Development of My Footprint Calculator
Mummidisetti, Karthik
The Environmental footprint is a very powerful tool that helps an individual to understand how their everyday activities are impacting environmental surroundings. Data shows that global climate change, which is a growing concern for nations all over the world, is already affecting humankind, plants and animals through raising ocean levels, droughts & desertification and changing weather patterns. In addition to a wide range of policy measures implemented by national and state governments, it is necessary for individuals to understand the impact that their lifestyle may have on their personal environmental footprint, and thus over the global climate change. "My Footprint Calculator" (myfootprintcalculator.com) has been designed to be one the simplest, yet comprehensive, web tools to help individuals calculate and understand their personal environmental impact. "My Footprint Calculator" is a website that queries users about their everyday habits and activities and calculates their personal impact on the environment. This website was re-designed to help users determine their environmental impact in various aspects of their lives ranging from transportation and recycling habits to water and energy usage with the addition of new features that will allow users to share their experiences and their best practices with other users interested in reducing their personal Environmental footprint. The collected data is stored in the database and a future goal of this work plans to analyze the collected data from all users (anonymously) for developing relevant trends and statistics.
Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison with Previous Calculations
International Nuclear Information System (INIS)
Adler, S.L.; Schubert, C.
1996-01-01
We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production threshold, using the world line path integral variant of the Bern-Kosower formalism. Numerical comparison (using programs that we have made available for public access on the Internet) shows that the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, and to the recent recalculation by Baier, Milstein, and Shaisultanov. copyright 1996 The American Physical Society
Development of the code for filter calculation
International Nuclear Information System (INIS)
Gritzay, O.O.; Vakulenko, M.M.
2012-01-01
This paper describes a calculation method, which commonly used in the Neutron Physics Department to develop a new neutron filter or to improve the existing neutron filter. This calculation is the first step of the traditional filter development procedure. It allows easy selection of the qualitative and quantitative contents of a composite filter in order to receive the filtered neutron beam with given parameters
New developments in multireference and complete configuration interaction calculations
International Nuclear Information System (INIS)
Knowles, P.J.; Werner, H.J.
1987-01-01
Some recently developed techniques for the calculation of Hamiltonian matrix elements in molecular electronic structure calculations are described. These techniques allow the very rapid calculation, in any desired order, of one particle coupling coefficients between spin symmetry adapted basis functions of arbitrary structure. The matrix elements that are required, for either internally contracted multireference CI calculations, or full CI calculations, are then obtainable from suitable summations over resolutions of the identity, which has been shown previously to be rather efficient; this is especially true on vector computers, since all arithmetic can be formulated as matrix multiplications. These ideas have culminated in the preparation of a new multireference CI program which is capable of handling very large numbers of reference configurations. Application of the new techniques to full CI calculations are also presented
DEFF Research Database (Denmark)
Damm, P.; Kühl, C.; Bertelsen, Aksel
1992-01-01
OBJECTIVES: The purpose of this study was to determine the incidence of diabetes in women with previous dietary-treated gestational diabetes mellitus and to identify predictive factors for development of diabetes. STUDY DESIGN: Two to 11 years post partum, glucose tolerance was investigated in 241...... women with previous dietary-treated gestational diabetes mellitus and 57 women without previous gestational diabetes mellitus (control group). RESULTS: Diabetes developed in 42 (17.4%) women with previous gestational diabetes mellitus (3.7% insulin-dependent diabetes mellitus and 13.7% non...... of previous patients with gestational diabetes mellitus in whom plasma insulin was measured during an oral glucose tolerance test in late pregnancy a low insulin response at diagnosis was found to be an independent predictive factor for diabetes development. CONCLUSIONS: Women with previous dietary...
Development of Dynamic Environmental Effect Calculation Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il
2010-01-01
The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed
Developing neutronics calculation tools for MYRRHA
International Nuclear Information System (INIS)
Van den Eynde, G.
2006-01-01
The design of the Accelerator Driven System MYRRHA requires adequate and specialised tools in the field of neutronics calculations. In order to fill the gaps, several PhD programmes were launched. In 2005 three such PhD projects were running. Each of them focuses on different stages in the computation of a core of MYRRHA. The first project I mprovements of the spallation reaction model , a collaboration with the University of Liege, deals with the characterisation of the spallation neutron source using the INCL (Intra-Nuclear Cascade of Liege) model. Since at high energies, nuclear data are sparse, calculations rely on models. Especially for spallation reactions that occur at proton energies of several hundreds of MeV, models are the only means to evaluate the spallation source in MYRRHA. The second project 'Neutron transport with anisotropic scattering', a collaboration with the Universite Libre de Bruxelles, works on the development of a neutronics code, CASE-BSM, for systems with highly anisotropic scattering. The presence in large amounts of both lead and bismuth atoms in the MYRRHA core results in a highly anisotropic scattering of the neutrons in the bulk of the coolant. Neglecting this effect has large consequences on both global parameters, like keff, as well as on local parameters, like the neutron flux seen by the vessel. The third project, 'ALEPH: An integrated Monte Carlo bun-up tool', a collaboration with Ghent University, treats the last phase of a core calculation: the depletion of the fuel during irradiation. For an experimental machine like MYRRHA it is of utmost importance to have a fast calculational tool to evaluate the incineration of both isotopes present in the fuel as isotopes present in experimental devices. The main objective is to improve the current quality of the neutronics codes focused on ADS applications and to have this knowledge 'in-house'
Development of thermodynamic databases for geochemical calculations
International Nuclear Information System (INIS)
Arthur, R.C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu; Neyama, Atsushi
1999-09-01
Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary
Development of thermodynamic databases for geochemical calculations
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)
1999-09-01
Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary
Development of Audit Calculation Methodology for RIA Safety Analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Joosuk; Kim, Gwanyoung; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2015-05-15
The interim criteria contain more stringent limits than previous ones. For example, pellet-to-cladding mechanical interaction(PCMI) was introduced as a new failure criteria. And both short-term (e.g. fuel-to coolant interaction, rod burst) and long-term(e.g., fuel rod ballooning, flow blockage) phenomena should be addressed for core coolability assurance. For dose calculations, transient-induced fission gas release has to be accounted additionally. Traditionally, the approved RIA analysis methodologies for licensing application are developed based on conservative approach. But newly introduced safety criteria tend to reduce the margins to the criteria. Thereby, licensees are trying to improve the margins by utilizing a less conservative approach. In this situation, to cope with this trend, a new audit calculation methodology needs to be developed. In this paper, the new methodology, which is currently under developing in KINS, was introduced. For the development of audit calculation methodology of RIA safety analysis based on the realistic evaluation approach, preliminary calculation by utilizing the best estimate code has been done on the initial core of APR1400. Followings are main conclusions. - With the assumption of single full-strength control rod ejection in HZP condition, rod failure due to PCMI is not predicted. - And coolability can be assured in view of entalphy and fuel melting. - But, rod failure due to DNBR is expected, and there is possibility of fuel failure at the rated power conditions also.
Calculation program development for spinning reserve
International Nuclear Information System (INIS)
1979-01-01
This study is about optimal holding of spinning reserve and optimal operation for it. It deals with the purpose and contents of the study, introduction of the spinning reserve electricity, speciality of the spinning reserve power, the result of calculation, analysis for limited method of optimum load, calculation of requirement for spinning reserve, analysis on measurement of system stability with summary, purpose of the analysis, cause of impact of the accident, basics on measurement of spinning reserve and conclusion. It has the reference on explanation for design of spinning reserve power program and using and trend about spinning reserve power in Korea.
S. Schulze
2010-01-01
The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET) – an aspect of the social cognitive theory (SCT). Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basi...
Benchmark calculations for fusion blanket development
International Nuclear Information System (INIS)
Sawan, M.E.; Cheng, E.T.
1985-01-01
Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li/sub 17/Pb/sub 83/ and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the TBR to group structure and weighting spectrum increases and Li enrichment decrease with up to 20% discrepancies for thin natural Li/sub 17/Pb/sub 83/ blankets
Benchmark calculations for fusion blanket development
International Nuclear Information System (INIS)
Sawan, M.L.; Cheng, E.T.
1986-01-01
Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li 17 Pb 83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li 17 Pb 83 blankets. (author)
Feasibility study for core protection calculator development
International Nuclear Information System (INIS)
In, W. K.; Han, J. B.
2003-06-01
This project confirmed the development feasibility of new digital core protection system and established development plan for ITOPS that can replace the CPC system. The development plan and implementation strategy for ITOPS proposed in this project will be useful to successfully develop advanced digital core protection system for the CPC replacement in KSNP plants. YGN units 3 and 4 are expected to replace the CPC system within next ten years and the other KSNP plants are followed. The localization model for advanced digital core protection system, ITOPS, is judged to upgrade the Common Q CPC system in both system configuration and algorithm performance and can reduce the cost for supply and maintenance. Hence, ITOPS is expected to be installed in new Korea nuclear power plants and also useful to export the associated technology in the future
Directory of Open Access Journals (Sweden)
S. Schulze
2010-07-01
Full Text Available The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET – an aspect of the social cognitive theory (SCT. Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basic principles. Firstly, institutions need to provide supportive environmental conditions that facilitate research selfefficacy. This implies a supportive and efficient collective system. The possible effects of performance ratings and reward systems at the institution also need to be considered. Secondly, mentoring needs to create opportunities for young researchers to experience successful learning as a result of appropriate action. To this end, mentees need to be involved in actual research projects in small groups. At the same time the mentor needs to facilitate skills development by coaching and encouragement. Thirdly, mentors need to encourage mentees to believe in their ability to successfully complete research projects. This implies encouraging positive emotional states, stimulating self-reflection and self-comparison with others in the group, giving positive evaluative feedback and being an intentional role model.
Linden, Melissa A; Meers, Grace M; Ruebel, Meghan L; Jenkins, Nathan T; Booth, Frank W; Laughlin, M Harold; Ibdah, Jamal A; Thyfault, John P; Rector, R Scott
2013-05-01
Physical activity-induced prevention of hepatic steatosis is maintained during short-term (7-day) transitions to an inactive state; however, whether these protective effects are present under a longer duration of physical inactivity is largely unknown. Here, we sought to determine whether previous physical activity had protective effects on hepatic steatosis and metabolic health following 4 wk of physical inactivity. Four-week old, hyperphagic, male Otsuka Long-Evans Tokushima fatty (OLETF) rats were randomly assigned to either a sedentary group for 16 wk (OLETF-SED), given access to running wheels for 16 wk with wheels locked 5 h (OLETF-WL5hr) or given access to running wheels for 12 wk with wheels locked 4 wk (OLETF-WL4wk) prior to death. Four weeks of physical inactivity caused hepatic steatosis development, but liver triglycerides remained 60% lower than OLETF-SED (P inactivity, whereas markers of fatty acid uptake and lipogenesis remained relatively suppressed following 4 wk of inactivity. In addition, 4 wk of inactivity caused a complete loss of activity-induced increases in serum IL-6 and reductions in regulated upon activation, normal T-cell expressed, and secreted (RANTES), and a partial loss in reductions in leptin, monocyte chemoattractant protein-1, and TNF-α. In conclusion, 4 wk of physical inactivity does not result in a complete loss in physical activity-induced benefits but does cause deterioration in the liver phenotype and overall metabolic health in hyperphagic OLETF rats.
DEFF Research Database (Denmark)
Iaia, F. M.; Perez-Gomez, J.; Nordsborg, Nikolai
2010-01-01
The present study examined how metabolic response and work capacity are affected by previous exhaustive exercise. Seven subjects performed an exhaustive cycle exercise ( approximately 130%-max; EX2) after warm-up (CON) and 2 min after an exhaustive bout at a very high (VH; approximately 30 s), high...
Development of codes for physical calculations of WWER
International Nuclear Information System (INIS)
Novikov, A.N.
2000-01-01
A package of codes for physical calculations of WWER reactors, used at the RRC 'Kurchatov Institute' is discussed including the purpose of these codes, approximations used, degree of data verification, possibilities of automation of calculations and presentation of results, trends of further development of the codes. (Authors)
Development of the multistep compound process calculation code
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan)
1998-03-01
A program `cmc` has been developed to calculate the multistep compound (MSC) process by Feshback-Kerman-Koonin. A radial overlap integral in the transition matrix element is calculated microscopically, and comparisons are made for neutron induced {sup 93}Nb reactions. Strengths of the two-body interaction V{sub 0} are estimated from the total MSC cross sections. (author)
Recent developments in high-spin calculations in atomic nuclei
International Nuclear Information System (INIS)
Szymanski, Z.
1980-01-01
A brief introduction to the recent achievements in the high-spin domain in nuclear physics is given. Results of the calculations in highly developed rotational bands in deformed nuclei, as well as the calculations in the structure of the yrast isomers are presented. The calculations fail in two aspects: local minima in the yrast line are not confirmed experimentally, the overall slope of the yrast line in 152 Dy is considerably overestimated. The calculations of the yrast line with new Woods-Saxon parameters are now in progress. The parameters are chosen to reproduce the large gap in the levels at proton number Z=64. (M.H.)
On the development of protein pKa calculation algorithms
Carstensen, Tommy; Farrell, Damien; Huang, Yong; Baker, Nathan A.; Nielsen, Jens Erik
2011-01-01
Protein pKa calculation methods are developed partly to provide fast non-experimental estimates of the ionization constants of protein side chains. However, the most significant reason for developing such methods is that a good pKa calculation method is presumed to provide an accurate physical model of protein electrostatics, which can be applied in methods for drug design, protein design and other structure-based energy calculation methods. We explore the validity of this presumption by simulating the development of a pKa calculation method using artificial experimental data derived from a human-defined physical reality. We examine the ability of an RMSD-guided development protocol to retrieve the correct (artificial) physical reality and find that a rugged optimization landscape and a huge parameter space prevent the identification of the correct physical reality. We examine the importance of the training set in developing pKa calculation methods and investigate the effect of experimental noise on our ability to identify the correct physical reality, and find that both effects have a significant and detrimental impact on the physical reality of the optimal model identified. Our findings are of relevance to all structure-based methods for protein energy calculations and simulation, and have large implications for all types of current pKa calculation methods. Our analysis furthermore suggests that careful and extensive validation on many types of experimental data can go some way in making current models more realistic. PMID:21744393
Domínguez-Vigo, P; Álvarez-Silvares, E; Alves-Pérez M T; Domínguez-Sánchez, J; González-González, A
2016-04-01
Gestational diabetes is considered a variant of diabetes mellitus as they share a common pathophysiological basis: insulin resistance in target and insufficient secretion of it by pancreatic p-cell bodies. Pregnancy is a unique physiological situation provides an opportunity to identify future risk of diabetes mellitus. To determine the long-term incidence of diabetes mellitus in women who have previously been diagnosed with gestational diabetes and identifying clinical risk factors for developing the same. nested case-control cohort study. 671 patients between 1996 and 2009 were diagnosed with gestational diabetes were selected. The incidence of diabetes mellitus was estimated and 2 subgroups were formed: Group A or cases: women who develop diabetes mellitus after diagnosis of gestational diabetes. Group B or control: random sample of 71 women with a history of gestational diabetes in the follow-up period remained normoglycemic. Both groups were studied up to 18 years postpartum. By studying Kaplan Meier survival of the influence of different gestational variables it was obtained in the later development of diabetes mellitus with time parameter and COX models for categorical variables were applied. Significant variables were studied by multivariate Cox analysis. In all analyzes the Hazard ratio was calculated with confidence intervals at 95%. The incidence of diabetes mellitus was 10.3% in patients with a history of gestational diabetes. They were identified as risk factors in the index pregnancy to later development of diabetes mellitus: greater than 35 and younger than 27 years maternal age, BMI greater than 30 kg/m2, hypertensive disorders of pregnancy, insulin therapy, poor metabolic control and more than a complicated pregnancy with gestational diabetes. Clinical factors have been identified in the pregnancy complicated by gestational diabetes that determine a higher probability of progression to diabetes mellitus in the medium and long term.
Recent developments in nuclear reaction theories and calculations
International Nuclear Information System (INIS)
Gardner, D.G.
1980-01-01
A brief review is given of some recent developments in the fields of optical model potentials; level densities; and statistical model, precompound, and direct reaction codes and calculations. Significant developments have occurred in all of these fields since the 1977 Conference on Neutron Cross Sections, which will greatly enhance the ability to calculate high-energy neutron-induced reaction cross sections in the next few years. 11 figures, 3 tables
The development and validation of control rod calculation methods
International Nuclear Information System (INIS)
Rowlands, J.L.; Sweet, D.W.; Franklin, B.M.
1979-01-01
Fission rate distributions have been measured in the zero power critical facility, ZEBRA, for a series of eight different arrays of boron carbide control rods. Diffusion theory calculations have been compared with these measurements. The normalised fission rates differ by up to about 30% in some regions, between the different arrays, and these differences are well predicted by the calculations. A development has been made to a method used to produce homogenised cross sections for lattice regions containing control rods. Calculations show that the method also reproduces the reaction rate within the rod and the fission rate dip at the surface of the rod in satisfactory agreement with the more accurate calculations which represent the fine structure of the rod. A comparison between diffusion theory and transport theory calculations of control rod reactivity worths in the CDFR shows that for the standard design method the finite mesh approximation and the difference between diffusion theory and transport theory (the transport correction) tend to cancel and result in corrections to be applied to the standard mesh diffusion theory calculations of about +- 2% or less. This result applies for mesh centred finite difference diffusion theory codes and for the arrays of natural boron carbide control rods for which the calculations were made. Improvements have also been made to the effective diffusion coefficients used in diffusion theory calculations for control rod followers and these give satisfactory agreement with transport theory calculations. (U.K.)
Sustainable development, tourism and territory. Previous elements towards a systemic approach
Directory of Open Access Journals (Sweden)
Pierre TORRENTE
2009-01-01
Full Text Available Today, tourism is one of the major challenges for many countries and territories. The balance of payments, an ever-increasing number of visitors and the significant development of the tourism offer clearly illustrate the booming trend in this sector. This macro-economic approach is often used by the organizations in charge of tourism, WTO for instance. Quantitative assessments which consider the satisfaction of customers’ needs as an end in itself have prevailed both in tourism development schemes and in prospective approaches since the sixties.
Development and validation of a nodal code for core calculation
International Nuclear Information System (INIS)
Nowakowski, Pedro Mariano
2004-01-01
The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency
International Nuclear Information System (INIS)
Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi
2004-01-01
This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)
Developing a verification tool for calculations dissemination through COBAYA
International Nuclear Information System (INIS)
Sabater Alcaraz, A.; Rucabado Rucabado, G.; Cuervo Gomez, D.; Garcia Herranz, N.
2014-01-01
The development of a software tool that automates the comparison of results with previous versions of the code and results using models of accuracy is crucial for implementing the code new functionalities. The work presented here has been the generation the mentioned tool and the set of reference cases that have set up the afore mentioned matrix. (Author)
Development and application of advanced methods for electronic structure calculations
DEFF Research Database (Denmark)
Schmidt, Per Simmendefeldt
. For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...
Development of throughflow calculation code for axial flow compressors
International Nuclear Information System (INIS)
Kim, Ji Hwan; Kim, Hyeun Min; No, Hee Cheon
2005-01-01
The power conversion systems of the current HTGRs are based on closed Brayton cycle and major concern is thermodynamic performance of the axial flow helium gas turbines. Particularly, the helium compressor has some unique design challenges compared to the air-breathing compressor such as high hub-to-tip ratios throughout the machine and a large number of stages due to the physical property of the helium and thermodynamic cycle. Therefore, it is necessary to develop a design and analysis code for helium compressor that can estimate the design point and off-design performance accurately. KAIST nuclear system laboratory has developed a compressor design and analysis code by means of throughflow calculation and several loss models. This paper presents the outline of the development of a throughflow calculation code and its verification results
Development of calculation system for decontamination effect, CDE
International Nuclear Information System (INIS)
Satoh, Daiki; Kojima, Kensuke; Oizumi, Akito; Matsuda, Norihiro; Kugo, Teruhiko; Sakamoto, Yukio; Endo, Akira; Okajima, Shigeaki
2012-08-01
Large amount of radionuclides had been discharged to environment in the accident of the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant caused by the 2011 off the Pacific coast of Tohoku Earthquake. The radionuclides deposited on the ground elevate dose rates in large area around the Fukushima site. For the reduction of the dose rate and recovery of the environment, decontamination based on a rational plan is an important and urgent subject. A computer software, named CDE (Calculation system for Decontamination Effect), has been developed to support planning the decontamination. CDE calculates the dose rates before the decontamination by using a database of dose contributions by radioactive cesium. The decontamination factor is utilized in the prediction of the dose rates after the decontamination, and dose rate reduction factor is evaluated to express the decontamination effect. The results are visualized on the image of a target zone with color map. In this paper, the overview of the software and the dose calculation method are reported. The comparison with the calculation results by a three-dimensional radiation transport code PHITS is also presented. In addition, the source code of the dose calculation program and user's manual of CDE are attached as appendices. (author)
Recent progress and developments in LWR-PV calculational methodology
International Nuclear Information System (INIS)
Maerker, R.E.; Broadhead, B.L.; Williams, M.L.
1984-01-01
New and improved techniques for calculating beltline surveillance activities and pressure vessel fluences with reduced uncertainties have recently been developed. These techniques involve the combining of monitored in-core power data with diffusion theory calculated pin-by-pin data to yield absolute source distributions in R-THETA and R-Z geometries suitable for discrete ordinate transport calculations. Effects of finite core height, whenever necessary, can be considered by the use of a three-dimensional fluence rate synthesis procedure. The effects of a time-dependent spatial source distribution may be readily evaluated by applying the concept of the adjoint function, and simplifying the procedure to such a degree that only one forward and one adjoint calculation are required to yield all the dosimeter activities for all beltline surveillance locations at once. The addition of several more adjoint calculations using various fluence rates as responses is all that is needed to determine all the pressure vessel group fluences for all beltline locations for an arbitrary source distribution
Development and validation of continuous energy adjoint-weighted calculations
International Nuclear Information System (INIS)
Truchet, Guillaume
2015-01-01
A key issue in nowadays Reactor Physics is to propagate input data uncertainties (e.g. nuclear data, manufacturing tolerances, etc.) to nuclear codes final results (e.g. k(eff), reaction rate, etc.). In order to propagate uncertainties, one typically assumes small variations around a reference and evaluates at first sensitivity profiles. Problem is that nuclear Monte Carlo codes are not - or were not until very recently - able to straightforwardly process such sensitivity profiles, even thought they are considered as reference codes. First goal of this PhD thesis is to implement a method to calculate k(eff)-sensitivity profiles to nuclear data or any perturbations in TRIPOLI-4, the CEA Monte Carlo neutrons transport code. To achieve such a goal, a method has first been developed to calculate the adjoint flux using the Iterated Fission Probability (IFP) principle that states that the adjoint flux at a given phase space point is proportional to the neutron importance in a just critical core after several power iterations. Thanks to our developments, it has been made possible, for the fist time, to calculate the continuous adjoint flux for an actual and complete reactor core configuration. From that new feature, we have elaborated a new method able to forwardly apply the exact perturbation theory in Monte Carlo codes. Exact perturbation theory does not rely on small variations which makes possible to calculate very complex experiments. Finally and after a deep analysis of the IFP method, this PhD thesis also reproduces and improves an already used method to calculate adjoint weighted kinetic parameters as well as reference migrations areas. (author) [fr
New Products and Technologies, Based on Calculations Developed Areas
Directory of Open Access Journals (Sweden)
Gheorghe Vertan
2013-09-01
Full Text Available Following statistics, currently prosperous and have high GDP / capita, only countries that have and fructify intensively large natural resources and/or produce and export products massive based on patented inventions accordingly. Without great natural wealth and the lowest GDP / capita in the EU, Romania will prosper only with such products. Starting from the top experience in the country, some patented, can develop new and competitive technologies and patentable and exportable products, based on exact calculations of developed areas, such as that double shells welded assemblies and plating of ships' propellers and blade pump and hydraulic turbines.
Development and verification of Monte Carlo burnup calculation system
International Nuclear Information System (INIS)
Ando, Yoshihira; Yoshioka, Kenichi; Mitsuhashi, Ishi; Sakurada, Koichi; Sakurai, Shungo
2003-01-01
Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)
WIPP Compliance Certification Application calculations parameters. Part 1: Parameter development
International Nuclear Information System (INIS)
Howarth, S.M.
1997-01-01
The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program; the parameters were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probabilistic codes frequently require input values that define a statistical distribution for each parameter. Developing parameter distributions begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. The development of the parameter distribution values may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling of lab or field data to fit code grid mesh sizes, or other transformation. Parameter development and documentation of the development process were very complicated, especially for those parameters based on empirical data; they required the integration of information from Sandia National Laboratories (SNL) code sponsors, parameter task leaders (PTLs), performance assessment analysts (PAAs), and experimental principal investigators (PIs). This paper, Part 1 of two parts, contains a discussion of the parameter development process, roles and responsibilities, and lessons learned. Part 2 will discuss parameter documentation, traceability and retrievability, and lessons learned from related audits and reviews
Development of a computational methodology for internal dose calculations
International Nuclear Information System (INIS)
Yoriyaz, Helio
2000-01-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phantoms of Snyder and Cristy-Eckerman. Although the differences in the organ's geometry between the phantoms are quite evident, the results demonstrate small discrepancies, however, in some cases, considerable discrepancies were found due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the Zubal segmented phantom, which is not considered in the mathematical phantom. This effect was quite evident for organ cross-irradiation from electrons. With the determination of spatial dose distribution it was demonstrated the possibility of evaluation of more detailed doses data than those obtained in conventional methods, which will give important information for the clinical analysis in therapeutic procedures and in radiobiologic studies of the human body. (author)
Historical trend of nuclear matter calculation and its recent developments
International Nuclear Information System (INIS)
Kohno, Michio
2006-01-01
He guide line to understand nuclear properties on the basis of nuclear force was started in the 1950's by the Brueckner theory. The theory established the fundamental framework to formulate the picture to consider both the two nucleon and tensor correlations as well as Pauli effect inside the nuclei. In the 1960's the theory was developed to obtain ground state energy on the perturbation many-body theory. The growth and refinement of the Brueckner theory in the 1970's and after are overviewed and the computer code developments in the 1980's are mentioned. Concerning the many-body correlation problem Italian group has calculated up to three-body correlations in the Brueckner theory. At present, effective interaction nuclear theory is coming into a new level and actively studied by the introduction of low momentum interaction based on the renormalization group theory, by full application of the coupled cluster method, by the application of Skyrme Hartree-Fock method in wide range and by the reconsideration of the energy density functional method in relation to the relativistic mean field method. Owing to the recent remarkable progress of computers, calculations which were impossible to be executed in old days are now done rather easily. (S. Funahashi)
Recent Developments in No-Core Shell-Model Calculations
International Nuclear Information System (INIS)
Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.
2009-01-01
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Recent Developments in No-Core Shell-Model Calculations
Energy Technology Data Exchange (ETDEWEB)
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Development of new methodology for dose calculation in photographic dosimetry
International Nuclear Information System (INIS)
Daltro, T.F.L.
1994-01-01
A new methodology for equivalent dose calculations has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neutral network. The research was orientated towards the optimization of the whole set of parameters involves in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neutral network was performed by taking the readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation. (author)
Application of a recently developed geotechnical carbon calculator in Europe
Directory of Open Access Journals (Sweden)
Sara Rios
2016-07-01
Full Text Available Recent research regarding soil stabilization has been increasingly concerned with environmental performance. The present paper applies the newly developed CO2(eq geotechnical calculator, created by the European Federation of Foundation Contractors and the The Deep Foundations Institute, to assess the behavior of three different binders used in the construction of cutter-soil mixing columns, which formed an embankment/bridge transition wedge. The binders were based on ordinary Portland cement, on a blast furnace slag and cement blend and alkali activated fly ash. Results show that the last two binders are significabtly more effective, in terms of environmental performance, than the more traditional cement-based binder. Although the blast furnace slag cement, at this early stage of the geopolymeric binders, appears as the most interesting option, the fact that the CO2/cost ratio of both options is very similar stands out.
Development of new methodology for dose calculation in photographic dosimetry
International Nuclear Information System (INIS)
Daltro, T.F.L.; Campos, L.L.
1994-01-01
A new methodology for equivalent dose calculation has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neural network. The research was oriented towards the optimization of the whole set of parameters involved in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neural network was performed by taking readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation
Development of the code package KASKAD for calculations of WWERs
International Nuclear Information System (INIS)
Bolobov, P.A.; Lazarenko, A.P.; Tomilov, M.Ju.
