.

  6. Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, Nam C.; Lee, D.-Y.

    2005-01-01

    The nonlinear ion acoustic solitary wave in a magnetized dusty plasma, obliquely propagating to the embedding external magnetic field, is revisited. It is found that when the charge density of dust particles is high, the Sagdeev potential needs to be expanded up to δn 4 near n=1. In this case, it is shown that there could exist rarefactive ion acoustic solitary waves as well as the kink-type double layer solutions, in addition to the conventional hump-type ones found in the δn 3 expansion. The amplitude variations of ion acoustic solitary waves in a magnetized dusty plasma are also examined with respect to the change of the dust charge density and the wave directional angle

  7. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  8. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-01-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal

  9. Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas

    Science.gov (United States)

    Ali, S.; Naeem, Ismat; Mirza, Arshad M.

    2017-10-01

    The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.

  10. Cooperative particle motion in complex (dusty) plasmas

    Science.gov (United States)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  11. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  12. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  13. Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-05-15

    The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.

  14. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101 (India); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lavanya, C.; Senthil Kumar, V. [Department of Physics, Periyar University, Salem, Tamil Nadu 636 011 (India); Gopi, D. [Department of Chemistry, Periyar University, Salem 636 011 (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem, Tamil Nadu 636 011 (India); Pasqua, A. [Department of Physics, University of Trieste, Trieste (Italy)

    2016-04-15

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.

  15. Experiments on ion-acoustic shock waves in a dusty plasma

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2002-01-01

    Dust ion-acoustic shock waves have been investigated experimentally in a homogeneous unmagnetized dusty double-plasma device. An initial compressional wave with a ramp shape steepens to form oscillations at the leading part due to dispersion. The oscillation develops to a train of solitons when the plasma contains no dust grain. The wave becomes an oscillatory shock wave when the dust is mixed in the plasma and the density of the dust grains is smaller than a critical value. When the dust density is larger than the critical value, only steepening is observed at the leading part of the wave and a monotonic shock structure is observed. The velocity and width of the shock waves are measured and compared with results of numerical integrations of the modified Korteweg-de Vries-Burgers equation

  16. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  17. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  18. Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q-distributed electrons

    Science.gov (United States)

    Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad

    2016-07-01

    The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.

  19. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  20. Design of new dusty plasma apparatus to view 3D particle dynamics of fluorescent dust clouds

    Science.gov (United States)

    Thome, Kathreen; Fontanetta, Alexandra; Zwicker, Andrew

    2008-11-01

    Particles suspended in dusty plasmas represent both contamination in industrial plasmas and a primary interstellar medium component. Typically, dusty plasma behavior is studied by laser scattering techniques that provide 2D dust cloud images. However, the 3D structure of the dust cloud is essential to understand the waves, group dynamics, and stabilities of the cloud. Techniques used to study this structure include stereoscopic particle image velocimetry and rapid laser scanning. Our UV illumination technique reveals translational and rotational velocities of fluorescent dust particles as a function of UV intensity. The new argon DC glow discharge experiment designed to study the 3D aspects of fluorescent dust consists of a 13.25'' diameter chamber, two 8'' window ports for CCD cameras, one along the plasma and another transverse to it, two additional 8'' window ports transverse to the plasma for laser or UV light illumination of the dust cloud, and a diagnostic probe port. Results from different electrodes--including mesh and ring--observations and imaging will be presented.

  1. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  2. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com; Amirov, R. Kh.; Kirillin, A. V.; Nikolaev, V. S.; Bedran, Z. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

  3. Probing a dusty magnetized plasma with self-excited dust-density waves

    Science.gov (United States)

    Tadsen, Benjamin; Greiner, Franko; Piel, Alexander

    2018-03-01

    A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.

  4. Visco-instability of shear viscoelastic collisional dusty plasma systems

    Science.gov (United States)

    Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-04-01

    In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.

  5. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  6. Formation and dissociation of dust molecules in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fucheng; Dong Lifang; He Yafeng

    2016-01-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. (paper)

  7. Acoustic Wave in a Dusty Plasma with Frequent Grain Charging Collisions

    International Nuclear Information System (INIS)

    Lee, Hee J.; Cho, Sang-Hoon

    2003-01-01

    The sink terms in the electron and ion continuity equations and the frictional terms in the momentum equations of a dusty plasma are obtained by taking moments of a kinetic equation which takes into account the grain charging collisions by electrons and ions. We show that an acoustic wave can propagate as a normal mode in the parameter regime where the frequencies of charging collisions are much greater than the wave frequency

  8. Electromagnetic waves in dusty magnetoplasmas using two-potential theory

    International Nuclear Information System (INIS)

    Zubia, K.; Jamil, M.; Salimullah, M.

    2009-01-01

    The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.

  9. On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pustylnik, M. Y.; Ivlev, A. V.; Heidemann, R.; Mitic, S.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching (Germany); Sadeghi, N. [LIPhy, Universite de Grenoble 1/CNRS, UMR 5588, Grenoble 38401 (France)

    2012-10-15

    A hypothesis on the physical mechanism generating the heartbeat instability in complex (dusty) plasmas is presented. It is suggested that the instability occurs due to the periodically repeated critical transformation on the boundary between the microparticle-free area (void) and the complex plasma. The critical transformation is supposed to be analogous to the formation of the sheath in the vicinity of an electrode. The origin of the transformation is the loss of the electrons and ions on microparticles surrounding the void. We have shown that this hypothesis is consistent with the experimentally measured stability parameter range, with the evolution of the plasma glow intensity and microparticle dynamics during the instability, as well as with the observed excitation of the heartbeat instability by an intensity-modulated laser beam (inducing the modulation of plasma density).

  10. One-dimensional nonlinear self-organized structures in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2000-01-01

    Dusty plasmas, which are open systems, can form stable one-dimensional self-organized structures. Absorption of plasma by dust particles results in the plasma flux from the plasma regions where the dust is absent. It is found that, in a one-dimensional dust layer, this flux is completely determined by the number of dust particles per unit area of the layer surface. This number determines all of the other parameters of the steady-state dust structure; in particular, it determines the spatial distributions of the dust density, dust charge, electron and ion densities, and ion drift velocity. In these structures, a force and electrostatic balance is established that ensures the necessary conditions for confining the dust and plasma particles in the structure. The equilibrium structures exist only for subthermal ion flow velocities. This criterion determines the maximum possible number of dust particles per unit area in the steady-state structure. The structures have a universal thickness, and the dust density changes sharply at the edge of the structure. The structures with a size either less than or larger than the ion mean free path with respect to ion-neutral collisions, quasi-neutral and charged structures, and soliton- and anti-soliton-like structures are investigated. Laboratory experiments and observations in extraterrestrial plasma formation are discussed in relation to dust structures

  11. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  12. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  13. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  14. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  15. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    International Nuclear Information System (INIS)

    Song, Y.L.; Huang, F.; Chen, Z.Y.; Liu, Y.H.; Yu, M.Y.

    2016-01-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  16. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-01-01

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes

  17. Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud; Shukla, Padma Kant

    2012-05-01

    The dust-modified ion-acoustic waves of Shukla and Silin are revisited within the theoretical framework of the Tsallis statistical mechanics. Nonextensivity may originate from correlation or long-range plasma interactions. Interestingly, we find that owing to electron nonextensivity, dust ion-acoustic (DIA) solitary waves may exhibit either compression or rarefaction. Our analysis is then extended to include self-consistent dust charge fluctuation. In this connection, the correct nonextensive electron charging current is rederived. The Korteweg-de Vries equation, as well as the Korteweg-de Vries-Burgers equation, is obtained, making use of the reductive perturbation method. The DIA waves are then analyzed for parameters corresponding to space dusty plasma situations.

  18. Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang Yaxing; Hu Wei; Tian Bo

    2007-01-01

    Considering the transverse perturbation and axially non-planar geometry, the cylindrical Kadomtsev-Petviashvili (KP) equation is investigated in this paper, which can describe the propagation of dust-acoustic waves in the dusty plasma with two-temperature ions. Through imposing the decomposition method, such a (2+1)-dimensional equation is decomposed into two variable-coefficient (1+1)-dimensional integrable equations of the same hierarchy. Furthermore, three kinds of Darboux transformations (DTs) for these two (1+1)-dimensional equations are constructed. Via the three DTs obtained, the multi-soliton-like solutions of the cylindrical KP equation are explicitly presented. Especially, the one- and two-parabola-soliton solutions are discussed by several figures and some effects resulting from the physical parameters in the dusty plasma and transverse perturbation are also shown

  19. Langmuir wave phase-mixing in warm electron-positron-dusty plasmas

    Science.gov (United States)

    Pramanik, Sourav; Maity, Chandan

    2018-04-01

    An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.

  20. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    International Nuclear Information System (INIS)

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-01-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length

  1. Kolmogorov spectra of long wavelength ion-drift waves in dusty plasmas

    International Nuclear Information System (INIS)

    Onishchenko, O.G.; Pokhotelov, O.A.; Sagdeev, R.Z.; Pavlenko, V.P.; Stenflo, L.; Shukla, P.K.; Zolotukhin, V.V.

    2002-01-01

    Weakly turbulent Kolmogorov spectra of ion-drift waves in dusty plasmas with an arbitrary ratio between the ion-drift and the Shukla-Varma frequencies are investigated. It is shown that in the long wavelength limit, when the contribution to the wave dispersion associated with the inhomogeneity of the dust component is larger than that related to the plasma inhomogeneity, the wave dispersion and the matrix interaction element coincide with those for the Rossby or the electron-drift waves described by the Charney or Hasegawa-Mima equations with an accuracy of unessential numerical coefficients. It is found that the weakly turbulent spectra related to the conservation of the wave energy are local and thus the energy flux is directed towards smaller spatial scales

  2. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  3. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  4. Caltech water-ice dusty plasma: preliminary results

    Science.gov (United States)

    Bellan, Paul; Chai, Kilbyoung

    2013-10-01

    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  5. Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with nonthermal ions: Application to Halley Comet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Bacha, Mustapha [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, B. P. 32, El Alia, Algiers 16111 (Algeria)

    2013-10-15

    Weak dust-acoustic waves (DAWs) are addressed in a nonthermal charge varying electronegative magnetized dusty plasmas with application to the Halley Comet. A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burger equation. The positive ion nonthermality, the obliqueness, and magnitude of the magnetic field are found to modify the dispersive and dissipative properties of the DA shock structure. Our results may aid to explain and interpret the nonlinear oscillations that may occur in the Halley Comet Plasma.

  6. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  7. Response to "Comment on `Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma'" [Phys. Plasmas 24, 094701 (2017)

    Science.gov (United States)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2018-02-01

    On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.

  8. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  9. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  10. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  11. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  12. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  13. Bispectral analysis of nonlinear compressional waves in a two-dimensional dusty plasma crystal

    International Nuclear Information System (INIS)

    Nosenko, V.; Goree, J.; Skiff, F.

    2006-01-01

    Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar + laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory

  14. Jeans instability with exchange effects in quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Jung, Y.-D.; Salimullah, M.

    2015-01-01

    Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems

  15. Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Bacha, Mustapha

    2010-01-01

    Arbitrary amplitude dust acoustic waves in a dusty plasma with a high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from the Boltzmann distribution on the dust acoustic soliton are then considered. The dust charge variation makes the dust acoustic soliton more spiky. The dust grain surface collects less electrons as the latter evolves far away from their thermodynamic equilibrium. The dust accumulation caused by a balance of the electrostatic forces acting on the dust grains is more effective for lower values of the electron spectral index. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. Our results may explain the strong spiky waveforms observed in auroral plasmas.

  16. Cross-field dust acoustic instability in a dusty negative ion plasma

    International Nuclear Information System (INIS)

    Rosenberg, M

    2010-01-01

    A cross-field dust acoustic instability in a dusty negative ion plasma in a magnetic field is studied using kinetic theory. The instability is driven by the ExB drifts of the ions. It is assumed that the negative ions are much heavier than the positive ions, and that the dust is negatively charged. The case where the positive ions and electrons are magnetized, the negative ions are marginally unmagnetized, and the dust is unmagnetized is considered. The focus is on a situation where Doppler resonances near harmonics of the positive ion gyrofrequency can affect the spectrum of unstable dust acoustic waves. Application to possible laboratory experimental parameters is discussed.

  17. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Nazari-Golshan, A.; Nourazar, S. S.

    2013-01-01

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v 0 , and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously

  18. Study of possible chaotic, quasi-periodic and periodic structures in quantum dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2014-01-01

    Existence of chaotic, quasi-periodic, and periodic structures of dust-ion acoustic waves is studied in quantum dusty plasmas through dynamical system approach. A system of coupled differential equations is derived from the fluid model and subsequently, variational matrix is obtained. The characteristic equation is obtained at the equilibrium point, and the behavior of nonlinear waves is studied numerically using Runge-Kutta method. The behavior of the dynamical system changes significantly when any of plasma parameters, such as the dust concentration parameter, temperature ratio, or the quantum diffraction parameter, is varied. The change of the characteristic of solution of the system is extensively studied. It is found that the system changes its behavior from chaotic pattern to limit cycle behavior

  19. Debye shielding in a dusty plasma with nonextensively distributed electrons and ions

    International Nuclear Information System (INIS)

    Liu, Y.; Xu, K.; Liu, S. Q.

    2012-01-01

    The phenomenon of Debye shielding in dusty plasmas is investigated within the framework of nonextensively distributed electrons and ions. The effects of dust grain charge fluctuation are considered. It shows that the increase of the nonextensive parameters of electrons and ions will lead to the decrease of the shielding distance and it is due to that the effective temperature of nonextensively distributed particles drops with the increase of nonextensive parameters. There is a rather interesting result that the Debye shielding effects may vanish in a certain condition when the fluctuation of the dust grain charges is taken into account.

  20. Symbolic computation on integrable decompositions for the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas and Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Li Juan; Xu Tao; Zhang Haiqiang; Gao Yitian; Tian Bo

    2008-01-01

    In this paper, the cylindrical Kadomtsev-Petviashvili (KP) equation arising from dusty plasmas and Bose-Einstein condensates is investigated by the decomposition method. Through the nonlinearization of a single Lax pair, this equation is decomposed into a generalized variable-coefficient Burgers equation and its third-order extension, and then a series of analytic soliton-like solutions are obtained. Furthermore, with the aid of symbolic computation, a symmetry potential constraint in terms of the squared eigenfunctions is proposed to nonlinearize two symmetry Lax pairs into the first two variable-coefficient 2N-coupled soliton systems in the same hierarchy. Based on the Lax representation for these two decomposed soliton systems, a Darboux transformation is constructed to iteratively generate the multi-soliton-like solutions. Via the obtained analytic soliton-like solutions, the graphical analysis is devoted to the one-parabola soliton structure, compressive and rarefactive soliton resonance phenomena occurring in dusty plasmas and Bose-Einstein condensates

  1. Effect of secondary electron emission on the Jeans instability in a dusty plasma

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Roy, Banamali; Maity, Saumyen; Khan, Manoranjan; Gupta, M. R.

    2007-01-01

    In this paper the effect of secondary electron emission on Jeans instability in a dusty plasma has been investigated. Due to secondary electron emission, dust grains may have two stable equilibrium states out of which one is negative and the other is positive. Here both cases have been considered separately. It has been shown that secondary electron emission enhances Jeans instability when equilibrium dust charge is negative. It has also been shown that growth rate of Jeans instability reduces with increasing secondary electron emission when equilibrium dust charge is positive

  2. Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids

    International Nuclear Information System (INIS)

    Io, C.-W.; Chan, C.-L.; Lin I

    2010-01-01

    Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.

  3. A model for the condensation of a dusty plasma

    International Nuclear Information System (INIS)

    Bellan, P.M.

    2004-01-01

    A model for the condensation of a dusty plasma is constructed by considering the spherical shielding layers surrounding a dust grain test particle. The collisionless region less than a collision mean free path from the test particle is shown to separate into three concentric layers, each having distinct physics. The method of matched asymptotic expansions is invoked at the interfaces between these layers and provides equations which determine the radii of the interfaces. Despite being much smaller than the Wigner-Seitz radius, the dust Debye length is found to be physically significant because it gives the scale length of a precipitous cut-off of the shielded electrostatic potential at the interface between the second and third layers. Condensation is predicted to occur when the ratio of this cut-off radius to the Wigner-Seitz radius exceeds unity and this prediction is shown to be in good agreement with experiments

  4. Microdynamics of dusty plasma liquids in narrow channel: from disorder to order

    CERN Document Server

    Woon Wei Yen; Deng L Iwen; Lin, I

    2003-01-01

    We report direct observations on the microscopic dynamics of dusty plasma liquid confined in a narrow gap. We measure the horizontal and transverse displacement histograms as well as the transverse particle density distributions from particle trajectories. Under confinement, the liquid forms a layer structure. The dust particle motion at boundaries show anisotropy and three outermost layers is found due to the pinching effect of the boundaries. When the gap width is reduced to below 7d (d = inter-layer width), the dust particle motion in the central region shows a transition from isotropic motion to anisotropic discrete hopping motion, leading to a slower dynamics and layer structure through the whole liquid.

  5. Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2016-03-11

    The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.

  6. Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma

    Science.gov (United States)

    Feng, Yan; Goree, J.; Liu, Bin; Cohen, E. G. D.

    2011-10-01

    The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally but was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared to the predictions of several simulations.

  7. Formation and dissociation of dust molecules in dusty plasma

    Science.gov (United States)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  8. Nonlinear propagation of ultra-low-frequency electronic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfven waves for small value of θ and are modified magnetosonic waves for large θ, where θ is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. (author)

  9. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  10. Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model

    International Nuclear Information System (INIS)

    Liu Bin; Goree, J.

    2005-01-01

    Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an experiment. The phonons correspond to random particle motion in the chain; no external manipulation was applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional damping due to gas, which affects the propagation of externally excited phonons differently from phonons that correspond to random particle motion. A model is developed and fit to the experiment to explain the features of the autocorrelation function, phonon spectrum, and the dispersion relation

  11. Solitary waves of the Kadomstev-Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ion and nonthermal electron

    International Nuclear Information System (INIS)

    Pakzad, Hamid Reza

    2009-01-01

    The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev-Petviashivili (KP) equation is derived. Existence of rarefactive and compressive solitons is analyzed.

  12. Obliquely propagating cnoidal waves in a magnetized dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, L. L.; Sayal, V. K.

    2009-01-01

    We have studied obliquely propagating dust-acoustic nonlinear periodic waves, namely, dust-acoustic cnoidal waves, in a magnetized dusty plasma consisting of electrons, ions, and dust grains with variable dust charge. Using reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, we have derived Korteweg-de Vries (KdV) equation for the plasma. It is found that the contribution to the dispersion due to the deviation from plasma approximation is dominant for small angles of obliqueness, while for large angles of obliqueness, the dispersion due to magnetic force becomes important. The cnoidal wave solution of the KdV equation is obtained. It is found that the frequency of the cnoidal wave depends on its amplitude. The effects of the magnetic field, the angle of obliqueness, the density of electrons, the dust-charge variation and the ion-temperature on the characteristics of the dust-acoustic cnoidal wave are also discussed. It is found that in the limiting case the cnoidal wave solution reduces to dust-acoustic soliton solution.

  13. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  14. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, Mustapha [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-08-15

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (∼10{sup 4} km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  15. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, E.; Zahed, H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335–1996 Tabriz (Iran, Islamic Republic of)

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  16. Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas

    International Nuclear Information System (INIS)

    Ali, S; Moslem, W M; Kourakis, I; Shukla, P K

    2008-01-01

    The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted

  17. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Science.gov (United States)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  18. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Alam, M.N.; Mamun, A.A.