2008-01-01
The new version of software package for neutron calculation of WWER cores KASKAD 2007 consists of some calculating and service modules, which are integrated in the common framework. The package is based on the old version, which was expanded with some new functions and the new calculating modules, such as: -the BIPR-2007 code is the new one which performs calculation of power distribution in three-dimensional geometry for 2-group neutron diffusion calculation. This code is based on the BIPR-8KN model, provides all possibilities of BIPR-7A code and uses the same input data; -the PERMAK-2007 code is pin-by-pin few-group multilayer and 3-D code for neutron diffusion calculation; -graphical user interface for input data preparation of the TVS-M code. The report also includes some calculation results obtained with modified version of the KASKAD 2007 package. (Authors)
Papuga, M Owen; Burke, Jeanmarie R
2011-02-01
An ink pad and paper, pressure-sensitive platforms, and photography have previously been used to collect footprint data used in clinical assessment. Digital scanners have been widely used more recently to collect such data. The purpose of this study was to evaluate the intra- and interrater reliability of a flatbed digital image scanning technology to capture footprint data. This study used a repeated-measures design on 32 (16 male 16 female) healthy subjects. The following measured indices of footprint were recorded from 2-dimensional images of the plantar surface of the foot recorded with an Associate Platinum (Foot Levelers Inc, Roanoke, VA) digital foot scanner: Staheli index, Chippaux-Smirak index, arch angle, and arch index. Intraclass correlation coefficient (ICC) values were calculated to evaluate intrarater, interday, and interclinician reliability. The ICC values for intrarater reliability were greater than or equal to .817, indicating an excellent level of reproducibility in assessing the collected images. Analyses of variance revealed that there were no significant differences between raters for each index (P > .05). The ICC values also indicated excellent reliability (.881-.971) between days and clinicians in all but one of the indices of footprint, arch angle (.689), with good reliability between clinicians. The full-factorial analysis of variance model did not reveal any interaction effects (P > .05), which indicated that indices of footprint were not changing across days and clinicians. Scanning technology used in this study demonstrated good intra- and interrater reliability measurements of footprint indices, as demonstrated by high ICC values. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin; Strawn, Laura K
2016-02-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin
2015-01-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280
Development of Japanese voxel models and their application to organ dose calculation
International Nuclear Information System (INIS)
Sato, Kaoru; Endo, Akira; Saito, Kimiaki
2007-01-01
Three Japanese voxel (volume pixel) phantoms in supine and upright postures, which are consisted of about 1 mm 3 size voxels, have been developed on the basis of computed tomography (CT) images of healthy Japanese adult male and female volunteers. Their body structures are reproduced more realistically in comparison with most existing voxel phantoms. Organ doses due to internal or external exposures were calculated using the developed phantoms. In estimation of radiation dose from radionuclides incorporated into body, specific absorbed fractions (SAFs) for low energy photon were significantly influenced by the changes in postures. In estimation of organ doses due to external exposures, the doses of some organs of the developed phantom were calculated and were compared with those of a previous Japanese voxel phantom (voxel size: 0.98x0.98x10 mm 3 ) and the reference values of ICRP Publication 74. (author)
Karadimitriou, Nikos
2013-05-01
This paper explores the transformations of the housebuilding industry under the policy requirement to build on previously developed land (PDL). This requirement was a key lever in promoting the sustainable urban development agenda of UK governments from the early 1990s to 2010 and has survived albeit somewhat relaxed and permutated in the latest National Planning Policy Framework (NPPF). The paper therefore looks at the way in which the policy push towards densification and mixed use affected housebuilders' business strategy and practices and their ability to cope with the 2007 downturn of the housing market and its aftermath. It also points out the eventual feedback of some of these practices into planning policy. Following the gradual shift of British urban policy focus towards sustainability which started in the early 1990s, new configurations of actors, new skills, strategies and approaches to managing risk emerged in property development and housebuilding. There were at least two ways in which housebuilders could have responded to the requirements of developing long term mixed use high density projects on PDL. One way was to develop new products and to employ practices and combinations of practices involving phasing, a flexible approach to planning applications and innovative production methods. Alternatively, they could approach PDL development as a temporary turn of policy or view mixed use high density schemes as a niche market to be explored without drastically overhauling the business model of the entire firm. These transformations of the UK housebuilding sector were unfolding during a long period of buoyancy in the housing market which came to an end in 2007. Very little is known both about how housebuilder strategies and production practices evolved during the boom years as well as about how these firms coped with the effects of the 2007 market downturn. The paper draws on published data (company annual reports, government statistics) and primary
Karadimitriou, Nikos
2013-01-01
This paper explores the transformations of the housebuilding industry under the policy requirement to build on previously developed land (PDL). This requirement was a key lever in promoting the sustainable urban development agenda of UK governments from the early 1990s to 2010 and has survived albeit somewhat relaxed and permutated in the latest National Planning Policy Framework (NPPF). The paper therefore looks at the way in which the policy push towards densification and mixed use affected housebuilders’ business strategy and practices and their ability to cope with the 2007 downturn of the housing market and its aftermath. It also points out the eventual feedback of some of these practices into planning policy. Following the gradual shift of British urban policy focus towards sustainability which started in the early 1990s, new configurations of actors, new skills, strategies and approaches to managing risk emerged in property development and housebuilding. There were at least two ways in which housebuilders could have responded to the requirements of developing long term mixed use high density projects on PDL. One way was to develop new products and to employ practices and combinations of practices involving phasing, a flexible approach to planning applications and innovative production methods. Alternatively, they could approach PDL development as a temporary turn of policy or view mixed use high density schemes as a niche market to be explored without drastically overhauling the business model of the entire firm. These transformations of the UK housebuilding sector were unfolding during a long period of buoyancy in the housing market which came to an end in 2007. Very little is known both about how housebuilder strategies and production practices evolved during the boom years as well as about how these firms coped with the effects of the 2007 market downturn. The paper draws on published data (company annual reports, government statistics) and primary
Seo, Yu Ri; Kim, Jong Sung; Kim, Sung Soo; Yoon, Seok Joon; Suh, Won Yoon; Youn, Kwangmi
2016-01-01
This study aimed to develop a simple tool for identifying alcohol use disorders in female Korean drinkers from previous questionnaires. This research was conducted on 400 women who consumed at least one alcoholic drink during the past month and visited the health promotion center at Chungnam National University Hospital between June 2013 to May 2014. Drinking habits and alcohol use disorders were assessed by structured interviews using the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition diagnostic criteria. The subjects were also asked to answer the Alcohol Use Disorders Identification Test (AUDIT), AUDIT-Consumption, CAGE (Cut down, Annoyed, Guilty, Eye-opener), TWEAK (Tolerance, Worried, Eye-opener, Amnesia, Kut down), TACE (Tolerance, Annoyed, Cut down, Eye-opener), and NET (Normal drinker, Eye-opener, Tolerance) questionnaires. The area under receiver operating characteristic (AUROC) of each question of the questionnaires on alcohol use disorders was assessed. After combining two questions with the largest AUROC, it was compared to other previous questionnaires. Among the 400 subjects, 58 (14.5%) were identified as having an alcohol use disorder. Two questions with the largest AUROC were question no. 7 in AUDIT, "How often during the last year have you had a feeling of guilt or remorse after drinking?" and question no. 5 in AUDIT, "How often during the past year have you failed to do what was normally expected from you because of drinking?" with an AUROC (95% confidence interval [CI]) of 0.886 (0.850-0.915) and 0.862 (0.824-0.894), respectively. The AUROC (95% CI) of the combination of the two questions was 0.958 (0.934-0.976) with no significant difference as compared to the existing AUDIT with the largest AUROC. The above results suggest that the simple tool consisting of questions no. 5 and no. 7 in AUDIT is useful in identifying alcohol use disorders in Korean female drinkers.
Development of nuclear models for higher energy calculations
International Nuclear Information System (INIS)
Bozoian, M.; Siciliano, E.R.; Smith, R.D.
1988-01-01
Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs
Development of Calculation Algorithm for ECCS Kinematic Shock
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung-Chan; Yoon, Duk-Joo; Ha, Sang-Jun [KHNP-CRI, Daejeon (Korea, Republic of)
2014-10-15
The void fraction of inverted U-pipes in front of SI(Safety Injection) pumps impact on the pipe system of ECCS(Emergency Core Cooling Systems). This phenomena is called as 'Kinematic Shock'. The purpose of this paper is to achieve the more exactly calculation when the kinematic shock is calculated by simplified equation. The behavior of the void packet of the ECCS pipes is illustrated by the simplified (other name is kinematic shock equation).. The kinematic shock is defined as the depth of total length of void clusters in the pipes of ECCS when the void cluster is continually reached along the part of pipes in vertical direction. In this paper, the simplified equation is evaluated by comparing calculation error each other.]. The more exact methods of calculating the depth of the kinematic shock in ECCS is achieved. The error of kinematic shock calculation is strongly depended on the calculation search gap and the order of Taylor's expansion. From this study, to select the suitable search gap and the suitable calculation order, differential root method, secant method, and Taylor's expansion form are compared one another.
Successive collision calculation of resonance absorption (AWBA Development Program)
International Nuclear Information System (INIS)
Schmidt, E.; Eisenhart, L.D.
1980-07-01
The successive collision method for calculating resonance absorption solves numerically the neutron slowing down problem in reactor lattices. A discrete energy mesh is used with cross sections taken from a Monte Carlo library. The major physical approximations used are isotropic scattering in both the laboratory and center-of-mass systems. This procedure is intended for day-to-day analysis calculations and has been incorporated into the current version of MUFT. The calculational model used for the analysis of the nuclear performance of LWBR includes this resonance absorption procedure. Test comparisons of results with RCPO1 give very good agreement
2010-07-01
... those goals and objectives, the Secretary may— (1) Decide not to fund the applicant; or (2) Fund the..., or is making substantial progress toward fulfilling, the goals and objectives of the previous grant... did not fulfill the goals and objectives of a previous grant or is not making substantial progress...
2010-07-01
... objectives, the Secretary may— (1) Decide not to fund the applicant; or (2) Fund the applicant but impose... progress toward fulfilling, the goals and objectives of the previous grant, including, but not limited to... the goals and objectives of a previous grant or is not making substantial progress towards fulfilling...
Development of internal dose calculation programing via food ingestion
International Nuclear Information System (INIS)
Kim, H. J.; Lee, W. K.; Lee, M. S.
1998-01-01
Most of dose for public via ingestion pathway is calculating for considering several pathways; which start from radioactive material released from a nuclear power plant to diffusion and migration. But in order to model these complicate pathways mathematically, some assumptions are essential and lots of input data related with pathways are demanded. Since there is uncertainty related with environment in these assumptions and input data, the accuracy of dose calculating result is not reliable. To reduce, therefore, these uncertain assumptions and inputs, this paper presents exposure dose calculating method using the activity of environmental sample detected in any pathway. Application of dose calculation is aim at peoples around KORI nuclear power plant and the value that is used to dose conversion factor recommended in ICRP Publ. 60
Development of a software package for solid-angle calculations using the Monte Carlo method
International Nuclear Information System (INIS)
Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai
2014-01-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C ++ , has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4. -- Highlights: • This software package (SAC) can give accurate solid-angle values. • SAC calculate solid angles using the Monte Carlo method and it has higher computation speed than Geant4. • A simple but effective variance reduction technique which was put forward by the authors has been applied in SAC. • A visualization function and a graphical user interface are also integrated in SAC
New developments in the calculation of double beta decay
International Nuclear Information System (INIS)
Engel, J.
1990-01-01
I review recent work on computing double beta decay rates. After a discussion of shell model and Quasiparticle Random Phase calculations, I argue for a model based on the notion of generalized seniority that combines the advantages of both earlier approaches. (orig.)
International Nuclear Information System (INIS)
Palomares Delgado, F.; Vera Palomino, J.; Petrement Eguiluz, J. C.
1964-01-01
The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs
Development of new methodology for dose calculation in photographic dosimetry
International Nuclear Information System (INIS)
Daltro, T.F.L.; Campos, L.L.; Perez, H.E.B.
1996-01-01
The personal dosemeter system of IPEN is based on film dosimetry. Personal doses at IPEN are mainly due to X or gamma radiation. The use of personal photographic dosemeters involves two steps: firstly, data acquisition including their evaluation with respect to the calibration quantity and secondly, the interpretation of the data in terms of effective dose. The effective dose was calculated using artificial intelligence techniques by means of neural network. The learning of the neural network was performed by taking the readings of optical density as a function of incident energy and exposure from the calibration curve. The obtained output in the daily grind is the mean effective energy and the effective dose. (author)
Development of a core follow calculational system for research reactors
International Nuclear Information System (INIS)
Muller, E.Z.; Ball, G.; Joubert, W.R.; Schutte, H.C.; Stoker, C.C.; Reitsma, F.
1994-01-01
Over the last few years a comprehensive Pressurized Water Reactor and Materials Testing Reactor core analysis code system based on modern reactor physics methods has been under development by the Atomic Energy Corporation of South Africa. This system, known as OSCAR-3, will incorporate a customized graphical user interface and data management system to ensure user-friendliness and good quality control. The system has now reached the stage of development where it can be used for practical MTR core analyses. This paper describes the current capabilities of the components of the OSCAR-3 package, their integration within the package, and outlines future developments. 10 refs., 1 tab., 1 fig
Development of methods for burn-up calculations for LWR's
International Nuclear Information System (INIS)
Jaschik, W.
1978-01-01
This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de
International Nuclear Information System (INIS)
Kim, Jae Cheon; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Soon Young; Shin, Chang Ho; Kim, Jong Kyung
2007-01-01
EASYQAD had been previously developed by using MATLAB GUI (Graphical User Interface) in order to perform conveniently gamma and neutron shielding calculations at Hanyang University. It had been completed as version α of radiation shielding analysis code. In this study, EASYQAD was upgraded to version β with many additional functions and more user-friendly graphical interfaces. For general users to run it on Windows XP environment without any MATLAB installation, this version was developed into a standalone code system
Recently developed methods in neutral-particle transport calculations: overview
International Nuclear Information System (INIS)
Alcouffe, R.E.
1982-01-01
It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations
Keipert, Peter E
2017-01-01
Historically, hemoglobin-based oxygen carriers (HBOCs) were being developed as "blood substitutes," despite their transient circulatory half-life (~ 24 h) vs. transfused red blood cells (RBCs). More recently, HBOC commercial development focused on "oxygen therapeutic" indications to provide a temporary oxygenation bridge until medical or surgical interventions (including RBC transfusion, if required) can be initiated. This included the early trauma trials with HemAssist ® (BAXTER), Hemopure ® (BIOPURE) and PolyHeme ® (NORTHFIELD) for resuscitating hypotensive shock. These trials all failed due to safety concerns (e.g., cardiac events, mortality) and certain protocol design limitations. In 2008 the Food and Drug Administration (FDA) put all HBOC trials in the US on clinical hold due to the unfavorable benefit:risk profile demonstrated by various HBOCs in different clinical studies in a meta-analysis published by Natanson et al. (2008). During standard resuscitation in trauma, organ dysfunction and failure can occur due to ischemia in critical tissues, which can be detected by the degree of lactic acidosis. SANGART'S Phase 2 trauma program with MP4OX therefore added lactate >5 mmol/L as an inclusion criterion to enroll patients who had lost sufficient blood to cause a tissue oxygen debt. This was key to the successful conduct of their Phase 2 program (ex-US, from 2009 to 2012) to evaluate MP4OX as an adjunct to standard fluid resuscitation and transfusion of RBCs. In 2013, SANGART shared their Phase 2b results with the FDA, and succeeded in getting the FDA to agree that a planned Phase 2c higher dose comparison study of MP4OX in trauma could include clinical sites in the US. Unfortunately, SANGART failed to secure new funding and was forced to terminate development and operations in Dec 2013, even though a regulatory path forward with FDA approval to proceed in trauma had been achieved.
Development of a reference scheme for MOX lattice physics calculations
International Nuclear Information System (INIS)
Finck, P.J.; Stenberg, C.G.; Roy, R.
1998-01-01
The US program to dispose of weapons-grade Pu could involve the irradiation of mixed-oxide (MOX) fuel assemblies in commercial light water reactors. This will require licensing acceptance because of the modifications to the core safety characteristics. In particular, core neutronics will be significantly modified, thus making it necessary to validate the standard suites of neutronics codes for that particular application. Validation criteria are still unclear, but it seems reasonable to expect that the same level of accuracy will be expected for MOX as that which has been achieved for UO 2 . Commercial lattice physics codes are invariably claimed to be accurate for MOX analysis but often lack independent confirmation of their performance on a representative experimental database. Argonne National Laboratory (ANL) has started implementing a public domain suite of codes to provide for a capability to perform independent assessments of MOX core analyses. The DRAGON lattice code was chosen, and fine group ENDF/B-VI.04 and JEF-2.2 libraries have been developed. The objective of this work is to validate the DRAGON algorithms with respect to continuous-energy Monte Carlo for a suite of realistic UO 2 -MOX benchmark cases, with the aim of establishing a reference DRAGON scheme with a demonstrated high level of accuracy and no computing resource constraints. Using this scheme as a reference, future work will be devoted to obtaining simpler and less costly schemes that preserve accuracy as much as possible
Directory of Open Access Journals (Sweden)
А. С. Трякина
2017-10-01
Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in
Development of 3-D FBR heterogeneous core calculation method based on characteristics method
International Nuclear Information System (INIS)
Takeda, Toshikazu; Maruyama, Manabu; Hamada, Yuzuru; Nishi, Hiroshi; Ishibashi, Junichi; Kitano, Akihiro
2002-01-01
A new 3-D transport calculation method taking into account the heterogeneity of fuel assemblies has been developed by combining the characteristics method and the nodal transport method. In the axial direction the nodal transport method is applied, and the characteristics method is applied to take into account the radial heterogeneity of fuel assemblies. The numerical calculations have been performed to verify 2-D radial calculations of FBR assemblies and partial core calculations. Results are compared with the reference Monte-Carlo calculations. A good agreement has been achieved. It is shown that the present method has an advantage in calculating reaction rates in a small region
Development of Monte Carlo decay gamma-ray transport calculation system
Energy Technology Data Exchange (ETDEWEB)
Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)
2001-06-01
In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)
Development of Neutron and Photon Shielding Calculation System for Workstation (NPSS-W)
International Nuclear Information System (INIS)
Shimizu, Yoshio; Nojiri, Ichiro; Odajima, Akira; Sasaki, Toshihisa; Kurosawa, Naohiro
1998-01-01
In plant designs and safety evaluations of nuclear fuel cycle facilities, it is important to evaluate the direct radiation and the skyshine (air-scattered photon radiation) from facilities reasonably. The Neutron and Photon Shielding Calculation System for Workstation (NPSS-W) was developed. The NPSS-W can carry out the shielding calculations of the photon and the neutron easily and rapidly. The NPSS-W can easily calculate the radiation source intensity by ORIGEN-S and the dose equivalent rate by SN transport calculational codes, which are ANISN and DOT3.5. The NPSS-W consists of five modules, which named CAL1, CAL2, CAL3, CAL4, CAL5). Some kinds of shielding calculational systems are calculated. The user's manual of NPSS-W, the examples of calculations for each module and the output data are appended. (author)
Development of MATLAB Scripts for the Calculation of Thermal Manikin Regional Resistance Values
2016-01-01
TECHNICAL NOTE NO. TN16-1 DATE January 2016 ADA DEVELOPMENT OF MATLAB ® SCRIPTS FOR THE...USARIEM TECHNICAL NOTE TN16-1 DEVELOPMENT OF MATLAB ® SCRIPTS FOR THE CALCULATION OF THERMAL MANIKIN REGIONAL RESISTANCE VALUES...EXECUTIVE SUMMARY A software tool has been developed via MATLAB ® scripts to reduce the amount of repetitive and time-consuming calculations that are
Directory of Open Access Journals (Sweden)
In-Sung Cho
2017-11-01
Full Text Available The calculation of thermophysical properties of stainless steel castings and its application to casting simulation is discussed. It is considered that accurate thermophysical properties of the casting alloys are necessary for the valid simulation of the casting processes. Although previous thermophysical calculation software requires a specific knowledge of thermodynamics, the calculation method proposed in the present study does not require any special knowledge of thermodynamics, but only the information of compositions of the alloy. The proposed calculator is based on the CALPHAD approach for modeling of multi-component alloys, especially in stainless steels. The calculator proposed in the present study can calculate thermophysical properties of eight-component systems on an iron base alloy (Fe-C-Si-Cr-Mn-Ni-Cu-Mo, and several Korean standard stainless steel alloys were calculated and discussed. The calculator can evaluate the thermophysical properties of the alloys such as density, heat capacity, enthalpy, latent heat, etc, based on full Gibbs energy for each phase. It is expected the proposed method can help casting experts to devise the casting design and its process easily in the field of not only stainless steels but also other alloy systems such as aluminum, copper, zinc, etc.
International Nuclear Information System (INIS)
Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh
2013-01-01
It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. (author)
Development of the model for the stress calculation of fuel assembly under accident load
International Nuclear Information System (INIS)
Kim, Il Kon
1993-01-01
The finite element model for the stress calculation in guide thimbles of a fuel assembly (FA) under seismic and loss-of-coolant-accident (LOCA) load is developed. For the stress calculation of FA under accident load, at first the program MAIN is developed to select the worst bending mode shaped FA from core model. And then the model for the stress calculation of FA is developed by means of the finite element code. The calculated results of program MAIN are used as the kinematic constraints of the finite element model of a FA. Compared the calculated results of the stiffness of the finite element model of FA with the test results they have good agreements. (Author)
Energy Technology Data Exchange (ETDEWEB)
Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)
2002-07-01
Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)
International Nuclear Information System (INIS)
Cowley, W.L.
1996-01-01
The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms
Steposhina, S. V.; Fedonin, O. N.
2018-03-01
Dependencies that make it possible to automate the force calculation during surface plastic deformation (SPD) processing and, thus, to shorten the time for technological preparation of production have been developed.
Lappas, M; Jinks, D; Shub, A; Willcox, J C; Georgiou, H M; Permezel, M
2016-12-01
Women with previous gestational diabetes mellitus (GDM) are at greater risk of developing type 2 diabetes. In the general population, the insulin-like growth factor (IGF) system has been implicated in the development of type 2 diabetes. The aim of this study was to determine if circulating IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels 12weeks following a GDM pregnancy are associated with an increased risk of developing type 2 diabetes. IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels were measured in 98 normal glucose tolerant women, 12weeks following an index GDM pregnancy using enzyme immunoassay. Women were assessed for up to 10years for the development of overt type 2 diabetes. Among the 98 women with previous GDM, 21 (21%) developed diabetes during the median follow-up period of 8.5years. After adjusting for age and BMI, IGF-I and IGFBP-2 were significantly associated with the development of type 2 diabetes. In a clinical model of prediction of type 2 diabetes that included age, BMI, pregnancy fasting glucose and postnatal fasting glucose, the addition of IGF-I and IGFBP-2 resulted in an improvement in the net reclassification index of 17.8%. High postpartum IGF-I and low postpartum IGFBP-2 levels are a significant risk factor for the development of type 2 diabetes in women with a previous history of GDM. This is the first report that identifies IGF-I and IGFBP-2 as a potential biomarker for the prediction of type 2 diabetes in women with a history of GDM. Copyright Â© 2016 Elsevier Masson SAS. All rights reserved.
Development of Automatic Visceral Fat Volume Calculation Software for CT Volume Data
Directory of Open Access Journals (Sweden)
Mitsutaka Nemoto
2014-01-01
Full Text Available Objective. To develop automatic visceral fat volume calculation software for computed tomography (CT volume data and to evaluate its feasibility. Methods. A total of 24 sets of whole-body CT volume data and anthropometric measurements were obtained, with three sets for each of four BMI categories (under 20, 20 to 25, 25 to 30, and over 30 in both sexes. True visceral fat volumes were defined on the basis of manual segmentation of the whole-body CT volume data by an experienced radiologist. Software to automatically calculate visceral fat volumes was developed using a region segmentation technique based on morphological analysis with CT value threshold. Automatically calculated visceral fat volumes were evaluated in terms of the correlation coefficient with the true volumes and the error relative to the true volume. Results. Automatic visceral fat volume calculation results of all 24 data sets were obtained successfully and the average calculation time was 252.7 seconds/case. The correlation coefficients between the true visceral fat volume and the automatically calculated visceral fat volume were over 0.999. Conclusions. The newly developed software is feasible for calculating visceral fat volumes in a reasonable time and was proved to have high accuracy.
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Soon; Nam, Baek Il [Myongji University, Seoul (Korea, Republic of)
1995-08-01
We have developed computer programs to calculate 2-and 3-step selective resonant multiphoton ionization of atoms. Autoionization resonances in the final continuum can be put into account via B-Spline basis set method. 8 refs., 5 figs. (author)
Park, Jae Young; Yoon, Sungroh; Park, Man Sik; Choi, Hoon; Bae, Jae Hyun; Moon, Du Geon; Hong, Sung Kyu; Lee, Sang Eun; Park, Chanwang; Byun, Seok-Soo
2017-01-01
We developed the Korean Prostate Cancer Risk Calculator for High-Grade Prostate Cancer (KPCRC-HG) that predicts the probability of prostate cancer (PC) of Gleason score 7 or higher at the initial prostate biopsy in a Korean cohort (http://acl.snu.ac.kr/PCRC/RISC/). In addition, KPCRC-HG was validated and compared with internet-based Western risk calculators in a validation cohort. Using a logistic regression model, KPCRC-HG was developed based on the data from 602 previously unscreened Korean men who underwent initial prostate biopsies. Using 2,313 cases in a validation cohort, KPCRC-HG was compared with the European Randomized Study of Screening for PC Risk Calculator for high-grade cancer (ERSPCRC-HG) and the Prostate Cancer Prevention Trial Risk Calculator 2.0 for high-grade cancer (PCPTRC-HG). The predictive accuracy was assessed using the area under the receiver operating characteristic curve (AUC) and calibration plots. PC was detected in 172 (28.6%) men, 120 (19.9%) of whom had PC of Gleason score 7 or higher. Independent predictors included prostate-specific antigen levels, digital rectal examination findings, transrectal ultrasound findings, and prostate volume. The AUC of the KPCRC-HG (0.84) was higher than that of the PCPTRC-HG (0.79, pexternal validation. Calibration plots also revealed better performance of KPCRC-HG and ERSPCRC-HG than that of PCPTRC-HG on external validation. At a cut-off of 5% for KPCRC-HG, 253 of the 2,313 men (11%) would not have been biopsied, and 14 of the 614 PC cases with Gleason score 7 or higher (2%) would not have been diagnosed. KPCRC-HG is the first web-based high-grade prostate cancer prediction model in Korea. It had higher predictive accuracy than PCPTRC-HG in a Korean population and showed similar performance with ERSPCRC-HG in a Korean population. This prediction model could help avoid unnecessary biopsy and reduce overdiagnosis and overtreatment in clinical settings.
International Nuclear Information System (INIS)
Yang Wankui; Liu Yaoguang; Ma Jimin; Yang Xin; Wang Guanbo
2014-01-01
MCBMPI, a parallelized burnup calculation program, was developed. The program is modularized. Neutron transport calculation module employs the parallelized MCNP5 program MCNP5MPI, and burnup calculation module employs ORIGEN2, with the MPI parallel zone decomposition strategy. The program system only consists of MCNP5MPI and an interface subroutine. The interface subroutine achieves three main functions, i.e. zone decomposition, nuclide transferring and decaying, data exchanging with MCNP5MPI. Also, the program was verified with the Pressurized Water Reactor (PWR) cell burnup benchmark, the results showed that it's capable to apply the program to burnup calculation of multiple zones, and the computation efficiency could be significantly improved with the development of computer hardware. (authors)
International Nuclear Information System (INIS)
Cristy, M.
1980-01-01
Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade
Development of a BWR core burn-up calculation code COREBN-BWR
International Nuclear Information System (INIS)
Morimoto, Yuichi; Okumura, Keisuke
1992-05-01
In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)
Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN
International Nuclear Information System (INIS)
Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto
2001-01-01
Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)
Development, application and also modern condition of the calculated program Imitator of a reactor
International Nuclear Information System (INIS)
Aver'yanova, S.P.; Kovel', A.I.; Mamichev, V.V.; Filimonov, P.E.
2008-01-01
Features of the calculated program Imitator of a reactor (IR) for WWER-1000 operation simulation are discussed. It is noted that IR application at NPP provides for the project program (BIPR-7) on-line working. This offers a new means, on the one hand, for the efficient prediction and information support of operator, on the other hand, for the verification and development of calculated scheme and neutron-physical model of the WWER-1000 projection program [ru
Directory of Open Access Journals (Sweden)
S. A. Ivaschenko
2006-01-01
Full Text Available The program module has been developed on the basis of package of applied MATLAB programs which allows to calculate speed of coating sedimentation over the section of plasma stream taking into account magnetic field influence of a stabilizing coil, and also to correct the obtained value of sedimentation speed depending on the value of negative accelerating potential, arch current, technological gas pressure. The program resolves visualization of calculation results.
International Nuclear Information System (INIS)
Abbate, P.
1990-01-01
The CONVEC program developed for the thermohydraulic calculation under a natural convection regime for MTR type reactors is presented. The program is based on a stationary, one dimensional model of finite differences that allow to calculate the temperatures of cooler, cladding and fuel as well as the flow for a power level specified by the user. This model has been satisfactorily validated by a water cooling (liquid phase) and air system. (Author) [es
Development and application of the PBMR fission product release calculation model
International Nuclear Information System (INIS)
Merwe, J.J. van der; Clifford, I.
2008-01-01
At PBMR, long-lived fission product release from spherical fuel spheres is calculated using the German legacy software product GETTER. GETTER is a good tool when performing calculations for fuel spheres under controlled operating conditions, including irradiation tests and post-irradiation heat-up experiments. It has proved itself as a versatile reactor analysis tool, but is rather cumbersome when used for accident and sensitivity analysis. Developments in depressurized loss of forced cooling (DLOFC) accident analysis using GETTER led to the creation of FIssion Product RElease under accident (X) conditions (FIPREX), and later FIPREX-GETTER. FIPREX-GETTER is designed as a wrapper around GETTER so that calculations can be carried out for large numbers of fuel spheres with design and operating parameters that can be stochastically varied. This allows full Monte Carlo sensitivity analyses to be performed for representative cores containing many fuel spheres. The development process and application of FIPREX-GETTER in reactor analysis at PBMR is explained and the requirements for future developments of the code are discussed. Results are presented for a sample PBMR core design under normal operating conditions as well as a suite of design-base accident events, illustrating the functionality of FIPREX-GETTER. Monte Carlo sensitivity analysis principles are explained and presented for each calculation type. The plan and current status of verification and validation (V and V) is described. This is an important and necessary process for all software and calculation model development at PBMR
Development of a calculation methodology for potential flow over irregular topographies
International Nuclear Information System (INIS)
Del Carmen, Alejandra F.; Ferreri, Juan C.; Boutet, Luis I.
2003-01-01
Full text: Computer codes for the calculation of potential flow fields over surfaces with irregular topographies have been developed. The flows past multiple simple obstacles and past the neighboring region of the Embalse Nuclear Power Station have been considered. The codes developed allow the calculation of velocities quite near the surface. It, in turn, imposed developing high accuracy techniques. The Boundary Element Method, using a linear approximation on triangular plane elements and an analytical integration methodology has been applied. A particular and quite efficient technique for the calculation of the solid angle at each node vertex was also considered. The results so obtained will be applied to predict the dispersion of passive pollutants coming from discontinuous emissions. (authors)
Pavlova, Anna; Parks, Jerry M; Gumbart, James C
2018-02-13
Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co 3+ , Co 2+ , and Co 1+ , and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.
International Nuclear Information System (INIS)
Santamarina, A.
1991-01-01
A criticality-safety calculational scheme using the automated deterministic code system, APOLLO-BISTRO, has been developed. The cell/assembly code APOLLO is used mainly in LWR and HCR design calculations, and its validation spans a wide range of moderation ratios, including voided configurations. Its recent 99-group library and self-shielded cross-sections has been extensively qualified through critical experiments and PWR spent fuel analysis. The PIC self-shielding formalism enables a rigorous treatment of the fuel double heterogeneity in dissolver medium calculations. BISTRO is an optimized multidimensional SN code, part of the modular CCRR package used mainly in FBR calculations. The APOLLO-BISTRO scheme was applied to the 18 experimental benchmarks selected by the OECD/NEACRP Criticality Calculation Working Group. The Calculation-Experiment discrepancy was within ± 1% in ΔK/K and always looked consistent with the experimental uncertainty margin. In the critical experiments corresponding to a dissolver type benchmark, our tools computed a satisfactory Keff. In the VALDUC fuel storage experiments, with hafnium plates, the computed Keff ranged between 0.994 and 1.003 for the various watergaps spacing the fuel clusters from the absorber plates. The APOLLO-KENOEUR statistic calculational scheme, based on the same self-shielded multigroup library, supplied consistent results within 0.3% in ΔK/K. (Author)
New theoretical development for the calculating of physical properties of D2O
International Nuclear Information System (INIS)
Moreira, Osvaldo
2011-01-01
In this work we have developed a new method for calculating the physical properties of heavy water, D 2 O, using the Helmholtz free energy state function, A = U − T S, exclusively for this molecule. The state function has been calculated as ā = ā 0 +ā 1 (specific dimensionless values), where ā 0 is related to the properties of heavy water in gaseous state and ā 1 describes the liquid state. The canonical variables of the state function are absolute temperature and volume. To calculate the physical properties defining absolute pressure and temperature, here a variable change method was developed, based on the solution of a differential equation (function ζ) using numerical algorithms (scaling and Newton-Raphson). Physical quantities calculated are: density ϱ(specific volume υ), specific enthalpy h and entropy s. The results obtained agree completely with the values calculated by the National Institute of Standards and Technology (NIST). In this report it has also proposed an adjustment function to calculate the saturation absolute temperature of heavy water as a function of the pressure: T s (p) = exp[a·b(p)], where a is a vector of constant coefficients and b a vector function of pressure, using theoretical values and extending the wording proposed by the Oak Ridge National Laboratory. The new setting has an error less than 0.03%. (author)
Uher, Jana
2015-12-01
As science seeks to make generalisations, a science of individual peculiarities encounters intricate challenges. This article explores these challenges by applying the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) and by exploring taxonomic "personality" research as an example. Analyses of researchers' interpretations of the taxonomic "personality" models, constructs and data that have been generated in the field reveal widespread erroneous assumptions about the abilities of previous methodologies to appropriately represent individual-specificity in the targeted phenomena. These assumptions, rooted in everyday thinking, fail to consider that individual-specificity and others' minds cannot be directly perceived, that abstract descriptions cannot serve as causal explanations, that between-individual structures cannot be isomorphic to within-individual structures, and that knowledge of compositional structures cannot explain the process structures of their functioning and development. These erroneous assumptions and serious methodological deficiencies in widely used standardised questionnaires have effectively prevented psychologists from establishing taxonomies that can comprehensively model individual-specificity in most of the kinds of phenomena explored as "personality", especially in experiencing and behaviour and in individuals' functioning and development. Contrary to previous assumptions, it is not universal models but rather different kinds of taxonomic models that are required for each of the different kinds of phenomena, variations and structures that are commonly conceived of as "personality". Consequently, to comprehensively explore individual-specificity, researchers have to apply a portfolio of complementary methodologies and develop different kinds of taxonomies, most of which have yet to be developed. Closing, the article derives some meta-desiderata for future research on individuals' "personality".
Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development
International Nuclear Information System (INIS)
Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.
2007-01-01
Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)
Development of concept and neutronic calculation method for large LMFBR core
International Nuclear Information System (INIS)
Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.
1991-01-01
Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)
International Nuclear Information System (INIS)
Blanc-Tranchant, P.
2001-01-01
The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)
Wikman, Anna; Kukkola, Laura; Börjesson, Helene; Cernvall, Martin; Woodford, Joanne; Grönqvist, Helena; von Essen, Louise
2018-04-18
Parenting a child through cancer is a distressing experience, and a subgroup of parents report negative long-term psychological consequences years after treatment completion. However, there is a lack of evidence-based psychological interventions for parents who experience distress in relation to a child's cancer disease after end of treatment. One aim of this study was to develop an internet-administered, cognitive behavior therapy-based, psychological, guided, self-help intervention (ENGAGE) for parents of children previously treated for cancer. Another aim was to identify acceptable procedures for future feasibility and efficacy studies testing and evaluating the intervention. Participatory action research methodology was used. The study included face-to-face workshops and related Web-based exercises. A total of 6 parents (4 mothers, 2 fathers) of children previously treated for cancer were involved as parent research partners. Moreover, 2 clinical psychologists were involved as expert research partners. Research partners and research group members worked collaboratively throughout the study. Data were analyzed iteratively using written summaries of the workshops and Web-based exercises parallel to data collection. A 10-week, internet-administered, cognitive behavior therapy-based, psychological, guided, self-help intervention (ENGAGE) was developed in collaboration with parent research partners and expert research partners. The content of the intervention, mode and frequency of e-therapist support, and the individualized approach for feedback were modified based on the research partner input. Shared solutions were reached regarding the type and timing of support from an e-therapist (eg, initial video or telephone call, multiple methods of e-therapist contact), duration and timing of intervention (eg, 10 weeks, 30-min assessments), and the removal of unnecessary support functions (eg, removal of chat and forum functions). Preferences for study procedures in
International Nuclear Information System (INIS)
Esteve Sanchez, S.; Martinez Albaladejo, M.; Garcia Fuentes, J. D.; Bejar Navarro, M. J.; Capuz Suarez, B.; Moris de Pablos, R.; Colmenares Fernandez, R.
2015-01-01
We assessed the reliability of the program with 80 patients in the usual points of prescription of each pathology. The average error of the calculation points is less than 0.3% in 95% of cases, finding the major differences in the axes of the applicators (maximum error -0.798%). The program has proved effective previously testing him with erroneous dosimetry. Thanks to the implementation of this program is achieved by the calculation of the dose and part of the process of quality assurance program in a few minutes, highlighting the case of HDR prostate due to having a limited time. Having separate data sheet allows each institution to its protocols modify parameters. (Author)
Energy Technology Data Exchange (ETDEWEB)
Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki [Hanyang Univ., Seoul (Korea, Republic of); Lee, Jong-Il; Kim, Jang-Lyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
In internal dosimetry, intake retention and excretion functions are essential to estimate intake activity using bioassay sample such as whole body counter, lung counter, and urine sample. Even though ICRP (International Commission on Radiological Protection)provides the functions in some ICRP publications, it is needed to calculate the functions because the functions from the publications are provided for very limited time. Thus, some computer program are generally used to calculate intake retention and excretion functions and estimate intake activity. OIR (Occupational Intakes of Radionuclides) will be published soon by ICRP, which totally replaces existing internal dosimetry models and relevant data including intake retention and excretion functions. Thus, the calculation tool for the functions is needed based on OIR. In this study, we developed calculation module for intake retention and excretion functions based on OIR using C++ programming language with Intel Math Kernel Library. In this study, we developed the intake retention and excretion function calculation module based on OIR using C++ programing language.
International Nuclear Information System (INIS)
Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki; Lee, Jong-Il; Kim, Jang-Lyul
2014-01-01
In internal dosimetry, intake retention and excretion functions are essential to estimate intake activity using bioassay sample such as whole body counter, lung counter, and urine sample. Even though ICRP (International Commission on Radiological Protection)provides the functions in some ICRP publications, it is needed to calculate the functions because the functions from the publications are provided for very limited time. Thus, some computer program are generally used to calculate intake retention and excretion functions and estimate intake activity. OIR (Occupational Intakes of Radionuclides) will be published soon by ICRP, which totally replaces existing internal dosimetry models and relevant data including intake retention and excretion functions. Thus, the calculation tool for the functions is needed based on OIR. In this study, we developed calculation module for intake retention and excretion functions based on OIR using C++ programming language with Intel Math Kernel Library. In this study, we developed the intake retention and excretion function calculation module based on OIR using C++ programing language
International Nuclear Information System (INIS)
Abdel-Khalik, Hany S.; Zhang, Qiong
2014-01-01
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 10 3 - 10 5 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.
Molęda, Piotr; Fronczyk, Aneta; Safranow, Krzysztof; Majkowska, Lilianna
2016-01-01
A high level of uric acid (UA) is a strong, independent risk factor for type 2 diabetes mellitus. The relationship between UA levels and the development of type 2 diabetes in women with previous gestational diabetes mellitus (pGDM) remains unclear. The aim of study was to evaluate the UA levels in pGDM women in relation to their current nutritional status and carbohydrate metabolism. 199 women with pGDM diagnoses based on oral glucose tolerance tests (OGTTs) 5-12 years previously and a control group of 50 women without pGDM. The assessment included anthropometric parameters, body composition (Tanita SC-330S), current OGTT, insulin resistance index (HOMA-IR), β-cell function (HOMA-%B), HbA1c, lipids, and uric acid. No differences between groups were found in terms of age, time from the index pregnancy, anthropometric parameters, lipids or creatinine levels. The incidences of overweight and obesity were similar. Carbohydrate abnormalities were more frequent in the pGDM group than the control group (43.2% vs 12.0% p1). The women with pGDM had significantly higher fasting glucose, HbA1c, glucose and insulin levels in the OGTTs, but similar HOMA-IR values. Their UA levels were significantly higher (258±58 vs 230±50 μmol/L, p1, p1), creatinine level (β = 0.23, 95% CI 0.11-0.35, pdiabetes (β = 0.13, 95% CI 0.01-0.25, pdiabetes) was statistically significant (odds ratio 3.62 [95% CI 1.8-7.3], p1). Higher UA levels may be associated with the development of type 2 diabetes in pGDM women, also in these with normal body weights.
International Nuclear Information System (INIS)
Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.
1986-01-01
The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt
International Nuclear Information System (INIS)
Naito, Yoshitaka; Ihara, Hitoshi; Katakura, Jun-ichi; Hara, Toshiharu.
1986-08-01
For safety evaluation of nuclear fuel facilities, a nuclear decay data library named JDDL and a computer code COMRAD have been developed to calculate isotopic composition of each nuclide, radiation source intensity, energy spectrum of γ-ray and neutron, and decay heat of spent fuel. JDDL has been produced mainly from the evaluated nuclear data file ENSDF to use new nuclear data. To supplement the data file for short life nuclides, the JNDC data set were also used which had been evaluated by Japan Nuclear Data Committee. Using these data, calculations became possible from short period to long period after irradiation. (author)
Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation
International Nuclear Information System (INIS)
Hoshi, T; Fujiwara, T
2009-01-01
An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.
International Nuclear Information System (INIS)
Suleiman, O.H.
1989-01-01
A method was developed to quantitatively measure the upper gastrointestinal fluoroscopic examination in order to calculate organ doses. The dynamic examination was approximated with a set of discrete x-ray fields. Once the examination was segmented into discrete x-ray fields appropriate organ dose tables were generated using an existing computer program for organ dose calculations. This, along with knowledge of the radiation exposures associated with each of the fields, enabled the calculation of organ doses for the entire dynamic examination. The protocol involves videotaping the examination while fluoroscopic technique factors, tube current and tube potential, are simultaneously recorded on the audio tracks of the videotape. Subsequent analysis allows the dynamic examination to be segmented into a series of discrete x-ray fields uniquely defined by field size, projection, and anatomical region. The anatomical regions associated with the upper gastrointestinal examination were observed to be the upper, middle, and lower esophagus, the gastroesophageal junction, the stomach, and the duodenum
Development of a model for the primary system CAREM reactor's stationary thermohydraulic calculation
International Nuclear Information System (INIS)
Gaspar, C.; Abbate, P.
1990-01-01
The ESCAREM program oriented to CAREM reactors' stationary thermohydraulic calculation is presented. As CAREM gives variations in relation to models for BWR (Boiling Water Reactors)/PWR (Pressurized Water Reactors) reactors, it was decided to develop a suitable model which allows to calculate: a) if the Steam Generator design is adequate to transfer the power required; b) the circulation flow that occurs in the Primary System; c) the temperature at the entrance (cool branch) and d) the contribution of each component to the pressure drop in the circulation connection. Results were verified against manual calculations and alternative numerical models. An experimental validation at the Thermohydraulic Essays Laboratory is suggested. A parametric analysis series is presented on CAREM 25 reactor, demonstrating operating conditions, at different power levels, as well as the influence of different design aspects. (Author) [es
Laparoscopy After Previous Laparotomy
Directory of Open Access Journals (Sweden)
Zulfo Godinjak
2006-11-01
Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.
Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis
Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro
2017-04-01
The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup
Energy Technology Data Exchange (ETDEWEB)
Urata, Kazuhiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2003-03-01
In design of the future fusion devises in which low activation ferritic steel is planned to use as the plasma facing material and/or the inserts for ripple reduction, the appreciation of the error field effect against the plasma as well as the optimization of ferritic plate arrangement to reduce the toroidal field ripple require calculation of magnetic field generated by ferritic steel. However iterative calculations concerning the non-linearity in B-H curve of ferritic steel disturbs high-speed calculation required as the design tool. In the strong toroidal magnetic field that is characteristic in the tokamak fusion devices, fully magnetic saturation of ferritic steel occurs. Hence a distribution of magnetic charges as magnetic field source is determined straightforward and any iteration calculation are unnecessary. Additionally objective ferritic steel geometry is limited to the thin plate and ferritic plates are installed along the toroidal magnetic field. Taking these special conditions into account, high-speed calculation code ''FEMAG'' has been developed. In this report, the formalization of 'FEMAG' code, how to use 'FEMAG', and the validity check of 'FEMAG' in comparison with a 3D FEM code, with the measurements of the magnetic field in JFT-2M are described. The presented examples are numerical results of design studies for JT-60 modification. (author)
Energy Technology Data Exchange (ETDEWEB)
Sukegawa, Takenori; Ohshima, Soichiro; Shiraishi, Kunio; Yanagihara, Satoshi [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai Ibaraki (Japan)
1999-02-01
Labor-hours necessary for dismantling activities are generally estimated based on experience, for example, as a form of unit productivity factors such as the relationship between labor-hours and weight of components dismantled which were obtained by actual dismantling activities. The project management data calculation models together with unit productivity factors for basic dismantling work activities were developed by analyzing the data obtained from the Japan Power Demonstration Reactor (JPDR) dismantling project, which will be applicable to estimation of labor-hours in various dismantling conditions. Typical work breakdown structures were also prepared by categorizing repeatable basic dismantling work activities for effective planning of dismantling activities. The labor-hours for dismantling the JPDR components and structures were calculated by using the code system for management of reactor decommissioning (COSMARD), in which the work breakdown structures and the calculation models were contained. It was confirmed that the labor-hours could be easily estimated by COSMARD through the calculations. This report describes the labor-hour calculation models and application of these models to COSMARD. (author)
Energy Technology Data Exchange (ETDEWEB)
Borges, A.; Solomon, G. C. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark)
2016-05-21
Single molecule conductance measurements are often interpreted through computational modeling, but the complexity of these calculations makes it difficult to directly link them to simpler concepts and models. Previous work has attempted to make this connection using maximally localized Wannier functions and symmetry adapted basis sets, but their use can be ambiguous and non-trivial. Starting from a Hamiltonian and overlap matrix written in a hydrogen-like basis set, we demonstrate a simple approach to obtain a new basis set that is chemically more intuitive and allows interpretation in terms of simple concepts and models. By diagonalizing the Hamiltonians corresponding to each atom in the molecule, we obtain a basis set that can be partitioned into pseudo-σ and −π and allows partitioning of the Landuaer-Büttiker transmission as well as create simple Hückel models that reproduce the key features of the full calculation. This method provides a link between complex calculations and simple concepts and models to provide intuition or extract parameters for more complex model systems.
International Nuclear Information System (INIS)
Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.
2011-01-01
Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).
International Nuclear Information System (INIS)
Cheong, Jae Hak; Park, Won Jae
2003-01-01
As a follow up to the Agenda 21's policy statement for safe management of radioactive waste adopted at Rio Conference held in 1992, the UN invited the IAEA to develop and implement indicators of sustainable development for the management of radioactive waste. The IAEA finalized the indicators in 2002, and is planning to calculate the member states' values of indicators in connection with operation of its Net-Enabled Waste Management Database system. In this paper, the basis for introducing the indicators into the radioactive waste management was analyzed, and calculation methodology and standard assessment procedure were simply depicted. In addition, a series of innate limitations in calculation and comparison of the indicators was analyzed. According to the proposed standard procedure, the indicators for a few major countries including Korea were calculated and compared, by use of each country's radioactive waste management framework and its practices. In addition, a series of measures increasing the values of the indicators was derived so as to enhance the sustainability of domestic radioactive waste management program.
SHIELD 1.0: development of a shielding calculator program in diagnostic radiology
International Nuclear Information System (INIS)
Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da
2013-01-01
In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.
Directory of Open Access Journals (Sweden)
Piotr Molęda
Full Text Available A high level of uric acid (UA is a strong, independent risk factor for type 2 diabetes mellitus. The relationship between UA levels and the development of type 2 diabetes in women with previous gestational diabetes mellitus (pGDM remains unclear. The aim of study was to evaluate the UA levels in pGDM women in relation to their current nutritional status and carbohydrate metabolism.199 women with pGDM diagnoses based on oral glucose tolerance tests (OGTTs 5-12 years previously and a control group of 50 women without pGDM. The assessment included anthropometric parameters, body composition (Tanita SC-330S, current OGTT, insulin resistance index (HOMA-IR, β-cell function (HOMA-%B, HbA1c, lipids, and uric acid.No differences between groups were found in terms of age, time from the index pregnancy, anthropometric parameters, lipids or creatinine levels. The incidences of overweight and obesity were similar. Carbohydrate abnormalities were more frequent in the pGDM group than the control group (43.2% vs 12.0% p<0.001. The women with pGDM had significantly higher fasting glucose, HbA1c, glucose and insulin levels in the OGTTs, but similar HOMA-IR values. Their UA levels were significantly higher (258±58 vs 230±50 μmol/L, p<0.005 and correlated with BMI and the severity of carbohydrate disorders. The normal weight and normoglycemic pGDM women also demonstrated higher UA levels than a similar control subgroup (232±48 vs 208±48 μmol/L, p<0.05. Multivariate analysis revealed significant correlations of UA level with BMI (β = 0.38, 95% CI 0.25-0.51, p<0.0001, creatinine level (β = 0.23, 95% CI 0.11-0.35, p<0.0005, triglycerides (β = 0.20, 95% CI 0.07-0.33, p<0.005 and family history of diabetes (β = 0.13, 95% CI 0.01-0.25, p<0.05. In logistic regression analysis, the association between higher UA level (defined as value ≥297 μmol/L and presence of any carbohydrate metabolism disorder (IFG, IGT or diabetes was statistically significant (odds
International Nuclear Information System (INIS)
Grabaskas, David; Bucknor, Matthew; Jerden, James; Brunett, Acacia J.
2016-01-01
The overall objective of the SFR Regulatory Technology Development Plan (RTDP) effort is to identify and address potential impediments to the SFR regulatory licensing process. In FY14, an analysis by Argonne identified the development of an SFR-specific MST methodology as an existing licensing gap with high regulatory importance and a potentially long lead-time to closure. This work was followed by an initial examination of the current state-of-knowledge regarding SFR source term development (ANLART-3), which reported several potential gaps. Among these were the potential inadequacies of current computational tools to properly model and assess the transport and retention of radionuclides during a metal fuel pool-type SFR core damage incident. The objective of the current work is to determine the adequacy of existing computational tools, and the associated knowledge database, for the calculation of an SFR MST. To accomplish this task, a trial MST calculation will be performed using available computational tools to establish their limitations with regard to relevant radionuclide release/retention/transport phenomena. The application of existing modeling tools will provide a definitive test to assess their suitability for an SFR MST calculation, while also identifying potential gaps in the current knowledge base and providing insight into open issues regarding regulatory criteria/requirements. The findings of this analysis will assist in determining future research and development needs.
Kommers, Petrus A.M.; Smyrnova-Trybulska, Eugenia; Morze, Natalia; Issa, Tomayess; Issa, Theodora
2015-01-01
This paper, prepared by an international team of authors focuses on the conceptual aspects: analyses law, ethical, human, technical, social factors of ICT development, e-learning and intercultural development in different countries, setting out the previous and new theoretical model and preliminary
DEFF Research Database (Denmark)
Giannouli, Myrsini; Samaras, Zissis; Keller, Mario
2006-01-01
The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air...... emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given oil the latest features incorporated...... the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment...
Development of M3C code for Monte Carlo reactor physics criticality calculations
International Nuclear Information System (INIS)
Kumar, Anek; Kannan, Umasankari; Krishanani, P.D.
2015-06-01
The development of Monte Carlo code (M3C) for reactor design entails use of continuous energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. BARC has started a concentrated effort for developing a new general geometry continuous energy Monte Carlo code for reactor physics calculation indigenously. The code development required a comprehensive understanding of the basic continuous energy cross section sets. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low energy treatment, capability of handling the microscopic fuel particles dispersed randomly. The capability of handling the randomly dispersed microscopic fuel particles which is very useful for the modeling of High-Temperature Gas-Cooled reactor fuels which are composed of thousands of microscopic fuel particle (TRISO fuel particle), randomly dispersed in a graphite matrix. The Monte Carlo code for criticality calculation is a pioneering effort and has been used to study several types of lattices including cluster geometries. The code has been verified for its accuracy against more than 60 sample problems covering a wide range from simple (like spherical) to complex geometry (like PHWR lattice). Benchmark results show that the code performs quite well for the criticality calculation of the system. In this report, the current status of the code, features of the code, some of the benchmark results for the testing of the code and input preparation etc. are discussed. (author)
Fujita, Takatoshi; Mochizuki, Yuji
2018-04-19
We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.
Directory of Open Access Journals (Sweden)
Sergey Kharitonov
2015-06-01
Full Text Available Optimum transport infrastructure usage is an important aspect of the development of the national economy of the Russian Federation. Thus, development of instruments for assessing the efficiency of infrastructure is impossible without constant monitoring of a number of significant indicators. This work is devoted to the selection of indicators and the method of their calculation in relation to the transport subsystem as airport infrastructure. The work also reflects aspects of the evaluation of the possibilities of algorithmic computational mechanisms to improve the tools of public administration transport subsystems.
Development of HyPEP, A Hydrogen Production Plant Efficiency Calculation Program
International Nuclear Information System (INIS)
Lee, Young Jin; Park, Ji Won; Lee, Won Jae; Shin, Young Joon; Kim, Jong Ho; Hong, Sung Deok; Lee, Seung Wook; Hwang, Moon Kyu
2007-12-01
Development of HyPEP program for assessing the steady-state hydrogen production efficiency of the nuclear hydrogen production facilities was carried out. The main developmental aims of the HyPEP program are the extensive application of the GUI for enhanced user friendliness and the fast numerical solution scheme. These features are suitable for such calculations as the optimisation calculations. HyPEP was developed with the object-oriented programming techniques. The components of the facility was modelled as objects in a hierarchical structure where the inheritance property of the object oriented program were extensively applied. The Delphi program language which is based on the Object Pascal was used for the HyPEP development. The conservation equations for the thermal hydraulic flow network were setup and the numerical solution scheme was developed and implemented into HyPEP beta version. HyPEP beta version has been developed with working GUI and the numerical solution scheme implementation. Due to the premature end of this project the fully working version of HyPEP was not produced
International Nuclear Information System (INIS)
Hongo, Shozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi; Iwai, Satoshi.
1994-01-01
A computer program named IDES is developed by BASIC language for a personal computer and translated to C language of engineering work station. The IDES carries out internal dose calculations described in ICRP Publication 30 and it installs the program of transformation method which is an empirical method to estimate absorbed fractions of different physiques from ICRP Referenceman. The program consists of three tasks: productions of SAF for Japanese including children, productions of SEE, Specific Effective Energy, and calculation of effective dose equivalents. Each task and corresponding data file appear as a module so as to meet future requirement for revisions of the related data. Usefulness of IDES is discussed by exemplifying the case that 5 age groups of Japanese intake orally Co-60 or Mn-54. (author)
Calculation and evaluation methodology of the flawed pipe and the compute program development
International Nuclear Information System (INIS)
Liu Chang; Qian Hao; Yao Weida; Liang Xingyun
2013-01-01
Background: The crack will grow gradually under alternating load for a pressurized pipe, whereas the load is less than the fatigue strength limit. Purpose: Both calculation and evaluation methodology for a flawed pipe that have been detected during in-service inspection is elaborated here base on the Elastic Plastic Fracture Mechanics (EPFM) criteria. Methods: In the compute, the depth and length interaction of a flaw has been considered and a compute program is developed per Visual C++. Results: The fluctuating load of the Reactor Coolant System transients, the initial flaw shape, the initial flaw orientation are all accounted here. Conclusions: The calculation and evaluation methodology here is an important basis for continue working or not. (authors)
Ponomarev, Yury K.
2018-01-01
The paper gives an overview of the design of rope vibration insulators with elastic elements of the center line in the form of two rectilinear and one curved section. In the Russian-language scientific literature this type of rope vibration insulators received a stable name "Γ-shaped vibration insulators” by analogy with the shape of the letter “gamma-Γ" of the Greek alphabet and a similar letter of the Cyrillic alphabet. Despite the wide using of vibration insulators designed on this shape, its mathematical calculation model has not yet been developed. In this connection, in this article, for the first time on the basis of the “Method of Forces” and the “Mohr Method”, an analytical technique has been developed for calculating the characteristics of a vibration insulator in the directions of three mutually perpendicular axes. In addition, the article proposes a new structure of a vibration insulator consisting of several tiers of elements of this type, based on a new patented technology for manufacturing quasi-continuous woven rings, proposed by the author of this article in co-authorship with several employees of the Samara National Research University. Simple formulas are obtained for calculating the load characteristics in three mutually perpendicular directions. This makes it possible to calculate the corresponding stiffness and natural frequencies of mechanical vibration protection systems. It is established that the stiffness of the vibration insulator in the direction of the Z axis is greater than the stiffness in the X and Y axis directions, however, if a vibration insulator with equal, or close to equal characteristics, along three axes has to be designed according to the technical specification, this can be done by selecting the parameters included in the equations given in article for load characteristics.
1981-03-01
report. The detail required for such a review would be unwieldy and would comsume inordinate amounts of time. The result of the document review will...attempts have been made at writing specific behavioral objectives (SBOs). These, however, have proven to be inadequate in that they are not stated in... behavioral terms (e.g., "will understand," "will have a knowledge of," etc.). C. Development of CRO/CRTs? In nearly all cases, ISD teams are just
Recent developments in biokinetic models and the calculation of internal dose coefficients
International Nuclear Information System (INIS)
Fell, T.P.; Phipps, A.W.; Kendall, G.M.; Stradling, G.N.