    2001-01-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)

  19. Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe; Lynch, Brian; Adams, Stephen; LeBlanc, Spencer [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-11-15

    Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., “hopping”) motion of particles between the trapping locations, it is possible to make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.

  20. Scattering and extinction of ion beams in a dusty plasma device

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2001-01-01

    Collisions of ions with charged dust grains are important for the propagation of low frequency waves such as dust acoustic waves and dust ion-acoustic waves. The collision cross-sectional area of charged dust grains depends on the velocity of an ion beam. The collision cross-sectional area of charged dust grains with beam ions is measured. It is compared with the geometrical cross-sectional area of the grain. The experiment is performed in a dusty double-plasma device with glass beads of 8.9 μm in average diameter. The ion beam current and energy are measured with a directional retarding potential analyzer. It is observed that, when dust density inside the system is increased, the beam current ratio is reduced. From the reduction of the ion beam current, the effective cross-sectional area of the dust particle is estimated as a function of the beam energy

  1. Dispersive properties and attraction instability of low-frequency collective modes in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Rezendes, D.

    1998-01-01

    A dispersion relation for low-frequency collective modes in dusty plasmas is derived with allowance for attractive and repulsive forces arising between the dust grains due to dissipative fluxes of plasma particles onto the grain surfaces. It is shown that these fluxes give rise to dust attraction instabilities, which are similar to the gravitational instability. In the range of wave numbers corresponding to the stability domain, two types of dust sound waves arise, depending on whether the wavelengths of the collective modes are longer or shorter than the mean free path of the plasma particles (i.e., the distance they travel before they collide with dust grains). The dispersion relation derived is valid for any ratio between the wavelength of the perturbations and the mean free path and encompasses the entire range of intermediate wave numbers. The critical wave numbers that determine the threshold for the onset of attraction instability, which is similar to the Jeans instability, can, in particular, lie within this range. The thresholds for attraction instability and the instability growth rates are obtained numerically for a wide range of the plasma parameters (such as the ratio of the ion temperature to the electron temperature) that are of interest for present-day experiments with dust crystals, plasma etching, and space plasma studies. Computer simulation shows that, in the nonlinear stage, the attraction instability causes the dust cloud to collapse, which leads to the formation of dust plasma crystals. Our investigation makes it possible to trace the processes in the initial stage of dust crystallization. Results are obtained for hydrogen and silicon plasmas, which are most typical of laboratory experiments

  2. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  3. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  4. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-01-01

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas

  5. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)

  6. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  7. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Gougam, Leila Ait [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-03-15

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  8. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-01-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  9. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  10. A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas

    International Nuclear Information System (INIS)

    Momeni, M; Kourakis, I; Moslehi-Fard, M; Shukla, P K

    2007-01-01

    The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol-Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge-Kutta method. The presence of chaotic limit cycles is pointed out. (fast track communication)

  11. Dust ion acoustic solitary waves in a magnetized dusty plasma with anisotropic ion pressure

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, D.-Y.; Lee, Nam C.; Kim, Y.-H.

    2007-01-01

    The influence of anisotropic ion pressure on the dust ion acoustic solitary wave (DIASW) and the double layer (DL) obliquely propagating to a magnetic field are investigated by using the Sagdeev potential. The anisotropic ion pressure is defined by applying the Chew-Goldberger-Low (CGL) theory, p-perpendicular=p-perpendicular 0 n and p-parallel=p-parallel 0 n 3 , where n is the normalized ion density. The solutions of DIASWs and DLs obliquely propagating to an external magnetic field are obtained in the small amplitude limit. It is found that the perpendicular component of anisotropic ion pressure works differently from that of the parallel component on the DIASWs in a magnetized dusty plasma, deviating from a straight extension of the isotropic pressure effect

  12. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  13. Low-frequency electromagnetic solitary and shock waves in an inhomogeneous dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2003-01-01

    It is shown that the nonlinear dynamics of one-dimensional Shukla mode [Phys. Lett. A 316, 238 (2003)] is governed by a modified Kortweg-de Vries-Burgers equation. The latter admits stationary solutions in the form of either a solitary wave or a monotonic/oscillatory shock. The present nonlinear waves may help to understand the salient features of localized density and magnetic field structures in molecular dusty clouds as well as in low-temperature laboratory dusty plasma discharges

  14. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    Science.gov (United States)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  15. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  16. Influence of system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. L.; Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); He, Y. F.; Wu, L. [College of Information and Electrical Engineering, China Agricultural University, Beijing 100083 (China); Liu, Y. H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2015-06-15

    Influence of the system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas is investigated through laboratory experiment and molecular dynamics simulation. The micro-structures, defect numbers, and pair correlation function of the dust clusters are studied for different system temperatures. The dust grains' trajectories, the mean square displacement, and the corresponding self-diffusion coefficient of the clusters are calculated for different temperatures for illustrating the phase properties of the dust clusters. The simulation results confirm that with the increase in system temperature, the micro-structures and dynamics of dust clusters are gradually changed, which qualitatively agree with experimental results.

  17. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    component unmag- netized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian elec- tron distribution to a vortex-like ...

  18. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  19. Kolmogorov flow in two dimensional strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)

    2014-07-15

    Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

  20. Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Zafiu, C.; Melzer, A.; Piel, A.

    2003-01-01

    Experiments on the quantitative determination of the weaker forces (ion drag, thermophoresis, and electric field force) on free-falling dust particles in a rf discharge tube are presented. The strongest force, gravity, is balanced by gas friction and the weaker forces are investigated in the radial (horizontal) plane. Under most discharge conditions, the particles are found to be expelled from the central plasma region. A transition to a situation where the falling particles are focused into the plasma center is observed at low gas pressures using small particles. These investigations allow a quantitative understanding of the mechanism of unwanted dust-free areas (so-called voids) in dusty plasmas under microgravity. Good quantitative agreement with standard models of the ion drag is found

  1. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  2. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2014-01-01

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient

  3. Ion streaming instability in a quantum dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P. K.; Brodin, G.; Stenflo, L.

    2008-01-01

    It is shown that a relative drift between the ions and the charged dust particles in a magnetized quantum dusty plasma can produce an oscillatory instability in a quantum dust acousticlike wave. The threshold and growth rate of the instability are presented. The result may explain the origin of low-frequency electrostatic fluctuations in semiconductors quantum wells

  4. Waterspout as a special type of atmospheric aerosol dusty plasma

    Science.gov (United States)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  5. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  6. Study on the layered dusty plasma structures in the summer polar mesopause

    Directory of Open Access Journals (Sweden)

    Hui Li

    2010-09-01

    Full Text Available Traditional hydrodynamic equations are adopted to build a one-dimensional theoretical model to study the effect of gravity wave on layered dusty plasma structures formation and evolution near the polar summer mesospause region associated with polar mesosphere summer echoes (PMSE. The proposed mechanism gives consideration to the charged ice particle motion by the gravity wave modulation, making a significant contribution to the vertical transport of heavy ice particles and convergence into thin layers. And numerical results show that the pattern of the multi-layer structure depends on the ration of the initial ice particles density distribution to the vertical wavelength of the gravity waves, the ice particle size and the wind velocity caused by gravity wave. Also, the variation of ion density distribution under the influence of gravity wave has also been examined. Finally, the electron density depletions (bite-outs layers has been simulated according to the charge conservation laws, and the results are compared to the ECT02 rocket sounding data, which agree well with the measuring.

  7. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    Science.gov (United States)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  8. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-01-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B 0 . It is noted that the growth rate is proportional to the unperturbed electron number density n oe and is independent of inhomogeneity beyond L e =2 cm. An extraordinary growth rate is observed with the quantum effect.

  9. Stability Dust-Ion-Acoustic Wave In Dusty Plasmas With Stream -Influence Of Charge Fluctuation Of Dust Grains

    International Nuclear Information System (INIS)

    Atamaniuk, Barbara; Zuchowski, Krzysztof

    2006-01-01

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In case considering here, when temperature of electrons is much greater then the temperature of the ions and temperature of electrons is not great enough for further ionization of the ions, we show that stability of the acoustic wave depends only one phenomenological coefficient

  10. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    Science.gov (United States)

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  11. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  12. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2011-01-01

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n d0 /n i0 )) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa (κ), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  13. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deeba, F. [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Department of Physics, G.C. University, Lahore 54000 (Pakistan); Ahmad, Zahoor [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G.C. University, Lahore 54000 (Pakistan)

    2011-07-15

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n{sub d0}/n{sub i0})) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa ({kappa}), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  14. Jeans instability in a quantum dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Jamil, M.; Shah, H. A.; Murtaza, G.

    2009-01-01

    Jeans instability in a homogeneous cold quantum dusty plasma in the presence of the ambient magnetic field and the quantum effect arising through the Bohm potential has been examined using the quantum magnetohydrodynamic model. It is found that the Jeans instability is significantly reduced by the presence of the dust-lower-hybrid wave and the ion quantum effect. The minimum wavenumber for Jeans stability depends clearly on ion quantum effect and the dust-lower-hybrid frequency also.

  15. Effects of various forces on the distribution of particles at the boundary of a dusty plasma

    International Nuclear Information System (INIS)

    Liu, J.; Ma, J.X.

    1997-01-01

    The distribution and suspension of dust particles under the action of electrostatic, gravitational, ion-drag and neutral collision forces are investigated near the boundary of a dusty plasma. It is shown that the competition among the forces results in spatial oscillations (multi-layer) of the particle distribution. For sub-micron grains the ion-drag has a significant effect on the grain dynamics while for micrometer sized grains the gravity quickly dominates over other forces. The effect of the neutral gas flux is to enhance or diminish that of the gravity while the effect of the neutral viscosity is to shift the profile toward the wall. Under the force balance, the particles are suspended in a narrow region with sharp boundaries within the sheath. copyright 1997 American Institute of Physics

  16. Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ruhunusiri, W. D. Suranga; Goree, J.; Feng Yan; Liu Bin

    2011-01-01

    The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy, bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals features suggesting a possibility of latent heat in the melting and rapid cooling processes.

  17. Effects of inhomogeneity on the Shukla-Nambu-Salimullah and wake potentials in a streaming dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.U.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    Detailed properties of the electrostatic Shukla-Nambu-Salimullah and the dynamical oscillatory wake potentials in an inhomogeneous dusty magnetoplasma in the presence of ion streaming, as in a laboratory discharge plasma, have been examined analytically. The potentials become sensitive functions of the external static magnetic field, the scale-length of inhomogeneity, and the deviation from the linear ion streaming velocity. For a decreasing ion density gradient, there is a limit of existence of the static modified shielding potential. For a strongly inhomogeneous dusty plasma, the effective length of the oscillatory wake potential increases with increasing deviation of the ion streaming velocity (u i0y ), but it does not depend on the external magnetic field. (author)

  18. Plasma Physics Applied (New Book)

    Science.gov (United States)

    Grabbe, Crockett

    2007-03-01

    0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.

  19. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  20. Propagation of symmetric and anti-symmetric surface waves in aself-gravitating magnetized dusty plasma layer with generalized (r, q) distribution

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-05-01

    The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.

  1. Electrostatic potentials and energy loss due to a projectile propagating through a non-Maxwellian dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2006-01-01

    The electrostatic potentials (Debye and wake) and energy loss due to a charged projectile propagating through an unmagnetized collisionless dusty plasma are derived employing kappa and generalized (r,q) velocity distributions for the dust acoustic wave. It is found that these quantities in general differ from their Maxwellian counterparts and are sensitive to the values of spectral index, κ in the case of kappa distribution and to r, q in the case of generalized (r,q) distribution. The amplitudes of these quantities are less for small values of the spectral index (κ, r=0, q) but approach the Maxwellian in the limit κ→∞ (for kappa distribution) and for r=0, q→∞ [for generalized (r,q) distribution]. For any nonzero value of r, the potential and the energy loss grow beyond the Maxwellian results. The effect of kappa and generalized (r,q) distributions on potential and energy loss is also studied numerically and the results are compared with those of the Maxwellian distribution

  2. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  3. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  4. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water–Ice Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics and Materials Science, Caltech, Pasadena, CA 91125 (United States)

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μ m, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  5. Size selective dustiness and exposure; simulated workplace comparisons

    NARCIS (Netherlands)

    Brouwer, D.H.; Links, I.H.M.; Vreede, S.A.F. de; Christopher, Y.

    2006-01-01

    A simulated workplace study was conducted to investigate the relation between inhalation exposure and dustiness determined with a rotating drum dustiness tester. Three powders were used in the study, i.e. magnesium stearate, representing a very dusty powder, and aluminium oxide and calcium

  6. Dust Transport And Force Equilibria In Magnetized Dusty DC Discharges

    International Nuclear Information System (INIS)

    Land, Victor; Thomas, Edward Jr.; Williams, Jeremaiah

    2005-01-01

    We have performed experiments on magnetized dusty Argon DC discharges. Here we report on the characterization of the plasma- and the dustparameters and on the response of the dust particles and the plasma to a change in the magnetic configuration inside the discharge. Finally, we show a case in which the balance of forces acting on the dust particles differs from the classical balance (in which the electrostatic force balances the downward force of gravity). In this case the electrostatic force acts as a downward force on the dust particles. From observations we will argue that the ion drag force might be the force that balances this downward electrostatic force

  7. Potential coherent structures in nonuniform streaming dusty magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, Jovo [Inst. of Physics, Belgrade (Yugoslavia); Shukla, Padma Kant [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik IV, Bochum (Germany)

    2001-07-01

    In this paper we study linear and nonlinear behaviour of modified convective cells and vortices in nonuniform dusty magnetoplasmas with perpendicular and parallel to the magnetic field plasma flows, and in basically two different physical systems, with stationary (corresponding to the case of ShuklaVarma mode) and nonstationary (i.e. taking part in perturbations) dust particles. For the case of stationary dust, by choosing some specific profiles for the sheared plasma flow and the dust density, we analyze the eigenvalue equation in order to deduce the growth rate. A threshold is also obtained for the wavenumber separating spatially damped and convective modes (growing in space) due to its interaction with the sheared plasma flow. In the nonlinear regime, for both stationary and nonstationary dust particles, and in the presence of various plasma flows perpendicular and parallel to the magnetic field lines, a variety of possible nonlinear solutions, driven by the nonuniform shear flow and dust density is presented, i.e., single and double vortex chains accompanied with zonal flows, and tripolar and global vortices. (author)

  8. Correlating Structural Order with Structural Rearrangement in Dusty Plasma Liquids: Can Structural Rearrangement be Predicted by Static Structural Information?

    Science.gov (United States)

    Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin

    2012-11-01

    Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.

  9. Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons

    International Nuclear Information System (INIS)

    Emamuddin, M.; Yasmin, S.; Mamun, A. A.

    2013-01-01

    The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for q c (q>q c ) (where q c is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.

  10. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  11. A gedankenexperiment for anomalous diffusion in a charge-fluctuating dusty plasma

    International Nuclear Information System (INIS)

    Kopp, Andreas; Shchekinov, Yuri A.

    2014-01-01

    possible prototype of anomalous diffusion. We discuss briefly possible implications to space and astrophysical dusty plasma. In particular, we show that in a plasma with polydisperse dust particles, a superposition of the three regimes of the anomalous diffusion can simultaneously come into play

  12. Effect of external magnetic field and variable dust electrical charge on the shape and propagation of solitons in the two nonthermal ions dusty plasma

    International Nuclear Information System (INIS)

    Ghalambor Dezfuly, S.; Dorranian, D.

    2012-01-01

    In this manuscript, the effect of dust electrical charge, nonthermal ions, and external magnetic field on the shape and propagation of solitons in dusty plasma with two nonthermal ions is studied theoretically. Using the reductive perturbation theory, the Zakharov-Kuznetsov equation for propagation of dust acoustic waves is extracted. Results show that external magnetic field does not affect the amplitude of solitary wave but width of solitons are effectively depend on the magnitude of external magnetic field. With increasing the charge of dust particles the amplitude of solution will increase while their width will decrease. Increasing the nonthermal ions lead to opposite effect.

  13. Dust acoustic solitary waves and double layers in a dusty plasma with two-temperature trapped ions

    International Nuclear Information System (INIS)

    El-Labany, S.K.; El-Taibany, W.F.; Mamun, A.A.; Moslem, Waleed M.

    2004-01-01

    The combined effects of trapped ion distribution, two-ion-temperature, dust charge fluctuation, and dust fluid temperature are incorporated in the study of nonlinear dust acoustic waves in an unmagnetized dusty plasma. It is found that, owing to the departure from the Boltzmann ion distribution to the trapped ion distribution, the dynamics of small but finite amplitude dust acoustic waves is governed by a modified Korteweg-de Vries equation. The latter admits a stationary dust acoustic solitary wave solution, which has stronger nonlinearity, smaller amplitude, wider width, and higher propagation velocity than that involving adiabatic ions. The effect of two-ion-temperature is found to provide the possibility for the coexistence of rarefactive and compressive dust acoustic solitary structures and double layers. Although the dust fluid temperature increases the amplitude of the small but finite amplitude solitary waves, the dust charge fluctuation does the opposite effect. The present investigation should help us to understand the salient features of the nonlinear dust acoustic waves that have been observed in a recent numerical simulation study

  14. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    Science.gov (United States)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  15. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  16. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  17. Effects of charge depletion in dusty plasmas

    International Nuclear Information System (INIS)

    Goertz, Imke; Greiner, Franko; Piel, Alexander

    2011-01-01

    The charge reduction effect is studied in dense dust clouds. The saturation currents of Langmuir probes are used to derive the density of ions and electrons, which are calibrated with the plasma oscillation method. The plasma potential inside the dust cloud is measured with an emissive probe, which also yields the floating potential in a heated nonemitting mode. The presence of the dust also affects the density and the plasma potential of the ambient plasma. The ion densities inside the dust cloud and in the ambient plasma are found equal, while the electron density is reduced inside the dust cloud. The measured potentials are compared with current models. Inclusion of the bi-Maxwellian distribution of the electrons leads to an improved description in the limit of low dust density. The strong increase of the floating and cloud potential for high dust density, predicted by the constant ion density model, is not confirmed.

  18. Mach cones in space and laboratory dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K

    2004-07-01

    We present a rigorous theoretical investigation on the possibility for the formation of Mach cones in both space and laboratory dusty magnetoplasmas. We find the parametric regimes for which different types of Mach cones, such as dust acoustic Mach cones, dust magneto-acoustic Mach cones, oscillonic Mach cones, etc. are formed in space and laboratory dusty magnetoplasmas. We also identify the basic features of such different classes of Mach cones (viz. dust- acoustic, dust magneto-acoustic, oscillonic Mach cones, etc.), and clearly explain how they are relevant to space and laboratory dusty manetoplasmas. (author)

  19. Dipolar and tripolar vortices in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, D. [Institute of Physics, Belgrade (Yugoslavia); International Centre for Theoretical Physics, Trieste (Italy); Shukla, P.K. [Bochum Univ. (Germany). Inst. fuer Theoretische Physik IV

    2001-07-01

    The nonlinear dynamics is studied of a plasma that consists of hot electrons, cold ions and macroscopic dust particles, in the characteristic frequency range below the ion cyclotron and magnetosonic frequencies. The plasma is immersed in a sheared magnetic field and there exists a sheared plasma flow, in the direction perpendicular to the background magnetic field. In the frequency range above the dust-acoustic and dust charging frequencies, regarding the dust grains as immobile and with constant charges, the plasma is described by the first two moments of the drift-kinetic equation, accounting for the contributions of the stress-tensor and finite mass to the electron dynamics. In the strongly nonlinear regime, the plasma dynamics is governed by the vector nonlinearities arising from the E x B convection and the magnetic field lines' bending. For a linear density profiles a coherent localized nonlinear solution is constructed in the form of a tripole, since stable simple monopolar vortices do not exist. Due to the presence of dust grains, the electron and ion diamagnetic currents do not cancel out, which limits the energy of these structures, provides their good spatial localization and increases the stability, compared to their ordinary-plasma counterparts. (orig.)

  20. Fusion oriented plasma research in Bangladesh: theoretical study on low-frequency dust modes and edge plasma control experiment in tandem mirror

    International Nuclear Information System (INIS)

    Khairul Islam, Md.; Salimullah, Mohammed; Yatsu, Kiyoshi; Nakashima, Yousuke; Ishimoto, Yuki

    2003-01-01

    A collaboration with a Japanese institute in the field of plasma-wall interaction and dusty plasma has been formed in order to understand the physical properties of edge plasma. Results of the theoretical study on dusty plasma and the experimental study on GAMMA10 plasma are presented in this paper. Part A deals with the results obtained from the theoretical investigation of the properties and excitation of low-frequency electrostatic dust modes, e.g. the dust-acoustic (DA) and dust-lower-hybrid (DLH) waves, using the fluid models. In this study, dust grain charge is considered as a dynamic variable in streaming magnetized dusty plasmas with a background of neutral atoms. Dust charge fluctuation, collisional and streaming effects on DA and DLH modes are discussed. Part B deals with the results of the plasma control experiment in a non-axisymmetric magnetic field region of the anchor cell of GAMMA10. The observations, which indicate the comparatively low-temperature plasma formation in the anchor cell, are explained from the viewpoint of enhanced outgassing from the wall due to the interaction of the drifted-out ions. The drifting of ions is thought to be due to the effect of a local non-axisymmetric magnetic field. Experimental results on the control of the wall-plasma interaction by covering the flux tube of a non-axisymmetric magnetic field region by conducting plates are given. Possible influences of the asymmetric magnetic field and conducting plates on the GAMMA10 plasma parameters are discussed. (author)

  1. Stability and special solutions to the conducting dusty gas model

    International Nuclear Information System (INIS)

    Calmelet, C.J.

    1987-01-01

    Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed

  2. Effect of the raw materials processing on their dustiness

    International Nuclear Information System (INIS)

    López Lilaoa, A.; Juárezb, M.; Sanfelix Fornera, V.; Mallol Gascha, G.; Monfort Gimeno, E.

    2017-01-01

    During the handling and/or processing of powdered materials in the CERAMICS INDUSTRY, one of the most important risks regarding the environmental and occupational health is the potential generation of dust. In this regard, a parameter of great interest is the dustiness of the processed materials; this parameter quantifies the tendency of the powdered materials to generate dust when handled. In this study, to determine the dustiness of a ceramic raw material composition (mixture of the body raw materials), the continuous drop method has been used. This test apparatus was selected because it is considered to better simulate how ceramic materials are handled in the CERAMICS INDUSTRY. The obtained results show that the dustiness of the same ceramic composition exhibits significant changes during the manufacturing process, depending on the presentation form. In this regard, the dry milling sample presents the highest dustiness, which can be significantly reduced (>75%) applying the the moisturization and agglomeration. The obtained results also shown that the best presentation form, regarding the minimization of the dust generation, is achieved in the spray-drying process, where the dustiness is reduced by 95%. [es

  3. Rapid disappearance of a warm, dusty circumstellar disk.

    Science.gov (United States)

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-04

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  4. Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Stenflo, L.

    2002-01-01

    The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed

  5. Characterizing dusty argon-acetylene plasmas as a first step to understand dusty EUV environments

    NARCIS (Netherlands)

    Wetering, van de F.M.J.H.; Nijdam, S.; Kroesen, G.M.W.

    2012-01-01

    In extreme ultraviolet (EUV) lithography, ionic and particulate debris coming from the plasma source plays an important role. We started up a project looking at the principles of particle formation in plasmas and the interaction with EUV radiation. To this end, we study a low-pressure (10 Pa)

  6. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  7. International Conference on Plasma Diagnostics. Slides, papers and posters of Plasma Diagnostics 2010

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Bonhomme, G.; Grisolia, C.; Hirsch, M.; Klos, Z.; Mazouffre, S.; Musielok, J.; Ratynskaya, S.; Sadowski, M.; Van de Sanden, R.; Sentis, M.; Stroth, U.; Tereshin, V.; Tichy, M.; Unterberg, B.; Weisen, H.; Zoletnik, S.

    2011-01-01

    Plasma diagnostics 2010 is an International Conference on Diagnostic Methods involved in Research and Applications of Plasmas, originating on combining the 5. German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 7. French-Polish Seminar on Thermal Plasma in Space and Laboratory. The Scientific Committee of 'Plasma 2007' decided to concentrate the attention of future conferences more on the diagnostic development and diagnostic interpretation in the fields of high and low temperature plasmas and plasma applications. It is aimed at involving all European activities in the fields. The Scientific Program will cover the fields from low temperature laboratory to fusion plasmas of various configurations as well as dusty and astrophysical plasmas and industrial plasma applications

  8. Laboratory Studies on the Charging of Dust Grains in a Plasma

    Science.gov (United States)

    Xu, Wenjun

    1993-01-01

    The charging of dust grains by the surrounding plasma is studied in a dusty plasma device (DPD) (Xu, W., B. Song, R. L. Merlino, and N. D'Angelo, Rev. Sci. Instrum., 63, 5266, 1992). The dusty plasma device consists of a rotating-drum dust dispersal device used in conjunction with an existing Q-machine, to produce extended, steady state, magnetized plasma columns. The dust density in the dust chamber is controlled by the drum rotation speed. The device is capable of generating a dusty plasma in which as much as about 90% of the negative charge is attached to the dust grains of 1-10mu m size. Measurements of the dust parameter eta, the percentage of negative charge on free electrons in the dusty plasma, are presented. The dust parameter eta is found to depend on the rotational speed of the dust chamber, plasma density and the type and size of different dust. The dust parameter eta is calculated from a pair of Langmuir curves taken with and without dust under the same conditions. The operation of the dust chamber as described above has been confirmed by the agreement between the measurements of eta and the direct mechanical measurements consisting of weighing dust samples collected within the rotation dust chamber, at different rotation rates. By varying the ratio d/lambda_ {rm D} between the intergrain distance and the plasma Debye length, the effects predicted by Goertz and Ip (Goertz, C. K., and W-H. Ip, Geophys. Res. Lett., 11, 349, 1984), and subsequently reanalyzed in a more general fashion by Whipple et al. (Whipple, E. C., T. G. Northrop, and D. A. Mendis, J. Geophys. Rev., 90, 7405, 1985), as "isolated" dust grains become "closely packed" grains, have been demonstrated experimentally (Xu, W., N. D'Angelo, and R. L. Merlino, J. Geophys. Rev., 98, 7843, 1993). Similar results are presented and compared for two types of dust, kaolin and Al_2O _3, which have been studied in the experiment.

  9. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  10. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  11. Three Millennia of Southwestern North American Dustiness and Future Implications.

    Directory of Open Access Journals (Sweden)

    Cody C Routson

    Full Text Available Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health.

  12. Soliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Hui-Ling; Tian, Bo, E-mail: tian-bupt@163.com; Wang, Yu-Feng; Sun, Wen-Rong; Liu, Li-Cai [State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-07-15

    The extended Zakharov-Kuznetsov (eZK) equation for the magnetized two-ion-temperature dusty plasma is studied in this paper. With the help of Hirota method, bilinear forms and N-soliton solutions are given, and soliton propagation is graphically analyzed. We find that the soliton amplitude is positively related to the nonlinear coefficient A, while inversely related to the dispersion coefficients B and C. We obtain that the soliton amplitude will increase with the mass of the jth dust grain and the average charge number residing on the dust grain decreased, but the soliton amplitude will increase with the equilibrium number density of the jth dust grain increased. Upon the introduction of the periodic external forcing term, both the weak and developed chaotic motions can occur. Difference between the two chaotic motions roots in the inequality between the nonlinear coefficient l{sub 2} and perturbed term h{sub 1}. The developed chaos can be weakened with B or C decreased and A increased. Periodic motion of the perturbed eZK equation can be observed when there is a balance between l{sub 2} and h{sub 1}.

  13. Chaos in a complex plasma

    International Nuclear Information System (INIS)

    Sheridan, T.E.

    2005-01-01

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48±0.05 is observed. The largest Lyapunov exponent is positive

  14. Orbital-motion-limited theory of dust charging and plasma response

    International Nuclear Information System (INIS)

    Tang, Xian-Zhu; Luca Delzanno, Gian

    2014-01-01

    The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma

  15. Dusty plasmas in application to astrophysics

    International Nuclear Information System (INIS)

    Verheest, F.

    1999-01-01

    Highly charged and massive dust grains have much smaller characteristic frequencies than electrons and ions and lead to interesting modifications of existing modes and to exciting new possibilities for modes and instabilities at the lower frequency end of the spectrum. Space observations of planets and comets have shown wave-like behaviour which can only be explained by the presence of charged dust grains. Two typical solar system applications are spokes and braids in the rings of Saturn and the influence of charged dust on the pickup process of ions of cometary origin by the solar wind. As dust is ubiquitous in the universe, the Jeans instability in astrophysics is modified by incorporating plasma and charged dust and treating electromagnetic and self-gravitational aspects together. Besides the usual mechanism based upon thermal agitation, other ways of countering gravitational contraction are via excitation of electrostatic dust-acoustic modes or via Alfven-Jeans instabilities for perpendicular magnetosonic waves. The unstable wavelengths tend to be much larger, due to the dominance of plasma and magnetic pressures in inhibiting gravitational collapse. (author)

  16. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  17. Dusty WDs in the WISE all sky survey ∩ SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: barber@nhn.ou.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  18. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  19. Wake potential in a nonuniform self-gravitating dusty magnetoplasma in the presence of ion streaming

    International Nuclear Information System (INIS)

    Salimullah, M.; Ehsan, Z.; Zubia, K.; Shah, H. A.; Murtaza, G.

    2007-01-01

    A detailed investigation of the electrostatic asymmetric shielding potential and consequent generation of the dynamical oscillatory wake potential has been examined analytically in an inhomogeneous self-gravitating dusty magnetoplasma in the presence of uniform ion streaming. It is found that the wake potential depends significantly on the test particle speed, ambient magnetic field, ion streaming velocity, and the plasma inhomogeneity. The periodic oscillatory potential might lead to an alternative approach to the Jeans instability for the formation of dust agglomeration leading to gravitational collapse of the self-gravitating systems

  20. Electromagnetic dust-lower-hybrid and dust-magnetosonic waves and their instabilities in a dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.

    2006-01-01

    The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons

  1. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  2. Interaction of UV laser pulses with reactive dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Beckers, J.; Nijdam, S.; Oosterbeek, W.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75

  3. Streaming instability in a velocity–sheared dusty plasma | Duwa ...

    African Journals Online (AJOL)

    A two-stream instability, obtained from kinetic theory, of strongly velocity-sheared inhomogeneous streaming electron in a magnetized plasma in the presence of negatively charged dust is discussed. Various cold plasma approximations were considered and it is shown that when the diamagnetic effect of ion can be ignored ...

  4. Laser-induced incandescence applied to dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This paper reports on the laser heating of nanoparticles (diameters ≤1 μm) confined in a reactive plasma by short (150 ps) and intense (~63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the

  5. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  6. Breathing-mode resonance of a complex plasma disk

    International Nuclear Information System (INIS)

    Sheridan, T.E.; Buckey, C.R.; Cox, D.J.; Merrill, R.J.; Theisen, W.L.

    2004-01-01

    We have experimentally characterized the breathing mode oscillation of a strongly-coupled, dusty plasma disk. Steady-state oscillations are excited by sinusoidally modulating the plasma density, creating a single-frequency, in-plane driving force. Resonance curves agree well with damped harmonic oscillator theory. A response at the second harmonic is observed and found to increase with the square of the driving force, indicating a quadratic nonlinearity

  7. Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2018-01-01

    The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.

  8. General principles for the formation of dust self-organizing structures. Dust collective attraction and plasma crystal formation

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2005-01-01

    It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation

  9. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  10. A miniature sensor for electrical field measurements in dusty planetary atmospheres

    International Nuclear Information System (INIS)

    Renno, N O; Rogacki, S; Kok, J F; Kirkham, H

    2008-01-01

    Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article.

  11. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, M.

    2010-01-01

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  12. Charging of dust grains in a plasma with negative ions

    Science.gov (United States)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  13. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    International Nuclear Information System (INIS)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-01-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10 −6 %), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  14. Whispering Gallery Mode Spectroscopy as a Diagnostic for Dusty Plasmas

    International Nuclear Information System (INIS)

    Thieme, G.; Basner, R.; Ehlbeck, J.; Roepcke, J.; Maurer, H.; Kersten, H.; Davies, P. B.

    2008-01-01

    Whispering-gallery-mode spectroscopy is being assessed as a diagnostic method for the characterisation of size and chemical composition of spherical particles levitated in a plasma. With a pulsed laser whispering gallery modes (cavity resonances) are excited in individual microspheres leading to enhanced Raman scattering or fluorescence at characteristic wavelengths. This method can be used to gain specific information from the particle surface and is thus of great interest for the characterisation of layers deposited on microparticles, e.g. in molecular plasmas. We present investigations of different microparticles in air and results from fluorescent particles levitated in an Argon rf plasma.

  15. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

    International Nuclear Information System (INIS)

    Korosmezey, A.; Gombosi, T.I.

    1990-01-01

    The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

  16. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  17. Dustiness risk in the mine of Nižná Slaná

    Directory of Open Access Journals (Sweden)

    Milan Bobro

    2005-11-01

    Full Text Available The fibrogeneous dust is considered as a specific harmful substance in mine working sites. Such a kind of dust cumulates in lungs and this fact usually results in the lungs dusting, the so – called pneumoconiosis. Thus, the dustiness risk poses a probability of the lungs damage by pneumoconiosis. For the calculation of the dustiness risk it is necessary to know the following data: the value of average dustiness kc in the working site per a definite time period, the dispersivity of dust “D” (it determines a portion of dust particles with a diameter under 5 μm, the so – called respirable particles and the percentage content of quartz Qr in the respirable grain size fraction. The contribution presents a calculation of the dustiness risk “R” according to the equation (1, where “R” is in percentage, “ša” is the analytically specific harmfulness and “KDc” is the total cumulative dust dose received by a worker in the time of his dust exposure. The total cumulative dust dose is calculated on the basis of the equation (4, where “kc” is the average dust concentration in the assessed time period, t is the time of exposure, V is the average amount of air anspired by the exposed worker per a time unit (standardized at the value of 1,2 m3h-1. 10-6- recalculation from mg to kg for “KDc”. If the values of “Qr”, “D” and “kc” during the worker exposure on a definite workplace are constant, the dustiness risk “R” is calculated according to the equation (1 and (5 respectively. In the case of “n” time intervals for which the values “Qr”, “D” and “kc” are known, the dustiness risk “R” is calculated according to the equation (7. The total personal risk of the worker is given by the equation (8.

  18. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-01-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended Q machine when SF 6 is admitted into the vacuum system. The relatively cold Q machine electrons (T e ≅0.2 eV) readily attach to SF 6 molecules to form SF 6 - negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ε, the ratio of the electron to positive ion density, is sufficiently small. The Q machine plasma is operated with K + positive ions (mass 39 amu) and SF 6 - negative ions (mass 146 amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains

  19. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Marcus, E-mail: mle@nrcwe.dk [Technical University of Denmark, Department of Micro and Nanotechnology (Denmark); Rojas, Elena [CIC biomaGUNE (Spain); Vanhala, Esa; Vippola, Minnamari [Finnish Institute of Occupational Health (Finland); Liguori, Biase; Kling, Kirsten I.; Koponen, Ismo K. [National Research Centre for the Working Environment (Denmark); Mølhave, Kristian [Technical University of Denmark, Department of Micro and Nanotechnology (Denmark); Tuomi, Timo [Finnish Institute of Occupational Health (Finland); Gregurec, Danijela; Moya, Sergio [CIC biomaGUNE (Spain); Jensen, Keld A. [National Research Centre for the Working Environment (Denmark)

    2015-08-15

    Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer. Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO{sub 2} from 30 % RH (639 mg/kg) to 50 % RH (1.5 mg/kg). All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH. Test of powder water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest. The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices. It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment.

  20. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    International Nuclear Information System (INIS)

    Levin, Marcus; Rojas, Elena; Vanhala, Esa; Vippola, Minnamari; Liguori, Biase; Kling, Kirsten I.; Koponen, Ismo K.; Mølhave, Kristian; Tuomi, Timo; Gregurec, Danijela; Moya, Sergio; Jensen, Keld A.

    2015-01-01

    Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer. Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO 2 from 30 % RH (639 mg/kg) to 50 % RH (1.5 mg/kg). All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH. Test of powder water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest. The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices. It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment

  1. Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Popel, S.I.

    2005-01-01

    Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined

  2. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    International Nuclear Information System (INIS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil 5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm 2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil 5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil 5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil 5) as well as one (Nanofil 5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil 5), constant rate (compacted Nanofil 5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil 5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant

  3. The Bohm criterion for a dusty plasma sheath

    Indian Academy of Sciences (India)

    undergo temperature fluctuations due to collision, the mean square fluctuation in their temperature is much less than the equilibrium temperature. The problem of sheath dynamics with the plasma–wall interactions is of great importance in a number of areas, viz., plasma ion implantation, high-density com- puter chip ...

  4. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  5. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    DEFF Research Database (Denmark)

    Levin, Marcus; Rojas, Elena; Vanhala, Esa

    2015-01-01

    water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices......Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical...... respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool...

  6. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    Science.gov (United States)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  7. Dust-acoustic solitons in quantum plasma with kappa-distributed ions

    Indian Academy of Sciences (India)

    Abstract. Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and col- lisionless quantum dusty plasma comprising cold dust particles, kappa (κ)-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA ...

  8. Stochastic heating of dust particles in complex plasmas as an energetic instability of a harmonic oscillator with random frequency

    Energy Technology Data Exchange (ETDEWEB)

    Marmolino, Ciro [Dipartimento di Scienze e Tecnologie dell' Ambiente e del Territorio-DiSTAT, Universita del Molise, Contrada Fonte Lappone, I-86090 Pesche (Italy)

    2011-10-15

    The paper describes the occurrence of stochastic heating of dust particles in dusty plasmas as an energy instability due to the correlations between dust grain charge and electric field fluctuations. The possibility that the mean energy (''temperature'') of dust particles can grow in time has been found both from the self-consistent kinetic description of dusty plasmas taking into account charge fluctuations [U. de Angelis, A. V. Ivlev, V. N. Tsytovich, and G. E. Morfill, Phys. Plasmas 12(5), 052301 (2005)] and from a Fokker-Planck approach to systems with variable charge [A. V. Ivlev, S. K. Zhdanov, B. A. Klumov, and G. E. Morfill, Phys. Plasmas 12(9), 092104 (2005)]. Here, a different derivation is given by using the mathematical techniques of the so called multiplicative stochastic differential equations. Both cases of ''fast'' and ''slow'' fluctuations are discussed.

  9. Non-equilibrium effects in the processing of materials using plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mangolini, Lorenzo [Univ. of California, Riverside, CA (United States)

    2016-06-02

    We have provided experimental evidence that nanoparticles in plasma are heated to temperatures that are significantly higher than that of the background gas. This result gives experimental confirmation to a number of theoretical/computational studies that predicted this behavior. Moreover, this study has provided with the first measurement of the temperature of nanoparticles in a processing dusty plasma, i.e. under conditions that are relevant for the growth and modification of nanopowders.