1997-01-01
In most cases the measurement of radioactivity in an environmental or biological sample will be followed by some estimation of dose and possibly risk, either to a population or an individual. This will normally involve the use of a dose coefficient (dose per unit intake value) taken from a compendium. In recent years the calculation of dose coefficients has seen many developments in both biokinetic modelling and computational capabilities. ICRP has recommended new models for the respiratory tract and for the systemic behavior of many of the more important elements. As well as this, a general age-dependent calculation method has been developed which involves an effectively continuous variation of both biokinetic and dosimetric parameters, facilitating more realistic estimation of doses to young people. These new developments were used in work for recent ICRP, IAEA and CEC compendia of dose coefficients for both members of the public (including children) and workers. This paper presents a general overview of the method of calculation of internal doses with particular reference to the actinides. Some of the implications for dose coefficients of the new models are discussed. For example it is shown that compared with data in ICRP Publications 30 and 54: the new respiratory tract model generally predicts lower deposition in systemic tissues per unit intake; the new biokinetic models for actinides allow for burial of material deposited on bone surfaces; age-dependent models generally feature faster turnover of material in young people. All of these factors can lead to substantially different estimates of dose and examples of the new dose coefficients are given to illustrate these differences. During the development of the new models for actinides, human bioassay data were used to validate the model. Thus, one would expect the new models to give reasonable predictions of bioassay quantities. Some examples of the bioassay applications, e.g., excretion data for the
Development of a Seismic Setpoint Calculation Methodology Using a Safety System Approach
International Nuclear Information System (INIS)
Lee, Chang Jae; Baik, Kwang Il; Lee, Sang Jeong
2013-01-01
The Automatic Seismic Trip System (ASTS) automatically actuates reactor trip when it detects seismic activities whose magnitudes are comparable to a Safe Shutdown Earthquake (SSE), which is the maximum hypothetical earthquake at the nuclear power plant site. To ensure that the reactor is tripped before the magnitude of earthquake exceeds the SSE, it is crucial to reasonably determine the seismic setpoint. The trip setpoint and allowable value for the ASTS for Advanced Power Reactor (APR) 1400 Nuclear Power Plants (NPPs) were determined by the methodology presented in this paper. The ASTS that trips the reactor when a large earthquake occurs is categorized as a non safety system because the system is not required by design basis event criteria. This means ASTS has neither specific analytical limit nor dedicated setpoint calculation methodology. Therefore, we developed the ASTS setpoint calculation methodology by conservatively considering that of PPS. By incorporating the developed methodology into the ASTS for APR1400, the more conservative trip setpoint and allowable value were determined. In addition, the ZPA from the Operating Basis Earthquake (OBE) FRS of the floor where the sensor module is located is 0.1g. Thus, the allowance of 0.17g between OBE of 0.1 g and ASTS trip setpoint of 0.27 g is sufficient to prevent the reactor trip before the magnitude of the earthquake exceeds the OBE. In result, the developed ASTS setpoint calculation methodology is evaluated as reasonable in both aspects of the safety and performance of the NPPs. This will be used to determine the ASTS trip setpoint and allowable for newly constructed plants
International Nuclear Information System (INIS)
Kim, Kyu Tae; Kim, Oh Hwan
1999-01-01
A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP. The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable. (author). 11 refs., 6 figs., 2 tabs
Development of a simplified calculational model for the transient core bowing effect
International Nuclear Information System (INIS)
Yokoo, Takeshi
1997-01-01
A simplified method to analyze the transient core radial deformation has been developed based on a model that calculates the shape of a single representative fuel assembly on the outermost row. The plant transient code CERES has been revised utilizing this method so that a integrated calculational process for the core neutronics, thermal-hydraulics and deformation can be realized. Using CERES, the responses of a 1000MWe class pool type metal fuel FBR plant during a ULOF event are calculated. According to the results, it is clarified that a passive shutdown without coolant boiling is attainable by selecting appropriate values for major design parameters such as the gap width between load-pad and the pad material properties. The maximum coolant temperature during ULOF is found to be 790C when the above core load-pad gap is set to 0.05 mm, which can be regarded as the most likely valued. The temperature increases to 915C but is still lower than the boiling point when 40% of uncertainty is taken into account. (author)
International Nuclear Information System (INIS)
Mueller, Marcio Rogerio; Silva, Marco Antonio da; Rodrigues, Laura Natal
2005-01-01
Objective: To develop and implement a software based on the manual calculation algorithm for verification of the calculations in radiotherapy monitor units and to establish acceptance levels as a mechanism of quality assurance. Materials and methods: Data were obtained from Clinac 600C and 2100C Varian linear accelerators and the computerized treatment planning system used was CadPlan TM . Results: For the 6 MV beams the acceptance levels for deviations among the calculations of monitor units, divided by treatment area, were the following: breast (0.0%±1.7%), head and neck (1.5%±0.5%), hypophysis (-1.7%±0.5%), pelvis (2.1%±2.1%) and thorax (0.2%±1.3%). For the 15 MV beams the suggested level for pelvis in all the treatment techniques was (3.2%±1.3%). Conclusion: The present data are sufficient to justify the use of the software in the clinical practice as a tool for the quality assurance program. (author)
Energy Technology Data Exchange (ETDEWEB)
Giannouli, Myrsini; Samaras, Zissis [Aristotle University of Thessaloniki, Laboratory of Applied Thermodynamics, Mechanical Engineering Department, GR 54124, Thessaloniki, P.O. Box 458 (Greece); Keller, Mario; De Haan, Peter [INFRAS, Muhlemattstrasse 45 CH-3007, Bern (Switzerland); Kallivoda, Manfred [psiA-Consult, Environmental Research and Engineering GmbH, Lastenstrasse 38/1, 1230 Wien (Austria); Sorenson, Spencer; Georgakaki, Aliki [DTU: Technical University of Denmark, Nils Koppels Alle, Building 403, DK 2800 Kgs. Lyngby (Denmark)
2006-03-15
The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given on the latest features incorporated in the model and their applications. One of the recently developed features of the software provides an option for simple scenario analysis including vehicle dynamics (such as turnover and evolution) for all EU15 member states. This feature is called the Transport Activity Balance module (TAB) and enables the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment of the results produced by TRENDS was conducted by means of comparison with data found in the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIS maps were generated. Examples of these maps are displayed in this document, for the various modes of transport considered in the study. (author)
Code development of total sensitivity and uncertainty analysis for reactor physics calculations
International Nuclear Information System (INIS)
Wan, C.; Cao, L.; Wu, H.; Zu, T.; Shen, W.
2015-01-01
Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)
Code development of total sensitivity and uncertainty analysis for reactor physics calculations
Energy Technology Data Exchange (ETDEWEB)
Wan, C.; Cao, L.; Wu, H.; Zu, T., E-mail: chenghuiwan@stu.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: tiejun@mail.xjtu.edu.cn [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Shen, W., E-mail: Wei.Shen@cnsc-ccsn.gc.ca [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Canadian Nuclear Safety Commission, Ottawa, ON (Canada)
2015-07-01
Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)
International Nuclear Information System (INIS)
Kim, Jae Cheon; Kim, Soon Young; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Jong Kyung
2008-01-01
EASYQAD version β was developed by MATLAB GUI (Graphical User Interface) as a visualization code system based on QAD-CGGP-A point-kernel code for convenient shielding calculations of gammas and neutrons. It consists of four graphic interface modules including GEOMETRY, INPUT, OUTPUT, and SHIELD. These modules were compiled in C++ programming language by using the MATLAB Compiler Toolbox to form a stand-along code system that can be run on the Windows XP operating system without MATLAB installation. In addition, EASYQAD version β has user-friendly graphical interfaces and, additionally, many useful functions in comparison with QAD- CGGP-A such as common material library, line and grid detectors, and multi-group energy calculations so as to increase its applicability in the field of radiation shielding analysis. It is a powerful tool for non-experts to analyze easily the shielding problems without special training. Therefore, EASYOAD version β is expected to contribute effectively to the development of radiation shielding analysis by providing users in medical and industrial fields with an efficient radiation shielding code. (author)
Development of a coupling code for PWR reactor cavity radiation streaming calculation
International Nuclear Information System (INIS)
Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.
2012-01-01
PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)
Directory of Open Access Journals (Sweden)
Feifei Fu
2014-01-01
Full Text Available Life cycle thinking has become widely applied in the assessment for building environmental performance. Various tool are developed to support the application of life cycle assessment (LCA method. This paper focuses on the carbon emission during the building construction stage. A partial LCA framework is established to assess the carbon emission in this phase. Furthermore, five typical LCA tools programs have been compared and analyzed for demonstrating the current application of LCA tools and their limitations in the building construction stage. Based on the analysis of existing tools and sustainability demands in building, a new computer calculation system has been developed to calculate the carbon emission for optimizing the sustainability during the construction stage. The system structure and detail functions are described in this paper. Finally, a case study is analyzed to demonstrate the designed LCA framework and system functions. This case is based on a typical building in UK with different plans of masonry wall and timber frame to make a comparison. The final results disclose that a timber frame wall has less embodied carbon emission than a similar masonry structure. 16% reduction was found in this study.
Development of 3D pseudo pin-by-pin calculation methodology in ANC
International Nuclear Information System (INIS)
Zhang, B.; Mayhue, L.; Huria, H.; Ivanov, B.
2012-01-01
Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000 R plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)
Directory of Open Access Journals (Sweden)
Chang Wook Jeong
Full Text Available OBJECTIVES: We developed a mobile application-based Seoul National University Prostate Cancer Risk Calculator (SNUPC-RC that predicts the probability of prostate cancer (PC at the initial prostate biopsy in a Korean cohort. Additionally, the application was validated and subjected to head-to-head comparisons with internet-based Western risk calculators in a validation cohort. Here, we describe its development and validation. PATIENTS AND METHODS: As a retrospective study, consecutive men who underwent initial prostate biopsy with more than 12 cores at a tertiary center were included. In the development stage, 3,482 cases from May 2003 through November 2010 were analyzed. Clinical variables were evaluated, and the final prediction model was developed using the logistic regression model. In the validation stage, 1,112 cases from December 2010 through June 2012 were used. SNUPC-RC was compared with the European Randomized Study of Screening for PC Risk Calculator (ERSPC-RC and the Prostate Cancer Prevention Trial Risk Calculator (PCPT-RC. The predictive accuracy was assessed using the area under the receiver operating characteristic curve (AUC. The clinical value was evaluated using decision curve analysis. RESULTS: PC was diagnosed in 1,240 (35.6% and 417 (37.5% men in the development and validation cohorts, respectively. Age, prostate-specific antigen level, prostate size, and abnormality on digital rectal examination or transrectal ultrasonography were significant factors of PC and were included in the final model. The predictive accuracy in the development cohort was 0.786. In the validation cohort, AUC was significantly higher for the SNUPC-RC (0.811 than for ERSPC-RC (0.768, p<0.001 and PCPT-RC (0.704, p<0.001. Decision curve analysis also showed higher net benefits with SNUPC-RC than with the other calculators. CONCLUSIONS: SNUPC-RC has a higher predictive accuracy and clinical benefit than Western risk calculators. Furthermore, it is easy
Development of Internet algorithms and some calculations of power plant COP
Ustjuzhanin, E. E.; Ochkov, V. F.; Znamensky, V. E.
2017-11-01
The authors have analyzed Internet resources containing information on some thermodynamic properties of technically important substances (the water, the air etc.). There are considered databases those possess such resources and are hosted in organizations (Joint Institute for High Temperatures (Russian Academy of Sciences), Standartinform (Russia), National Institute of Standards and Technology (USA), Institute for Thermal Physics (Siberian Branch of the Russian Academy of Sciences), etc.). Currently, a typical form is an Internet resource that includes a text file, for example, it is a file containing tabulated properties, R = (ρ, s, h…), here ρ - the density, s - the entropy, h - the enthalpy of a substance. It is known a small number of Internet resources those have the following characteristic. The resource allows a customer to realize a number of options, for example: i) to enter the input data, Y = (p, T), here p - the pressure, T - the temperature, ii) to calculate R property using “an exe-file” program, iii) to copy the result X = (p, T, ρ, h, s, …). Recently, some researchers (including the authors of this report) have requested a software (SW) that is designed for R property calculations and has a form of an open interactive (OI) Internet resource (“a client function”, “template”). A computing part of OI resource is linked: 1) with a formula, which is applied to calculate R property, 2) with a Mathcad program, Code_1(R,Y). An interactive part of OI resource is based on Informatics and Internet technologies. We have proposed some methods and tools those are related to this part and let us: a) to post OI resource on a remote server, b) to link a client PC with the remote server, c) to implement a number of options to clients. Among these options, there are: i) to calculate R property at given Y arguments, ii) to copy mathematical formulas, iii) to copy Code_1(R,Y) as a whole. We have developed some OI - resources those are focused on
Development of a transient calculation model for a closed sodium natural circulation loop
International Nuclear Information System (INIS)
Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum
2003-09-01
A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis
Development of In-plane Thermal Conductivity Calculation Methods in Thin Films
Directory of Open Access Journals (Sweden)
A. A. Barinov
2017-01-01
Full Text Available The future nanoelectronics development involves using the smaller- -and-smaller-sized circuit components based on the micro- and nanostructures. This causes a growth of the specific heat flows up to 100 W/cm2. Since performance of electronic devices is strongly dependent on the temperature there is a challenge to create the heat transfer models, which take into account the size effect and ensure a reliable estimate of the thermal conductivity. This is one of the crucial tasks for development of new generations of integrated circuits.The paper studies heat transfer processes using the silicon thin films as an example. Thermal conductivity calculations are performed taking into account the influence of the classical size effect in the context of the Sondheimer model based on the solution of the Boltzmann transport equation.The paper, for the first time, presents and considers the influence of various factors on the thermal conductivity of thin films, namely temperature, film thickness, polarization of the phonon waves (transverse and longitudinal, velocity and relaxation time versus frequency for the phonons of different wave types.Based on the analysis, three models with different accuracy are created to estimate the influence of detailing processes under consideration on the thermal conductivity in a wide range of temperatures (from 10 K to 450 К and film thickness (from 10 nm to 100 µm.So in the model I for the first time in calculating thermal conductivity of thin films we properly and circumstantially take into account the dependence of the velocity and the relaxation time of phonons on the frequency and polarization. The obtained values are in a good agreement with available experimental data and theoretical models of other authors. In the following models we use few average methods for relaxation times and velocities, which leads to significant reduction in calculating accuracy up to the values exceeding 100%.Therefore, when calculating
International Nuclear Information System (INIS)
Gritzay, O.; Kalchenko, O.
2010-01-01
Full text: Scientific support of NPPs has to cover several important aspects of scientific and organization activity, namely:1.Training for group of high skilled specialists to do the following work: o nuclear data generation for engineer calculations; o engineer calculations to ensure the safety operation of NPPs; o experimental-calculation support of fluence dosimetry at NPP. 2.Development of up-to-date computer base, equipped with necessary program packages for nuclear data generation and engineer calculations. 3.The updated Libraries of Evaluated Nuclear Data (ENDF), such as ENDF/B-VII (USA), JENDL-3.3 (Japan) and JEFF-3.1 (Europe), RUSFOND ( Russia) and as a result the generation of specialized nuclear data multi-group libraries for special purpose engineer calculations.To reach these purposes, the Ukrainian Nuclear Data Center (UKRNDC) was organized and developed for more, than 10 years (since 1996).The capabilities of the UKRNDC are detailed below. o Modern ENDF libraries, first of all the general purpose libraries, such as ENDF/B-7.0, -6.8, JEFF-3.1.1, JENDL-3.3, etc. These databases contain recommended, evaluated cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with emphasis on neutron induced reactions.o Codes for processing these data, updated to the last versions of ENDF and other libraries. First of all these are PREPRO 2007 package (Updated March 17, 2007) and NJOY package updated to versions NJOY-158 and NJOY-253 (in 2009). These codes may give the possibilities to produce the multi-group data for needed spectrum of interacting particles (neutrons, protons, gammas) and temperatures.o Computer base of several specialized server stations, such as ESCALA- S120 (analogous to IBM -240 with RISC 6000 processor) operating under OS under OS UNIX (version AIX 5.1) and IBM PC operating under Linux Red Hat 7.2.o The set of PC computers joined in UKRNDC network, operating mainly in OS Windows
Development of the mathematical phantom of the brazilian man for internal dosimetry calculations
International Nuclear Information System (INIS)
Guimaraes, Maria Ines Calil Cury.
1995-01-01
This work covers the theory and construction of a Mathematical Phantom of the Brazilian, to be used in internal dosimetry. To obtain this it was necessary to develop antropometric data of mass and height for Brazilian man between 20 and 40 years old. Through Monte Carlo Method, and applying the Specific Absorbed Fraction (SAF) formalism, it was possible determine the fraction internal organs such as bones, skin and total body. The results obtained from SAF are primordial in nuclear medicine and great value in the calculation of the dose received by workers exposed and in accidental cases, to a rapid evaluation of the received by a simple person. Through SAF, the references obtained for the Brazilian man, can be noted when compared to the phantom calculated by Snyder, which proposed to represent the international reference man, showed by ICRP-23 publication, that the determined SAF of the whole body does not exceed 15% between the two phantoms, agreeing with the allowed international norms error margin permitted. The differences between the two models appear, when the numbers are presented for individual organs, where the emission origin are the lungs and taken as target, the red and yellow marrows, for an energy of 10 KeV. The result obtained is that these two marrows receive 64% more absorbed fractions in the Brazilian model than in the international model. These numbers are considered trustfully because the coefficient of variation does not exceed 7%, value that in under 50%, which makes the coefficient of variation not trustfully, this is considered out of the normal distribution. Facts like these and may others, showed in this work, determine the necessity to calculate a specific mathematical model for the Brazilian man. (author). 51 refs., 40 figs., 9 tabs
Development of a nuclear spallation simulation code and calculations of primary spallation products
International Nuclear Information System (INIS)
Nishida, Takahiko; Nakahara, Yasuaki; Tsutsui, Tsuneo
1986-08-01
In order to make evaluations of computational models for the nuclear spallation reaction from a nuclear physics point of view, a simulation code NUCLEUS has been developed by modifying and combining the Monte Carlo codes NMTC/JAERI and NMTA/JAERI for calculating only the nuclear spallation reaction (intranuclear cascade + evaporation and/or fast fission) between a nucleus and a projectile without taking into consideration of internuclear transport. New several plotting routines have been provided for the rapid process of much more event data, obtained by using the ARGUS plotting system. The results obtained by our code can be directly compared with the experimental results using by thin foil experiments in which internuclear multiple collisions have little effects, and will serve to upgrade the calculational methods and the values of nuclear parameters currently used in the calculations. Some discussions are done about the preliminary computational results obtained by using NUCLEUS. The mass distribution and charge dispersion of reaction products are examined in some detail for the nuclear spallation reaction between incident protons and target nuclei, such as U, Pb and Ag, in the energy range from 0.5 GeV to 3.0 GeV. These results show that the distribution of reaction products ceases to change its form as the proton energy increases over about 2 GeV. The same tendency is seen in the energy dependence of the number of primary particles emitted from a nucleus. After spallation reactions, a variety of nuclei, especially many neutron deficient nuclides with nuclear charges nearly equal to ones of a target nucleus, are produced. Due to their short lifetime most of them will change to stable nuclides in due time. Finally, some important issues are discussed to improve the present simulation method. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-17
The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operating scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi
Kim, Myoung Soo; Park, Jung Ha; Park, Kyung Yeon
2012-10-01
This study was done to develop and evaluate a drug dosage calculation training program using cognitive loading theory based on a smartphone application. Calculation ability, dosage calculation related self-efficacy and anxiety were measured. A nonequivalent control group design was used. Smartphone application and a handout for self-study were developed and administered to the experimental group and only a handout was provided for control group. Intervention period was 4 weeks. Data were analyzed using descriptive analysis, χ²-test, t-test, and ANCOVA with the SPSS 18.0. The experimental group showed more 'self-efficacy for drug dosage calculation' than the control group (t=3.82, psmartphone application is effective in improving dosage calculation related self-efficacy and calculation ability. Further study should be done to develop additional interventions for reducing anxiety.
Rutigliano, Grazia; Stahl, Daniel; Davies, Cathy; Bonoldi, Ilaria; Reilly, Thomas; McGuire, Philip
2017-01-01
Importance The overall effect of At Risk Mental State (ARMS) services for the detection of individuals who will develop psychosis in secondary mental health care is undetermined. Objective To measure the proportion of individuals with a first episode of psychosis detected by ARMS services in secondary mental health services, and to develop and externally validate a practical web-based individualized risk calculator tool for the transdiagnostic prediction of psychosis in secondary mental health care. Design, Setting, and Participants Clinical register-based cohort study. Patients were drawn from electronic, real-world, real-time clinical records relating to 2008 to 2015 routine secondary mental health care in the South London and the Maudsley National Health Service Foundation Trust. The study included all patients receiving a first index diagnosis of nonorganic and nonpsychotic mental disorder within the South London and the Maudsley National Health Service Foundation Trust in the period between January 1, 2008, and December 31, 2015. Data analysis began on September 1, 2016. Main Outcomes and Measures Risk of development of nonorganic International Statistical Classification of Diseases and Related Health Problems, Tenth Revision psychotic disorders. Results A total of 91 199 patients receiving a first index diagnosis of nonorganic and nonpsychotic mental disorder within South London and the Maudsley National Health Service Foundation Trust were included in the derivation (n = 33 820) or external validation (n = 54 716) data sets. The mean age was 32.97 years, 50.88% were men, and 61.05% were white race/ethnicity. The mean follow-up was 1588 days. The overall 6-year risk of psychosis in secondary mental health care was 3.02 (95% CI, 2.88-3.15), which is higher than the 6-year risk in the local general population (0.62). Compared with the ARMS designation, all of the International Statistical Classification of Diseases and Related Health Problems
International Nuclear Information System (INIS)
Greenwood, L.R.
1983-01-01
This paper is intended as an overview of activities designed to characterize neutron irradiation facilities in terms of neutron flux and energy spectrum and to use these data to calculate atomic displacements, gas production, and transmutation during fusion materials irradiations. A new computerized data file, called DOSFILE, has recently been developed to record dosimetry and damage data from a wide variety of materials test facilities. At present data are included from 20 different irradiations at fast and mixed-spectrum reactors, T(d,n) 14 MeV neutron sources, Be(d,n) broad-spectrum sources, and spallation neutron sources. Each file entry includes activation data, adjusted neutron flux and spectral data, and calculated atomic displacements and gas production. Such data will be used by materials experimenters to determine the exposure of their samples during specific irradiations. This data base will play an important role in correlating property changes between different facilities and, eventually, in predicting materials performance in fusion reactors. All known uncertainties and covariances are listed for each data record and explicit references are given to nuclear decay data and cross sections
Sundberg, Mikaela
While the distinction between theory and experiment is often used to discuss the place of simulation from a philosophical viewpoint, other distinctions are possible from a sociological perspective. Turkle (1995) distinguishes between cultures of calculation and cultures of simulation and relates these cultures to the distinction between modernity and postmodernity, respectively. What can we understand about contemporary simulation practices in science by looking at them from the point of view of these two computer cultures? What new questions does such an analysis raise for further studies? On the basis of two case studies, the present paper compares and discusses simulation activities in astrophysics and meteorology. It argues that simulation practices manifest aspects of both of these cultures simultaneously, but in different situations. By employing the dichotomies surface/depth, play/seriousness, and extreme/reasonable to characterize and operationalize cultures of calculation and cultures of simulation as sensitizing concepts, the analysis shows how simulation code work shifts from development to use, the importance of but also resistance towards too much visualizations, and how simulation modelers play with extreme values, yet also try to achieve reasonable results compared to observations.
Development of a computer code for shielding calculation in X-ray facilities
International Nuclear Information System (INIS)
Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.
2014-01-01
The construction of an effective barrier against the interaction of ionizing radiation present in X-ray rooms requires consideration of many variables. The methodology used for specifying the thickness of primary and secondary shielding of an traditional X-ray room considers the following factors: factor of use, occupational factor, distance between the source and the wall, workload, Kerma in the air and distance between the patient and the receptor. With these data it was possible the development of a computer program in order to identify and use variables in functions obtained through graphics regressions offered by NCRP Report-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) for the calculation of shielding of the room walls as well as the wall of the darkroom and adjacent areas. With the built methodology, a program validation is done through comparing results with a base case provided by that report. The thickness of the obtained values comprise various materials such as steel, wood and concrete. After validation is made an application in a real case of radiographic room. His visual construction is done with the help of software used in modeling of indoor and outdoor. The construction of barriers for calculating program resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in September / 2011
DEVELOPING A SPATIAL PROCESSING SERVICE FOR AUTOMATIC CALCULATION OF STORM INUNDATION
Directory of Open Access Journals (Sweden)
H. Jafari
2017-09-01
Full Text Available With the increase in urbanization, the surface of earth and its climate are changing. These changes resulted in more frequent floodingand storm inundation in urban areas. The challenges of flooding can be addressed through several computational procedures. Due to its numerous advantages, accessible web services can be chosen as a proper format for determining the storm inundation. Web services have facilitated the integration and interactivity of the web applications. Such services made the interaction between machines more feasible. Web services enable the heterogeneous software systems to communicate with each other. A Web Processing Service (WPS makes it possible to process spatial data with different formats. In this study, we developed a WPS to automatically calculate the amount of storm inundation caused by rainfall in urban areas. The method we used for calculating the storm inundation is based on a simplified hydrologic model which estimates the final status of inundation. The simulation process and water transfer between subcatchments are carried out respectively, without user’s interference. The implementation of processing functions in a form of processing web services gives the capability to reuse the services and apply them in other services. As a result, it would avoid creating the duplicate resources.
International Nuclear Information System (INIS)
Lee, Gil Soo
2006-02-01
To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1
Development and application of the PCRELAP5 - Data Calculation Program for RELAP 5 Code
International Nuclear Information System (INIS)
Silvestre, Larissa J.B.; Sabundjian, Gaianê
2017-01-01
Nuclear accidents in the world led to the establishment of rigorous criteria and requirements for nuclear power plant operations by the international regulatory bodies. By using specific computer programs, simulations of various accidents and transients likely to occur at any nuclear power plant are required for certifying and licensing a nuclear power plant. Some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most widely used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors in Brazil and worldwide. A major difficulty in the simulation by using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. Thus, for those calculations performance and preparation of RELAP5 input data, a friendly mathematical preprocessor was designed. The Visual Basic for Application (VBA) for Microsoft Excel demonstrated to be an effective tool to perform a number of tasks in the development of the program. In order to meet the needs of RELAP5 users, the RELAP5 Calculation Program (Programa de Cálculo do RELAP5 – PCRELAP5) was designed. The components of the code were codified; all entry cards including the optional cards of each one have been programmed. An English version for PCRELAP5 was provided. Furthermore, a friendly design was developed in order to minimize the time of preparation of input data and errors committed by users. The final version of this preprocessor was successfully applied for Safety Injection System (SIS) of Angra-2. (author)
International Nuclear Information System (INIS)
2001-12-01
The following study deals with the development of methodology for cost calculations and financial planning of decommissioning operations. It has been carried out by EDF / FRAMATOME / VUJE / SCK-CEN in the frame of the contract B7-032/2000/291058/MAR/C2 awarded by the European Commission. This study consists of 4 parts. The first task objective is to develop a reliable and transparent methodology for cost assessment and financial planning sufficient precise but without long and in depth investigations and studies. This methodology mainly contains: Calculation methods and algorithms for the elaboration of costs items making up the whole decommissioning cost. Estimated or standard values for the parameters and for the cost factors to be used in the above-mentioned algorithms Financial mechanism to be applied as to establish a financial planning. The second part task is the provision of standard values for the different parameters and costs factors described in the above-mentioned algorithms. This provision of data is based on the own various experience acquired by the members of the working team and on existing international references (databases, publications and reports). As decommissioning operations are spreading over several dozens of years, the scope of this task the description of the financial mechanisms to be applied to the different cost items as to establish a complete financial cost. It takes into account the financial schedule issued in task 1. The scope of this task consists in bringing together in a guideline all the information collected before: algorithms, data and financial mechanisms. (A.L.B.)
Development and application of the PCRELAP5 - Data Calculation Program for RELAP 5 Code
Energy Technology Data Exchange (ETDEWEB)
Silvestre, Larissa J.B.; Sabundjian, Gaianê, E-mail: larissajbs@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)
2017-07-01
Nuclear accidents in the world led to the establishment of rigorous criteria and requirements for nuclear power plant operations by the international regulatory bodies. By using specific computer programs, simulations of various accidents and transients likely to occur at any nuclear power plant are required for certifying and licensing a nuclear power plant. Some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most widely used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors in Brazil and worldwide. A major difficulty in the simulation by using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. Thus, for those calculations performance and preparation of RELAP5 input data, a friendly mathematical preprocessor was designed. The Visual Basic for Application (VBA) for Microsoft Excel demonstrated to be an effective tool to perform a number of tasks in the development of the program. In order to meet the needs of RELAP5 users, the RELAP5 Calculation Program (Programa de Cálculo do RELAP5 – PCRELAP5) was designed. The components of the code were codified; all entry cards including the optional cards of each one have been programmed. An English version for PCRELAP5 was provided. Furthermore, a friendly design was developed in order to minimize the time of preparation of input data and errors committed by users. The final version of this preprocessor was successfully applied for Safety Injection System (SIS) of Angra-2. (author)
International Nuclear Information System (INIS)
Sin, M. W.; Kim, M. H.
2002-01-01
To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values
Energy Technology Data Exchange (ETDEWEB)
Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)
2002-10-01
To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.
Development of a fine and ultra-fine group cell calculation code SLAROM-UF for fast reactor analyses
International Nuclear Information System (INIS)
Hazama, Taira; Chiba, Go; Sugino, Kazuteru
2006-01-01
A cell calculation code SLAROM-UF has been developed for fast reactor analyses to produce effective cross sections with high accuracy in practical computing time, taking full advantage of fine and ultra-fine group calculation schemes. The fine group calculation covers the whole energy range in a maximum of 900-group structure. The structure is finer above 52.5 keV with a minimum lethargy width of 0.008. The ultra-fine group calculation solves the slowing down equation below 52.5 keV to treat resonance structures directly and precisely including resonance interference effects. Effective cross sections obtained in the two calculations are combined to produce effective cross sections over the entire energy range. Calculation accuracy and improvements from conventional 70-group cell calculation results were investigated through comparisons with reference values obtained with continuous energy Monte Carlo calculations. It was confirmed that SLAROM-UF reduces the difference in k-infinity from 0.15 to 0.01% for a JOYO MK-I fuel subassembly lattice cell calculation, and from - 0.21% to less than a statistical uncertainty of the reference calculation of 0.03% for a ZPPR-10A core criticality calculation. (author)
New developments in analytical calculation of first order scattering for 3D complex objects
International Nuclear Information System (INIS)
Duvauchelle, Philippe; Berthier, Jerome
2007-01-01
The principle of the analytical calculation of first order scattering used in our simulation code named VXI (Virtual X-ray Imaging) is based on a double ray-tracing. The first step consists in realizing a ray-tracing from the X-ray source point to each point of the object (an elementary volume in practice) including attenuation effect in the primary beam. This calculation gives the number of photons and their direction arriving on each voxel. A voxel acts as a secondary source which properties accord to the physics of X-ray scattering (Compton and Rayleigh). The second step of the ray-tracing is then done from each voxel of the object in the direction of each pixel of the detector, taking into account the attenuation along the scattering path. To simulate a 3D complex object, the first problem consists in realizing an automatic 3D sampling of the object. This is done by using an octree-based method optimized for deterministic scattering computation. The basic octree method consists in dividing recursively the volume of the object in decreasing-size voxels until each of them is completely included under the surface of the sample. The object volume is then always under evaluated. This is a problem because the scattering phenomenon strongly depends on the real volume of the object. The second problem is that artefacts due to sampling effects can occur in synthesis images. These two particular aspects are taken into account in our simulation code and an optimized octree-based method has been specially developed for this application. To respond to the first problem, our 3D sampling algorithm may accept voxels on the surface of the sample under conditions defined by the user. The second problem is treated in generating a random sampling instead of a regular one. The algorithm developed for 3D sampling is easily configurable, fast (about a few seconds maximum), robust and can be applied to all object shapes (thin, massive). The sampling time depends on the number of
Faught, Austin M; Davidson, Scott E; Fontenot, Jonas; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S
2017-09-01
The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm 2 to 30 × 30 cm 2 . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.
Directory of Open Access Journals (Sweden)
Mariya Vishnevskaya
2017-12-01
Full Text Available Two main components of the problem studied in the article are revealed. At the practical level, the provision of the convenient tools allowing a comprehensive evaluation the proposed innovative project in terms of its possibilities for inclusion in the portfolio or development program, and on the level of science – the need for improvement and complementing the existing methodology of assessment of innovative projects attractiveness in the context of their properties and a specific set of components. The research is scientifically applied since the problem solution involves the science-based development of a set of techniques, allowing the practical use of knowledge gained from large information arrays at the initialization stage. The purpose of the study is the formation of an integrated indicator of the project innovation, with a substantive justification of the calculation method, as a tool for the evaluation and selection of projects to be included in the portfolio of projects and programs. The theoretical and methodological basis of the research is the conceptual provisions and scientific developments of experts on project management issues, published in monographs, periodicals, materials of scientific and practical conferences on the topic of research. The tasks were solved using the general scientific and special methods, mathematical modelling methods based on the system approach. Results. A balanced system of parametric single indicators of innovation is presented – the risks, personnel, quality, innovation, resources, and performers, which allows getting a comprehensive idea of any project already in the initial stages. The choice of a risk tolerance as a key criterion of the “risks” element and the reference characteristics is substantiated, in relation to which it can be argued that the potential project holds promise. A tool for calculating the risk tolerance based on the use of matrices and vector analysis is proposed
International Nuclear Information System (INIS)
Sienicki, J.J.; Abramson, P.B.
1978-01-01
The main objective of the development of multifield, multicomponent thermohydrodynamic computer codes is the detailed study of hypothetical core disruptive accidents (HCDAs) in liquid-metal fast breeder reactors. The main contributions such codes are expected to make are the inclusion of detailed modeling of the relative motion of liquid and vapor (slip), the inclusion of modeling of nonequilibrium/nonsaturation thermodynamics, and the use of more detailed neutronics methods. Scoping studies of the importance of including these phenomena performed with the parametric two-field, two-component coupled neutronic/thermodynamic/hydrodynamic code FX2-TWOPOOL indicate for the prompt burst portion of an HCDA that: (1) Vapor-liquid slip plays a relatively insignificant role in establishing energetics, implying that analyses that do not model vapor-liquid slip may be adequate. Furthermore, if conditions of saturation are assumed to be maintained, calculations that do not permit vapor-liquid slip appear to be conservative. (2) The modeling of conduction-limited fuel vaporization and condensation causes the energetics to be highly sensitive to variations in the droplet size (i.e., in the parametric values) for the sizes of interest in HCDA analysis. Care must therefore be exercised in the inclusion of this phenomenon in energetics calculations. (3) Insignificant differences are observed between the use of space-time kinetics (quasi-static diffusion theory) and point kinetics, indicating again that point kinetics is normally adequate for analysis of the prompt burst portion of an HCDA. (4) No significant differences were found to result from assuming that delayed neutron precursors remain stationary where they are created rather than assuming that they move together with fuel. (5) There is no need for implicit coupling between the neutronics and the hydrodynamics/thermodynamics routines, even outside the prompt burst portion
International Nuclear Information System (INIS)
Jones, R.M.; Poston, J.W.; Hwang, J.L.; Jones, T.D.; Warner, G.G.
1976-06-01
The existence of a phantom based on anatomical data for the average fifteen-year-old provides for a proficient means of obtaining estimates of absorbed dose for children of that age. Dimensions representative of an average fifteen-year-old human, obtained from various biological and medical research, were transformed into a mathematical construct of idealized shapes of the exterior, skeletal system, and internal organs of a human. The idealization for an average adult presently in use by the International Commission on Radiological Protection was used as a basis for design. The mathematical equations describing the phantom were developed to be readily adaptable to present-day methods of dose estimation. Typical exposure situations in nuclear medicine have previously been modeled for existing phantoms. With no further development of the exposure model necessary, adaptation to the fifteen-year-old phantom demonstrated the utility of the design. Estimates of absorbed dose were obtained for the administration of two radiopharmaceuticals, /sup 99m/Tc-sulfur colloid and /sup 99m/Tc-DMSA
International Nuclear Information System (INIS)
Gast, R.C.
1981-08-01
A procedure for defining diffusion coefficients from Monte Carlo calculations that results in suitable ones for use in neutron diffusion theory calculations is not readily obtained. This study provides a survey of the methods used to define diffusion coefficients from deterministic calculations and provides a discussion as to why such traditional methods cannot be used in Monte Carlo. This study further provides the empirical procedure used for defining diffusion coefficients from the RCP01 Monte Carlo program
TASK 2.5.4 DEVELOPMENT OF AN ENERGY SAVINGS CALCULATOR
Energy Technology Data Exchange (ETDEWEB)
Miller, William A [ORNL; New, Joshua Ryan [ORNL; Desjarlais, Andre Omer [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL); Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL)
2010-03-01
California s major energy utilities and the California Energy Commission (CEC) are seeking to allocate capital that yields the greatest return on investment for energy infrastructure that meets any part of the need for reliable supplies of energy. The utilities are keenly interested in knowing the amount of electrical energy savings that would occur if cool roof color materials are adopted in the building market. To meet this need the Oak Ridge National Laboratory and the Lawrence Berkeley National Laboratory (LBNL) have been collaborating on a Public Interest Energy Research (PIER) project to develop an industry-consensus energy-savings calculator. The task was coordinated with an ongoing effort supported by the DOE to develop one calculator to achieve both the DOE and the EPA objectives for deployment of cool roof products. Recent emphasis on domestic building energy use has made the work a top priority by the Department of Energy s (DOE) Building Technologies Program. The Roof Savings Calculator (RSC) tool is designed to help building owners, manufacturers, distributors, contractors and practitioners easily run complex simulations. The latest web technologies and usability design were employed to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on the best available statistical evidence and can provide energy and cost savings after the user selects nothing more than the building location. A key goal for the tool is to promote the energy benefits of cool color tile, metal and asphalt shingle roof products and other energy saving systems. The RSC tool focuses on applications for the roof and attic; however, the code conducts a whole building simulation that puts the energy and heat flows of the roof and attic into the perspective of the whole house. An annual simulation runs in about 30 sec. In addition to cool
International Nuclear Information System (INIS)
Tuerk, W.
1980-01-01
By the example of recalculations of rod-melting experiment it is shown how a modular simulation model for complex systems can be formulated within the scope of RSYST1. The procedure of code development as well as the physical and numerical methods and approximations of the simulation model are described. To each important physical process a code module is assigned. The individual moduls describe heat production, rod heat-up, rod oxidation, rod environment, rod deformation by thermal expansion and can buckling, melting of the rod, rod failure, and flowing off of the melted mass. A comparison of the results for the overall model with the result of different experiments indicates that the phenomena during heat-up and melting of the rod are treated in agreement with the experiments. The results of the calculation model and its submodels are thus largely supported by experiments. Therefore further predictions with a high level of confidence can be made with the model within the scope of reactor safety research. (orig.) [de
Development of MARS-LMR and Steady-state Calculation for KALIMER-600
Energy Technology Data Exchange (ETDEWEB)
Ha, K. S.; Jeong, H. Y.; Chang, W. P.; Lee, Y. B.; Jo, C. H
2007-05-15
MARS code which has been developed by coupling the RELAP and COBRA-TF in Korea Atomic Energy Research Institute has been improved in the aspects of hydraulically multi-dimensional modeling and data processing of common block using a dynamic memory allocation of FORTRAN. To use the code in the area of safety analysis of liquid metal reactor, several parts of the code have to be improved further. (1) Sodium property table including dynamic properties, such as, conductivity and viscosity, was generated to fit for the MARS code. (2) The heat transfer correlations for the liquid metal were implemented in the code. (3) The models describing the flow resistance by wire-wrap spacer in the core of LMR were applied. A MARS input data for KALIMER-600 is generated and steady-state calculation at the rated power is successfully performed. The input data can be used as a base input deck for the various transient analysis of a of PHTS, IHTS, and Tertiary system with minor revision of initial conditions and control system models.
Kim, Dong Ki; Lee, Jung Chan; Lee, Hajeong; Joo, Kwon Wook; Oh, Kook-Hwan; Kim, Yon Su; Yoon, Hyung-Jin; Kim, Hee Chan
2016-04-01
Wearable artificial kidney (WAK) has been considered an alternative to standard hemodialysis (HD) for many years. Although various novel WAK systems have been recently developed for use in clinical applications, the target performance or standard dose of dialysis has not yet been determined. To calculate the appropriate clearance for a HD-based WAK system for the treatment of patients with end-stage renal disease with various dialysis conditions, a classic variable-volume two-compartment kinetic model was used to simulate an anuric patient with variable target time-averaged creatinine concentration (TAC), daily water intake volume, daily dialysis pause time, and patient body weight. A 70-kg anuric patient with a HD-based WAK system operating for 24 h required dialysis clearances of creatinine of at least 100, 50, and 25 mL/min to achieve TACs of 1.0, 2.0, and 4.0 mg/dL, respectively. The daily water intake volume did not affect the clearance required for dialysis under various conditions. As the pause time per day for the dialysis increased, higher dialysis clearances were required to maintain the target TAC. The present study provided theoretical dialysis doses for an HD-based WAK system to achieve various target TACs through relevant mathematical kinetic modeling. The theoretical results may contribute to the determination of the technical specifications required for the development of a WAK system. © 2015 The Authors. Hemodialysis International published by Wiley Periodicals, Inc. on behalf of International Society for Hemodialysis.
Peng, Peng; Namkung, Jessica M; Fuchs, Douglas; Fuchs, Lynn S; Patton, Samuel; Yen, Loulee; Compton, Donald L; Zhang, Wenjuan; Miller, Amanda; Hamlett, Carol
2016-12-01
The purpose of this study was to explore domain-general cognitive skills, domain-specific academic skills, and demographic characteristics that are associated with calculation development from first grade to third grade among young children with learning difficulties. Participants were 176 children identified with reading and mathematics difficulties at the beginning of first grade. Data were collected on working memory, language, nonverbal reasoning, processing speed, decoding, numerical competence, incoming calculations, socioeconomic status, and gender at the beginning of first grade and on calculation performance at four time points: the beginning of first grade, the end of first grade, the end of second grade, and the end of third grade. Latent growth modeling analysis showed that numerical competence, incoming calculation, processing speed, and decoding skills significantly explained the variance in calculation performance at the beginning of first grade. Numerical competence and processing speed significantly explained the variance in calculation performance at the end of third grade. However, numerical competence was the only significant predictor of calculation development from the beginning of first grade to the end of third grade. Implications of these findings for early calculation instructions among young at-risk children are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Developing a Model of Tuition Fee Calculation for Universities of Medical Sciences
Directory of Open Access Journals (Sweden)
Seyed Amir Mohsen Ziaee
2018-01-01
Full Text Available Background: The aim of our study was to introduce and evaluate a practicable model for tuition fee calculation of each medical field in universities of medical sciences in Iran.Methods: Fifty experts in 11 panels were interviewed to identify variables that affect tuition fee calculation. This led to key points including total budgets, expenses of the universities, different fields’ attractiveness, universities’ attractiveness, and education quality. Tuition fees were calculated for different levels of education, such as post-diploma, Bachelor, Master, and Doctor of Philosophy (Ph.D degrees, Medical specialty, and Fellowship. After tuition fee calculation, the model was tested during 2013-2015. Since then, a questionnaire including 20 questions was prepared. All Universities’ financial and educational managers were asked to respond to the questions regarding the model’s reliability and effectiveness.Results: According to the results, fields’ attractiveness, universities’ attractiveness, zone distinction and education quality were selected as effective variables for tuition fee calculation. In this model, tuition fees per student were calculated for the year 2013, and, therefore, the inflation rate of the same year was used. Testing of the model showed that there is a 92% of satisfaction. This model is used by medical science universities in Iran.Conclusion: Education quality, zone coefficient, fields’ attractiveness, universities’ attractiveness, inflation rate, and portion of each level of education were the most important variables affecting tuition fee calculation.Keywords: TUITION FEES, FIELD’S ATTRACTIVENESS, UNIVERSITIES’ ATTRACTIVENESS, ZONE DISTINCTION, EDUCATION QUALITY
DEFF Research Database (Denmark)
Fan, Jianhua; Furbo, Simon; Li, Zhe
2016-01-01
The transient fluid flow and heat transfer in a hot water tank during cooling caused by standby heat loss were investigated by computational fluid dynamics (CFD) calculations and by thermal measurements in previous investigation. It is elucidated how thermal stratification in the tank is influenced...... by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions....
Development of a power-period calculation unit for nuclear reactor Control
International Nuclear Information System (INIS)
Martin, J.
1966-10-01
The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)
2007-07-01
The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.
International Nuclear Information System (INIS)
Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.
2007-01-01
The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes
Energy Technology Data Exchange (ETDEWEB)
Freeman, L.B. (ed.)
1978-08-01
The calculational model used in the analysis of LWBR nuclear performance is described. The model was used to analyze the as-built core and predict core nuclear performance prior to core operation. The qualification of the nuclear model using experiments and calculational standards is described. Features of the model include: an automated system of processing manufacturing data; an extensively analyzed nuclear data library; an accurate resonance integral calculation; space-energy corrections to infinite medium cross sections; an explicit three-dimensional diffusion-depletion calculation; a transport calculation for high energy neutrons; explicit accounting for fuel and moderator temperature feedback, clad diameter shrinkage, and fuel pellet growth; and an extensive testing program against experiments and a highly developed analytical standard.
DOE Research and Development Accomplishments Previous Highlights
through his Nobel Lecture in 1961, about unraveling the secrets of photosynthesis -- the process by which . March 10, 2015 Twenty years ago, the top quark was first observed in experiments at the Tevatron proton sophisticated detectors, the top was hard to find. After a top is made from a proton-antiproton collision, a
International Nuclear Information System (INIS)
Gruel, A.
2011-01-01
Reactivity measurements by the oscillation technique, as those performed in the Minerve reactor, enable to access various neutronic parameters on materials, fuels or specific isotopes. Usually, expected reactivity effects are small, about ten pcm at maximum. Then, the modeling of these experiments should be very precise, to obtain reliable feedback on the pointed parameters. Especially, calculation biases should be precisely identified, quantified and reduced to get precise information on nuclear data. The goal of this thesis is to develop a reference calculation scheme, with well quantified uncertainties, for in-pile oscillation experiments. In this work are presented several small reactivity calculation methods, based on deterministic and/or stochastic calculation codes. Those method are compared thanks to a numerical benchmark, against a reference calculation. Three applications of these methods are presented here: a purely deterministic calculation with exact perturbation theory formalism is used for the experimental validation of fission product cross sections, in the frame of reactivity loss studies for irradiated fuel; an hybrid method, based on a stochastic calculation and the exact perturbation theory is used for the readjustment of nuclear data, here 241 Am; and a third method, based on a perturbative Monte Carlo calculation, is used in a conception study. (author) [fr
International Nuclear Information System (INIS)
Hogenbirk, A.
1994-07-01
The use is demonstrated of the newly developed ECN-SUSD sensitivity/uncertainty code system. With ECN-SUSD it is possible to calculate uncertainties in response parameters in fixed source calculations due to cross section uncertainties (using MF33) as well as to uncertainties in angular distributions (using MF34). It is shown that the latter contribution, which is generally neglected because of the lack of MF34-data in modern evaluations (except for EFF), is large in fusion reactor shielding calculations. (orig.)
Directory of Open Access Journals (Sweden)
S. V. Pilipenko
2017-05-01
Full Text Available Analysis and development of the existing method of calculation of the calibrated profile of the working strips mills CTRR roller cold rolling pipe to ensure the required distribution of energy-power parameters along the cone. In presented paper, which has for aim the development of existing method for calculating the profile of calibrated working plank in the cold tube roller rolling mills, the analysis had been made and it was proposed to use Besier-lines while building the the profile of the plank working surface. It was established that the use of Besier spline-curve for calculating the calibration of supporting planks creates the possibility to calculate the parameters proceeding from reduction over the external diameter. The proposed method for calculating deformation parameters in CTRR mills is the result of development of existing method and as such shows the scientific novelty. Comparison of the plots for distribution of the force parameters of the CTRR process along the cone of deformation presents as evidence the advantage of the method to be proposed. The decrease of reduction value at the end of deformation zone favors the manufacture of tubes with lesser wall thickness deviation (especially longitudinal one, caused with waviness induced by the cold pilgering process. Joined the further development of the method of calculating the deformation parameters CTRR. It is proposed for the calculation of the calibration work surface support bracket mills CTRR to use a spline Bezier. The practical significance of the proposed method consists in the fact that calculation of all zones of the plank by means of one dependence allows simplifying the process of manufacturing the latter in machines with programmed numerical control. In this case the change of reduction parameters over the thickness of the wall will not exert the considerable influence on the character of the force parameters (the character and not the value distribution along the
International Nuclear Information System (INIS)
Bosq, J.Ch.
1998-01-01
This thesis concerns the definition and the validation of the ERANOS neutronic calculation system for steel reflected fast reactors. The calculation system uses JEF2.2 evaluated nuclear data, the ECCO cell code and the BISTRO and VARIANT transport codes. After a description of the physical phenomena induced by the existence of the these sub-critical media, an inventory of the past studies related to steel reflectors is reported. A calculational scheme taking into account the important physical phenomena (strong neutronic slowing-down, presence of broad resonances of the structural materials and spatial variation of the spectrum in the reflector) is defined. This method is validated with the TRIPOLI4 reference Monte-Carlo code. The use of this upgraded calculation method for the analysis of the part of the CIRANO experimental program devoted to the study of steel reflected configurations leads to discrepancies between the calculated and measured values. These remaining discrepancies obtained for the reactivity and the fission rate traverses are due to inaccurate nuclear data for the structural materials. The adjustment of these nuclear data in order to reduce these discrepancies id demonstrated. The additional uncertainty associated to the integral parameters of interest for a nuclear reactor (reactivity and power distribution) induced by the replacement of a fertile blanket by a steel reflector is determined for the Superphenix reactor and is proved to be small. (author)
International Nuclear Information System (INIS)
Schick, W.C. Jr.; Milani, S.; Duncombe, E.
1980-03-01
A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model
Valdman, V. V.; Gridnev, S. O.
2017-10-01
The article examines into the vital issues of measuring and calculating the raw stock volumes in covered storehouses at mining and processing plants. The authors bring out two state-of-the-art high-technology solutions: 1 - to use the ground-based laser scanning system (the method is reasonably accurate and dependable, but costly and time consuming; it also requires the stoppage of works in the storehouse); 2 - to use the fundamentally new computerized stocktaking system in mine surveying for the ore mineral volume calculation, based on the profile digital images. These images are obtained via vertical projection of the laser plane onto the surface of the stored raw materials.
Energy Technology Data Exchange (ETDEWEB)
Ellison, C. Leland [PPPL; Finn, J. M. [LANL; Qin, H. [PPPL; Tang, William M. [PPPL
2014-10-01
Structure-preserving algorithms obtained via discrete variational principles exhibit strong promise for the calculation of guiding center test particle trajectories. The non-canonical Hamiltonian structure of the guiding center equations forms a novel and challenging context for geometric integration. To demonstrate the practical relevance of these methods, a prototypical variational midpoint algorithm is applied to an experimental magnetic equilibrium. The stability characteristics, conservation properties, and implementation requirements associated with the variational algorithms are addressed. Furthermore, computational run time is reduced for large numbers of particles by parallelizing the calculation on GPU hardware.
International Nuclear Information System (INIS)
Jansen, J. T. M.; Shrimpton, P. C.; Zankl, M.
2009-01-01
This paper discusses the simulation of contemporary computed tomography (CT) scanners using Monte Carlo calculation methods to derive normalized organ doses, which enable hospital physicists to estimate typical organ and effective doses for CT examinations. The hardware used in a small PC-cluster at the Health Protection Agency (HPA) for these calculations is described. Investigations concerning optimization of software, including the radiation transport codes MCNP5 and MCNPX, and the Intel and PGI FORTRAN compilers, are presented in relation to results and calculation speed. Differences in approach for modelling the X-ray source are described and their influences are analysed. Comparisons with previously published calculations at HPA from the early 1990's proved satisfactory for the purposes of quality assurance and are presented in terms of organ dose ratios for whole body exposure and differences in organ location. Influences on normalized effective dose are discussed in relation to choice of cross section library, CT scanner technology (contemporary multi slice versus single slice), definition for effective dose (1990 and 2007 versions) and anthropomorphic phantom (mathematical and voxel). The results illustrate the practical need for the updated scanner-specific dose coefficients presently being calculated at HPA, in order to facilitate improved dosimetry for contemporary CT practice. (authors)
Feinstein, Daniel T.; Kauffman, Leon J.; Haserodt, Megan J.; Clark, Brian R.; Juckem, Paul F.
2018-06-22
The U.S. Geological Survey developed a regional model of Lake Michigan Basin (LMB). This report describes the construction of five MODFLOW inset models extracted from the LMB regional model and their application using the particle-tracking code MODPATH to simulate the groundwater age distribution of discharge to wells pumping from glacial deposits. The five study areas of the inset model correspond to 8-digit hydrologic unit code (HUC8) basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is just west of the western boundary of the Lake Michigan topographic basin. The inset models inherited many of the inputs to the parent LMB model, including the hydrostratigraphy and layering scheme, the hydraulic conductivity assigned to bedrock layers, recharge distribution, and water use in the form of pumping rates from glacial and bedrock wells. The construction of the inset models entailed modifying some inputs, most notably the grid spacing (reduced from cells 5,000 feet on a side in the parent LMB model to 500 feet on a side in the inset models). The refined grid spacing allowed for more precise location of pumped wells and more detailed simulation of groundwater/surface-water interactions. The glacial hydraulic conductivity values, the top bedrock surface elevation, and the surface-water network input to the inset models also were modified. The inset models are solved using the MODFLOW–NWT code, which allows for more robust handling of conditions in unconfined aquifers than previous versions of MODFLOW. Comparison of the MODFLOW inset models reveals that they incorporate a range of hydrogeologic conditions relative to the glacial part of the flow system, demonstrated by visualization and analysis of model inputs and outputs and reflected in the range of ages generated by MODPATH for existing and hypothetical glacial wells. Certain inputs and outputs are judged to be candidate predictors that, if
Development of load calculation techniques on screw and screw press energy consumption
Татарьянц, Максим Сергеевич; Завинский, Сергей Иванович; Трошин, Алексей Георгиевич
2015-01-01
The process of pressing of wood chips in screw machines is researched. It is defined processes taking place in different parts of the screw, formulas allowing to calculate the loads acting on the screw flights, as well as to determine the power required for compression. The unit costs of energy consumption and raw materials in the degree of heat pressing are determined
Development of a model to calculate the economic implications of improving the indoor climate
DEFF Research Database (Denmark)
Jensen, Kasper Lynge
on performance. The Bayesian Network uses a probabilistic approach by which a probability distribution can take this variation of the different indoor variables into account. The result from total building economy calculations indicated that depending on the indoor environmental change (improvement...
Directory of Open Access Journals (Sweden)
Shouhei Koyama
2017-01-01
Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.
Development of a risk-based mine closure cost calculation model
CSIR Research Space (South Africa)
Du Plessis, A
2006-06-01
Full Text Available . This research is important because currently there are a number of mines that do not have sufficient financial provision to close and rehabilitate the mines. The magnitude of the lack of funds could be reduced or eliminated if the closure cost calculation...
Aigyl Ilshatovna, Sabirova; Svetlana Fanilevna, Khasanova; Vildanovna, Nagumanova Regina
2018-05-01
On the basis of decision making theory (minimax and maximin approaches) the authors propose a technique with the results of calculations of the critical values of effectiveness indicators of agricultural producers in the Republic of Tatarstan for 2013-2015. There is justified necessity of monitoring the effectiveness of the state support and the direction of its improvement.
Development of a computational code for calculations of shielding in dental facilities
International Nuclear Information System (INIS)
Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L.
2014-01-01
This paper is prepared in order to address calculations of shielding to minimize the interaction of patients with ionizing radiation and / or personnel. The work includes the use of protection report Radiation in Dental Medicine (NCRP-145 or Radiation Protection in Dentistry), which establishes calculations and standards to be adopted to ensure safety to those who may be exposed to ionizing radiation in dental facilities, according to the dose limits established by CNEN-NN-3.1 standard published in September / 2011. The methodology comprises the use of computer language for processing data provided by that report, and a commercial application used for creating residential projects and decoration. The FORTRAN language was adopted as a method for application to a real case. The result is a programming capable of returning data related to the thickness of material, such as steel, lead, wood, glass, plaster, acrylic, acrylic and leaded glass, which can be used for effective shielding against single or continuous pulse beams. Several variables are used to calculate the thickness of the shield, as: number of films used in the week, film load, use factor, occupational factor, distance between the wall and the source, transmission factor, workload, area definition, beam intensity, intraoral and panoramic exam. Before the application of the methodology is made a validation of results with examples provided by NCRP-145. The calculations redone from the examples provide answers consistent with the report
International Nuclear Information System (INIS)
Zakharko, Yu.A.; Proshkin, A.A.
1986-01-01
Necessity of analytical approaches alongside with existing numerical methods of fuel element calculation is discussed. Analytical solutions of viscoelastic equations describing mechanical fuel-cladding interaction have been obtained. At that universal temperature dependence of creep characteristics is suggested. Dependence of behaviour of the WWER fuel element fuel and cladding on absolute temperature level and gradients is analysed
Kwak, G.; Kim, K.; Park, Y.
2014-02-01
As the maritime boundary delimitation is important for the purpose of securing marine resources, in addition to the aspect of maritime security, interest in maritime boundary delimitation to help national benefits are increasing over the world. In Korea, the importance of maritime boundary delimitation with the neighbouring countries is also increasing in practice. The quantity of obtainable marine resources depending on maritime boundary acts as an important factor for maritime boundary delimitation. Accordingly, a study is required to calculate quantity of our obtainable marine resources depending on maritime boundary delimitation. This study intends to calculate obtainable marine resources depending on various maritime boundary scenarios insisted by several countries. It mainly aims at developing a GIS-based automation system to be utilized for decision making of the maritime boundary delimitation. For this target, it has designed a module using spatial analysis technique to automatically calculate profit and loss waters area of each country upon maritime boundary and another module to estimate economic profits and losses obtained by each country using the calculated waters area and pricing information of the marine resources. By linking both the designed modules, it has implemented an automatic economic profit and loss calculation system for the GIS-based maritime boundary delimitation. The system developed from this study automatically calculate quantity of the obtainable marine resources of a country for the maritime boundary to be added and created in the future. Thus, it is expected to support decision making for the maritime boundary negotiators.
International Nuclear Information System (INIS)
Kwak, G; Kim, K; Park, Y
2014-01-01
As the maritime boundary delimitation is important for the purpose of securing marine resources, in addition to the aspect of maritime security, interest in maritime boundary delimitation to help national benefits are increasing over the world. In Korea, the importance of maritime boundary delimitation with the neighbouring countries is also increasing in practice. The quantity of obtainable marine resources depending on maritime boundary acts as an important factor for maritime boundary delimitation. Accordingly, a study is required to calculate quantity of our obtainable marine resources depending on maritime boundary delimitation. This study intends to calculate obtainable marine resources depending on various maritime boundary scenarios insisted by several countries. It mainly aims at developing a GIS-based automation system to be utilized for decision making of the maritime boundary delimitation. For this target, it has designed a module using spatial analysis technique to automatically calculate profit and loss waters area of each country upon maritime boundary and another module to estimate economic profits and losses obtained by each country using the calculated waters area and pricing information of the marine resources. By linking both the designed modules, it has implemented an automatic economic profit and loss calculation system for the GIS-based maritime boundary delimitation. The system developed from this study automatically calculate quantity of the obtainable marine resources of a country for the maritime boundary to be added and created in the future. Thus, it is expected to support decision making for the maritime boundary negotiators
Energy Technology Data Exchange (ETDEWEB)
Mead, H [Christian Brothers University, Memphis, TN (United States); St. Jude Children’s Research Hospital, Memphis, TN (United States); Brady, S; Kaufman, R [St. Jude Children’s Research Hospital, Memphis, TN (United States)
2016-06-15
Purpose: To discover if a previously published methodology for estimating patient-specific organ dose in a pediatric population (5–55kg) is translatable to the adult sized patient population (> 55 kg). Methods: An adult male anthropomorphic phantom was scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations in the chest and abdominopelvic regions to determine absolute organ dose. Organ-dose-to-SSDE correlation factors were developed by dividing individual phantom organ doses by SSDE of the phantom; where SSDE was calculated at the center of the scan volume of the chest and abdomen/pelvis separately. Organ dose correlation factors developed in phantom were multiplied by 28 chest and 22 abdominopelvic patient SSDE values to estimate organ dose. The median patient weight from the CT examinations was 68.9 kg (range 57–87 kg) and median age was 17 years (range 13–28 years). Calculated organ dose estimates were compared to published Monte Carlo simulated patient and phantom results. Results: Organ-dose-to-SSDE correlation was determined for a total of 23 organs in the chest and abdominopelvic regions. For organs fully covered by the scan volume, correlation in the chest (median 1.3; range 1.1–1.5) and abdominopelvic (median 0.9; range 0.7–1.0) was 1.0 ± 10%. For organs that extended beyond the scan volume (i.e. skin bone marrow and bone surface) correlation was determined to be a median of 0.3 (range 0.1–0.4). Calculated patient organ dose using patient SSDE agreed to better than 6% (chest) and 15% (abdominopelvic) to published values. Conclusion: This study demonstrated that our previous published methodology for calculating organ dose using patient-specific SSDE for the chest and abdominopelvic regions is translatable to adult sized patients for organs fully covered by the scan volume.
International Nuclear Information System (INIS)
Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.
1990-06-01
In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de
The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air
Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.
2018-01-01
The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.
Shelef, Eitan; Hilley, George E.