  10. Generation of two-dimensional binary mixtures in complex plasmas

    Science.gov (United States)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  11. Proceedings of the second Asian Pacific plasma theory conference APPTC'97

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro; Nakamura, Yuji; Hayashi, Takaya [eds.

    1998-08-01

    This issue is the proceedings of the second Asian Pacific Plasma Theory Conference (APPTC'97), which was held on September 24-26, 1997 at National Institute for Fusion Science (Toki, Japan) under the auspices of the Japan Society of Plasma Science and Nuclear Fusion Research and the National Institute of Fusion Science. A part of APPTC'97 was a joint session with Japan-Australia fusion theory workshop and US-Japan JIFT workshop on Theoretical Study for Helical Plasmas. The conference covers all plasma theory areas including magnetic confinement, inertial fusion, space plasmas, astrophysical plasma, industrial processing plasmas, and dusty plasma, etc. The 43 of the presented papers are indexed individually. (J.P.N.)

  12. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    Science.gov (United States)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  13. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    International Nuclear Information System (INIS)

    Hezaveh, Yashar; Holder, Gilbert; Dalal, Neal; Kuhlen, Michael; Marrone, Daniel; Murray, Norman; Vieira, Joaquin

    2013-01-01

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of ∼10 8 M ☉ with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a ∼55% probability of detecting a substructure with M > 10 8 M ☉ with more than 5σ detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of ∼100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  14. Solitary Model of the Charge Particle Transport in Collisionless Plasma

    International Nuclear Information System (INIS)

    Simonchik, L.V.; Trukhachev, F.M.

    2006-01-01

    The one-dimensional MHD solitary model of charged particle transport in plasma is developed. It is shown that self-consistent electric field of ion-acoustic solitons can displace charged particles in space, which can be a reason of local electric current generation. The displacement amount is order of a few Debye lengths. It is shown that the current associated with soliton cascade has pulsating nature with DC component. Methods of built theory verification in dusty plasma are proposed

  15. Proceedings of the second Asian Pacific plasma theory conference APPTC'97

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro; Nakamura, Yuji; Hayashi, Takaya [eds.

    1998-08-01

    This issue is the proceedings of the second Asian Pacific Plasma Theory Conference (APPTC'97), which was held on September 24-26, 1997 at National Institute for Fusion Science (Toki, Japan) under the auspices of the Japan Society of Plasma Science and Nuclear Fusion Research and the National Institute of Fusion Science. A part of APPTC'97 was a joint session with Japan-Australia fusion theory workshop and US-Japan JIFT workshop on Theoretical Study for Helical Plasmas. The conference covers all plasma theory areas including magnetic confinement, inertial fusion, space plasmas, astrophysical plasma, industrial processing plasmas, and dusty plasma, etc. The 43 of the presented papers are indexed individually. (J.P.N.)

  16. Long-range interaction between dust grains in plasma

    Directory of Open Access Journals (Sweden)

    D.Yu. Mishagli

    2014-03-01

    Full Text Available The nature of long-range interactions between dust grains in plasma is discussed. The dust grain interaction potential within a cell model of dusty plasma is introduced. The attractive part of inter-grain potential is described by multipole interaction between two electro-neutral cells. This allowed us to draw an analogy with molecular liquids where attraction between molecules is determined by dispersion forces. Also main ideas of the fluctuation theory for electrostatic field in cell model are formulated, and the dominating contribution to attractive part of inter-grain potential is obtained.

  17. Dust-Lower-Hybrid Surface Waves in Classical and Degenerate Plasmas

    International Nuclear Information System (INIS)

    Ayub, M.; Shah, H.A.; Qureshi, M.N.S.; Salimullah, M.

    2013-01-01

    The dispersion relation for general dust low frequency electrostatic surface waves propagating on an interface between a magnetized dusty plasma region and a vacuum is derived by using specular reflection boundary conditions both in classical and quantum regimes. The frequency limit ω ≪ ω ci ≪ ω ce is considered and the dispersion relation for the Dust-Lower-Hybrid Surface Waves (DLHSW's) is derived for both classical and quantum plasma half-space and analyzed numerically. It is shown that the wave behavior changes as the quantum nature of the problem is considered. (physics of gases, plasmas, and electric discharges)

  18. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hezaveh, Yashar; Holder, Gilbert [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Dalal, Neal [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Kuhlen, Michael [Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Marrone, Daniel [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Murray, Norman [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Vieira, Joaquin [California Institute of Technology, 1200 East California Blvd, MC 249-17, Pasadena, CA 91125 (United States)

    2013-04-10

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of {approx}10{sup 8} M{sub Sun} with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a {approx}55% probability of detecting a substructure with M > 10{sup 8} M{sub Sun} with more than 5{sigma} detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of {approx}100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  19. Rotation of a single vortex in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fu-Cheng; He Ya-Feng

    2017-01-01

    A single vortex is obtained in radio-frequency capacitive discharge in argon gas. The dust subsystem is confined in the horizontal plane with an asymmetrical saw structure placed on the lower electrode. The vortex rotates as a whole along the long side of the saw-teeth. Asymmetry of the saw structure plays an important role in the rotation of the vortex. Nonzero curl of the total force resulting from the local ion flow and the electric field in the plasma sheath could be attributed to the persistent rotation of vortex. (paper)

  20. Spitzer Imaging of Planck-Herschel Dusty Proto-Clusters at z=2-3

    Science.gov (United States)

    Cooray, Asantha; Ma, Jingzhe; Greenslade, Joshua; Kubo, Mariko; Nayyeri, Hooshang; Clements, David; Cheng, Tai-An

    2018-05-01

    We have recently introduced a new proto-cluster selection technique by combing Herschel/SPIRE imaging data and Planck/HFIk all-sky survey point source catalog. These sources are identified as Planck point sources with clumps of Herschel source over-densities with far-IR colors comparable to z=0 ULIRGS redshifted to z=2 to 3. The selection is sensitive to dusty starbursts and obscured QSOs and we have recovered couple of the known proto-clusters and close to 30 new proto-clusters. The candidate proto-clusters selected from this technique have far-IR flux densities several times higher than those that are optically selected, such as using LBG selection, implying that the member galaxies are in a special phase of heightened dusty starburst and dusty QSO activity. This far-IR luminous phase may be short but likely to be necessary piece to understand the whole stellar mass assembly history of clusters. Moreover, our photo-clusters are missed in optical selections, suggesting that optically selected proto-clusters alone do not provide adequate statistics and a comparison of the far-IR and optical selected clusters may reveal the importance of the dusty stellar mass assembly. Here, we propose IRAC observations of six of the highest priority new proto-clusters, to establish the validity of the technique and to determine the total stellar mass through SED models. For a modest observing time the science program will have a substantial impact on an upcoming science topic in cosmology with implications for observations with JWST and WFIRST to understand the mass assembly in the universe.

  1. Magnetron plasma and nanotechnology

    International Nuclear Information System (INIS)

    Kashtanov, Pavel V; Smirnov, Boris M; Hippler, Rainer

    2007-01-01

    Magnetron plasma processes involving metal atoms and clusters are reviewed. The formation of metal atoms near the cathode and their nucleation in a buffer gas flow are discussed. The flow of a buffer gas with metal clusters through a magnetron chamber disturbs the equilibrium between the buffer gas flow and clusters near the exit orifice and is accompanied by cluster attachment to the chamber walls. Cluster charging far off the cathode, the disturbance of equilibrium between the buffer gas flow and cluster drift, and the attachment of charged clusters to the chamber walls - the factors determining the output parameters of the cluster beam escaping the magnetron chamber - are analyzed. Cluster deposition on a solid surface and on dusty plasma particles is considered. (reviews of topical problems)

  2. Mixed-Mode Oscillations in Complex-Plasma Instabilities

    International Nuclear Information System (INIS)

    Mikikian, Maxime; Cavarroc, Marjorie; Coueedel, Lenaiec; Tessier, Yves; Boufendi, Laiefa

    2008-01-01

    Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied through dynamical system theories. The time evolution of these instabilities is studied through the change in the associated waveform. Frequency and interspike interval are analyzed and compared to results obtained in other scientific fields concerned by mixed-mode oscillations

  3. Fast and interrupted expansion in cyclic void growth in dusty plasma

    International Nuclear Information System (INIS)

    Van de Wetering, F M J H; Brooimans, R J C; Nijdam, S; Beckers, J; Kroesen, G M W

    2015-01-01

    Low-pressure acetylene plasmas are able to spontaneously form dust particles. This will result in a dense cloud of solid particles that is levitated in the plasma. The formed particles can grow up to micrometers. We observed a spontaneous interruption in the expansion of the so-called dust void. A dust void is a macroscopic region in the plasma that is free of nanoparticles. The phenomenon is periodical and reproducible. We refer to the expansion interruption as ‘hiccup’. The expanding void is an environment in which a new cycle of dust particle formation can start. At a certain moment in time, this cycle reaches the (sudden) coagulation phase and as a result the void will temporarily shrink. To substantiate this reasoning, the electron density is determined non-intrusively using microwave cavity resonance spectroscopy. Moreover, video imaging of laser light scattering of the dust particles provides their spatial distribution. The emission intensity of a single argon transition is measured similarly. Our results support the aforementioned hypothesis for what happens during the void hiccup. The void dynamics preceding the hiccup are modeled using a simple analytical model for the two dominant forces (ion drag and electric) working on a nanoparticle in a plasma. The model results qualitatively reproduce the measurements. (paper)

  4. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A., E-mail: mariyaferdousi@gmail.com [Department of Physics, Jahangirnagar University, Savar (Bangladesh)

    2015-10-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  5. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A.

    2015-01-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  6. Oscillatory wake potential with exchange-correlation in plasmas

    Science.gov (United States)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  7. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  8. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    Science.gov (United States)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  9. Parametric study of the relaxation zone behind strong normal shock waves in a dusty ionized monatomic gas

    International Nuclear Information System (INIS)

    Igra, O.; Ben-Dor, G.

    1982-01-01

    The conservation equations appropriate to a steady, one-dimensional flow of dusty ionized argon were solved numerically. The specific effect of each of the physical parameters of the dust upon the flow properties in the relaxation zone is studied. It is found that increasing the dust particle mass causes an increase in both the kinematic and thermal relaxation lengths. In addition to these changes, the flow field inside the relaxation zone is also affected. An increase in the dust mass (caused either by an increase in the dust density or its diameter) causes an increase in the plasma velocity, temperature and electron number density and a decrease in its density and pressure. Similar effects are encountered when the specific heat capacity of the dust is changed. An increase in the emissivity of the dust causes an increase in the plasma density and pressure and a decrease in its velocity, temperature and electron number density. Increasing the emissivity of the dust results in a decrease in the relaxation zone length. (author)

  10. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  11. Instability of electromagnetic waves in a self-gravitating rotating magnetized dusty plasma with opposite polarity grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Moslem, W. M.; Shukla, P. K.

    2007-01-01

    By using the two fluid and Maxwell equations, the properties of electromagnetic waves in a rotating positive-negative dusty magnetoplasmas are investigated. It is found that the cross-coupling between the equilibrium dust flows and the perturbed magnetic field produces a Lorentz force that separates positive and negative dust grains. A new dispersion relation is derived and analyzed numerically. The effects of the dust grain radius, the equilibrium streaming speed, Jeans frequency, and the rotational frequency on the behavior of the real and imaginary parts of the wave frequency are examined. It is found that for small dust grain radius, the growth rate (the real frequency) increases (decreases) with the increase of the streaming dust speed and Jeans frequency. However, the dust rotational frequency does not have an important role in this case. For large dust grain radius, only the imaginary part of the wave frequency is presented. It is found that the rotational frequency (Jeans frequency and dust streaming speed) decreases (increase) the growth rate

  12. Infrared study of new star cluster candidates associated to dusty globules

    Science.gov (United States)

    Soto King, P.; Barbá, R.; Roman-Lopes, A.; Jaque, M.; Firpo, V.; Nilo, J. L.; Soto, M.; Minniti, D.

    2014-10-01

    We present results from a study of a sample of small star clusters associated to dusty globules and bright-rimmed clouds that have been observed under ESO/Chile public infrared survey Vista Variables in the Vía Láctea (VVV). In this short communication, we analyse the near-infrared properties of a set of four small clusters candidates associated to dark clouds. This sample of clusters associated to dusty globules are selected from the new VVV stellar cluster candidates developed by members of La Serena VVV Group (Barbá et al. 2014). Firstly, we are producing color-color and color-magnitude diagrams for both, cluster candidates and surrounding areas for comparison through PSF photometry. The cluster positions are determined from the morphology on the images and also from the comparison of the observed luminosity function for the cluster candidates and the surrounding star fields. Now, we are working in the procedures to establish the full sample of clusters to be analyzed and methods for subtraction of the star field contamination. These clusters associated to dusty globules are simple laboratories to study the star formation relatively free of the influence of large star-forming regions and populous clusters, and they will be compared with those clusters associated to bright-rimmed globules, which are influenced by the energetic action of nearby O and B massive stars.

  13. ISO science - observations of dusty discs.

    Science.gov (United States)

    Heske, A.

    1992-12-01

    ISO, the Infrared Space Observatory, will be an infrared observing facility in space. Via submission of observing proposals, use of this facility will be open to the astronomical community. The scientific payload consists of two spectrometers, a camera and a photo-polarimeter. Following an overview of the ISO mission, this paper describes the highlights of the Central Programme - proposals which are being prepared by the instrument groups, the mission scientists and the astronomers of the ISO Science Operations Team - with special emphasis on the proposals concerned with dusty discs.

  14. On the wake structure in streaming complex plasmas

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael; Miloch, Wojciech J

    2012-01-01

    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of this paper is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high-precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and nonlinear effects. The range of applicability of these two approaches is addressed. (paper)

  15. Shock-wave structure formation in a dusty plasma

    International Nuclear Information System (INIS)

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  16. Examples for application and diagnostics in plasma-powder interaction

    International Nuclear Information System (INIS)

    Kersten, H; Wiese, R; Thieme, G; Froehlich, M; Kopitov, A; Bojic, D; Scholze, F; Neumann, H; Quaas, M; Wulff, H; Hippler, R

    2003-01-01

    Low-pressure plasmas offer a unique possibility of confinement, control and fine tailoring of particle properties. Hence, dusty plasmas have grown into a vast field and new applications of plasma-processed dust particles are emerging. There is demand for particles with special properties and for particle-seeded composite materials. For example, the stability of luminophore particles could be improved by coating with protective Al 2 O 3 films which are deposited by a PECVD process using a metal-organic precursor gas. Alternatively, the interaction between plasma and injected micro-disperse powder particles can also be used as a diagnostic tool for the study of plasma surface processes. Two examples will be provided: the interaction of micro-sized (SiO 2 ) grains confined in a radiofrequency plasma with an external ion beam as well as the effect of a dc-magnetron discharge on confined particles during deposition have been investigated

  17. A longitudinal study of plasma insulin and glucagon in women with previous gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Kühl, C; Hornnes, P

    1995-01-01

    OBJECTIVE: To investigate whether plasma insulin or glucagon predicts later development of diabetes in women with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS: The subjects studied were 91 women with diet-treated GDM and 33 healthy women. Plasma insulin and glucagon during a 50...... at follow-up (2 had insulin-dependent diabetes mellitus, 13 had non-insulin-dependent diabetes mellitus, and 12 had impaired glucose tolerance). Compared with the control subjects, women with previous GDM had relatively impaired insulin secretion (decreased insulinogenic index and delayed peak insulin...... for subsequent development of overt diabetes (logistic regression analysis). CONCLUSIONS: Women who develop GDM have a relative insulin secretion deficiency, the severity of which is predictive for later development of diabetes. Furthermore, our data indicate that their relatively reduced beta-cell function may...

  18. Landau damping of dust acoustic solitary waves in nonthermal plasmas

    Science.gov (United States)

    Ghai, Yashika; Saini, N. S.; Eliasson, B.

    2018-01-01

    Dust acoustic (DA) solitary and shock structures have been investigated under the influence of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated by the observations of Geotail spacecraft that reported two-temperature ion population in the Earth's magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA nonlinear structures. The Korteweg-de Vries (KdV) equation with an additional Landau damping term is derived and its analytical solution is presented. The solution has the form of a soliton whose amplitude decreases with time. Further, we have illustrated the influence of Landau damping and nonthermality of the ions on DA shock structures by a numerical solution of the Landau damping modified KdV equation. The study of the time evolution of shock waves suggests that an initial shock-like pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion, and dissipation due to Landau damping. The findings of the present investigation may be useful in understanding the properties of nonlinear structures in the presence of Landau damping in dusty plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth's magnetotail.

  19. Diagnostics in dusty C-H-O plasmas with diamond and graphitic nanoparticle generation

    International Nuclear Information System (INIS)

    Gries, T; Vandenbulcke, L; De Persis, S; Rouzaud, J N

    2010-01-01

    A decrease in electron density and a strong increase of electron energy, which induce the enhancement of excitation rates, have been observed in CH 4 -CO 2 plasmas when the inlet methane concentration is high enough and the input microwave power sufficiently low. Together with the decrease in the electron density with plasma duration, they are characteristic of dust formation in these plasmas. In these conditions, the formation of hydrocarbon radicals which are well known precursors of soot and the formation of first stable aromatics are reported, as observed by molecular beam mass spectrometry. Modelling of the chemistry in the plasma is carried out, which can also predict the formation of low concentrations of polyaromatic hydrocarbons. These species could be involved in the homogeneous nucleation process of carbon. As a function of the plasma duration, various carbon nanostructures are observed in the particles collected downstream of the plasma. For short durations, nanodiamond grains are formed with the size range 15-100 nm. They are composed of diamond nanocrystals of about 2-10 nm in size; these values are generally observed for all diamond nanocrystals formed in extraterrestrial and terrestrial conditions. For longer plasma durations, sp 2 -hybridized carbons are obtained. Their structure varies from soot to more ordered graphitic carbons nearly similar to 'onions' and structures similar to those observed in tokamaks. The control of the size and the microstructure of the nanodiamond grains are especially important as this could open possibilities for applications in a wide range of fields.

  20. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  1. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  2. Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas

    Science.gov (United States)

    Arshad, K.; Poedts, S.; Lazar, M.

    2017-12-01

    The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and

  3. Synthesis of zinc oxide nanoparticles by dc arc dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, K., E-mail: akskumar.phy@gmail.com; Senthilkumar, O. [Shimane University, Research Project Promotion Institute (Japan); Morito, S.; Ohba, T.; Fujita, Y. [Shimane University, Interdisciplinary Graduate School of Science and Engineering (Japan)

    2012-10-15

    Optical emission signals of a dc arc plasma system that was used for generating ZnO nanoparticles (NPs) have been investigated in gas phase as a function of chamber pressure and arc current. In this technique, a commercially available zinc 4N rod is used as a zinc source, as well as anode in the dc circuit and ambient air as an oxygen source. A carbon rod acts as the cathode. The optical transitions of Zn(I) and O(I) in addition, excitation of high energy states of N{sub 2}, CN, and atomic nitrogen lines were observed in OES due to increase of electron temperature than gas temperature (T{sub e} > T{sub g}) by reducing the chamber pressure from 760 torr to lower pressures. The as-prepared NPs show good crystalline quality with hexagonal wurtzite structure and the particle size was ranging from few nm to 100 nm in the form of rod and spherical morphologies. The impurity nature and structural properties of as-prepared NPs by dc arc plasma experiments were correlated with OES and Raman spectroscopy.