2013-12-01
Flow routing across real or modeled topography determines the modeled discharge and wetness index and thus plays a central role in predicting surface lowering rate, runoff generation, likelihood of slope failure, and transition from hillslope to channel forming processes. In this contribution, we compare commonly used flow-routing rules as well as a new routing rule, to commonly used benchmarks. We also compare results for different routing rules using Airborne Laser Swath Mapping (ALSM) topography to explore the impact of different flow-routing schemes on inferring the generation of saturation overland flow and the transition between hillslope to channel forming processes, as well as on location of saturation overland flow. Finally, we examined the impact of flow-routing and slope-calculation rules on modeled topography produced by Geomorphic Transport Law (GTL)-based simulations. We found that different rules produce substantive differences in the structure of the modeled topography and flow patterns over ALSM data. Our results highlight the impact of flow-routing and slope-calculation rules on modeled topography, as well as on calculated geomorphic metrics across real landscapes. As such, studies that use a variety of routing rules to analyze and simulate topography are necessary to determine those aspects that most strongly depend on a chosen routing rule.
Development and testing of a European Union-wide farm-level carbon calculator.
Tuomisto, Hanna L; De Camillis, Camillo; Leip, Adrian; Nisini, Luigi; Pelletier, Nathan; Haastrup, Palle
2015-07-01
Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions. © 2015 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of SETAC.
Calculating the cost of research and Development in nuclear and radiation safety
International Nuclear Information System (INIS)
Matsulevich, N.Je.; Nosovs'ka, A.A.
2010-01-01
Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.
Decay Heat Calculations for Reactors: Development of a Computer Code ADWITA
International Nuclear Information System (INIS)
Raj, Devesh
2015-01-01
Estimation of release of energy (decay heat) over an extended period of time after termination of neutron induced fission is necessary for determining the heat removal requirements when the reactor is shutdown, and for fuel storage and transport facilities as well as for accident studies. A Fuel Cycle Analysis Code, ADWITA (Activation, Decay, Waste Incineration and Transmutation Analysis) which can generate inventory based on irradiation history and calculate radioactivity and decay heat for extended period of cooling, has been written. The method and data involved in Fuel Cycle Analysis Code ADWITA and some results obtained shall also be presented. (author)
Sensitivity analysis using the FRAPCON-1/EM: development of a calculation model for licensing
International Nuclear Information System (INIS)
Chapot, J.L.C.
1985-01-01
The FRAPCON-1/EM is version of the FRAPCON-1 code which analyses fuel rods performance under normal operation conditions. This version yields conservative results and is used by the NRC in its licensing activities. A sensitivity analysis was made, to determine the combination of models from the FRAPCON-1/EM which yields the most conservative results for a typical Angra-1 reactor fuel rod. The present analysis showed that this code can be used as a calculation tool for the licensing of the Angra-1 reload. (F.E.) [pt
International Nuclear Information System (INIS)
Woldemariyam, M.G.
2015-07-01
The accuracy of MU calculation performed with Prowess Panther TPS (for Co-60) and Oncentra (for 6MV and 15MV x-rays) for tangential breast irradiation was evaluated with measurements made in an anthropomorphic phantom using calibrated Gafchromic EBT2 films. Excel programme which takes in to account external body surface irregularity of an intact breast or chest wall (hence absence of full scatter condition) using Clarkson’s sector summation technique was developed. A single surface contour of the patient obtained in a transverse plane containing the MU calculation point was required for effective implementation of the programme. The outputs of the Excel programme were validated with the respective outputs from the 3D treatment planning systems. The variations between the measured point doses and their calculated counterparts by the TPSs were within the range of -4.74% to 4.52% (mean of -1.33% and SD of 2.69) for the prowess panther TPS and -4.42% to 3.14% (mean of -1.47% and SD of -3.95) for the Oncentra TPS. The observed degree of deviation may be attributed to limitations of the dose calculation algorithm within the TPSs, set up inaccuracies of the phantom during irradiation and inherent uncertainties associated with radiochromic film dosimetry. The percentage deviations between MUs calculated with the two TPSs and the Excel program were within the range of -3.45% and 3.82% (mean of 0.83% and SD of 2.25). The observed percentage deviations are within the 4% action level recommended by TG-114. This indicates that the Excel program can be confidently employed for calculation of MUs for 2D planned tangential breast irradiations or to independently verify MUs calculated with another calculation methods. (au)
International Nuclear Information System (INIS)
Shi Chengyu
2004-01-01
Assessment of radiation dose and possible risk to a pregnant woman and her fetus is an important task in radiation protection. Although stylized models for male and female patients of different ages have been developed, tomographic models for pregnant women have not been developed to date. This dissertation presents an effort to construct a partial-body model of a pregnant woman from a set of CT images. The patient was 30-weeks pregnant, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices, each 7 mm thick. The image resolution was 512x512 pixels in a 48 cmx48 cm field. The images were carefully segmented to identify 34 organs and tissues. It has been found that the masses are different from the Reference Woman. The characteristics of the resulting model are discussed and compared with one existing stylized mathematical model for pregnant women. Based on this tomographic model, a Monte Carlo code, EGS4-VLSI, was used to derive specific absorbed fractions. Monoenergetic and isotropic photon and electron emitters distributed in different source organs were assumed and the energies ranged from 10 keV to 4 MeV for photons and from 100 keV to 4 MeV for electrons. The results for high energy (>50 keV) photons showed general agreement with previous studies, however, the results for lower energy (<50 keV) photons showed differences of up to several hundred percent for some source and target organs. For electron results, several tens of percent differences were found. Those differences can be explained by mass differences and the relative geometry differences between source and target organs. In summary, the stylized models for pregnant women are satisfactory for a very large size patient for most of the photon energies (between 50 keV and 4 MeV). However, a tomographic model has to be used to obtain acceptable dose assessments for electrons. The newly calculated SAF data set can provide the nuclear medicine dosimetry field
Development of a program for calculating the cells of heavy water
International Nuclear Information System (INIS)
Calabrese, R.; Lerner, A.M.; Notari, C.
1991-01-01
We describe here a methodology to solve the transport equation i cluster-type fuel cells found in PHWR. The general idea is inspired in the English lattice code WIMS-D4 and associated library even if we have introduced innovations both in structure and contents. The different steps involved are the resonant calculation and the subsequent construction of the microscopic self-shielded cross sections for each isotope; the calculation of macroscopic cross sections per material and the condensation to a broader energy structure; the solution of the two dimensional discretized transport equation for the whole cell. The next step is the inclusion of a burn up routine. A program, ALFIN, was written in FORTRAN 77, and prepared in a modular structure. A sample problem is tested and ALFIN results compared to those produce by WIMS-D4. The discrepancies observed are negligible, except for the resonant region where the methods are different and in some aspect WIMS is clearly in error. (author)
Development of the Porosity Calculation Procedure using Pro/E and Pro/Tool kit
International Nuclear Information System (INIS)
Lee, Sangyong; Park, Chaneok; Sohn, Jongjoo
2013-01-01
When the number of cells is greater than several hundreds, and/or, the complexity of the system is very high like the reactor system, there may be some problems that have to be solved for the successful customization. The first problem that comes with large number of mesh cells is the time to finish the calculation is too long. The second problem that comes with the complex system, which means that the data base of the solid model is too big, and prohibits this approach altogether. The reason for this is that simply the Pro/E cannot handle too complex geometry. For example, a desktop workstation that has a 3.3 GHz CPU and a Quadrol FX 5600 graphic card cannot handle a system that has more than 150000 solid parts because it takes too long time to regenerate model data and it takes to long time to manipulating graphic data by graphic processor. Another problem is identified with the Pro/Tool kit API routines. The maximum memory size of the array that can be handled by the API is 4 mega bytes. Therefore, a limited number of solid parts can be handled in one time. Some more efforts should be exercised to solve these problems to get a powerful porosity calculation procedure
Development of the Porosity Calculation Procedure using Pro/E and Pro/Tool kit
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangyong; Park, Chaneok; Sohn, Jongjoo [Korea Power Engineering Company, Inc., Daejeon (Korea, Republic of)
2013-05-15
When the number of cells is greater than several hundreds, and/or, the complexity of the system is very high like the reactor system, there may be some problems that have to be solved for the successful customization. The first problem that comes with large number of mesh cells is the time to finish the calculation is too long. The second problem that comes with the complex system, which means that the data base of the solid model is too big, and prohibits this approach altogether. The reason for this is that simply the Pro/E cannot handle too complex geometry. For example, a desktop workstation that has a 3.3 GHz CPU and a Quadrol FX 5600 graphic card cannot handle a system that has more than 150000 solid parts because it takes too long time to regenerate model data and it takes to long time to manipulating graphic data by graphic processor. Another problem is identified with the Pro/Tool kit API routines. The maximum memory size of the array that can be handled by the API is 4 mega bytes. Therefore, a limited number of solid parts can be handled in one time. Some more efforts should be exercised to solve these problems to get a powerful porosity calculation procedure.
International Nuclear Information System (INIS)
Andersen, L.J.
1983-05-01
During the investigation of the Mors salt dome, a site considered as a possible repository for Danish high level radioactive wastes, a new method for testing low-permeable formations - The Labelled Slug Test -was developed. The large amount of data obtained during this test makes manual evaluation both difficult and time consuming. Principles of computerized procedure for the evaluation of the results are given and problems arising during calculation are discussed. Spinner flowmeter data is normally used to give a qualitative estimate of permeability distribution. Formulas and procedures are proposed which make direct calculations of permeability from spinner readings possible
Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation
Energy Technology Data Exchange (ETDEWEB)
Hoshi, T [Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8550 (Japan); Fujiwara, T [Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST-JST) (Japan)
2009-02-11
An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.
Development and application of a model to calculate the distribution of radon in houses
International Nuclear Information System (INIS)
Haider, B.; Papamokos, E.; Ferron, G.; Peter, J.; Unverfaerth, L.
1990-01-01
In order to produce a radon profile of the examined houses, an electronic measuring process was used to determine the concentration of radon decomposition products. The measurements were made inside flats with the doors closed, in vertical air exchange between the cellars and the storeys of houses and in the cellar itself. The measured decomposition product and measured gas concentrations show that, apart from the cellar floor, part of the building material makes a considerable contribution to emanation of radon and thoron. It was found that a model for calculating the loading of the inhabitants of a house with radon is not yet available due to the complicated flat geometry and the activities of the inhabitants. (DG) [de
The rhetoric of calculations. Economical arguments for development of new energy technologies
International Nuclear Information System (INIS)
Solli, Joeran
2004-01-01
The thesis discusses the theoretical economics and social factors for development of new energy technologies and has chapter on: New energy technologies in an economical and political change, technology development from innovation economy to economical sociology, opinion formation in the energy sector, establishing energy economical discussion, economy as pidgin, financial factors, forming social education and market power versus language strife
Ale, B.J.M.; Van Gulijk, C.; Hanea, D.M.; Hudson, P.; Lin, P.H.; Sillem, S.; Steenhoek, M.; Ababei, D.
2013-01-01
An integrated model for risk in a real-time environment for the hydrocarbon industry based on the CATS model for commercial aviation safety has been further developed. The approach described in earlier papers required Bayesian Belief Nets (BBN) to be developed for each process unit separately. A
Energy Technology Data Exchange (ETDEWEB)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
1985-05-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
Energy Technology Data Exchange (ETDEWEB)
Dalzell, M.T.J. [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, Saskatchewan (Canada)
2016-06-15
Concerns arising from misunderstandings about radiation are often cited as a main reason for public antipathy towards nuclear development and impede decision-making by governments and individuals. A lack of information about everyday sources of radiation exposure that is accessible, relatable and factual contributes to the problem. As part of its efforts to be a fact-based source of information on nuclear issues, the Sylvia Fedoruk Canadian Centre for Nuclear Innovation has developed an on-line Canadian Radiation Dose Calculator as a tool to provide context about common sources of radiation. This paper discusses the development of the calculator and describes how the Fedoruk Centre is using it and other tools to support public engagement on nuclear topics. (author)
Energy Technology Data Exchange (ETDEWEB)
Endo, Akira; Kim, Eunjoo; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-10-01
A Monte Carlo code SCINFUL has been utilized for calculating response functions of organic scintillators for high-energy neutron spectroscopy. However, the applicability of SCINFUL is limited to the calculations for cylindrical NE213 and NE110 scintillators. In the present study, SCINFUL-CG was developed by introducing a geometry specifying function and high-energy neutron cross section data into SCINFUL. The geometry package MARS-CG, the extended version of the CG (Combinatorial Geometry), was programmed into SCINFUL-CG to express various geometries of detectors. Neutron spectra in the regions specified by the CG can be evaluated by the track length estimator. The cross section data of silicon, oxygen and aluminum for neutron transport calculation were incorporated up to 100 MeV using the data of LA150 library. Validity of SCINFUL-CG was examined by comparing calculated results with those by SCINFUL and MCNP and experimental data measured using high-energy neutron fields. SCINFUL-CG can be used for the calculations of the response functions and neutron spectra in the organic scintillators in various shapes. The computer code will be applicable to the designs of high-energy neutron spectrometers and neutron monitors using the organic scintillators. The present report describes the new features of SCINFUL-CG and explains how to use the code. (author)
International Nuclear Information System (INIS)
Weber, J.; Denk, W.
1985-01-01
An improved version of the FELIX programme was applied to varify excursion experiments 01, 03 through 07, and 13. The correspondence of experiments and verification was good. Programme points to be further developed are shown. (orig.) [de
International Nuclear Information System (INIS)
Jang, Sae Byul; Kim, Jong Jin; Ahn, Joon
2009-01-01
We develop a heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a Heat Recovery Steam Generator (HRSG). This heat recovery system has 8 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 1 MPa and tested steam pressure is 0.7 MPa. In order to test these heat exchanger modules, we make a 0.5 t/h flue tube boiler (LNG, 40 Nm 3 /h). We tested the heat exchanger module with changing the position of each heat exchanger module. We measured the inlet and outlet temperature of each heat exchanger module and calculated the heat exchange rate. Based on test results, we develop a heat transfer calculation program to predict flue gas. Calculation results show that temperature and temperature difference between measured and calculated flue gas exit temperature is less than 20 .deg. C when flue gas inlet temperature is 620 .deg. C.
Walitt, L.
1982-01-01
The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.
Chen, Rui; Xie, Liping; Xue, Wei; Ye, Zhangqun; Ma, Lulin; Gao, Xu; Ren, Shancheng; Wang, Fubo; Zhao, Lin; Xu, Chuanliang; Sun, Yinghao
2016-09-01
Substantial differences exist in the relationship of prostate cancer (PCa) detection rate and prostate-specific antigen (PSA) level between Western and Asian populations. Classic Western risk calculators, European Randomized Study for Screening of Prostate Cancer Risk Calculator, and Prostate Cancer Prevention Trial Risk Calculator, were shown to be not applicable in Asian populations. We aimed to develop and validate a risk calculator for predicting the probability of PCa and high-grade PCa (defined as Gleason Score sum 7 or higher) at initial prostate biopsy in Chinese men. Urology outpatients who underwent initial prostate biopsy according to the inclusion criteria were included. The multivariate logistic regression-based Chinese Prostate Cancer Consortium Risk Calculator (CPCC-RC) was constructed with cases from 2 hospitals in Shanghai. Discriminative ability, calibration and decision curve analysis were externally validated in 3 CPCC member hospitals. Of the 1,835 patients involved, PCa was identified in 338/924 (36.6%) and 294/911 (32.3%) men in the development and validation cohort, respectively. Multivariate logistic regression analyses showed that 5 predictors (age, logPSA, logPV, free PSA ratio, and digital rectal examination) were associated with PCa (Model 1) or high-grade PCa (Model 2), respectively. The area under the curve of Model 1 and Model 2 was 0.801 (95% CI: 0.771-0.831) and 0.826 (95% CI: 0.796-0.857), respectively. Both models illustrated good calibration and substantial improvement in decision curve analyses than any single predictors at all threshold probabilities. Higher predicting accuracy, better calibration, and greater clinical benefit were achieved by CPCC-RC, compared with European Randomized Study for Screening of Prostate Cancer Risk Calculator and Prostate Cancer Prevention Trial Risk Calculator in predicting PCa. CPCC-RC performed well in discrimination and calibration and decision curve analysis in external validation compared
Kruis, Nathanael J. F.
Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer
Monaco, Nanci M.; Gentile, J. Ronald
1987-01-01
This study was designed to test whether a learned helplessness treatment would decrease performance on mathematical tasks and to extend learned helplessness findings to include the cognitive development dimension. Results showed no differential advantages to either sex in resisting effects of learned helplessness or in benefiting from strategy…
International Nuclear Information System (INIS)
Mediavilla, E.; Lopez, P.; Mediavilla, T.; Ariza, O.; Muñoz, J. A.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-01-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N –3/4 dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
International Nuclear Information System (INIS)
Deus, S.F.; Poston, J.W.
1976-01-01
A phantom was developed representing a ten-year old child for use as the basis for dosimetric studies. An initial literature survey was made to determine organ mass, shape, and location in a normal ten-year-old child. These data were used to construct a mathematical representation of the child for use in computer calculations of absorbed radiation dose for typical exposure situations following the administration of radiopharmaceuticals
Shelton, Chris
2016-06-01
The safe administration of drugs is a focus of attention in healthcare. It is regarded as acceptable that a formula card or mnemonic can be used to find the correct dose and fill a prescription even though this removes any requirement for performing the underlying computation. Feedback and discussion in class reveal that confidence in arithmetic skills can be low even when students are able to pass the end of semester drug calculation exam. To see if confidence in the understanding and performance of arithmetic for drug calculations can be increased by emphasising student's innate powers of logical reasoning after reflection. Remedial classes offered for students who have declared a dislike or lack of confidence in arithmetic have been developed from student feedback adopting a reasoning by logical step methodology. Students who gave up two hours of their free learning time were observed to engage seriously with the learning methods, focussing on the innate ability to perform logical reasoning necessary for drug calculation problems. Working in small groups allowed some discussion of the route to the answer and this was followed by class discussion and reflection. The results were recorded as weekly self-assessment scores for confidence in calculation. A self-selecting group who successfully completed the end of semester drug calculation exam reported low to moderate confidence in arithmetic. After four weeks focussing on logical skills a significant increase in self-belief was measured. This continued to rise in students who remained in the classes. Many students hold a negative belief regarding their own mathematical abilities. This restricts the learning of arithmetic skills making alternate routes using mnemonics and memorised steps an attractive alternative. Practising stepwise logical reasoning skills consolidated by personal reflection has been effective in developing student's confidence and awareness of their innate powers of deduction supporting an
SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose
Energy Technology Data Exchange (ETDEWEB)
Prajapati, S; Yan, Y; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States)
2016-06-15
Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films were placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.
Software development for subsonic aircraft’s unsteady longitudinal stability derivatives calculation
Directory of Open Access Journals (Sweden)
Maričić Nikola
2005-01-01
Full Text Available Subsonic general configuration aircrafts’ unsteady longitudinal aerodynamic stability derivatives can be estimated using finite element methodology based on the Doublet Lattice Method (DLM, the Slender Body Theory (SBT and the Method of Images (MI. Applying this methodology, software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21A and HA75H. A good agreement is achieved.
International Nuclear Information System (INIS)
Al-Ghorabie, F.H.H.
2003-01-01
In this paper a computer model based on the use of the well-known Monte Carlo simulation code EGS4 was developed to simulate the scattering of polyenergetic X-ray beams through some materials. These materials are: lucite, polyethylene, polypropylene and aluminium. In particular, the ratio of the scattered to total X-ray fluence (scatter fraction) has been calculated for X-ray beams in the energy region 30-120 keV. In addition scatter fractions have been determined experimentally using a polyenergetic superficial X-ray unit. Comparison of the measured and the calculated results has been performed. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer. Good agreement (estimated statistical error < 5%) was obtained between the measured and the calculated values of the scatter fractions for materials with Z < 20 that were studied in this paper. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine
Some tools of the trade we've developed for our cross-section calculations
International Nuclear Information System (INIS)
Gardner, D.G.; Gardner, M.A.
1992-11-01
A number of compute codes have been modified or developed, both main-frame and PC. Seven codes, of which three are discussed in some detail. The later are: a controller-driven, double-precision version of the coupled-channel code ECIS; the latest version of STAPRE, a precompound plus Hauser-Feshbach nuclear reaction code; and NUSTART, a PC code that analyzes large sets of discrete nuclear levels and the multipole transitions among them. All main-frame codes are now being converted to the UNICOS operating system
International Nuclear Information System (INIS)
Paixao, S.B.
1985-01-01
The methodology used in the WIGLE3 computer code is studied. This methodology has been applied for the steady-state and transient solutions of the one-dimensional, two-group, diffusion equations in slab geometry, in axial type probelm analysis. It's also studied, based in a WIGLE3 computer code, reactor representative models, considering non-boiling heat transfer. A steady-state program for control rod bank position search- CITER 1D- has been developed. Some criticality research on the proposed system has been done using different control rod bank initial positions, time steps and convergence parameters. (E.G.) [pt
Development of DUST: A computer code that calculates release rates from a LLW disposal unit
International Nuclear Information System (INIS)
Sullivan, T.M.
1992-01-01
Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed
International Nuclear Information System (INIS)
Okonogi, Kazunari; Nakamura, Takehiko; Yoshinaga, Makio; Hosoyamada, Ryuji
1999-03-01
As a series of the pulse irradiation tests with the irradiated fuel, the high-enriched fuel rods pre-irradiated in the JMTR as well as the fuels irradiated in commercial reactors have been irradiated in the NSRR. In the pre-irradiation at the JMTR, the test fuels were placed at the irradiation holes in the reflector region far from the driver core to keep the linear heat generation rate of the test fuel low. Accordingly, neutron energy spectra of the irradiation holes for the test fuels are softened due to the higher moderator ratio than in those of the ordinary LWR core, which causes quite different burnup characteristics. JMTR post irradiation condition corresponds to the pre-test condition in the NSRR. Therefore, proper understanding of the condition is quite important for the precise evaluating the energy deposition and FP generation in the test. Then, neutron spectra at the JMTR irradiation field were evaluated and its effects on the burnup calculation were quantified. Basing on the configuration of the JMTR core in the operation cycle No.85, neutron diffusion calculations of 107 groups were executed in 2-D slab (X-Y) geometry of CITATION of SRAC95 code system, and neutron energy spectra of the irradiation hole for the test fuels were evaluated. Burnup calculations of Test JMN-1 fuel with the estimated neutron energy spectra were performed and the results were compared to both the measurements and calculation results with the PWR and BWR libraries in ORIGEN2 code. SWAT code was used to collapse the 107 groups spectra into 1 group libraries for the ORIGEN2 use. The calculation results for both the generation and depletion of U, Pu and Nd with the JMTR libraries obtained in the present study were in the reasonably good agreement with the measurements, while in the case of calculation with the PWR and BWR libraries in ORIGEN2, the generation of fission products having mass numbers from 105 to 130 and some actinides were overestimated by about 1.5 to 3.5 times
International Nuclear Information System (INIS)
Bae, Young Jig; Nam, Ki Mun; Lee, Yu Jong; Chung, Chan Young
2003-01-01
Source terms presented in TID-14844 and Regulatory Guide 1.4 have been used for radiological analysis of design basis accidents for licensing existing pressurized water reactor (PWR). However, more realistic and physically-based source term based on results of study and experiments for about 30 years after the publication of TID-14844 was developed and presented in NUREG-1465 published by U.S NRC in 1995. In addition, ICRP has revised dose concepts and criteria through the publication of ICRP-9, 26, 60 and recommended effective dose concepts rather than critical organ concept since the publication of ICRP-26. Accordingly, multipurpose computer program called DBADOSE incorporating alternative source terms in NUREG-1465 and effective dose concepts in ICRP-60 was developed. Comparison of results of DBADOSE with those of POSTDBA and STARDOSE was performed and verified and no significant difference and inaccuracy were found. DBADOSE will be used to evaluate accidental doses for licensing application according to the domestic laws that are expected to be revised in the near future
Development of explicit solution scheme for the MATRA-LMR code and test calculation
International Nuclear Information System (INIS)
Jeong, H. Y.; Ha, K. S.; Chang, W. P.; Kwon, Y. M.; Jeong, K. S.
2003-01-01
The local blockage in a subassembly of a liquid metal reactor is of particular importance because local sodium boiling could occur at the downstream of the blockage and integrity of the fuel clad could be threatened. The explicit solution scheme of MATRA-LMR code is developed to analyze the flow blockage in a subassembly of a liquid metal cooled reactor. In the present study, the capability of the code is extended to the analysis of complete blockage of one or more subchannels. The results of the developed solution scheme shows very good agreement with the results obtained from the implicit scheme for the experiments of flow channel without any blockage. The applicability of the code is also evaluated for two typical experiments in a blocked channel. Through the sensitivity study, it is shown that the explicit scheme of MATRA-LMR predicts the flow and temperature profile after blockage reasonably if the effect of wire is suitably modeled. The simple assumption in wire-forcing function is effective for the un-blocked case or for the case of blockage with lower velocity. A different type of wire-forcing function describing the velocity reduction after blockage or an accurate distributed resistance model is required for more improved predictions
Energy Technology Data Exchange (ETDEWEB)
Hendron, R.; Eastment, M.
2006-08-01
In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.
International Nuclear Information System (INIS)
Xu Mingyang; Wang Wenran; Wang Jiaying
1999-01-01
To reduce the flow velocity in the high differential pressure regulating valve with labyrinth. A type of complicated valve core structure were designed with tortuous flow path made from reversal double elbows. It is very difficult to calculate the pressure-drop of the un-fully developed two-phase flow under high temperature and pressure which flow through the valve core. A calculation method called 'constant (varing) pressure-drop progressing step by step design method' was developed. The complicated flow path was disintegrated into a series of independent resistance units and with the valve stem end progressing step by step the dimensions of the flow path were designed in accordance with the principle that in every position the total pressure-drop of the valve should amount to that required by the design goal curve. In the course of calculating the total pressure-drop, the valve flow path was also divided into a series of independent resistance units. The experiment results show that design flow characteristics are approximately consistent with the flow characteristics measured in the test
The development of a new algorithm to calculate a survival function in non-parametric ways
International Nuclear Information System (INIS)
Ahn, Kwang Won; Kim, Yoon Ik; Chung, Chang Hyun; Kim, Kil Yoo
2001-01-01
In this study, a generalized formula of the Kaplan-Meier method is developed. The idea of this algorithm is that the result of the Kaplan-Meier estimator is the same as that of the redistribute-to-the right algorithm. Hence, the result of the Kaplan-Meier estimator is used when we redistribute to the right. This can be explained as the following steps, at first, the same mass is distributed to all the points. At second, when you reach the censored points, you must redistribute the mass of that point to the right according to the following rule; to normalize the masses, which are located to the right of the censored point, and redistribute the mass of the censored point to the right according to the ratio of the normalized mass. Until now, we illustrate the main idea of this algorithm.The meaning of that idea is more efficient than PL-estimator in the sense that it decreases the mass of after that area. Just like a redistribute to the right algorithm, this method is enough for the probability theory
Development of a model to calculate the overall heat transfer coefficient of greenhouse covers
Energy Technology Data Exchange (ETDEWEB)
Rasheed, A.; Lee, J. W.; Lee, H.L.
2017-07-01
A Building Energy Simulation (BES) model based on TRNSYS, was developed to investigate the overall heat transfer coefficient (U-value) of greenhouse covers including polyethylene (PE), polycarbonate (PC), polyvinyl chloride (PVC), and horticultural glass (HG). This was used to determine the influences of inside-to-outside temperature difference, wind speed, and night sky radiation on the U-values of these materials. The model was calibrated using published values of the inside and outside convective heat transfer coefficients. Validation of the model was demonstrated by the agreement between the computed and experimental results for a single-layer PE film. The results from the BES model showed significant changes in U-value in response to variations in weather parameters and the use of single or double layer greenhouse covers. It was found that the U-value of PC, PVC, and HG was 9%, 4%, and 15% lower, respectively, than that for PE. In addition, by using double glazing a 34% reduction in heat loss was noted. For the given temperature U-value increases as wind speed increases. The slopes at the temperature differences of 20, 30, 40, and 50 °C, were approximately 0.3, 0.5, 0.7, and 0.9, respectively. The results agree with those put forward by other researchers. Hence, the presented model is reliable and can play a valuable role in future work on greenhouse energy modelling.
Directory of Open Access Journals (Sweden)
Wefstaedt Patrick
2009-11-01
Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in
International Nuclear Information System (INIS)
Kuznetsov, D.V.; Kormilitsyn, V.M.; Proskuryakov, K.N.
2010-01-01
Calculation results of acoustic parameters fluctuations in low-pressure regenerative heating system of NPP with WWER-1000 type reactor were presented. The spectral structure of acoustic fluctuations was shown to depend on configuration of secondary circuit equipment, its geometrical sizes and operation mode. Estimations of natural oscillations frequencies of working medium pressure in the secondary circuit equipment were resulted. The developed calculation methods and algorithms are intended for revealing and prevention of initiation conditions of vibrations resonances in elements of the secondary circuit equipment with acoustic oscillations in working medium, both under operating conditions and in the design stage of the second circuit of NPP with WWER-1000 type reactor. Analysis of pass-band dependence on operation mode was carried out to solve the given problem [ru
International Nuclear Information System (INIS)
Akahane, K.; Kai, M.; Kusama, T.
1996-01-01
We made a new mathematical phantom using the patients' digital pictures of bone scintillation in nuclear medicine. The data of 99m Tc bone scintillation pictures include the information on the body sizes and shapes. In the bone scintillation pictures, no three dimensional data are available, so that the shapes and sizes of whole body and bones were modelled based on standard anatomical geometry. The organs except bone were also modelled after construction of the bone mathematical model. The mathematical phantoms were developed for each patient. The specific effective energy for each phantom can be calculated by the Monte Carlo code to compare it among the patients. Our mathematical phantoms would provide new calculation of internal doses from radiopharmaceuticals in place of the MIRD phantom. (author)
International Nuclear Information System (INIS)
Sebelin, E.
1997-01-01
Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.)
International Nuclear Information System (INIS)
Grabaskas, David
2016-01-01
The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brunett, Acacia J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Denman, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Clark, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Denning, Richard S. [Consultant, Columbus, OH (United States)
2016-10-01
The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.
International Nuclear Information System (INIS)
Shakespeare, T.P.; Mukherjee, R.K.; Gebski, V.J.