  4. Synthesis of zinc oxide nanoparticles by dc arc dusty plasma

    International Nuclear Information System (INIS)

    Senthilkumar, K.; Senthilkumar, O.; Morito, S.; Ohba, T.; Fujita, Y.

    2012-01-01

    Optical emission signals of a dc arc plasma system that was used for generating ZnO nanoparticles (NPs) have been investigated in gas phase as a function of chamber pressure and arc current. In this technique, a commercially available zinc 4N rod is used as a zinc source, as well as anode in the dc circuit and ambient air as an oxygen source. A carbon rod acts as the cathode. The optical transitions of Zn(I) and O(I) in addition, excitation of high energy states of N 2 , CN, and atomic nitrogen lines were observed in OES due to increase of electron temperature than gas temperature (T e > T g ) by reducing the chamber pressure from 760 torr to lower pressures. The as-prepared NPs show good crystalline quality with hexagonal wurtzite structure and the particle size was ranging from few nm to 100 nm in the form of rod and spherical morphologies. The impurity nature and structural properties of as-prepared NPs by dc arc plasma experiments were correlated with OES and Raman spectroscopy.

  5. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

    Science.gov (United States)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.

    2015-10-01

    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  6. Dippers and dusty disc edges: new diagnostics and comparison to model predictions

    Science.gov (United States)

    Bodman, Eva H. L.; Quillen, Alice C.; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S.; Mamajek, Eric E.; Blackman, Eric G.; Rizzuto, Aaron; Kastner, Joel H.

    2017-09-01

    We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass 'dipper' stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar discs. Young low-mass stars often exhibit rotating starspots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the starspot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disc temperatures computed at the disc corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the mid-plane to obscure the star that would account for the large fraction of young low-mass stars that are dippers. We propose that variations in disc orientation angle, stellar magnetic field dipole tilt axis and disc accretion rate are underlying parameters accounting for differences in the dipper light curves.

  7. Gas, Dust, and Quenching of Dusty Galaxies in the Early Universe

    Science.gov (United States)

    Spilker, Justin Scott

    In this dissertation, I study various aspects related to the gas and star formation in dusty star-forming galaxies in the distant universe. My dissertation is heavily based on observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), observing a sample of gravitationally lensed high-redshift dusty galaxies originally discovered by the South Pole Telescope (SPT). In addition to the introductions to the individual chapters, Chapter 1 provides a broader background to the study of these objects and places them in the overall context of galaxy evolution. In Chapter 2 I describe a technique designed to search for faint molecular lines in the spectrum of high-redshift dusty galaxies. The brightest molecular lines in the spectra of these objects are due to carbon monoxide, but a host of other species are present in the interstellar media. These other molecules trace gas of a wide range of temperatures and densities, but are generally ten times fainter than the brighter CO lines. I detected several other molecular lines, and used them to characterize the conditions of the interstellar gas. This work was published in Spilker et al. (2014). In Chapter 3, I describe a technique for modeling the effects of gravitational lensing which is optimized for data from interferometers such as ALMA. Using these models and data for a large sample of objects from ALMA, I studied the intrinsic properties of the sample such as the source sizes and luminosities. I used these intrinsic properties to revisit topics from the literature which benefit from the additional size information I determined. This work was published in Spilker et al. (2016). In Chapter 4, I use the modeling technique I developed to investigate the relationship between the star formation and the cold molecular gas from which stars form in two objects selected from the SPT sample. Using the models of the source, I was able to determine the mass of molecular gas in these objects using several independent

  8. FOREWORD: International Workshop on Theoretical Plasma Physics: Modern Plasma Science. Sponsored by the Abdus Salam ICTP, Trieste, Italy

    Science.gov (United States)

    Shukla, P. K.; Stenflo, L.

    2005-01-01

    The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there

  9. Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas

    International Nuclear Information System (INIS)

    Vaulina, O.S.; Nefedov, A.P.; Petrov, O.F.; Khrapak, S.A.

    1999-01-01

    The currents which charge a macroscopic particle placed in a plasma consist of discrete charges; hence, the charge can undergo random fluctuations about its equilibrium value. These random fluctuations can be described by a simple model which, if the mechanisms for charging of macroscopic particles are known, makes it possible to determine the dependence of the temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model can be used to study the effect of charge fluctuations on the dynamics of the macroscopic particles. The case of so-called plasma-dust crystals (i.e., highly ordered structures which develop because of strong interactions among macroscopic particles) in laboratory gaseous discharge plasmas is considered as an example. The molecular dynamics method shows that, under certain conditions, random fluctuations in the charge can effectively heat a system of macroscopic particles, thereby impeding the ordering process

  10. Estimation of Dusty Days Using the Model of Time Series: A Case Study of Hormozgan Province

    Directory of Open Access Journals (Sweden)

    Mohsen Farahi

    2016-04-01

    Full Text Available Dust storm is one of the climatic hazards in the arid and semi-arid regions. Southern Iran with its hot and dry climate is more likely affected by the adverse consequences of dust storms due to the proximity to the dusty deserts of Saudi Arabia and Iraq, on one hand, and the synoptic situation for the occurrence of the dust storms in the Persian Gulf, on the other hand. In this study, the frequency of dusty days in Hormozgan Province was investigated and predicted. To this end, data were collected from the three synoptic stations in Bandar Abbas, Bandar Lengeh and Bandar-e Jask from the Iran Meteorological Organization during the statistical period of 1968-2008. Then, using the non-seasonal ARIMA (p, d, q, were analyzed in 16Minitab and the frequency of the dusty days in the region were predicted. Results of the study show that the ARIMA (1, 1, 1noc was the most appropriate pattern for predicting the frequency of dusty days in Hormozgan Province. The results showed that the predictions for Bandar-e Jask, compared to those of Bandar Abbas and Bandar Lengeh are more accurate in terms of continuous increasing trend and the interval stability of the time series prediction and the smaller difference between the observed values with the predicted values.

  11. SEM/EDS characterisation of dusty deposits in precipitation and assessment of their origin

    Directory of Open Access Journals (Sweden)

    Miloš Miler

    2014-07-01

    Full Text Available Detailed scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS analysis of dusty material in rainfall residue, deposited and collected on February 19th 2014 in Ljubljana, was carried out with the intention to characterise it according to its chemical and mineral composition and to assess its origin. The material consists of poorly sorted and sharp-edged particles of mostly very fine-grained silt and clay fractions, which is consistent with long-range aerial transport. Particles are represented by illite, chlorite and kaolinite group clay minerals, quartz, feldspars, carbonates, accessory minerals and secondary Fe-oxy-hydroxide minerals. Quantities of minerals and illite/ kaolinite ratio (4.5 correspond to dusts in rainfall residues originating from Moroccan Atlas, while chlorite/kaolinite ratio (2.8 agrees better with dust from central Libya. The element ratios Al/Si, Ca/Al, K/Ca, Mg/Al, Fe/Al and (Ca+Mg/Fe in the studied dusty deposit are in good agreement with ratios in dusts from rainfall residues originating from Morocco and northern Mauritania. This was also confirmed by the trajectories of cloud movement that caused precipitation with dusty deposit, although the back trajectory HYSPLIT simulation of air masses indicated northern Mauritania, central Niger, southern Algeria, southwestern and central Libya as the most possible source regions.

  12. Computer tomography of large dust clouds in complex plasmas

    International Nuclear Information System (INIS)

    Killer, Carsten; Himpel, Michael; Melzer, André

    2014-01-01

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications

  13. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Directory of Open Access Journals (Sweden)

    Asad Rehman

    Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity

  14. Effects of previous protein intake on rectal temperature, blood glucose, plasma thyroid hormone and minerals by laying hens during a forced molt

    International Nuclear Information System (INIS)

    Rodrigues, G.A.; Moraes, V.M.B.; Cherici, I; Furlan, R.L.; Macari, M.

    1991-01-01

    The effects of forced molting on blood glucose, rectal temperature, plasma T4, T3 and minerals were studied in hens previously fed rations with different protein contents (14, 17 and 20% crude protein). Blood samples were obtained from brachial veins for blood glucose, T4 and T3 were measured by radioimmunoassay, and plasma minerals were determined by atomic absorption spectroscopy. Blood glucose and rectal temperature were reduced during fasting regardless of previous protein intake. Pre molting T4 plasma level was higher in laying hens fed higher protein ration, but feed deprivation reduced T 4 and T 3 concentrations irrespective of protein intake, except T 4 level for 14% crude protein fed birds that increased during fasting. The data obtained in this experiment suggest that previous protein intake does not interfere with the metabolic changes during forced molt. (author). 19 refs, 1 fig, 4 tabs

  15. Effects of previous protein intake on rectal temperature, blood glucose, plasma thyroid hormone and minerals by laying hens during a forced molt

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G A; Moraes, V M.B.; Cherici, I; Furlan, R L; Macari, M [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias

    1991-12-01

    The effects of forced molting on blood glucose, rectal temperature, plasma T4, T3 and minerals were studied in hens previously fed rations with different protein contents (14, 17 and 20% crude protein). Blood samples were obtained from brachial veins for blood glucose, T4 and T3 were measured by radioimmunoassay, and plasma minerals were determined by atomic absorption spectroscopy. Blood glucose and rectal temperature were reduced during fasting regardless of previous protein intake. Pre molting T4 plasma level was higher in laying hens fed higher protein ration, but feed deprivation reduced T{sub 4} and T{sub 3} concentrations irrespective of protein intake, except T{sub 4} level for 14% crude protein fed birds that increased during fasting. The data obtained in this experiment suggest that previous protein intake does not interfere with the metabolic changes during forced molt. (author). 19 refs, 1 fig, 4 tabs.

  16. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He - Ar plasma containing nanoclusters of uranium compounds

    Science.gov (United States)

    Kosarev, V. A.; Kuznetsova, E. E.

    2014-02-01

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.

  17. Thermal Marangoni convection in two-phase flow of dusty Casson fluid

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.

  18. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    Science.gov (United States)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  19. Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S. L. [Poornima Group of Institution, Sitapura, Jaipur 302022 (India); Tiwari, R. S. [Regional College for Education, Research and Technology, Jaipur 302022 (India); Mishra, M. K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)

    2012-10-15

    Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.

  20. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Takashi; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Nozawa, Takaya, E-mail: nagao@kusastro.kyoto-u.ac.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-06-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R{sub V}, which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R{sub V} as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  1. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE

    International Nuclear Information System (INIS)

    Nagao, Takashi; Maeda, Keiichi; Nozawa, Takaya

    2016-01-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R V , which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R V as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  2. Dusty Relic to Shining Treasure: Embedded in a Multicultural Environment

    Science.gov (United States)

    Avery, Beth Fuseler; Batman, Cindy

    2014-01-01

    Far from being dusty old relics who are guardians of the book, embedded librarians need to be proactively leading students through the digital maze of the virtual library. Working with students more than 7,000 miles away changed perceptions of how to teach and learn, and how people interact online. We will share how as embedded librarians we…

  3. Diffuse spreading of inhomogeneities in the ionospheric dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shalimov, S. L., E-mail: pmsk7@mail.ru [Russian Academy of Sciences, Schmidt Institute of Physics of the Earth (Russian Federation); Kozlovsky, A. [Sodankylä Geophysical Observatory (Finland)

    2015-08-15

    According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially on the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.

  4. Light scattering measurements with Titan's aerosols analogues produced by dusty plasma

    Science.gov (United States)

    Hadamcik, E.; Renard, J.-B.; Szopa, C.; Cernogora, G.; Levasseur-Regourd, A. C.

    The Titan s atmosphere contains solid aerosols produced by the photochemistry of nitrogen and methane These aerosols are at the origin of the characteristic brown yellow colour of Titan During the descent of the Huygens probe the 14 th January 2005 optical measurements of the Titan s haze and Titan s surface have been done In order to explain the obtained results laboratory simulations are necessary We produce analogues of the Titan s aerosols in a RF capacitively coupled low-pressure plasma in a N 2 --CH 4 mixture representative of the Titan s atmosphere Szopa et al 2006 Szopa et al this conference The morphology of the produced solid aerosols is observed by SEM analyses They are quasi spherical and their mean size is function of the plasma conditions Moreover their colour changes from yellow to brown as a function of CH 4 ratio in the plasma In order to have information on the optical properties of the produced aerosols measurements have been performed with the PROGRA2 experiment Renard et al 2002 The PROGRA2 experiment measures the phase dependence of the linear polarization of the light scattered by dust particles for two wavelengths 543 5 nm and 632 8 nm The particles are lifted either in microgravity in the CNES ESA dedicated airplane or by an air-draught in ground-based conditions The aim of this work is to build a database for further modelling of the optical properties of Titan s in connection with the Huygens data These particles have also an astrophysical interest as organic compounds Hadamcik et

  5. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    OpenAIRE

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...

  6. On the Shukla-Nambu-Salimullah potential in a streaming dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Rizwan, A.M.; Nitta, H.; Nambu, M.; Shukla, P.K.

    2004-01-01

    Detailed properties of a recently found effective potential have been examined in a streaming and uniform dusty magnetoplasma. The modification of the symmetric Debye-Hueckel potential in the presence of the static magnetic field may lead to the manipulation of the robust dust crystal parameters in laboratory experiments

  7. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, Lee R.; Rees, Glen [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Allen, Rebecca, E-mail: lee.spitler@mq.edu.au [Australian Astronomical Observatory, P.O. Box 296 Epping, NSW 1710 (Australia)

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  8. Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma

    International Nuclear Information System (INIS)

    Nouri Kadijani, M.; Zareamoghaddam, H.

    2013-01-01

    In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically. (physics of gases, plasmas, and electric discharges)

  9. Mineral magnetism of dusty olivine

    DEFF Research Database (Denmark)

    Lappe, Sophie-Charlotte L. L.; Church, Nathan S.; Kasama, Takeshi

    2011-01-01

    The magnetic properties of olivine-hosted Fe-Ni particles have been studied to assess the potential of "dusty olivine" to retain a pre-accretionary remanence in chondritic meteorites. Both body-centered (bcc) and face-centered cubic (fcc) Fe-Ni phases were formed by reduction of a terrestrial...... olivine precursor. The presence of Ni complicates the magnetic properties during heating and cooling due to the fcc-bcc martensitic transition. First-order reversal curve (FORC) diagrams contain a central ridge with a broad coercivity distribution extending to 600 mT, attributed to non-interacting single......-domain (SD) particles, and a "butterfly" structure extending to 250 mT, attributed to single-vortex (SV) states. SD and SV states were imaged directly using electron holography. The location of the SD/SV boundary is broadly consistent with theoretical predictions. A method to measure the volume of individual...

  10. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NARCIS (Netherlands)

    Land, V.

    2007-01-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell

  11. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  12. Rise of the Titans: A Dusty, Hyper-luminous “870 μm Riser” Galaxy at z ˜ 6

    Science.gov (United States)

    Riechers, Dominik A.; Leung, T. K. Daisy; Ivison, Rob J.; Pérez-Fournon, Ismael; Lewis, Alexander J. R.; Marques-Chaves, Rui; Oteo, Iván; Clements, Dave L.; Cooray, Asantha; Greenslade, Josh; Martínez-Navajas, Paloma; Oliver, Seb; Rigopoulou, Dimitra; Scott, Douglas; Weiss, Axel

    2017-11-01

    We report the detection of ADFS-27, a dusty, starbursting major merger at a redshift of z = 5.655, using the Atacama Large Millimeter/submillimeter Array (ALMA). ADFS-27 was selected from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) and APEX/LABOCA data as an extremely red “870 μm riser” (I.e., {S}250μ {{m}}< {S}350μ {{m}}< {S}500μ {{m}}< {S}870μ {{m}}), demonstrating the utility of this technique to identify some of the highest-redshift dusty galaxies. A scan of the 3 mm atmospheric window with ALMA yields detections of CO(J = 5 → 4) and CO(J = 6 → 5) emission, and a tentative detection of H2O(211 → 202) emission, which provides an unambiguous redshift measurement. The strength of the CO lines implies a large molecular gas reservoir with a mass of M gas = 2.5 × 1011 ({α }{CO}/0.8)(0.39/{r}51) M ⊙, sufficient to maintain its ˜2400 M ⊙ yr-1 starburst for at least ˜100 Myr. The 870 μm dust continuum emission is resolved into two components, 1.8 and 2.1 kpc in diameter, separated by 9.0 kpc, with comparable dust luminosities, suggesting an ongoing major merger. The infrared luminosity of L IR ≃ 2.4 × 1013 L ⊙ implies that this system represents a binary hyper-luminous infrared galaxy, the most distant of its kind presently known. This also implies star formation rate surface densities of {{{Σ }}}{SFR}=730 and 750 M ⊙ yr-1 kpc2, consistent with a binary “maximum starburst.” The discovery of this rare system is consistent with a significantly higher space density than previously thought for the most luminous dusty starbursts within the first billion years of cosmic time, easing tensions regarding the space densities of z ˜ 6 quasars and massive quiescent galaxies at z ≳ 3.

  13. On nonlinear excitation of voids in dusty plasmas

    International Nuclear Information System (INIS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-01-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment

  14. On the Anderson localization conjecture in Dusty Plasma

    Science.gov (United States)

    Liaw, Constanze; Busse, Kyle; Matthews, Lorin; Hyde, Truell

    2015-11-01

    In 1958, Anderson suggested that sufficiently large impurities in a semi-conductor could lead to spatial localization of electrons. This idea unfolded into the field of Anderson Localization, one of the most fascinating phenomena in solid-state physics as it plays a major role in the conductive properties of imperfectly ordered materials. The Anderson Localization Conjecture claims that random disorder of any strength causes localization of electrons in the medium. The problem has proven to be highly non-trivial. Over the years the community has argued whether spatial localization occurs in 2D for small impurities. From a mathematical standpoint, the conjecture is still considered an open question. In 2013, Liaw challenged the commonly held assumption that localization holds in 2D by introducing a new mathematically more rigorous method to test for extended states, and applying it to the discrete random Schrödinger operator. One of the advantages of the underlying method is its versatility. It can be applied to any ordered system such as colloids, crystals, and atomic lattices. In a cross-disciplinary effort we merge this method with a numerical code used to simulate 2D physics systems, in preparation for experimentally testing the theory against complex plasma crystals.

  15. Dusty plasmas in a constant electric field: Role of the electron drag force

    International Nuclear Information System (INIS)

    Khrapak, S.A.; Morfill, G.E.

    2004-01-01

    We investigate the forces experienced by a microparticle immersed in a weakly ionized plasma with constant electric field. These are electric force and the forces associated with the momentum transfer from electrons and ions drifting in the field (electron and ion drag forces). It is shown that the effect of the electron drag, which is often neglected, can be substantial in a certain parameter range. Numerical calculation of the forces for a reasonable set of plasma parameters is performed to illustrate the importance of this effect

  16. Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...

    Indian Academy of Sciences (India)

    In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable ...