2003-01-01
Confidence levels, clinical significance curves, and risk-benefit contours are tools improving analysis of clinical studies and minimizing misinterpretation of published results, however no software has been available for their calculation. The objective was to develop software to help clinicians utilize these tools. Excel 2000 spreadsheets were designed using only built-in functions, without macros. The workbook was protected and encrypted so that users can modify only input cells. The workbook has 4 spreadsheets for use in studies comparing two patient groups. Sheet 1 comprises instructions and graphic examples for use. Sheet 2 allows the user to input the main study results (e.g. survival rates) into a 2-by-2 table. Confidence intervals (95%), p-value and the confidence level for Treatment A being better than Treatment B are automatically generated. An additional input cell allows the user to determine the confidence associated with a specified level of benefit. For example if the user wishes to know the confidence that Treatment A is at least 10% better than B, 10% is entered. Sheet 2 automatically displays clinical significance curves, graphically illustrating confidence levels for all possible benefits of one treatment over the other. Sheet 3 allows input of toxicity data, and calculates the confidence that one treatment is more toxic than the other. It also determines the confidence that the relative toxicity of the most effective arm does not exceed user-defined tolerability. Sheet 4 automatically calculates risk-benefit contours, displaying the confidence associated with a specified scenario of minimum benefit and maximum risk of one treatment arm over the other. The spreadsheet is freely downloadable at www.ontumor.com/professional/statistics.htm A simple, self-explanatory, freely available spreadsheet calculator was developed using Excel 2000. The incorporated decision-making tools can be used for data analysis and improve the reporting of results of any
Energy Technology Data Exchange (ETDEWEB)
Faught, A [UT MD Anderson Cancer Center, Houston, TX (United States); University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX (United States); Davidson, S [University of Texas Medical Branch of Galveston, Galveston, TX (United States); Kry, S; Ibbott, G; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States); Fontenot, J [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Etzel, C [Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA (United States)
2014-06-01
Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Purpose: To commission a multiple-source Monte Carlo model of Elekta linear accelerator beams of nominal energies 6MV and 10MV. Methods: A three source, Monte Carlo model of Elekta 6 and 10MV therapeutic x-ray beams was developed. Energy spectra of two photon sources corresponding to primary photons created in the target and scattered photons originating in the linear accelerator head were determined by an optimization process that fit the relative fluence of 0.25 MeV energy bins to the product of Fatigue-Life and Fermi functions to match calculated percent depth dose (PDD) data with that measured in a water tank for a 10x10cm2 field. Off-axis effects were modeled by a 3rd degree polynomial used to describe the off-axis half-value layer as a function of off-axis angle and fitting the off-axis fluence to a piecewise linear function to match calculated dose profiles with measured dose profiles for a 40×40cm2 field. The model was validated by comparing calculated PDDs and dose profiles for field sizes ranging from 3×3cm2 to 30×30cm2 to those obtained from measurements. A benchmarking study compared calculated data to measurements for IMRT plans delivered to anthropomorphic phantoms. Results: Along the central axis of the beam 99.6% and 99.7% of all data passed the 2%/2mm gamma criterion for 6 and 10MV models, respectively. Dose profiles at depths of dmax, through 25cm agreed with measured data for 99.4% and 99.6% of data tested for 6 and 10MV models, respectively. A comparison of calculated dose to film measurement in a head and neck phantom showed an average of 85.3% and 90.5% of pixels passing a 3%/2mm gamma criterion for 6 and 10MV models respectively. Conclusion: A Monte Carlo multiple-source model for Elekta 6 and 10MV therapeutic x-ray beams has been developed as a
International Nuclear Information System (INIS)
Okano, Yasushi
1999-08-01
In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen
Previously unknown species of Aspergillus.
Gautier, M; Normand, A-C; Ranque, S
2016-08-01
The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. Copyright © 2016 European Society of Clinical Microbiology and
Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.
2017-02-01
Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.
International Nuclear Information System (INIS)
Xia Liang; Chan, M.Y.; Deng Shiming
2008-01-01
A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment
Energy Technology Data Exchange (ETDEWEB)
Prajapati, S [M D Anderson Cancer Center, Houston, TX (United States); Mo, X; Bednarz, B; Lawless, M; Hammer, C; Jeraj, R; Mackie, T [University of Wisconsin- Madison, Madison, WI (United States); Flynn, R [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Westerly, D [University of Colorado Denver, Aurora, CO (United States)
2016-06-15
Purpose: An open-source, convolution/superposition based kV-treatment planning system(TPS) was developed for small animal radiotherapy from previously existed in-house MV-TPS. It is flexible and applicable to both step and shoot and helical tomotherapy treatment delivery. For initial commissioning process, the dose calculation from kV-TPS was compared with measurements and Monte Carlo(MC) simulations. Methods: High resolution, low energy kernels were simulated using EGSnrc user code EDKnrc, which was used as an input in kV-TPS together with MC-simulated x-ray beam spectrum. The Blue Water™ homogeneous phantom (with film inserts) and heterogeneous phantom (with film and TLD inserts) were fabricated. Phantom was placed at 100cm SSD, and was irradiated with 250 kVp beam for 10mins with 1.1cm × 1.1cm open field (at 100cm) created by newly designed binary micro-MLC assembly positioned at 90cm SSD. Gafchromic™ EBT3 film was calibrated in-phantom following AAPM TG-61 guidelines, and were used for measurement at 5 different depths in phantom. Calibrated TLD-100s were obtained from ADCL. EGS and MNCP5 simulation were used to model experimental irradiation set up calculation of dose in phantom. Results: Using the homogeneous phantom, dose difference between film and kV-TPS was calculated: mean(x)=0.9%; maximum difference(MD)=3.1%; standard deviation(σ)=1.1%. Dose difference between MCNP5 and kV-TPS was: x=1.5%; MD=4.6%; σ=1.9%. Dose difference between EGS and kV-TPS was: x=0.8%; MD=1.9%; σ=0.8%. Using the heterogeneous phantom, dose difference between film and kV-TPS was: x=2.6%; MD=3%; σ=1.1%; and dose difference between TLD and kV-TPS was: x=2.9%; MD=6.4%; σ=2.5%. Conclusion: The inhouse, open-source kV-TPS dose calculation system was comparable within 5% of measurements and MC simulations in both homogeneous and heterogeneous phantoms. The dose calculation system of the kV-TPS is validated as a part of initial commissioning process for small animal radiotherapy
International Nuclear Information System (INIS)
Newman, M.J.
1975-01-01
A general purpose computer code has been developed to allow the detailed calculation of evolutionary sequences of hydrostatic stellar models under many circumstances of astrophysical interest. Solution of the structure equations is by the relaxation technique throughout the star without explicit integration and fitting for the outer envelope. A new matrix method of algebraic solution of the finite difference equations is employed, together with a modification of that method for the treatment of the central boundary condition. The method is easily adapted to an integration technique for the construction of initial models. It is demonstrated how the matrix technique allows determination of the derivatives of the matching condition in a single integration. The modification of the code for the purpose of detailed evolutionary calculation of a portion of a star is presented through the modification of the boundary conditions to represent in simple fashion the remainder of the star. Stability and convergence problems encountered in earlier versions of the code are discussed, as well as the techniques used to overcome them. The structure of the code is highly modular, so as to easily accommodate changes in input physics. Following the ad hoc suggestion of Clayton (1974), the calculations were repeated with the high energy tail of the Maxwell distribution of relative ion velocities depleted by various amounts. As an example of the technique of evolving a portion of a star a second application to the solar neutrino problem is made
International Nuclear Information System (INIS)
Coste-Delclaux, M.; Aggery, A.; Huot, N.
2005-01-01
APOLLO2 is a modular multigroup transport code developed by Cea in Saclay. Until last year, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Last year, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The calculations of a simplified Jules Horowitz reactor using a Monte-Carlo code (TRIPOLI4) as a reference and APOLLO2 in its standard and improved versions, show that, as far as the effective multiplication factor is concerned, the mixture treatment does not bring an improvement, because the new treatment suppresses compensation between the reaction rate discrepancies. The discrepancy of 300 pcm that appears with the reference calculation is in accordance with the technical specifications of the Jules Horowitz reactor
International Nuclear Information System (INIS)
Laureau, Axel
2015-01-01
In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of
International Nuclear Information System (INIS)
Jacobi, W.; Paretzke, H.G.; Jacob, P.; Meckbach, R.
1989-11-01
To improve the external dose model of the German risk study dose equivalents in 22 organs of anthropomorphical phantoms have been calculated for exposure to radionuclides in the air and on the ground. The angular and energy dependence of the photon fluence, the surface roughness of the ground and the migration of radionuclides in soil have been taken into account. For cloud radiation the organ doses in the new calculations are lower than in phase A, particulary for the red marrow and the bones. For exposures to deposited radionuclides the new results are higher, especially for the lungs and the thyroid (≅ 40%) and the gonads (≅ 60%). Due to the inclusion of the contribution of daughter nuclides the doses from Te-132 and Ba-140 are higher by an order of magnitude. Migration of important radionuclides in soil have been new modelled. The respective reduction of doses in the first 70 years after deposition is smaller by a factor of 1.5. To determine the shielding by houses and urban environments Monte Carlo simulations of the photon transport have been performed. It was found, that for cloud radiation the exposition outside in urban areas, in large buildings and in basements have been over-estimated in Phase A. The shielding of radiation from surface contaminations is different for wet and dry deposition. The relatively high dry deposition on trees can lead to exposures in suburban areas, twice as much as over lawns. Living rooms are in general better shielded than previously assumed. (orig./HP) [de
International Nuclear Information System (INIS)
Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi
2013-01-01
Highlights: ► A method from new respect to characterize and measure the bond strength is proposed. ► We calculate the D pb of a series of various bonds to justify our approach. ► A quite good linear relationship of the D pb with the bond lengths for series of various bonds is shown. ► Take the prediction of strengths of C–H and N–H bonds for base pairs in DNA as a practical application of our method. - Abstract: A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by D pb . Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the D pb of base pairs in DNA along C–H and N–H bonds are obtained for the first time. All results show that C 7 –H of A–T and C 8 –H of G–C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate D pb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules
International Nuclear Information System (INIS)
Pan, Yuxi; Qiu, Rui; Ge, Chaoyong; Xie, Wenzhang; Li, Junli; Gao, Linfeng; Zheng, Junzheng
2014-01-01
With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations. (paper)
International Nuclear Information System (INIS)
Damiani, Daniela D.; Cruz, Carlos M.; Pinnera, Ibrahin; Abreu, Yamiel; Leyva, Antonio
2015-01-01
New developments and simulations on regard to the interactions of incident gamma radiation over solids materials using the MCSAD (Monte Carlo Simulation of Atom Displacement) code are presented. In this code Monte Carlo algorithms are applied in order to sample all electrons and gamma interaction processes occurring during their transport through a solid target, especially those connected to the output of atom displacements events. Particularly, it is calculated the limit angle to elastic scattering for the electrons on a new approach, which allows correctly the splitting of the electron single processes at higher scattering angles. On this way, the probability of single electron scattering processes transferring high recoil atomic energy leading to atom displacement effects is calculated and consequently sampled in the MCSAD code. In addition, it is considered some other new theoretical aspects in order to improve previous versions, like the one concerning the selection of threshold energy for displacements at a given atom site in dependence of the atom recoil direction. (Author)
On the Tengiz petroleum deposit previous study
International Nuclear Information System (INIS)
Nysangaliev, A.N.; Kuspangaliev, T.K.
1997-01-01
Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)
International Nuclear Information System (INIS)
Li Zhifeng; Yu Tao; Xie Jinsen
2013-01-01
In order to develop the temperature-dependent point-wise cross section library for the advanced supercritical water cooled fast reactor, the JEZEBEL fast neutron benchmark was used to analyze the important parameters of the NJOY code and compare the different effects of the input parameters. Then the most reasonable parameters were selected to develop the ASCFR1.0/MC which was based on the ENDF/B-VII.1. Finally, the Doppler coefficient benchmark was applied to test and verify the ASCFR.10/MC. In conclusion, the precision of the ASCFR1.0/MC were perfect. The resulted library can be used in the analysis and verification of the temperature effect in the Advanced Supercritical Fast Reactor (ASCFR), Finally, the moderator effect of ASCFR was calculated with MCNP using the ASCFR1.0/MC library, and the moderator effect of the ASCFR is positive. (authors)
Directory of Open Access Journals (Sweden)
Matseevich Andrey Vyacheslavovich
2018-03-01
Full Text Available Subject of the study: one of the most promising areas in the field of polymer physics is the development of the calculation models allowing to quantify the properties of polymers. This work provides the calculation model for the quantitative assessment of the boiling point of solutions of polymer in the organic solvent. The model is based on the chemical structure of polymer and solvent. For the components the Hildebrand solubility parameter, the latent heat of vaporization and the boiling point of the solvent are calculated. Objectives: to generate the equation connecting the boiling point of polymer solution in the chosen solvent with the boiling point of the pure solvent, the molecular weights of the repeating unit of polymer and the molecule of solvent, the weight fraction of polymer in solution, the Hildebrand solubility parameter and the molar volume of the repeating unit of polymer. Materials and methods: the Hildebrand solubility parameter of solutions and polymers and also the van der Waals volume were calculated using the method of A.A. Askadsky; the enthalpy of vaporization of the solvent at the boiling point was expressed through the Hildebrand solubility parameter. The dependence of the enthalpy of vaporization from the temperature was taken into consideration. The computerization of the method was implemented, according to which all calculations are performed automatically after entering the information on the chemical structure of polymer and solvent into the computer. Results: the equation connecting the ebulliometric constant of the low concentration polymer solution with the boiling point of the solvent, the molar volume of the solvent and the Hildebrand parameter was generated. The results of the analysis were checked with regard to the system of polystyrene/toluene; the possibility of practical application of the offered method was shown. Conclusions: the method presented in this article allows to predict the ebulliometric
International Nuclear Information System (INIS)
Satoh, Daiki
2012-01-01
CDE in the title developed by Japan Atomic Energy Agency (JAEA) is explained for its use to support the cleaning work of the environment contaminated by the Fukushima Daiichi Nuclear Power Plant Accident (Mar. 11, 2011). With this CDE software (available at http://nsed.jaea.go.jp/josen, from Nov. 2, 2011), the effect of decontamination schedule/work can be evaluable rapidly and accurately by calculating the ambient dose rates before and after the work. Access number to the CDE site until Jan., 2012, amounts to 402, for the purposes of ambient dose assessment (20%), planning of decontamination (15%), study/investigation (15%), etc. The system software is operable in Microsoft Excel with Graphical User Interface (GUI) described by VBA (Visual Basic for Applications). To be inputted in CDE are the map of the region subjected to decontamination, data of surface contamination density and of decontamination coefficients for the area relief, all of which are available through the internet and actual measurement, which is then followed by output as tables and figures of distribution of the ambient dose rate before and after the work, and of the rate reduction coefficient. Radiation subjected to calculation is from radiocesium ( 134 Cs and 137 Cs). When the software is compared for its accuracy with those by previous software Particle and Heavy Ion Transport Code System (PHITS) and by actual measurement, their results all show a virtually satisfactory agreement, and the time necessary for calculation is over several-ten hours in PHITS, and within about 10 seconds, in CDE. Updated information of CDE is available at the above mentioned site and twitter.com/JAEA_nsed. (T.T.)
International Nuclear Information System (INIS)
Verduzco, Laura E.; Duffey, Michael R.; Deason, Jonathan P.
2007-01-01
At this time, hydrogen-based power plants and large hydrogen production facilities are capital intensive and unable to compete financially against hydrocarbon-based energy production facilities. An option to overcome this problem and foster the introduction of hydrogen technology is to introduce small and medium-scale applications such as residential and community hydrogen refueling units. Such units could potentially be used to generate both electricity and heat for the home, as well as hydrogen fuel for the automobile. Cost modeling for the integration of these three forms of energy presents several methodological challenges. This is particularly true since the technology is still in the development phase and both the financial and the environmental cost must be calculated using mainly secondary sources. In order to address these issues and aid in the design of small and medium-scale hydrogen systems, this study presents a computer model to calculate financial and environmental costs of this technology using different hydrogen pathways. The model can design and compare hydrogen refueling units against hydrocarbon-based technologies, including the 'gap' between financial and economic costs. Using the methodology, various penalties and incentives that can foster the introduction of hydrogen-based technologies can be added to the analysis to study their impact on financial cost
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, M.; Saito, K.; Ando, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-05-01
The method to calculate the response function of spherical BF{sub 3} proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF{sub 3} proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within {+-}10%. (author)
Energy Technology Data Exchange (ETDEWEB)
Blanc-Tranchant, P
2001-07-01
The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)
Energy Technology Data Exchange (ETDEWEB)
Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Moroz, N. P.; Fomichenko, P. A.; Timoshinov, A. V. [National Research Center Kurchatov Institute (Russian Federation); Volkov, Yu. N. [National Research Nuclear University MEPhI (Russian Federation)
2016-12-15
The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis of experiments on measurement of efficiency of control rods mockups and protection system (CPS).
International Nuclear Information System (INIS)
Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A.; Moroz, N. P.; Fomichenko, P. A.; Timoshinov, A. V.; Volkov, Yu. N.
2016-01-01
The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis of experiments on measurement of efficiency of control rods mockups and protection system (CPS).
Hill, M. C.; Pahwa, A.; Rogers, D.; Roundy, J. K.; Barron, R. W.
2017-12-01
Many agricultural areas are facing difficult circumstances. Kansas is one example, with problems that are typical. Past agricultural and hydrologic data document how irrigation in western Kansas has produced a multi-billion-dollar agricultural economy that is now threatened by pumping-induced declines in groundwater levels. Although reduced pumping could mitigate much of the threat and preserve much of Kansas' agricultural economy (albeit at a reduced level) in the long term, a primary disincentive for reducing pumping is the immediate economic impact of diminished irrigation. One alternative to continued unsustainable groundwater use is a water-energy tradeoff program that seeks to reduce pumping from the Ogallala aquifer to sustainable rates while maintaining local income levels. This program would allow development of the region's rich wind and solar energy resources in a way that focuses on local economic benefits, in exchange for water rights concessions from affected stakeholders. In considering this alternative, most citizens are currently unable to address a key question, "What could this mean for me?" Answering this question requires knowledge of agriculture, energy, water, economics, and drought probabilities, knowledge that is available at Kansas universities. This talk presents a joint University of Kansas - Kansas State University effort to address this need through development of the Food-Energy-Water Calculator. This talk will present the idea and discuss how the calculator would work. It is suggested that the framework created provides a powerful way to organize data and analysis results, and thus to seek solutions to difficult problems in many regions of the US and the world.
International Nuclear Information System (INIS)
Petersen, K.E.
1986-03-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)
DEFF Research Database (Denmark)
Petersen, Kurt Erling
1986-01-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...
International Nuclear Information System (INIS)
Shen, W.
2004-01-01
A micro-depletion model has been developed and implemented in the *SIMULATE module of RFSP to use WIMS-calculated lattice properties in history-based local-parameter calculations. A comparison between the micro-depletion and WIMS results for each type of lattice cross section and for the infinite-lattice multiplication factor was also performed for a fuel similar to that which may be used in the ACR fuel. The comparison shows that the micro-depletion calculation agrees well with the WIMS-IST calculation. The relative differences in k-infinity are within ±0.5 mk and ±0.9 mk for perturbation and depletion calculations, respectively. The micro-depletion model gives the *SIMULATE module of RFSP the capability to use WIMS-calculated lattice properties in history-based local-parameter calculations without resorting to the Simple-Cell-Methodology (SCM) surrogate for CANDU core-tracking simulations. (author)
International Nuclear Information System (INIS)
Bor-Jing Chang; Yen-Wan H. Liu
1992-01-01
The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations
DEFF Research Database (Denmark)
Sørensen, Steen; Momsen, Günther; Sundberg, Karin
2011-01-01
-A) in maternal plasma from unaffected pregnancies. Means and SDs of these parameters in unaffected and affected pregnancies are used in the risk calculation program. Unfortunately, our commercial program for risk calculation (Astraia) did not allow use of local medians. We developed 2 alternative risk...... calculation programs to assess whether the screening efficacies for T13, T18, and T21 could be improved by using our locally estimated medians....
Haro von Mogel, Karl J.
Carbohydrate metabolism is a biologically, economically, and culturally important process in crop plants. Humans have selected many crop species such as maize (Zea mays L.) in ways that have resulted in changes to carbohydrate metabolic pathways, and understanding the underlying genetics of this pathway is therefore exceedingly important. A previously uncharacterized starch metabolic pathway mutant, sugary enhancer1 (se1), is a recessive modifier of sugary1 (su1) sweet corn that increases the sugar content while maintaining an appealing creamy texture. This allele has been incorporated into many sweet corn varieties since its discovery in the 1970s, however, testing for the presence of this allele has been difficult. A genetic stock was developed that allowed the presence of se1 to be visually scored in segregating ears, which were used to genetically map se1 to the deletion of a single gene model located on the distal end of the long arm of chromosome 2. An analysis of homology found that this gene is specific to monocots, and the gene is expressed in the endosperm and developing leaf. The se1 allele increased water soluble polysaccharide (WSP) and decreased amylopectin in maize endosperm, but there was no overall effect on starch content in mature leaves due to se1. This discovery will lead to a greater understanding of starch metabolism, and the marker developed will assist in breeding. There is a present need for increased training for plant breeders to meet the growing needs of the human population. To raise the profile of plant breeding among young students, a series of videos called Fields of Study was developed. These feature interviews with plant breeders who talk about what they do as plant breeders and what they enjoy about their chosen profession. To help broaden the education of students in college biology courses, and assist with the training of plant breeders, a second video series, Pollination Methods was developed. Each video focuses on one or two
International Nuclear Information System (INIS)
Thiruchittampalam, Balendra
2014-01-01
High spatial and temporal resolution models are essential for answering many questions of air quality management and climate modeling. High-resolution emission models are required to determine the concentration of pollutants using chemical transport models, and to quantify the impacts on health and environment and in particular to develop adequate countermeasures. The aim of this work is to develop methods for the calculation of spatially and temporally high-resolved emissions and to apply these exemplarily on a 1 km x 1 km and hourly resolution for the year 2008 in the EU-27 and EFTA countries. The derivation of methods for the spatial and temporal resolution of emissions with corresponding detailed equations is one of the major improvements that have been carried out in the course of this work. The improvement of the spatial distribution of emissions from the point source relevant sectors like energy supply, industry and waste management is achieved by considering sector specific diffuse emission shares. The progress of the spatial distribution of emissions from households is in particular the development of a fuel type weighted distribution over Europe. Another main focus is the development of the spatial distribution of road transport emissions. Due to the restricted access to traffic count data at the European level, methods have been established to provide reliable emissions on grid level for Europe. The progress in the spatial distribution of agricultural emissions is achieved by the consideration of diffuse shares similar to the other point source relevant sectors like energy supply or industry. In addition to the spatial distribution of the emissions the temporal resolution is a main focus of this work, since the state of knowledge of the temporal resolution of emissions in Europe is still rudimentary. Therefore, it was necessary to develop in particular time curves for the hourly resolution of emissions for the main sectors, namely electricity and heat
Molecular calculations with B functions
International Nuclear Information System (INIS)
Steinborn, E.O.; Homeier, H.H.H.; Ema, I.; Lopez, R.; Ramirez, G.
2000-01-01
A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules
Directory of Open Access Journals (Sweden)
Mohammad Rezaei
2015-06-01
Full Text Available Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.
International Nuclear Information System (INIS)
Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Eoh, Jae Hyuk; Lee, Yong Bum
2003-06-01
A sodium circuit has usually featured for a Liquid Metal Reactor(LMR) using sodium as coolant to remove the decay heat ultimately under accidental conditions because of its high reliability. Most of the system codes used for a Light Water Reactor(LWR) analysis is capable of calculating natural circulation within such circuit, but the code currently used for the LMR analysis does not feature stand alone capability to simulate the natural circulation flow inside the circuit due to its application limitation. To this end, the present study has been carried out because the natural circulation analysis for such the circuit is realistically raised for the design with a new concept. The steady state modeling is presented in this paper, development of a transient model is also followed to close the study. The incompressibility assumption of sodium which allow the circuit to be modeled with a single flow, makes the model greatly simplified. Models such as a heat exchanger developed in the study can be effectively applied to other system analysis codes which require such component models
Energy Technology Data Exchange (ETDEWEB)
Zwermann, W.; Aures, A.; Bernnat, W.; and others
2013-06-15
This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi
2002-01-01
Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)
Clarke, M G; Kennedy, K P; MacDonagh, R P
2009-01-01
To develop a clinical prediction model enabling the calculation of an individual patient's life expectancy (LE) and survival probability based on age, sex, and comorbidity for use in the joint decision-making process regarding medical treatment. A computer software program was developed with a team of 3 clinicians, 2 professional actuaries, and 2 professional computer programmers. This incorporated statistical spreadsheet and database access design methods. Data sources included life insurance industry actuarial rating factor tables (public and private domain), Government Actuary Department UK life tables, professional actuarial sources, and evidence-based medical literature. The main outcome measures were numerical and graphical display of comorbidity-adjusted LE; 5-, 10-, and 15-year survival probability; in addition to generic UK population LE. Nineteen medical conditions, which impacted significantly on LE in actuarial terms and were commonly encountered in clinical practice, were incorporated in the final model. Numerical and graphical representations of statistical predictions of LE and survival probability were successfully generated for patients with either no comorbidity or a combination of the 19 medical conditions included. Validation and testing, including actuarial peer review, confirmed consistency with the data sources utilized. The evidence-based actuarial data utilized in this computer program design represent a valuable resource for use in the clinical decision-making process, where an accurate objective assessment of patient LE can so often make the difference between patients being offered or denied medical and surgical treatment. Ongoing development to incorporate additional comorbidities and enable Web-based access will enhance its use further.
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
Directory of Open Access Journals (Sweden)
D. S. Blinov
2017-01-01
Full Text Available One of the most important trends in development of machine engineering is to improve load capacity of mechanisms, assemblies and parts without increasing their overall dimensions and weight. This is also relevant to the most promising items so far, i.e. orbital roller drives (ORD, which are the rotational-to-progressive motion converters widely used in vehicles. The previously published article suggested increasing a load capacity (by about 15% through reducing a thread turn section angle of the threaded ORD components and change of the radius of roller thread turn section outline. Due to such ORD modification, a number of the most critical ORD parameters are to be changed thereby demanding further research. Further, the article published suggests a method considering the abovementioned changes to calculate the dimensions of ORD main components and their tolerance ranges.Though this method being not complete as the increment of ORD center-to-center spacing in relation to its rated value, required for assembly, is unknown; and to determine the ORD center-to-center spacing increment, outer diameters of the roller and screw threads are to be known. Hence, these two methods are interconnected.This article presents the numerical calculation method, mathematical support and method to determine the increment of ORD center-to-center spacing and initial contact point of the mating roller and screw thread turns. Due to considerable scope of calculations, the method was turned into the software.Similar calculation methods and techniques were developed to a particular case, where the thread turn section angle of the threaded components was of 90°, and the roller thread turn section outline was a circular arc centered to the roller axis. Hence the developed numerical calculation method, mathematical support and technique refer to the general case which is to determine the ORD center-to-center spacing increment and initial contact point of the mating roller
Heterogeneous Calculation of {epsilon}
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Alf
1961-02-15
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.
Heterogeneous Calculation of ε
International Nuclear Information System (INIS)
Jonsson, Alf
1961-02-01
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer
Development of a new mathematical model of an adult man head for using in internal dose calculation
International Nuclear Information System (INIS)
Facioli, L.M.; Deus, S.F.
1986-01-01
A new mathematical model representing the head region of the adult man had been developed in a more realistic fashion than the existing models in order to achieve an improvement in the accuracy of the internal dose calculations. The specific absorbed fractions had been obtained by program 'ALGAM: a computer program for estimating internal dose from gamma-ray sources in a man phantom', which had been modified to include the model proposed in this work. The new program had been processed for two source organs: thyroid and brain and for 12 incident photon energies ranging from 0,010 to 4,0 MeV. The obtained results, when compared with the Snyder's one, show that the ratio of the specific absorbed fractions in the common organs of the model proposed in this work relative to the Snyder's model, ranged from 0,0543 to 13,2 for the two source organs considered; the ratio distribution along this interval is practically uniform between the above values. (Author) [pt
International Nuclear Information System (INIS)
Campolina, Daniel de Almeida Magalhaes
2009-01-01
In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)
International Nuclear Information System (INIS)
Liang, T.K.S.; Huan-Jen, Hung; Chin-Jang, Chang; Lance, Wang
2001-01-01
In light water reactors, particularly the pressurized water reactor (PWR), the severity of a LOCA (loss of coolant accident) will limit how high the reactor power can operate. Although the best-estimate LOCA licensing methodology can provide the greatest margin on the PCT (peak cladding temperature) evaluation during LOCA, it generally takes more resources to develop. Instead, implementation of evaluation models required by the Appendix K of 10 CFR 50 upon an advanced thermal-hydraulic platform can also enlarge significant margin between the highest calculated PCT and the safety limit of 2200 F. The compliance of the current RELAP5-3D code with Appendix K of 10 CFR50 has been evaluated, and it was found that there are ten areas where code assessment and/or further modifications were required to satisfy the requirements set forth in the Appendix K of 10 CFR 50. The associated models for LOCA consequent phenomenon analysis should follow the major concern of regulation and be expected to give more conservative results than those by the best-estimate methodology. They were required to predict the decay power level, the blowdown hydraulics, the blowdown heat transfer, the flooding rate, and the flooding heat transfer. All of the ten areas included in above classified simulations have been further evaluated and the RELAP5-3D has been successfully modified to fulfill the associated requirements. In addition, to verify and assess the development of the Appendix K version of RELAP5-3D, nine separate-effect experiments were adopted. Through the assessments against separate-effect experiments, the success of the code modification in accordance with the Appendix K of 10 CFR 50 was demonstrated. We will apply another six sets of integral-effect experiments in the next step to assure the integral conservatism of the Appendix K version of RELAP5-3D on LOCA licensing evaluation. (authors)
Shaikh, Nader; Hoberman, Alejandro; Hum, Stephanie W; Alberty, Anastasia; Muniz, Gysella; Kurs-Lasky, Marcia; Landsittel, Douglas; Shope, Timothy
2018-06-01
Accurately estimating the probability of urinary tract infection (UTI) in febrile preverbal children is necessary to appropriately target testing and treatment. To develop and test a calculator (UTICalc) that can first estimate the probability of UTI based on clinical variables and then update that probability based on laboratory results. Review of electronic medical records of febrile children aged 2 to 23 months who were brought to the emergency department of Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania. An independent training database comprising 1686 patients brought to the emergency department between January 1, 2007, and April 30, 2013, and a validation database of 384 patients were created. Five multivariable logistic regression models for predicting risk of UTI were trained and tested. The clinical model included only clinical variables; the remaining models incorporated laboratory results. Data analysis was performed between June 18, 2013, and January 12, 2018. Documented temperature of 38°C or higher in children aged 2 months to less than 2 years. With the use of culture-confirmed UTI as the main outcome, cutoffs for high and low UTI risk were identified for each model. The resultant models were incorporated into a calculation tool, UTICalc, which was used to evaluate medical records. A total of 2070 children were included in the study. The training database comprised 1686 children, of whom 1216 (72.1%) were female and 1167 (69.2%) white. The validation database comprised 384 children, of whom 291 (75.8%) were female and 200 (52.1%) white. Compared with the American Academy of Pediatrics algorithm, the clinical model in UTICalc reduced testing by 8.1% (95% CI, 4.2%-12.0%) and decreased the number of UTIs that were missed from 3 cases to none. Compared with empirically treating all children with a leukocyte esterase test result of 1+ or higher, the dipstick model in UTICalc would have reduced the number of treatment delays by 10.6% (95% CI
Energy Technology Data Exchange (ETDEWEB)
Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)
2013-03-15
In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)
International Nuclear Information System (INIS)
Filippov, A.V.; Shirkov, G.D.; Consoli, F.; Gammino, S.; Ciavola, G.; Celona, L.; Barbarino, S.