  17. Comment on 'Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities' [Phys. Plasmas 11, 1732 (2004)] and 'New resonance and cut-off for low-frequency electromagnetic waves in dusty magnetoplasmas' [Phys. Plasmas 11, 2307 (2004)

    International Nuclear Information System (INIS)

    Rudakov, Leonid

    2004-01-01

    It is shown that the oscillation named by Shukla as the 'Shukla mode' is well known in the plasma physics literature as the magnetic drift wave. In addition, the instability of these modes in a cold plasma as claimed by Shukla et al. [Phys. Plasmas 11, 1732 (2004)] does not exist and is due to a mathematical error in their analysis. Also the 'new' resonance and new cutoff frequencies claimed by Shukla et al. and Mamum et al. [Phys Plasmas 11, 2307 (2004)] have been known in the published literature for decades

  18. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  19. Quantifying Dustiness, Specific Allergens, and Endotoxin in Bulk Soya Imports

    Directory of Open Access Journals (Sweden)

    Howard J. Mason

    2017-11-01

    Full Text Available Soya is an important bulk agricultural product often transported by sea as chipped beans and/or the bean husks after pelletisation. There are proven allergens in both forms. Bulk handling of soya imports can generate air pollution containing dust, allergens, and pyrogens, posing health risks to dockside workers and surrounding populations. Using an International Organization for Standardization (ISO standardised rotating drum dustiness test in seven imported soya bulks, we compared the generated levels of dust and two major soya allergens in three particle sizes related to respiratory health. Extractable levels of allergen and endotoxin from the bulks showed 30–60 fold differences, with levels of one allergen (hydrophobic seed protein and endotoxin higher in husk. The generated levels of dust and allergens in the three particle sizes also showed very wide variations between bulks, with aerolysed levels of allergen influenced by both the inherent dustiness and the extractable allergen in each bulk. Percentage allergen aerolysed from pelletized husk—often assumed to be of low dustiness—after transportation was not lower than that from chipped beans. Thus, not all soya bulks pose the same inhalation health risk and reinforces the importance of controlling dust generation from handling all soya bulk to as low as reasonably practicable.

  20. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  1. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  2. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  3. Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S; Pustylnik, M Y; Morfill, G E

    2009-01-01

    Axial distributions of 1s excited states of argon were measured in a radiofrequency (RF) discharge by a self-absorption method. Experiments were performed in the PK-3+ chamber, designed for microgravity experiments in complex (dusty) plasmas on board the International Space Station. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. Distributions, measured at the same discharge conditions in a microparticle-free discharge and a discharge containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  4. Head-on collision of dust-ion-acoustic solitons in electron-dust-ion ...

    Indian Academy of Sciences (India)

    decades mainly owing to its applications in asteroid zones, cometary tails, ... different types of acoustic modes in dusty plasmas in the form of solitons, ...... [4] P K Shukla, D A Mendis and T Desai, Advances in dusty plasmas (World Scientific,.

  5. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    Science.gov (United States)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  6. Dusty air masses transport between Amazon Basin and Caribbean Islands

    Science.gov (United States)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  7. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  8. Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka

    Science.gov (United States)

    Middleton, Jennifer L.; Mukhopadhyay, Sujoy; Langmuir, Charles H.; McManus, Jerry F.; Huybers, Peter J.

    2018-01-01

    Sedimentary records of dust deposition in the subtropical Atlantic provide important constraints on millennial- and orbital-scale variability in atmospheric circulation and North African aridity. Constant flux proxies, such as extraterrestrial helium-3, yield dust flux records that are independent of the biases caused by lateral sediment transport and limited resolution that may be associated with age-model-derived mass accumulation rates. However, Atlantic dust records constrained using constant flux proxies are sparsely distributed and generally limited to the past 20 ka. Here we extend the Atlantic record of North African dust deposition to 70 ka using extraterrestrial helium-3 and measurements of titanium, thorium, and terrigenous helium-4 in two sediment cores collected at 26°N and 29°N on the Mid-Atlantic Ridge and compare results to model estimates for dust deposition in the subtropical North Atlantic. Dust proxy fluxes between 26°N and 29°N are well correlated, despite variability in lateral sediment transport, and underscore the utility of extraterrestrial helium-3 for constraining millennial-scale variability in dust deposition. Similarities between Mid-Atlantic dust flux trends and those observed along the Northwest African margin corroborate previous interpretations of dust flux variability over the past 20 ka and suggest that long distance transport and depositional processes do not overly obscure the signal of North African dust emissions. The 70 ka Mid-Atlantic record reveals a slight increase in North African dustiness from Marine Isotope Stage 4 through the Last Glacial Maximum and a dramatic decrease in dustiness associated with the African Humid Period. On the millennial-scale, the new records exhibit brief dust maxima coincident with North Atlantic cold periods such as the Younger Dryas, and multiple Heinrich Stadials. The correlation between Mid-Atlantic dust fluxes and previous constraints on North African aridity is high. However

  9. FOREWORD: International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media. Sponsored by the ICTP (Trieste) and the European Union (Brussels)

    Science.gov (United States)

    Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.

    1996-01-01

    Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development

  10. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating ...

    Indian Academy of Sciences (India)

    cantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. Keywords. Dusty plasmas; dust-cyclotron waves; dust-lower-hybrid waves.

  11. Paradigm transition in cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1982-01-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: electric double layers (like in the lower magnetosphere); thin current layer (like in the magnetopause) giving space a cellular structure; current produced filaments (e.g., in prominences, solar corona and interstellar clouds). Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. The pinch effect cannot be neglected as is now usually done. The critical velocity phenomenon is essential, for example for the band structure of solar system. Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of, e.g., the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Auth.)

  12. Effect of rotating electric field on 3D complex (dusty) plasma

    Science.gov (United States)

    Wörner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Kroll, M.; Schablinski, J.; Block, D.

    2011-06-01

    The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces ("rotating wall" technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 104-107 times lower than applied frequency. The experiment is compared to a recent theory.

  13. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  14. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2007-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  15. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Science.gov (United States)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  16. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  17. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  18. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    International Nuclear Information System (INIS)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian; Macintosh, Bruce; Melis, Carl

    2012-01-01

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L IR /L * ∼ 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M ☉ late-M secondary has a projected separation of ∼360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.

  19. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  20. Analysis of the neutral drag force in a dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah

    2005-01-01

    In this paper, the authors report on a series of experiments that use carefully applied perturbations to a dust cloud to reproducibly investigate the formation of the microparticle cloud and the formation of dust cloud-plasma interface. Here, one micron diameter alumina microparticles are suspended in an argon dc glow discharge plasma. A perturbing voltage pulse is applied to the cathode, causing a momentary disruption in the confinement of the dust cloud. After the perturbation, the cloud reforms, typically with a central 'mass' and two 'streams' of particles that are flowing into the cloud from both sides. Through the use of stereoscopic particle image velocimetry (stereo-PIV), the complete three-dimensional velocity of the microparticles can be measured. The particles in the streams are used as test particles to characterize the forces acting upon the microparticles. Analysis of the experimental measurements suggests that the effective neutral drag force may be lower than expected

  1. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  2. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.

  3. STELLAR MEMBERSHIP AND DUSTY DEBRIS DISKS IN THE α PERSEI CLUSTER

    International Nuclear Information System (INIS)

    Zuckerman, B.; Melis, Carl; Rhee, Joseph H.; Schneider, Adam; Song, Inseok

    2012-01-01

    Because of its proximity to the Galactic plane, reliable identification of members of the α Persei cluster is often problematic. Based primarily on membership evaluations contained in six published papers, we constructed a mostly complete list of high-fidelity members of spectral type G and earlier that lie within 3 arc degrees of the cluster center. α Persei was the one nearby, rich, young open cluster not surveyed with the Spitzer Space Telescope. We examined the first and final data releases of the Wide-field Infrared Survey Explorer and found 11, or perhaps 12, α Per cluster members that have excess mid-infrared emission above the stellar photosphere attributable to an orbiting dusty debris disk. The most unusual of these is V488 Per, a K-type star with an excess IR luminosity 16% (or more) of the stellar luminosity; this is a larger excess fraction than that of any other known dusty main-sequence star. Much of the dust that orbits V488 Per is at a temperature of ∼800 K; if these grains radiate like blackbodies, then they lie only ∼0.06 AU from the star. The dust is probably the aftermath of a collision of two planetary embryos or planets with small semimajor axes; such orbital radii are similar to those of many of the transiting planets discovered by the Kepler satellite.

  4. MHD free convection flow of a visco-elastic (Kuvshiniski type dusty gas through a semi infinite plate moving with velocity decreasing exponentially with time and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2011-06-01

    Full Text Available The present paper is concerned with the study of MHD free convective flow of a visco-elastic (Kuvshinski type dusty gas through a porous medium induced by the motion of a semi-infinite flat plate under the influence of radiative heat transfer moving with velocity decreasing exponentially with time. The expressions for velocity distribution of a dusty gas and dust particles, concentration profile and temperature field are obtained. The effect of Schmidt number (Sc, Magnetic field parameter (M and Radiation parameter (N on velocity distribution of dusty gas and dust particles, concentration and temperature distribution are discussed graphically.

  5. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes

    International Nuclear Information System (INIS)

    Bagheri, Mehran; Abdikian, Alireza

    2014-01-01

    We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined

  6. Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites

    DEFF Research Database (Denmark)

    Einsle, Joshua F.; Harrison, Richard J.; Kasama, Takeshi

    2016-01-01

    Dusty olivine (olivine containing multiple sub-micrometer inclusions of metallic iron) in chondritic meteorites is considered an ideal carrier of paleomagnetic remanence, capable of maintaining a faithful record of pre-accretionary magnetization acquired during chondrule formation. Here we show how......-dimensional (3D) volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including...... axes of the particles and the remanence vector imparted in different fields. Although the orientation of the vortex core is determined largely by the ellipsoidal geometry (i.e., parallel to the major axis for prolate ellipsoids and parallel to the minor axis for oblate ellipsoids), the core...

  7. Revisiting coupled Shukla-Varma and convective cell mode in classical and quantum dusty magnetoplasmas

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Nargis, Shahida

    2010-08-01

    The coupled Shukla-Varma (SV) and convective cell mode is revisited in classical and quantum dusty magnetoplasmas. It is shown that the inclusion of electron thermal effects modifies the original coupled SV and convective cell mode. It is also discussed how the quantum effects can be incorporated in the coupled SV and convective cell mode.

  8. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  9. Simulation study on the growth of grains in dusty plasmas

    International Nuclear Information System (INIS)

    Sato, Tetsuya; Watanabe, Kunihiko

    1997-01-01

    A new particle simulation code is developed for studying the dynamics of the grains which are exposed to charging by the background plasma particles. Effects of regular attachment of electrons and ions, effects of secondary electron emission, and coagulation of grains are included in this code. Simulation results show that grains randomly change their charges from negative to positive, or from positive to negative in a 'flip-flop' fashion as a result of competition between the electron attachment and secondary electron emission. It is found that the flip-flop effect becomes remarkable when the radius of grains is of the order of 10 nm, because the attachment of a single electron to a grain is less effective on the surface potential for larger grains, while the average probability of electron attachment is smaller for smaller grains. Grains with opposite charges attract each other to coagulate, so that grains of size of 10 nm are likely to grow in size. The flip-flop effect is found to be essential to the growth of grains. (author)

  10. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  11. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  12. Dust in fusion devices-a multi-faceted problem connecting high- and low-temperature plasma physics

    International Nuclear Information System (INIS)

    Winter, J

    2004-01-01

    Small particles with sizes between a few nanometers and a few 10 μm (dust) are formed in fusion devices by plasma-surface interaction processes. Though it is not a major problem today, dust is considered a problem that could arise in future long pulse fusion devices. This is primarily due to its radioactivity and due to its very high chemical reactivity. Dust formation is particularly pronounced when carbonaceous wall materials are used. Dust particles can be transported in the tokamak over significant distances. Radioactivity leads to electrical charging of dust and to its interaction with plasmas and electric fields. This may cause interference with the discharge but may also result in options for particle removal. This paper discusses some of the multi-faceted problems using information both from fusion research and from low-temperature dusty plasma work

  13. Molecular dynamics simulation of equilibrium configurations of plasmas containing multi-species dusts

    International Nuclear Information System (INIS)

    Liu, Yanhong; Chew, Lock Yue

    2007-01-01

    Equilibrium configurations of dusty plasmas with grains of different sizes, which interact through a screened Coulomb force field and confined by a two-dimensional quadratic potential, are studied using molecular dynamics simulation. The system configuration depends on the sizes, masses and charges of the grain species as well as the screening strength of the background plasma. The consideration of the grain size has established a different equilibrium configuration relative to that of point grains. In the new configurations, grains of different species separate into different shells, with the grains of larger mass and charge located away from the system center, forming a shell that surrounds the grains of smaller mass and charge at the system center. This configuration occurs beyond a critical grain radius, and its structure and size are determined by the competing effects between the inter-grain electrostatic repulsive force, the screening effect of the plasma and the mass-dependent confinement force of the quadratic potential

  14. Paradigm transition in cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1982-06-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: 1) Electric double layers (like in the lower magnetosphere) 2) Thin current layer (like in the magnetopause) giving space a cellular structure. 3) Current produced filaments (e.g. in prominences, solar corona and interstellar clouds). 4) Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. 5) The pinch effect cannot be neglected as is now usually done. 6) The critical velocity phenomenon is essential, for example for the band structure of solar systems. 7) Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of e.g. the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Author)

  15. BayesCLUMPY: BAYESIAN INFERENCE WITH CLUMPY DUSTY TORUS MODELS

    International Nuclear Information System (INIS)

    Asensio Ramos, A.; Ramos Almeida, C.

    2009-01-01

    Our aim is to present a fast and general Bayesian inference framework based on the synergy between machine learning techniques and standard sampling methods and apply it to infer the physical properties of clumpy dusty torus using infrared photometric high spatial resolution observations of active galactic nuclei. We make use of the Metropolis-Hastings Markov Chain Monte Carlo algorithm for sampling the posterior distribution function. Such distribution results from combining all a priori knowledge about the parameters of the model and the information introduced by the observations. The main difficulty resides in the fact that the model used to explain the observations is computationally demanding and the sampling is very time consuming. For this reason, we apply a set of artificial neural networks that are used to approximate and interpolate a database of models. As a consequence, models not present in the original database can be computed ensuring continuity. We focus on the application of this solution scheme to the recently developed public database of clumpy dusty torus models. The machine learning scheme used in this paper allows us to generate any model from the database using only a factor of 10 -4 of the original size of the database and a factor of 10 -3 in computing time. The posterior distribution obtained for each model parameter allows us to investigate how the observations constrain the parameters and which ones remain partially or completely undetermined, providing statistically relevant confidence intervals. As an example, the application to the nuclear region of Centaurus A shows that the optical depth of the clouds, the total number of clouds, and the radial extent of the cloud distribution zone are well constrained using only six filters. The code is freely available from the authors.

  16. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  17. On-line control of the plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles

    International Nuclear Information System (INIS)

    Moreau, C.; Gougeon, P.; Lamontagne, M.; Lacasse, V.; Vaudreuil, G.; Cielo, P.

    1994-01-01

    This paper describes a new optical sensing device for on-line monitoring of the temperature, velocity and trajectory of in-flight particles during industrial coating production. Thermal radiation emitted by the in-flight particles is collected by a small and robust sensing head that can be attached to the plasma gun providing continuous monitoring of the spray process. The collected radiation is transmitted through optical fibers to a detection cabinet located away from the dusty environment around the operating plasma gun. On-line measurement of the particle velocity, temperature and trajectory can provide an efficient diagnostic tool to maintain optimum spraying conditions leading to a better reproducibility of the coating properties

  18. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-12-15

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulas are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.

  19. Fundamentals of Plasma Physics

    International Nuclear Information System (INIS)

    Cargill, P J

    2007-01-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, 'The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  20. Investigation of Plasmas Having Complex, Dynamic Evolving Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Bellan, Paul M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-01-03

    Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.

  1. Investigation of Plasmas Having Complex, Dynamic Evolving Morphology

    International Nuclear Information System (INIS)

    Bellan, Paul M.

    2017-01-01

    Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.

  2. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  3. WISE and the Dusty Universe

    Science.gov (United States)

    Benford, Dominic J.

    2010-01-01

    The Wide-field Infrared Survey is a medium class Explorer mission that was launched onl4Dec 2009. WISE should detect hundreds of millions of stars and galaxies, including millions of ULIRGS and QSOs; hundreds of thousands of asteroids; and hundreds of cold brown dwarfs. The telescope cover was ejected on 29 Dec 2009 and the all-sky survey started on 14 Jan 2010. WISE takes more the 7000 framesets per day, with each frameset covering 0.6 square degrees in four bands centered at 3.4, 4.6, 12 and 22 microns. WISE is well-suited to the discovery of brown dwarfs, ultraluminous infrared galaxies, and near-Earth objects. With an angular resolution of 6 arcsecouds at 12 microns, a 5(sigma) point-source sensitivity of around 1 mJy at 12 microns and 6 mJy at 22 microns, and coverage of over 99% of the sky, WISE also provides a powerful database for the study of the dusty ISM in our own galaxy. A preliminary release of WISE data will be made available to the community 6 months after the end of the cryogenic survey, or about May 2011. The final data release will be 11 months later, about April 2012.

  4. Excitation of nonlinear wave patterns in flowing complex plasmas

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  5. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    Science.gov (United States)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  6. The magnetized sheath of a dusty plasma with grains size distribution

    International Nuclear Information System (INIS)

    Ou, Jing; Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-01-01

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance

  7. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Science.gov (United States)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  8. Ion acoustic solitons/double layers in two-ion plasma revisited

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Singh, S. V.; Kakad, A. P.

    2014-01-01

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge

  9. Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas

    International Nuclear Information System (INIS)

    Killer, Carsten; Mulsow, Matthias; Melzer, André

    2015-01-01

    An imaging Mie scattering technique has been developed to measure the spatially resolved size distribution of dust particles in extended dust clouds. For large dust clouds of micrometre-sized plastic particles confined in an radio frequency (rf) discharge, a segmentation of the dust cloud into populations of different sizes is observed, even though the size differences are very small. The dust size dispersion inside a population is much smaller than the difference between the populations. Furthermore, the dust size is found to be constantly decreasing over time while the particles are confined in an inert argon plasma. The processes responsible for the shrinking of the dust in the plasma have been addressed by mass spectrometry, ex situ microscopy of the dust size, dust resonance measurements, in situ determination of the dust surface temperature and Fourier transform infrared absorption (FT-IR). It is concluded that both a reduction of dust size and its mass density due to outgassing of water and other volatile constituents as well as chemical etching by oxygen impurities are responsible for the observations. (paper)

  10. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  11. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel

    2009-01-01

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  12. ON RADIATION PRESSURE IN STATIC, DUSTY H II REGIONS

    International Nuclear Information System (INIS)

    Draine, B. T.

    2011-01-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms ; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms ) to shell-like (large Q 0 n rms ). When Q 0 n rms ∼> 10 52 cm -3 s -1 , dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms , a fourth quantity, which can be Q 0 , determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest-such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas-depend on β, γ, and Q 0 n rms . For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms ). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  13. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  14. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    International Nuclear Information System (INIS)

    Yang Xuefeng; Wang Zhengxiong

    2012-01-01

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  15. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  16. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  17. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    International Nuclear Information System (INIS)

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-01

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  18. MHD flow of a dusty viscoelastic liquid through a porous medium between two inclined parallel plates

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, N.P.

    1996-01-01

    Magnetohydrodynamic flow of a dusty viscoelastic liquid (Oldroyd B-liquid) through a porous medium between two parallel plates inclined to the horizon has been studied. The liquid velocity, dust particle velocity and flux of flow have been obtained. Earlier results have been deduced as particular cases of the present investigation. The physical situation of the motion has been discussed graphically. (author)

  19. Simulation of the formation of two-dimensional Coulomb liquids and solids in dusty plasmas

    International Nuclear Information System (INIS)

    Hwang, H.H.; Kushner, M.J.

    1997-01-01

    Dust particle transport in low-temperature plasmas has recently received considerable attention due to the desire to minimize contamination of wafers during plasma processing of microelectronics devices. Laser light scattering observations of dust particles near wafers in reactive-ion-etching (RIE) radio frequency (rf) discharges have revealed clouds which display collective behavior. These observations have motivated experimental studies of the Coulomb liquid and solid properties of these systems. In this paper, we present results from a two-dimensional model for dust particle transport in RIE rf discharges in which we include particle-particle Coulomb interactions. We predict the formation of Coulomb liquids and solids. These predictions are based both on values of Γ>2 (liquid) and Γ>170 (solid), where Γ is the ratio of electrostatic potential energy to thermal energy, and on crystal-like structure in the pair correlation function. We find that Coulomb liquids and solids composed of trapped dust particles in RIE discharges are preferentially formed with increasing gas pressure, decreasing particle size, and decreasing rf power. We also observe the ejection of particles from dust crystals which completely fill trapping sites, as well as lattice disordering followed by annealing and refreezing. copyright 1997 American Institute of Physics

  20. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  1. The effect of dust charge inhomogeneity on low-frequency modes in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Farid, T.; Mamun, A.A.; Shukla, P.K.

    2000-01-01

    An analysis of low-frequency modes accounting for dust grain charge fluctuation and equilibrium grain charge inhomogeneity in a strongly coupled dusty plasma is presented. The existence of an extremely low frequency mode, which is due to the inhomogeneity in the equilibrium dust grain charge, is reported. Besides, the equilibrium dust grain charge inhomogeneity makes the dust-acoustic mode unstable. The strong correlations in the dust fluid significantly drive a new mode as well as the existing dust-acoustic mode. The applications of these results to recent experimental and to some space and astrophysical situations are discussed

  2. A New Population of High-z, Dusty Lyman-alpha Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Science.gov (United States)

    Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Petty, Sara; Benford, Dominic; Eisenhardt, Peter; Farrah, Duncan; Griffith, Roger, L.; Jarrett, Tom; Lonsdale, Carol; hide

    2013-01-01

    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 approx. 10(exp 13)-10(exp 14) Solar L) and have warm colors. They are typically more luminous and warmer than other dusty, z approx.. 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.

  3. BOOK REVIEW: Fundamentals of Plasma Physics

    Science.gov (United States)

    Cargill, P. J.

    2007-02-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, `The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  4. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  5. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  6. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  7. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; van Damme, Rudolf M.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    In the present study, mass transport accompanied by chemical reactions in porous media is studied according to the Fick model and the dusty-gas model. For mass transport accompanied by a chemical reaction in catalyst structures showing a plane, line, or point of symmetry, the approximate analytical

  8. Experiments in Ice Contaminant Remanent Magnetization of Dusty Frost Deposits

    Science.gov (United States)

    Grossman, Y.; Aharonson, O.; Shaar, R.

    2017-12-01

    Sedimentary rocks can acquire magnetization in the presence of an external field as grains settle out of suspension in a water column - a process known as Depositional Remanent Magnetization (DRM). In analogy with this, here we propose and experimentally demonstrate a new mechanism for acquisition of magnetization by ice and particulate mixtures which we term Ice Contaminant Remanent Magnetization (ICRM). This phenomenon results from the settling of atmospheric dust containing magnetic particles (e.g. magnetite or other iron oxides). Upon freezing, magnetic dust particles assume a preferential orientation that depends on the external planetary field, resulting in bulk magnetization of the dusty ice. Hence over geologic timescales, the ice stratigraphy is expected to record the geomagnetic history. To test this hypothesis, we designed a set of experiments in which mixtures of ice and dust were deposited in a controlled ambient magnetic field environment. We measured the ratio between the volume normalized magnetization of the dusty ice (m) and the applied field (H) during deposition of the mixture, which is expressed as the effective ICRM susceptibility: m=χICRMH. A magnetic field was applied by a 3-axis Helmholtz coil at the Weizmann Simulating Planetary Ices & Environments Laboratory, and the frozen samples were analyzed in a 2G-Entreprises SQUID Rock Magnetometer at the Hebrew University Institute for Earth Sciences. We measured a clear correlation in amplitude and direction between the ambient magnetic field applied during deposition and the remanent magnetic moment of the resulting samples. We studied various concentrations and particle sizes (diameters 5 µm to 50 µm) of iron and magnetite particles. Effective bulk susceptibilities show a range of values, starting from 10-3 and up to values that saturate the analytical instrument. Our preliminary results indicate that natural ice deposits may acquire variable magnetization due to ICRM, which may in turn be

  9. EVOLUTION OF THE MOST LUMINOUS DUSTY GALAXIES

    International Nuclear Information System (INIS)

    Weedman, Daniel W.; Houck, James R.

    2009-01-01

    A summary of mid-infrared continuum luminosities arising from dust is given for very luminous galaxies, L IR > 10 12 L sun , with 0.005 0.7 in the 9.7 μm silicate absorption feature (i.e., half of the continuum is absorbed) and having equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature ν (8 μm) for the most luminous obscured AGNs is found to scale as (1+z) 2.6 to z = 2.8. For unobscured AGNs, the scaling with redshift is similar, but luminosities νL ν (8 μm) are approximately three times greater for the most luminous sources. Using both obscured and unobscured AGNs having total infrared fluxes from the Infrared Astronomical Satellite, empirical relations are found between νL ν (8 μm) and L IR . Combining these relations with the redshift scaling of luminosity, we conclude that the total infrared luminosities for the most luminous obscured AGNs, L IR (AGN obscured ) in L sun , scale as log L IR (AGN obscured ) = 12.3 ± 0.25 + 2.6(±0.3)log(1+z), and for the most luminous unobscured AGNs, scale as log L IR (AGN1) = 12.6(±0.15) + 2.6(±0.3)log(1+z). We previously determined that the most luminous starbursts scale as log L IR (SB) = 11.8 ± 0.3 + 2.5(±0.3)log(1+z), indicating that the most luminous AGNs are about 10 times more luminous than the most luminous starbursts. Results are consistent with obscured and unobscured AGNs having the same total luminosities with differences arising only from orientation, such that the obscured AGNs are observed through very dusty clouds which extinct about 50% of the intrinsic luminosity at 8 μm. Extrapolations of observable f ν (24 μm) to z = 6 are made using evolution results for these luminous sources. Both obscured and unobscured AGNs should be detected to z ∼ 6 by Spitzer surveys with f ν (24 μm) > 0.3 mJy, even without luminosity evolution for z > 2.5. By contrast, the most luminous starbursts cannot be detected for z > 3, even if luminosity evolution continues beyond z = 2.5.

  10. Unsteady MHD flow of a dusty nanofluid past a vertical stretching surface with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    C. Sulochana

    2016-02-01

    Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.

  11. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Science.gov (United States)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; hide

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  12. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  13. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    Science.gov (United States)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  14. New Fellows and Honorary Fellow

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 2011 Section: Physics. Das, Prof. Amita Ph.D. (IIT, Kanpur). Date of birth: 3 August 1965. Specialization: Strongly Coupled & Dusty Plasma Systems, Laser Plasma Interactions, Plasma Physics, Turbulence, Electron Magnetohydrodynamics Address: Institute for Plasma Research, ...

  15. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C. M.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States); Scoville, N. Z. [California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Sanders, D. B.; Lee, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Finkelstein, S. L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Capak, P. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); De Zotti, G. [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Le Floc' h, E. [CEA-Saclay, Orme des Merisiers, bât. 709, F-91191 Gif-sur-Yvette Cedex (France); Ilbert, O. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de marseille, UMR 7326, F-13388 Marseille (France); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Takeuchi, T. T. [Nagoya University, Division of Particle and Astrophysical Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  16. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Kyle [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Dickinson, Mark; Dey, Arjun; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Magnelli, Benjamin [Max Planck Institut fuer Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Pannella, Maurilio; Aussel, Herve; Daddi, Emanuele; Elbaz, David [Laboratoire AIM Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CEA-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Altieri, Bruno; Coia, Daniela [Herschel Science Center, European Space Astronomy Center, Villanueva de la Canada, E-28691 Madrid (Spain); Buat, Veronique [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-marseille, CNRS, 38 rue Frederic Joliot-Curie, F-13388 Marseille Cedex 13 (France); Bussmann, Shane; Hwang, Ho Seong [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Dannerbauer, Helmut [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Lin Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Morrison, Glenn, E-mail: kpenner@as.arizona.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-11-01

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {sub Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.

  17. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  18. On Influence of Neutrals on Dust Particle Charging in Complex Plasmas in the Presence of Electromagnetic Radiation

    International Nuclear Information System (INIS)

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-01-01

    Effects associated with neutral component of complex (dusty) ionospheric plasmas which affect dust particle charging are studied. Microscopic ion currents on dust particles with taking into account ion-neutral interaction are presented. Calculations are performed both for the case of negative charges of dust particles, when the influence of Solar radiation on dust particle charging processes is negligible, and for the case of positive charges which is realized in the presence of sufficiently intensive UV or X-ray radiation. We also carry out investigation of the electron heating due to the photoelectric effect. We show that the efficiency of electron heating depends on the density of neutral component of the plasma. As result, we determine altitudes where the influence of the neutral plasma component on dust particle charging processes as well as the electron heating effect are significant and should be taken into account under consideration of the ionospheric complex plasmas. In particular, we show that the effects considered could be important for the description of noctilucent clouds, polar mesosphere summer echoes, and some other physical phenomena associated with dust particles in the ionosphere.

  19. A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran.

    Science.gov (United States)

    Geravandi, Sahar; Sicard, Pierre; Khaniabadi, Yusef Omidi; De Marco, Alessandra; Ghomeishi, Ali; Goudarzi, Gholamreza; Mahboubi, Mohammad; Yari, Ahmad Reza; Dobaradaran, Sina; Hassani, Ghasem; Mohammadi, Mohammad Javad; Sadeghi, Shahram

    2017-08-01

    During the last century, most of people around the world moved from communicable to non-communicable diseases, mainly due to air pollution. Air pollutants and dust storm increase risk of morbidity, for cardiovascular and respiratory diseases, and increase the number of deaths. The city of Ahvaz is considered as the focal point of air pollution and dust storm in Iran. The aim of this study was to determine the number of Hospital Admission Respiratory Disease (HARD) including asthma attacks, acute bronchitis and chronic obstructive pulmonary disease attributed to PM 10 by a descriptive study during normal and dust event days in Ahvaz during the time period 2010-2012. The hourly PM 10 data was collected from the Iranian Environmental Protection Agency and Razi hospital. The annual PM 10 mean concentrations reached 282, 288 and 278 μg/m 3 in 2010, 2011 and 2012, respectively. The number of HARD attributed to PM 10 was 1438, 1945 and 1393 people, respectively, and the highest number of daily admissions was attributed to the highest daily PM 10 concentration in Ahvaz. The average number of daily HARD during dusty days was higher than normal days, and a significant positive correlation, between the number of hospital admissions and dusty days, was found. Dust had significant impact on HARD in Ahvaz.

  20. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  1. High density plasma gun generates plasmas at 190 kilometers per second

    Science.gov (United States)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  2. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  3. Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas

    International Nuclear Information System (INIS)

    Samarian, A.A.

    2000-01-01

    Full text: A plasma containing macroscopic dust particles or grains (often referred to as a dusty or colloidal or complex plasma) has the feature that grains may be charged by electron or ion flux or by photo- or thermoelectron emission. Electron emission from a grain surface produces a positive charge; capture of electrons produces the reverse effect making the dust grains negatively charged. Most dusty plasma research is concerned with the ordered dust structures (so-called 'plasma crystal') in glow discharges. The dust grains in these experiments were found to carry a negative charge due to the higher mobility of electrons as compared to ions in the discharge plasma. In recent years, in parallel with the study of the properties of plasma crystals under discharge conditions, attempts to obtain a structure from positively charged dust grains have been made, and structure formation processes for various charging mechanisms, particularly thermoelectron emission and photoemission, have been investigated. In this paper we review the essential features of strongly coupled plasmas with positive dust grains. An ordered structure of CeO 2 grains has been experimentally observed in a combustion products jet. The grains were charged positively and suspended in the plasma flow. Their charge is about 10 3 a and the calculated value of a Coulomb coupling parameter Γ is >10, corresponding to a plasma liquid. The ordered structures of Al 2 O 3 dust grains in propellant combustion products plasma have been observed for the first time. These structures were found in the sheath boundary of condensation region. The obtained data let us estimate the value of parameter Γ =3-40, corresponding to the plasma liquid state. The possibility is studied of the formation of ordered dust grain structures in thermal plasma. The range of the required values of the coupling parameter Γ is calculated using the results of diagnostic measurements carried out in thermal plasma with grains of

  4. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  5. Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team

    2017-10-01

    The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.

  6. Hall MHD reconnection in cometary magnetotail

    International Nuclear Information System (INIS)

    Jovanovic, Dusan; Shukla, Padma Kant; Morfill, Gregor

    2005-01-01

    The fine structure of cometary tails (swirls, loops and blobs) is studied in the framework of resistive magnetic reconnection without a guide field in a dusty plasma. For a high-beta plasma (β ∼ 1) consisting of electrons, ions, and immobile dust grains, a two-fluid description is used to study electromagnetic perturbations with the frequency below Ωi, propagating at an arbitrary angle, and including the effects of Hall current. A zero-order current associated with the anti-parallel magnetic configuration may exist even in the limit of zero plasma temperature in a dusty plasma due to a symmetry breaking between electrons and ions by dust grains that yields an E-vector x B-vector current. In the perturbed state, a new linear electromagnetic mode is found in dusty plasma which is evanescent below the Rao cut-off frequency and has the characteristic wavelength comparable to the ion skin depth, which enables the reconnection at short spatial scales. The role of the dust is found to be twofold, yielding a new mode outside of the current sheet and altering the continuity conditions at its edge by an inhomogeneous Doppler shift associated with the E-vector x B-vector current

  7. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    Science.gov (United States)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  8. REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 {approx}< z {approx}< 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yicheng; Giavalisco, Mauro; Cassata, Paolo; Williams, Christina C.; Salimbeni, Sara [Astronomy Department, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003 (United States); Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dickinson, Mark [NOAO-Tucson, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Chary, Ranga-Ram [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Messias, Hugo [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Observatorio Astronomico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Tundo, Elena [INAF-Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste (Italy); Lin Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Lee, Seong-Kook [School of Physics, Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-Gu, Seoul 130-722 (Korea, Republic of); Fontana, Adriano; Grazian, Andrea [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I00040 Monteporzio (Italy); Kocevski, Dale [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Lee, Kyoung-Soo [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06520 (United States); Villanueva, Edward [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Van der Wel, Arjen, E-mail: yicheng@astro.umass.edu [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-04-20

    A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively evolving galaxies (PEGs) at 2.3 {approx}< z {approx}< 3.5 by using rest-frame UV-optical (V - J versus J - L) colors. The criteria are thoroughly tested with theoretical stellar population synthesis models and real galaxies with spectroscopic redshifts to evaluate their efficiency and contamination. We apply the well-tested VJL criteria to the HST/WFC3 Early Release Science field and study the physical properties of selected galaxies. The redshift distribution of selected SFGs peaks at z {approx} 2.7, slightly lower than that of Lyman break galaxies at z {approx} 3. Comparing the observed mid-infrared fluxes of selected galaxies with the prediction of pure stellar emission, we find that our VJL method is effective at selecting massive dusty SFGs that are missed by the Lyman break technique. About half of the star formation in massive (M{sub star} > 10{sup 10} M{sub Sun }) galaxies at 2.3 {approx}< z {approx}< 3.5 is contributed by dusty (extinction E(B - V) > 0.4) SFGs, which, however, only account for {approx}20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z {approx} 2.5. We find six PEG candidates at z > 3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z {approx} 3, implying that these types of galaxies began to form their stars at z {approx}> 5. We measure the integrated stellar mass density (ISMD) of PEGs at z {approx} 2.5 and set constraints on it at z > 3. We find that the ISMD grows by at least about a factor of 10 in 1 Gyr at 3 < z <5 and by another factor of 10 in the next 3.5 Gyr (1 < z

  9. Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas

    Science.gov (United States)

    Mir, Zahid; Jamil, M.; Rasheed, A.; Asif, M.

    2017-09-01

    The dust shear Alfvén wave is studied in three species dusty quantum plasmas. The quantum effects are incorporated through the Fermi degenerate pressure, tunneling potential, and in particular the exchange-correlation potential. The significance of exchange-correlation potential is pointed out by a graphical description of the dispersion relation, which shows that the exchange potential magnifies the phase speed. The low-frequency shear Alfvén wave is studied while considering many variables. The shear Alfvén wave gains higher phase speed at the range of small angles for the upper end of the wave vector spectrum. The increasing dust charge and the external magnetic field reflect the increasing tendency of phase speed. This study may explain many natural mechanisms associated with long wavelength radiations given in the summary.

  10. THE EXTENDED HIGH A ( V ) QUASAR SURVEY: SEARCHING FOR DUSTY ABSORBERS TOWARD MID-INFRARED-SELECTED QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Fynbo, J. P. U.; Heintz, K. E.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-20

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Ly α absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in their spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A ( V ) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Ly α in absorption.

  11. Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma

    Science.gov (United States)

    Goree, John

    1998-01-01

    The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.

  12. Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2008-01-01

    Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron

  13. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang [Northwest Normal University, College of Physics and Electronic Engineering (China); Wang, Xiao-Yun [Lanzhou Jiao Tong University, Department of Mathematics and Physics (China); Duan, Wen-Shan, E-mail: duanws@126.com [Northwest Normal University, College of Physics and Electronic Engineering (China)

    2017-02-15

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  14. FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)

    Science.gov (United States)

    Das, A. K.

    2010-01-01

    The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development

  15. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    International Nuclear Information System (INIS)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-01

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  16. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    Jovanovic, D.; Shukla, P.K.

    2002-01-01

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  17. Dust acoustic waves in complex plasmas at elevated pressure

    International Nuclear Information System (INIS)

    Filippov, A.V.; Starostin, A.N.; Tkachenko, I.M.; Fortov, V.E.

    2011-01-01

    The bi-Yukawa effective interaction potential with different screening constants is employed to calculate dust static correlation functions in the hyper-netted chain approximation and to generalize the theory of dust acoustic waves within the non-perturbative moment approach complemented by hydrodynamic considerations. For the bi-Yukawa interaction potential the sound speed becomes significantly wavenumber-dependent, an additional soft diffusion-like mode is predicted, and the static dielectric function is shown to take negative values. The results can be applied to non-equilibrium dusty plasmas at elevated pressure. -- Highlights: ► Bi-Yukawa interaction potential of dust particles with different screening lengths. ► Dust static correlation functions in the hyper-netted chain approximation. ► The moment and hydrodynamic approaches are in a good agreement at weak non-ideality. ► The dust acoustic wave phase and group velocities depend on the wavenumber. ► The moment approach hints the appearance of the diffusion-like soft mode.

  18. ATLANTIC DIP: simplifying the follow-up of women with previous gestational diabetes.

    LENUS (Irish Health Repository)

    Noctor, E

    2013-11-01

    Previous gestational diabetes (GDM) is associated with a significant lifetime risk of type 2 diabetes. In this study, we assessed the performance of HbA1c and fasting plasma glucose (FPG) measurements against that of 75 g oral glucose tolerance testing (OGTT) for the follow-up screening of women with previous GDM.

  19. Exploring the dusty star-formation in the early Universe using intensity mapping

    Science.gov (United States)

    Lagache, Guilaine

    2018-05-01

    In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.

  20. The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).

    Science.gov (United States)

    Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.

    2018-06-01

    The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K 0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.

  1. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A typical device for carrying out sophisticated and complex dusty plasma experiments is designed, fabricated and made operational at the Institute for Plasma Research, India. The device is named as complex plasma experimental device (CPED). The main aim of this multipurpose machine is to study the formation and ...

  2. THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Strandet, M. L.; Weiss, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Vieira, J. D.; Furstenau, R. M. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); De Breuck, C.; Béthermin, M.; Gullberg, B. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Everett, W. [Department of Astrophysical and Planetary Sciences and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); and others

    2016-05-10

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  3. Laboratory Investigation of Space and Planetary Dust Grains

    Science.gov (United States)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  4. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    Science.gov (United States)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  5. Effect of the raw materials processing on their dustiness; Efecto del procesado de materias primas sobre su poder de emisión de polvo

    Energy Technology Data Exchange (ETDEWEB)

    López Lilaoa, A.; Juárezb, M.; Sanfelix Fornera, V.; Mallol Gascha, G.; Monfort Gimeno, E.

    2017-11-01

    During the handling and/or processing of powdered materials in the CERAMICS INDUSTRY, one of the most important risks regarding the environmental and occupational health is the potential generation of dust. In this regard, a parameter of great interest is the dustiness of the processed materials; this parameter quantifies the tendency of the powdered materials to generate dust when handled. In this study, to determine the dustiness of a ceramic raw material composition (mixture of the body raw materials), the continuous drop method has been used. This test apparatus was selected because it is considered to better simulate how ceramic materials are handled in the CERAMICS INDUSTRY. The obtained results show that the dustiness of the same ceramic composition exhibits significant changes during the manufacturing process, depending on the presentation form. In this regard, the dry milling sample presents the highest dustiness, which can be significantly reduced (>75%) applying the the moisturization and agglomeration. The obtained results also shown that the best presentation form, regarding the minimization of the dust generation, is achieved in the spray-drying process, where the dustiness is reduced by 95%. [Spanish] En la manipulación y/o procesado de materiales pulverulentos en la industria cerámica, uno de los riesgos más importantes desde el punto de vista ambiental y de higiene laboral es la generación de polvo ambiental. En este sentido, un parámetro de gran interés es el poder de emisión de polvo, que cuantifica la tendencia de los materiales pulverulentos a generar polvo cuando se manipulan. En este trabajo, para determinar el poder de emisión de polvo de una composición cerámica (mezcla de materias primas empleada para la fabricación de baldosas cerámicas) se ha empleado un método de caída continua. Este método se ha seleccionado por ser el que mejor representa las operaciones de manipulación de materiales pulverulentos que tienen lugar en

  6. Collective plasma corrections to thermonuclear reactions rates in dense plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2002-01-01

    General kinetic equations for nuclear reaction in dense plasmas are obtained. They take into account the first order collective plasma effects. Together with previously known corrections proportional to Z i Z j , the product of the charges Z i and Z j of two interacting nuclei, it is shown that there exist corrections proportional to the squares Z i 2 and Z j 2 of the charges. It is shown that the Salpeter's [1] correction due to the plasma screening of the interaction potential is at least r/d smaller (r is the nuclei size and d is Debye screening length) than previously thought and is zero in the approximation when the terms of the order r/d are neglected. But the correlation effects in the first approximation in the parameter 1/N d (where N d is the number of particle in the Debye sphere) give corrections which often coincide with the first order Salpeter's corrections (found by expansion in another small parameter, the ratio of thermal energy to Gamov's energy). The correlation corrections are ∝ Z i Z j , have a different physical meaning than the corrections [1], can have a different sign and are present for reactions where the Salpeter's corrections are zero. Previously in astrophysical applications it was widely used the interpolation formulas between weak and strong Salpeter's screening corrections. Since the correlation correction take place the previously known Salpeter's corrections and the strong correlation corrections is difficult to describe analytically, the interpolation formulas between the weak and strong correlations cannot be yet found. A new type of corrections are found here which are proportional to the square of the charges. They are due to collective change in electrostatic self-energy of the plasma system during the nuclear reactions. The latter corrections are found by taking into account the changes of plasma particle fluctuations by the nuclear reactions. Numerical evaluation of the plasma corrections for the nuclear reactions of the

  7. Performance Evaluation of PV Panel Under Dusty Condition

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Tripathi

    2017-11-01

    Full Text Available The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust deposition Article History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available online How to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017. Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3, 225-233. https://doi.org/10.14710/ijred.6.3.225-233

  8. Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation

    International Nuclear Information System (INIS)

    Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J

    2010-01-01

    A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.

  9. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    Science.gov (United States)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  10. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    International Nuclear Information System (INIS)

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P.

    2013-01-01

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) ≈35°. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14.°3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus

  11. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  12. Studies on the Electrical Characteristics of a DC Glow Discharge by Using Langmuir Probe

    International Nuclear Information System (INIS)

    Safaai, S. S.; Yap, S. L.; Wong, C. S.; Muniandy, S. V.; Smith, P. W.

    2010-01-01

    Electrical characteristics of a DC glow discharge are studied with the aim of determining the suitable parameters for stable operation of the dusty plasma system. The presence of dust particles in plasma significantly alters the charged particle equilibrium in the plasma and leads to various phenomena. Argon plasma produced by DC glow discharge is investigated with a further goal of studying dusty plasma phenomena. The discharge system has two disc-shaped parallel plate electrodes. The electrodes are enclosed in a large cylindrical stainless steel chamber filled with argon gas. Two important physical parameters affecting the condition of the discharge are the gas pressure and the inter-electrode distance. A single Langmuir probe based on the Keithley source meter is used to determine the electron temperature of the positive column. A custom designed probe is employed to determine the potential distribution between the electrodes during the discharge. The I-V characteristic curve and the Langmuir probe measurement are then used to determine the electron energy distribution of the glow discharge plasma.

  13. Collaborative project: research on strongly coupled plasmas. Final technical report for period July 15, 1998--July 14, 2002

    International Nuclear Information System (INIS)

    Golden, Kenneth I.

    2002-01-01

    The main research accomplishments/findings of the project were the following: (1) Publication of an in-depth review article in Physics of Plasmas on the quasilocalized charge approximation (QLCA) in strongly coupled plasma physics and its application to a variety of Coulomb systems: the model one-component plasma in three and two dimensions, binary ionic mixtures, charged particle bilayers, and laboratory dusty plasmas. (2) In the strongly coupled Coulomb liquid phase, the physical basis of the QLCA, namely, the caging of particles trapped in slowly fluctuating local potential minima, is supported by molecular dynamics simulation of the classical three-dimensional one-component plasma. (3) The QLCA theory, when applied to the analysis of the collective modes in strongly coupled charged particle bilayers, predicts the existence of a remarkable long-wavelength energy gap in the out-of-phase excitation spectrum. More recent theoretical calculations based on the three principal frequency-moment sum rules reveal that the gap persists for arbitrary coupling strengths and over the entire classical to quantum domain all the way down to zero temperature. The existence of the energy gap has now been confirmed in a molecular dynamics simulation of the charged particle bilayer. (4) New compressibility and third-frequency-moment sum rules for multilayer plasmas were formulated and applied to the analysis of the dynamical structure function of charged particle bilayers and superlattices. (5) An equivalent of the Debye-Huckel weak coupling equilibrium theory for classical charged particle bilayer and superlattice plasmas was formulated. (6) The quadratic fluctuation-dissipation theorem (QFDT) for layered classical plasmas was formulated. (7) The QFDT was applied to a powerful kinetic theory-based description of the density-density response function and long-wavelength plasma mode behavior in strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain

  14. Center-of-mass and breathing oscillations in small complex plasma disks

    International Nuclear Information System (INIS)

    Sheridan, T.E.

    2005-01-01

    Center-of-mass and breathing oscillations of a complex (dusty) plasma disk are excited for n=3 and 5 microspheres (≅10 μm diameter) with neutral argon pressures P≅1-4 Pa. The mode frequencies and damping rates are determined directly from measured resonance curves. Millikan's coefficient for the Epstein drag force, the Debye length, and the particle charge is found by comparison with theory. The damping rates are the same for both modes and for n=3 and 5, as predicted. Millikan's coefficient is found to be δ=1.55±0.16, in agreement with δ=1.44 for diffuse reflection. A consistent value of the Debye length that decreases with pressure is measured. The average particle charge for n=3 particles is found to be more negative than that for n=5 particles for the same conditions, indicating that the effective ion collection area of the particles increases as their separation decreases

  15. Evolution of rogue waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com [Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); El-Labany, S. K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt)

    2015-04-15

    The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves by ∼25 times.

  16. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    We find that the charge variability of the grain reduces the growth rate ..... Thus, in the short wavelength regime, thermal conductivity has stabilizing effect .... dynamics is retained, and the reason being that the momentum exchange of the grain ...

  17. Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-12-01

    The dispersion relation for the Hasegawa space-charge wave propagating in a cylindrical waveguide dusty plasma containing collision-dominated ion stream is derived by using the fluid equations and the Poisson equation which lead to a Bessel equation. The solution of Bessel equation is null at the boundary and then the roots of the Bessel function would characterize the property of space-charge wave propagation. We have found that the Hasegawa space-charge wave can be excited for a large axial wave number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. The growth rate decreases with an increase of the radius of cylindrical waveguide as well as with an increase of the collision frequency. We found that the disturbance of wave can be damped only for small wave numbers.

  18. WISEP J004701.06+680352.1: An Intermediate Surface Gravity, Dusty Brown Dwarf in the AB Dor Moving Group

    Science.gov (United States)

    2015-02-01

    dusty L6 dwarf 2MASS J21481628+4003593. It lies at 8.060 ± 0.036 parsecs; its astrometry is consistent with the view that it is older and metal-rich...Key words: brown dwarfs – infrared: stars – stars: individual (WISEP J004701.06+680352.1, 2MASS J21481628+4003593) 1. INTRODUCTION One of the key...2M1207b (16.13, Gizis et al. 2007). Besides PSO J318-22, the best studied of the extremely red L dwarfs are 2MASS J21481628+4003593 (Looper et al

  19. Flute-interchange stability in a hot electron plasma

    International Nuclear Information System (INIS)

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects

  20. Electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    Smith, J.R.; Luo, C.M.; Schneider, R.F.; Rhee, M.J.

    1984-01-01

    Operation of a plasma focus as a Compact Pulsed Accelerator (CPA) for ions has been previously reported. The CPA consists of: (1) a 15 μF, 3 kJ capacitor, (2) a triggered spark gap, (3) a coaxial transmission line, and (4) a Mather geometry plasma gun. Recently the authors have investigated application of the CPA as an accelerator for electrons. In the previously reported work using the standard Mather plasma gun geometry, ions were accelerated away from the plasma gun and were therefore conveniently extracted for analysis, but electrons were directed into the hollow anode where extraction is blocked by the coaxial transmission line. For investigation of accelerated electrons a new plasma gun design which allows extraction of electrons has been developed. Details of the new plasma gun design and further results of beam diagnostics are discussed

  1. Electrostatic structures associated with dusty electronegative magnetoplasmas

    International Nuclear Information System (INIS)

    Moslem, W M; Abdelsalam, U M; Sabry, R; Shukla, P K

    2010-01-01

    By using the hydrodynamic equations of positive and negative ions, the Boltzmann electron density distribution and the Poisson equation with stationary dust, a three-dimensional (3D) Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude ion-acoustic waves. However, the ZK equation is not appropriate to describe the system either at critical plasma compositions or in the vicinity of the critical plasma compositions. Therefore, the modified ZK (MZK) and extended ZK (EZK) equations are derived. The generalized expansion method is used to analytically solve the ZK, MZK and EZK equations. A new class of solutions that admits a train of well-separated bell-shaped periodic pulses is obtained. In certain conditions, the latter degenerates to either solitary or shock wave solutions. The effects of the physical parameters on the nonlinear structures are examined in many plasma environments having different negative ion species, such as D- and F-regions of the Earth's ionosphere, as well as in laboratory plasma experiments. Numerical analysis of the solutions revealed that the profile of the nonlinear pulses suffers amplitude and width modifications due to enhancement of the dust practices, negative ions, positive-to-negative ion mass ratio and positive/negative ion cyclotron frequency. Furthermore, the necessary conditions for both solitons and shocks propagation as well as their polarity are examined.

  2. Protease activity of plasma hemopexin

    NARCIS (Netherlands)

    Bakker, WW; Borghuis, T; Harmsen, MC; van den Berg, Anke; Kema, IP; Niezen, KE; Kapojos, JJ

    Background. Previous studies into the relevance of a putative circulating factor in the pathogenesis of minimal change nephrotic syndrome have opened the possibility that plasma hemopexin might be an important effector molecule in this disorder. Thus, intra renal infusion of isolated plasma

  3. Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs

    Science.gov (United States)

    Lehmann, Andrew; Wardle, Mark

    2018-05-01

    The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.

  4. Study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    International Nuclear Information System (INIS)

    Wright, K.H. Jr.

    1988-02-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory

  5. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    International Nuclear Information System (INIS)

    Goodall, D.H.J.

    1982-01-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs. (orig.)

  6. AN EXPANDED VERY LARGE ARRAY AND CARMA STUDY OF DUSTY DISKS AND TORII WITH LARGE GRAINS IN DYING STARS

    International Nuclear Information System (INIS)

    Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sanchez Contreras, C.

    2011-01-01

    We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is ν β , with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β ≤ 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.

  7. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  8. REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ∼< z ∼< 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES

    International Nuclear Information System (INIS)

    Guo Yicheng; Giavalisco, Mauro; Cassata, Paolo; Williams, Christina C.; Salimbeni, Sara; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman A.; Dickinson, Mark; Chary, Ranga-Ram; Messias, Hugo; Tundo, Elena; Lin Lihwai; Lee, Seong-Kook; Fontana, Adriano; Grazian, Andrea; Kocevski, Dale; Lee, Kyoung-Soo; Villanueva, Edward; Van der Wel, Arjen

    2012-01-01

    A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively evolving galaxies (PEGs) at 2.3 ∼ star > 10 10 M ☉ ) galaxies at 2.3 ∼ 0.4) SFGs, which, however, only account for ∼20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z ∼ 2.5. We find six PEG candidates at z > 3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z ∼ 3, implying that these types of galaxies began to form their stars at z ∼> 5. We measure the integrated stellar mass density (ISMD) of PEGs at z ∼ 2.5 and set constraints on it at z > 3. We find that the ISMD grows by at least about a factor of 10 in 1 Gyr at 3 < z <5 and by another factor of 10 in the next 3.5 Gyr (1 < z < 3).

  9. Plasma norepinephrine in humans: limitations in assessment of whole body norepinephrine kinetics and plasma clearance

    DEFF Research Database (Denmark)

    Christensen, N J; Henriksen, Jens Henrik Sahl

    1989-01-01

    ]IP and 131I-hippurate, whole body clearance from plasma of [3H]NE, as obtained from infusion rate divided by plasma concentration of tracer [1.74 +/- 0.64 (SD) 1/min] was significantly higher than the value obtained by total tracer infusion divided by total plasma area of tracer (1.27 +/- 0.51, P less than 0...... irreversible removal of NE, is smaller than previously estimated due to recycling through the plasma space. Attention has been drawn to limitations of [3H]NE kinetics....

  10. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  11. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    International Nuclear Information System (INIS)

    Wetering, F. M. J. H. van de; Nijdam, S.; Beckers, J.

    2016-01-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon–acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed “hiccup” and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  12. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  13. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  14. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  15. Properties of the Dense Plasma Produced in Plasma Focus

    International Nuclear Information System (INIS)

    Peacock, N.J.; Wilcock, P.D.; Speer, R.J.; Morgan, P.D.

    1969-01-01

    The plasma produced by the focus or quasi-cylindrical magnetic compression which occurs at the open end of a metal-walled, coaxial plasma gun has been studied, using the electrical waveforms and the electromagnetic and reaction particle, emission. The electromagnetic radiation in the XUV region of the spectrum has previously been briefly reported, and the present paper describes further more detailed analyses of the line emission at wavelengths shorter than 10 Å when impurities are added to the gas filling. The emission is characteristic of a plasma with a temperature of a few keV and a density greater than 10 19 cm -3 , while the appearance of optical transitions in highly stripped ions, e. g. A XVIII, gives a measure of the thermalization in the plasma. The stored electrical energy has been doubled and the scaling of the neutron emission with the applied voltage and the initial particle density is presented. The duration of the neutron and X-ray emission is considerably longer than the observed instability growth time in the plasma filament. Calculations of the mode of heating and the confinement of the plasma are compared with experimental observations. (author)

  16. Evaluation of Radioactivity in Dusty Storm

    International Nuclear Information System (INIS)

    Mohammed, A.S; Majeed, N. A.; Nasaer, M.H.; Hoshi, H.; Abood, M.

    2013-01-01

    sample had been collected from the powder of the dusty storms which had been moved over Baghdad for a different months of a year 2011 by using metal containers that had manufactured locally and had been mounted over the roof of houses in particular regions of Baghdad (Kerkh and Risafa).The radioactive concentration of dust samples had been measured and analyzed by using the Gamma Spectroscopy analyzing System which consist of high purity Germanium detector of efficiency of 40 %, resolution 2keV at 1.332 MeV (Co-60) , DSA 2000 system which protective barrier made in Canberra Company , the developed Genie 2000Program and using personal computer. The measurement system for energy calibration and efficiency had been calibrated by using a standard point sources and standard source of a multi energy made by the American Canberra company. The Marnelli geometrical shape had been used to measure the activity of the samples. Results indicated the existence of the natural radioactive isotopes such as K-40, Be-7 which has been composed of as a result of the nuclear reaction between the Cosmic ray and some other elements of the atmosphere like Oxygen and Nitrogen besides the existence of radioactive isotopes which belongs to the natural Uranium series and the natural Thorium series. Highest measurements indicated the existence of industrial radioactive isotope Cs-137.The highest value of concentration for Be-7 was (381.5 Bq/kg) at Al-Shaab region, and the highest value of concentration for K-40 was (467.7 Bq/kg) and some other radioactive isotopes which belong to the series of U-238 as follows:- Bi -214 (32.6 Bq/kg), Pb-214 (33.6 Bq/kg), and radioactive isotopes which belong to the series Th-232 as follows:- Bi-212(18.6Bq/kg), Pb-212 (18.8Bq/kg),Ac-228 (30.3 Bq/kg),the highest value of concentration for the industrial Cs-137 was (26,8 Bq/kg) it was at Al-shaab region ,and this concentration is relatively high in comparison to the levels of normal concentration which exist in

  17. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    Science.gov (United States)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  18. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    Science.gov (United States)

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  19. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    International Nuclear Information System (INIS)

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Boyarintsev, E L; Zakharov, Yu P; Prokopov, P A; Ponomarenko, A G

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere. (paper)

  20. Dustiness test of nanopowders using a standard rotating drum with a modified sampling train

    International Nuclear Information System (INIS)

    Tsai, Chuen-Jinn; Wu, Chien-Hsien; Leu, Ming-Long; Chen, Sheng-Chieh; Huang, Cheng-Yu; Tsai, Perng-Jy; Ko, Fu-Hsiang

    2009-01-01

    The standard rotating drum tester was used to determine the dustiness of two nanopowders, nano-TiO 2 and fine ZnO, in standard 1-min tests. Then, the sampling train was modified to determine the number and mass distributions of the generated particles in the respirable size range using a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a Multi-orifice Uniform Deposit Impactor (MOUDI) in the 30-min tests. It was found that very few particles below 100 nm were generated and the released rate of particles decreased with increasing rotation time for both nanopowders in the 30-min tests. Due to the fluffy structure of the released TiO 2 agglomerated particles, the mass distributions measured by the MOUDI showed large differences with those determined by the APS assuming the apparent bulk densities of the powders. The differences were small for the ZnO agglomerates, which were more compact than the TiO 2 agglomerates.