2008-01-01
The investigation of the widespread model for the calculation of ion charge-state distributions (CSD) in electron cyclotron-resonance ion source based on the set of balance equations is given. The modification of this model that allows one to describe the confinement and accumulation processes of highly charged ions in ECR plasma for gas mixing case more precisely is discussed. The new approach for the time confinement calculation (ions and electrons) based on the theory of Pastukhov is offered, viz. - calculation of confinement times during two step minimization of special type functionals. The results obtained by this approach have been compared with available experimental data
Energy Technology Data Exchange (ETDEWEB)
Noori-Kalkhoran, Omid, E-mail: o_noori@yahoo.com [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Yarizadeh-Beneh, Mehdi [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)
2016-08-15
Highlights: • Calculation of control rod worth in term of burn-up. • Calculation of differential and integral control rod worth. • Developing an external couple. • Modification of thermal-hydraulic profiles in calculations. - Abstract: One of the main problems relating to operation of a nuclear reactor is its safety and controlling system. The most widely used control systems for thermal reactors are neutron absorbent rods. In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 nuclear reactor. External coupling of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of the core in various days. PARCS V2.7 has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. An external coupling algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and control rod worth for different control rod groups have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective Full Power Days (EFPDs) in some steps. Results have been compared with the results of Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR). The results show a good agreement and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.
Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP
International Nuclear Information System (INIS)
Downar, Thomas; Seker, Volkan
2013-01-01
Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600°C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local 'hot' spots by developing multi-scale, multi-physics methods and implementing them within the framework of established codes used for NGNP analysis.The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.
Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP
Energy Technology Data Exchange (ETDEWEB)
Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Seker, Volkan [Univ. of Michigan, Ann Arbor, MI (United States)
2013-04-30
Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600°C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local "hot" spots by developing multi-scale, multi-physics methods and implementing them within the framework of established codes used for NGNP analysis.The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.
Zolotorevskii, V. S.; Pozdnyakov, A. V.; Churyumov, A. Yu.
2012-11-01
A calculation-experimental study is carried out to improve the concept of searching for new alloying systems in order to develop new casting alloys using mathematical simulation methods in combination with thermodynamic calculations. The results show the high effectiveness of the applied methods. The real possibility of selecting the promising compositions with the required set of casting and mechanical properties is exemplified by alloys with thermally hardened Al-Cu and Al-Cu-Mg matrices, as well as poorly soluble additives that form eutectic components using mainly the calculation study methods and the minimum number of experiments.
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Baxter, Siyan; Campbell, Sharon; Sanderson, Kristy; Cazaly, Carl; Venn, Alison; Owen, Carole; Palmer, Andrew J
2015-09-18
Workplace health promotion is focussed on improving the health and wellbeing of workers. Although quantifiable effectiveness and economic evidence is variable, workplace health promotion is recognised by both government and business stakeholders as potentially beneficial for worker health and economic advantage. Despite the current debate on whether conclusive positive outcomes exist, governments are investing, and business engagement is necessary for value to be realised. Practical tools are needed to assist decision makers in developing the business case for workplace health promotion programs. Our primary objective was to develop an evidence-based, simple and easy-to-use resource (calculator) for Australian employers interested in workplace health investment figures. Three phases were undertaken to develop the calculator. First, evidence from a literature review located appropriate effectiveness measures. Second, a review of employer-facilitated programs aimed at improving the health and wellbeing of employees was utilised to identify change estimates surrounding these measures, and third, currently available online evaluation tools and models were investigated. We present a simple web-based calculator for use by employers who wish to estimate potential annual savings associated with implementing a successful workplace health promotion program. The calculator uses effectiveness measures (absenteeism and staff turnover rates) and change estimates sourced from 55 case studies to generate the annual savings an employer may potentially gain. Australian wage statistics were used to calculate replacement costs due to staff turnover. The calculator was named the Workplace Health Savings Calculator and adapted and reproduced on the Healthy Workers web portal by the Australian Commonwealth Government Department of Health and Ageing. The Workplace Health Savings Calculator is a simple online business tool that aims to engage employers and to assist participation
Hillman, Thomas
2014-01-01
This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…
Energy Technology Data Exchange (ETDEWEB)
Zwermann, Winfried; Aures, Alexander; Bostelmann, Friederike; Pasichnyk, Ihor; Perin, Yann; Velkov, Kiril; Zilly, Matias
2016-12-15
This report documents the status of the research and development goals reached within the reactor safety research project RS1536 ''Development of modern methods with respect to neutron transport and uncertainty analyses for reactor core calculations'' as of the 3{sup rd} quarter of 2016. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts, in particular fast reactors cooled by liquid metal. The contributing individual goals are the further optimization and validation of deterministic calculation methods with high spatial and energy resolution, the development of a coupled calculation system using the Monte Carlo method for the neutron transport to describe time-dependent reactor core states, the processing and validation of nuclear data, particularly with regard to covariance data, the development, validation, and application of sampling-based methods for uncertainty and sensitivity analyses, the creation of a platform for performing systematic uncertainty analyses for fast reactor systems, as well as the description of states of severe core damage with the Monte Carlo method. Moreover, work regarding the European NURESAFE project, started in the preceding project RS1503, are being continued and completed.
Energy Technology Data Exchange (ETDEWEB)
Noori-Kalkhoran, Omid; Ahangari, R. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research school; Shirani, A.S. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Faculty of Engineering
2017-03-15
In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 reactor. Parallel processing of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of core at different days. PARCS V2.7?has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. A Parallel processing algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and Control rod worth have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective full Power Days (EFPDs) in some steps. Results have been compared with Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR) results. The results show great similarity and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.
Radiation damage calculations for compound materials
International Nuclear Information System (INIS)
Greenwood, L.R.
1990-01-01
This paper reports on the SPECOMP computer code, developed to calculate neutron-induced displacement damage cross sections for compound materials such as alloys, insulators, and ceramic tritium breeders for fusion reactors. These new calculations rely on recoil atom energy distributions previously computed with the DISCS computer code, the results of which are stored in SPECTER computer code master libraries. All reaction channels were considered in the DISCS calculations and the neutron cross sections were taken from ENDF/B-V. Compound damage calculations with SPECOMP thus do not need to perform any recoil atom calculations and consequently need no access to ENDF or other neutron data bases. The calculations proceed by determining secondary displacements for each combination of recoil atom and matrix atom using the Lindhard partition of the recoil energy to establish the damage energy
Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...
International Nuclear Information System (INIS)
Scholtyssek, W.
1995-01-01
In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Palomares Delgado, F; Vera Palomino, J; Petrement Eguiluz, J C
1964-07-01
The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs.
International Nuclear Information System (INIS)
Chiba, Go; Kawamoto, Yosuke; Narabayashi, Tadashi
2016-01-01
Highlights: • A new functionality of fuel depletion sensitivity calculations is developed in a code system CBZ. • This is based on the generalized perturbation theory for fuel depletion problems. • The theory with a multi-layer depletion step division scheme is described. • Numerical techniques employed in actual implementation are also provided. - Abstract: A new functionality of fuel depletion sensitivity calculations is developed as one module in a deterministic reactor physics code system CBZ. This is based on the generalized perturbation theory for fuel depletion problems. The theory for fuel depletion problems with a multi-layer depletion step division scheme is described in detail. Numerical techniques employed in actual implementation are also provided. Verification calculations are carried out for a 3 × 3 multi-cell problem consisting of two different types of fuel pins. It is shown that the sensitivities of nuclide number densities after fuel depletion with respect to the nuclear data calculated by the new module agree well with reference sensitivities calculated by direct numerical differentiation. To demonstrate the usefulness of the new module, fuel depletion sensitivities in different multi-cell arrangements are compared and non-negligible differences are observed. Nuclear data-induced uncertainties of nuclide number densities obtained with the calculated sensitivities are also compared.
International Nuclear Information System (INIS)
Baguena, A.; Shaw, M.; Williart, A.; Baguena, A.; Garcia, G.
2006-01-01
We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)
Energy Technology Data Exchange (ETDEWEB)
Baguena, A.; Shaw, M.; Williart, A. [Universidad Nacional de Educacion a Distancia, Dpto. Fisica de los Materiales, Madrid (Spain); Baguena, A. [Consejo de Seguridad Nuclear, Madrid (Spain); Garcia, G. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)
2006-07-01
We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)
International Nuclear Information System (INIS)
Jameson, A.; Leicher, S.; Dawson, J.; Tel Aviv Univ., Israel)
1985-01-01
A multiblock modification of the FLO57 code for three-dimensional wing calculations is described and demonstrated. The theoretical basis of the multistage time-stepping algorithm is reviewed; the multiblock grid structure is explained; and results from a computation of vortical flow past a delta wing, using 2.5 x 10 to the 6th grid points and performed on a Cray X/MP computer with a 128-Mword solid-state storage device, are presented graphically. 6 references
Energy Technology Data Exchange (ETDEWEB)
Smith, A.E.; Tschanz, J.; Monarch, M.; Narducci, P.; Bormet, S.
1995-06-01
The Air Quality Utility Information System (AQUIS) is a database management system. AQUIS assists users in calculation emissions, both traditional and toxic, and tracking and reporting emissions and source information. With some facilities having over 1200 sources and AQUIS calculating as many as 125 pollutants for a single source, tracking and correlating this information involve considerable effort. Originally designed for use at seven facilities of the Air Force Material Command, the user community has expanded to over 50 facilities since last reported at the 1993 Air and Waste Management Association (AWMA) annual meeting. This expansion in the user community has provided an opportunity to test the system under expanded operating conditions and in applications not anticipated during original system design. User feedback is used to determine needed enhancements and features and to prioritize the content of new releases. In responding to evolving user needs and new emission calculation procedures, it has been necessary to reconfigure AQUIS several times. Reconfigurations have ranged from simple to complex. These changes have necessitated augmenting quality assurance (QA) and validation procedures.
Casio Graphical Calculator Project.
Stott, Nick
2001-01-01
Shares experiences of a project aimed at developing and refining programs written on a Casio FX9750G graphing calculator. Describes in detail some programs used to develop mental strategies and problem solving skills. (MM)
International Nuclear Information System (INIS)
Munoz-Cobo, J. L.; Merino, R.; Escriva, A.; Melara, J.; Concejal, A.
2014-01-01
We have developed a 3D code with two energy groups and diffusion theory that is capable of calculating eigenvalues lambda of a BWR reactor using nodal methods and boundary conditions that calculates ALBEDO NODAL-LAMBDA from the properties of the reflector code itself. The code calculates the sub-criticality of the first harmonic, which is involved in the stability against oscillations reactor out of phase, and which is needed for calculating the decay rate for data out of phase oscillations. The code is very fast and in a few seconds is able to make a calculation of the first eigenvalues and eigenvectors, discretized solving the problem with different matrix elements zero. The code uses the LAPACK and ARPACK libraries. It was necessary to modify the LAPACK library to perform various operations with five non-diagonal matrices simultaneously in order to reduce the number of calls to bookstores and simplify the procedure for calculating the matrices in compressed format CSR. The code is validated by comparing it with the results for SIMULATE different cases and making 3D BENCHMAR of the IAEA. (Author)
International Nuclear Information System (INIS)
Facioli, L.M.
1984-01-01
It is presented a new mathematical model to determine the spatial distribution of the scattered radiation, or specific absorbed fractions, in the head of the adult man. The ALGAM computer code which calculates the internal dose from gamma-ray sources in a man phanton, was modified to include the model proposed. The new program was processed for two source organs: thyroid and brain for 12 incident photon energies ranging from 0.010 to 4.0 MeV. (M.C.K.) [pt
Energy Technology Data Exchange (ETDEWEB)
Tarchalski, M.; Pytel, K.; Wroblewska, M.; Marcinkowska, Z.; Boettcher, A.; Prokopowicz, R. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Sireta, P.; Gonnier, C.; Bignan, G. [CEA, DEN, Reactor Studies Department, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Fourmentel, D.; Barbot, L.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C.; Brun, J. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Jagielski, J. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland); Luks, A. [Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland)
2015-07-01
Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to the qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from
Directory of Open Access Journals (Sweden)
Z. A. Kurbanova
2015-01-01
Full Text Available One of the main tasks solved when designing low-pressure spillway dams on non-rock foundations, is the design of an optimal profile of the front spillway with the lowest price. The complexity of manual calculation ofa spillway profile of the dam.Require's work the establishment of calculation tools.It will reduce design time and facilitate are designer's. The developed program complex has practical value and can be widely used in the design practice of weirs on non-rock foundation.
Energy Technology Data Exchange (ETDEWEB)
Nonboel, E
1985-07-01
A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)
Energy Technology Data Exchange (ETDEWEB)
Teke, T; Milette, MP [BC Cancer Agency Centre for the Southern Interior (Canada); Huang, V; Thomas, SD [BC Cancer Agency Fraser Valley Cancer Centre (Canada)
2014-08-15
The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.
International Nuclear Information System (INIS)
Roux, A.
2001-01-01
The diversity of radiological accidents makes difficult the medical prognosis and the therapy choice from only clinical observations. To complete this information, it is important to know the global dose received by the organism and the dose distributions in depth in tissues. The dose estimation can be made by a physical reconstruction of the accident with the help of tools based on experimental techniques or on calculation. The software of the geometry construction (M.G.E.D.), associated to the Monte-Carlo code of photons and neutrons transport (M.O.R.S.E.) replies these constraints. An important result of this work is to determine the principal parameters to know in function of the accident type, as well as the precision level required for these parameters. (N.C.)
Zhadanovsky, Boris; Sinenko, Sergey
2018-03-01
Economic indicators of construction work, particularly in high-rise construction, are directly related to the choice of optimal number of machines. The shortage of machinery makes it impossible to complete the construction & installation work on scheduled time. Rates of performance of construction & installation works and labor productivity during high-rise construction largely depend on the degree of provision of construction project with machines (level of work mechanization). During calculation of the need for machines in construction projects, it is necessary to ensure that work is completed on scheduled time, increased level of complex mechanization, increased productivity and reduction of manual work, and improved usage and maintenance of machine fleet. The selection of machines and determination of their numbers should be carried out by using formulas presented in this work.
International Nuclear Information System (INIS)
Li, D.
1980-01-01
Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru
Energy Technology Data Exchange (ETDEWEB)
Sabater Alcaraz, A.; Rucabado Rucabado, G.; Cuervo Gomez, D.; Garcia Herranz, N.
2014-07-01
The development of a software tool that automates the comparison of results with previous versions of the code and results using models of accuracy is crucial for implementing the code new functionalities. The work presented here has been the generation the mentioned tool and the set of reference cases that have set up the afore mentioned matrix. (Author)
Directory of Open Access Journals (Sweden)
Mohammadnia Meysam
2013-01-01
Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.
Energy Technology Data Exchange (ETDEWEB)
Fujita, Y [Tokai University School of Medicine, Isehara, Kanagawa (Japan)
2015-06-15
Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057.
International Nuclear Information System (INIS)
Xhonneux, Andre; Allelein, Hans-Josef
2014-01-01
The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR
International Nuclear Information System (INIS)
Fujita, Y
2015-01-01
Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057
Preoperative screening: value of previous tests.
Macpherson, D S; Snow, R; Lofgren, R P
1990-12-15
To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.
International Nuclear Information System (INIS)
Kawasaki, Nobuchika; Asayama, Tai
2001-09-01
Both reliability and safety have to be further improved for the successful commercialization of FBRs. At the same time, construction and operation costs need to be reduced to a same level of future LWRs. To realize compatibility among reliability, safety and, cost, the Structural Mechanics Research Group in JNC started the development of System Based Code for Integrity of FBR. This code extends the present structural design standard to include the areas of fabrication, installation, plant system design, safety design, operation and maintenance, and so on. A quantitative index is necessary to connect different partial standards in this code. Failure probability is considered as a candidate index. Therefore we decided to make a model calculation using failure probability and judge its applicability. We first investigated other probabilistic standards like ASME Code Case N-578. A probabilistic approach in the structural integrity evaluation was created based on these results, and also an evaluation flow was proposed. According to this flow, a model calculation of creep-fatigue damage was performed. This trial calculation was for a vessel in a sodium-cooled FBR. As the result of this model calculation, a crack initiation probability and a crack penetration probability were found to be effective indices. Last we discussed merits of this System Based Code, which are presented in this report. Furthermore, this report presents future development tasks. (author)
Energy Technology Data Exchange (ETDEWEB)
Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)
2013-08-15
In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
Waste Package Lifting Calculation
International Nuclear Information System (INIS)
H. Marr
2000-01-01
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation
Automatic electromagnetic valve for previous vacuum
International Nuclear Information System (INIS)
Granados, C. E.; Martin, F.
1959-01-01
A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)
International Nuclear Information System (INIS)
Eliyahu, Ian
2015-01-01
In this research, various kinetic models were developed for LiF:Mg,Ti crystals, both in the irradiation and recombination stages. The models were later used to improve on track structure theory, which attempts to describe radiation effects of Heavy charged particle. To achieve this goal, the research focused on three main areas of endeavor. 1. In the first experimental measurements of optical absorption on LiF:Mg,Ti following low ionization density radiation (photons) and high ionization density protons and He ions were carried out in order to investigate the degree of applicability of track structure theory to the prediction of heavy charged particle induced effects of radiation. These measurements are described below. a) Photon induced optical absorption (OA) dose response was measured over an extended dose-range from 10 Gy to 105 Gy for the main OA bands in LiF:Mg,Ti, i.e., the 4.0 eV band (trapping center associated with glow peak 5 in the thermoluminescence glow curve), 4.77 eV band , 5.08 eV (F band) and 5.45 eV band. The extended dose-range allowed the unambiguous determination of linear/exponentially saturation behavior for all the OA bands. For the two main OA bands of interest at 4.0 eV and 5.08 eV, the dose filling factor was determined to be 5 ± 0.6.10-4 Gy-1 and 6.1 ± 0.4 × 10-5 Gy-1 respectively. The surprising, previously unexplained, linear/exponentially saturating dose response of the F band even though vacancies/F centers are being created by the radiation was explained in a kinetic analysis also described in the following. b) Heavy charged particle (HCP) optical absorption was carried out for 1.4 MeV protons and 4 MeV He ions at the SARAF, RARAF and BINA accelerators. Fluence response was measured over the extended range from 1010 cm-2 to 2.1014 cm-2. The low fluence region from 1010 cm-2 to 1011 cm-2 in the no-track-overlap regime allows a comparison of the experimental measurements and the track structure theory (TST) evaluations of the
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Directory of Open Access Journals (Sweden)
Ellen A Struijk
Full Text Available BACKGROUND: Disability-Adjusted Life Years (DALYs have the advantage that effects on total health instead of on a specific disease incidence or mortality can be estimated. Our aim was to address several methodological points related to the computation of DALYs at an individual level in a follow-up study. METHODS: DALYs were computed for 33,507 men and women aged 20-70 years when participating in the EPIC-NL study in 1993-7. DALYs are the sum of the Years Lost due to Disability (YLD and the Years of Life Lost (YLL due to premature mortality. Premature mortality was defined as death before the estimated date of individual Life Expectancy (LE. Different methods to compute LE were compared as well as the effect of different follow-up periods using a two-part model estimating the effect of smoking status on health as an example. RESULTS: During a mean follow-up of 12.4 years, there were 69,245 DALYs due to years lived with a disease or premature death. Current-smokers had lost 1.28 healthy years of their life (1.28 DALYs 95%CI 1.10; 1.46 compared to never-smokers. The outcome varied depending on the method used for estimating LE, completeness of disease and mortality ascertainment and notably the percentage of extinction (duration of follow-up of the cohort. CONCLUSION: We conclude that the use of DALYs in a cohort study is an appropriate way to assess total disease burden in relation to a determinant. The outcome is sensitive to the LE calculation method and the follow-up duration of the cohort.
International Nuclear Information System (INIS)
Vladimir Ya Kumaev; Andrei A Lebezov; Victor V Alexeev
2005-01-01
Full text of publication follows: The report is devoted to the development and application of the two-dimensional MASKA-LM computer code intended for numerical calculations of lead coolant flows, temperatures and transport of impurities in BREST-type reactors of the integral design. The description of heat and mass transfer in liquid metal systems, proceeding in the coolant and at the interface 'coolant - structural materials', is a complex problem involving the joint simulation of thermal-hydraulic, physical and chemical processes in view of the real configuration of the reactor circuit. The report presents the state-of-the-art in the development of the two-dimensional code MASKA-LM and the results of trial calculations of heat and mass transfer in the primary circuit of the lead cooled reactor. The set of governing equations to be solved is based on the porous body model and describes the thermal-hydraulic processes in the reactor as a whole. The numerical method for solution of the governing equations is discussed. To check the code workability and study the technique by the way of solution of a particular task, calculations were performed in reference to the chosen version of the lead cooled BREST reactor under design. The examined domain of the reactor was simulated by a porous body with the parameters corresponding to those of the real reactor medium in terms of heat generation, resistance and the geometry of the hydraulic path of coolant. Analysis of the calculated two-dimensional fields of velocities, pressure and temperatures shows the existence of a complex coolant flow with stagnant and vortex zones. A nonuniform distribution of the coolant flow rate along the core radius was obtained. The results of calculations of the impurity transport of iron, oxygen and magnetite in the primary reactor circuit are discussed as well. The developed code MASKA-LM allows one to evaluate the issue of components of structural materials into coolant as impurities, their
PHYSICOCHEMICAL PROPERTY CALCULATIONS
Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...
International Nuclear Information System (INIS)
Oblozinsky, P.
1997-09-01
The report contains the summary of the third and the last Research Co-ordination Meeting on ''Development of Reference Input Parameter Library for Nuclear Model Calculations of Nuclear Data (Phase I: Starter File)'', held at the ICTP, Trieste, Italy, from 26 to 29 May 1997. Details are given on the status of the Handbook and the Starter File - two major results of the project. (author)
International Nuclear Information System (INIS)
Kerr, G.D.; Hwang, J.M.; Jones, R.M.
1976-05-01
A mathematical model of a phantom simulating the body and major internal organs of a Japanese adult has been developed for use in computer calculations of radiation dose. The total body height of the mathematical phantom is 162 cm, and the total body mass is 55 kg based on densities of 0.3, 1.4, and 1.0 g/cm 3 for the lung, skeleton, and bulk tissues of the body, respectively
International Nuclear Information System (INIS)
Gu Zhaolin; Liu Hongjuan; Li Yun
2004-01-01
Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion
Personality disorders in previously detained adolescent females: a prospective study
Krabbendam, A.; Colins, O.F.; Doreleijers, T.A.H.; van der Molen, E.; Beekman, A.T.F.; Vermeiren, R.R.J.M.
2015-01-01
This longitudinal study investigated the predictive value of trauma and mental health problems for the development of antisocial personality disorder (ASPD) and borderline personality disorder (BPD) in previously detained women. The participants were 229 detained adolescent females who were assessed
International Nuclear Information System (INIS)
Su, L.; Du, X.; Liu, T.; Xu, X. G.
2013-01-01
An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)
International Nuclear Information System (INIS)
Sahal-Brechot, S
2010-01-01
Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelling. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution and the creation of elements through nuclear reactions. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous profiles, especially for trace elements, which are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method, are necessary for obtaining numerous results. Ab initio calculations are a growing domain of development. Nowadays, the access to such data via an on line database becomes crucial. This is the object of STARK-B, which is a collaborative project between the Paris Observatory and the Astronomical Observatory of Belgrade. It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to laboratory plasmas, laser equipments and technological plasmas. It is a part of VAMDC (Virtual Atomic and Molecular Data Centre), which is an European Union funded collaboration between groups involved in the generation and use of atomic and molecular data.
International Nuclear Information System (INIS)
Rodriguez, M.
1997-07-01
The treatment for some thyroid carcinomas involves surgically removing the thyroid gland and administering the radiopharmaceutical Sodium iodide- 131 I (NaI). A diagnostic dose of NaI is given to the patient to determine if remnant tissue from the gland remains or larger doses are administered in order to treat the malignant tissue. Past research regarding NaI uptake and retention in euthyroid individuals (normal functioning thyroid) reveal that radioiodine concentrates mainly in the thyroid tissue and the remaining material is excreted from the body. The majority of radioiodine in athyroid (without thyroid) individuals is also eliminated from the body; however, there has been recent evidence of a long-term retention phase for individuals with no radioiodine concentrating tissue. The general purpose of this study was to develop a kinetic model and estimate the absorbed dose to athyroid individuals regarding the distribution and retention of NaI
77 FR 70176 - Previous Participation Certification
2012-11-23
... participants' previous participation in government programs and ensure that the past record is acceptable prior... information is designed to be 100 percent automated and digital submission of all data and certifications is... government programs and ensure that the past record is acceptable prior to granting approval to participate...
Subsequent pregnancy outcome after previous foetal death
Nijkamp, J. W.; Korteweg, F. J.; Holm, J. P.; Timmer, A.; Erwich, J. J. H. M.; van Pampus, M. G.
Objective: A history of foetal death is a risk factor for complications and foetal death in subsequent pregnancies as most previous risk factors remain present and an underlying cause of death may recur. The purpose of this study was to evaluate subsequent pregnancy outcome after foetal death and to
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
In order to elucidate the mechanism for specific phenomena from the atom scale to the meso-scale, developmental research has been performed on a fusion type calculation method. This paper reports the achievements in fiscal 1999. In planning the policy of structuring the program package TACPAC and its application method, the program for materials STATE using the classical molecule dynamics method and the biological program, Peach, were selected as the programs to act as the nuclei. In continuing performance improvements respectively in the computer programs to be fused, and improving the performance of the software fused with them, the programs were transferred into a super-computer. As a result, it was found that the classical and the first principle quantum molecular dynamics method program STATE can be executed at high efficiency on the super-computer. In executing the challenging computer simulation and developing a calculation method for large scale systems, researches were performed on alcohol synthesizing reaction on copper surface and the status of association of gene DNA molecules with enzymes, and development was carried out on a matrix generation method to calculate non-empirical molecule trajectories of the large scale systems. (NEDO)
Directory of Open Access Journals (Sweden)
Konstantinov Igor
2016-01-01
Full Text Available The issues of modern urban development raise a significant question about an environmental cleanliness of progressing cities. Energy sources which are running on fuel cause tremendous harm to the atmosphere. Therefore, special attention is paid to the rational use of natural renewable resources such as wind and solar energy. Wind-electric sets, or wind turbines, are able to work autonomously, which is also important for the development of modern “smart” cities. Currently, the most commonly used design of wind turbines is the system which has the form of a tower of circular cross section (also called pipe, which carries at the upper end a nacelle with wind wheel. When such a system is being designed in urban conditions the wind pulsation and seismic calculations are added to the standard calculations. These added calculations are dynamic loads. It is known that in the process of solution of dynamic tasks design models of various levels of approximation can be used. It occurs due to stages of the design and other factors. The question of errors, which are associated with the use of a dissected, or partitioned, design scheme, raises.
International Nuclear Information System (INIS)
Perusquia, R.; Montes, J.L.; Ortiz, J.J.
2005-01-01
In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)
International Nuclear Information System (INIS)
Petkov, P.T.
2000-01-01
The method of characteristics (MOC) is gaining increased popularity in the reactor physics community all over the world because it gives a new degree of freedom in nuclear reactor analysis. The MARIKO code solves the neutron transport equation by the MOC in two-dimensional real geometry. The domain of solution can be a rectangle or right hexagon with periodic boundary conditions on the outer boundary. Any reasonable symmetry inside the domain can be fully accounted for. The geometry is described in three levels-macro-cells, cells, and regions. The macro-cells and cells can be any polygon. The outer boundary of a region can be any combination of straight line and circular arc segments. Any level of embedded regions is allowed. Procedures for automatic geometry description of hexagonal fuel assemblies and reflector macro-cells have been developed. The initial ray tracing procedure is performed for the full rectangular or hexagonal domain, but only azimuthal angles in the smallest symmetry interval are tracked. (Authors)
International Nuclear Information System (INIS)
Rezende, Gabriel Fonseca da Silva
2015-01-01
Many radiotherapy centers acquire 15 and 18 MV linear accelerators to perform more effective treatments for deep tumors. However, the acquisition of these equipment must be accompanied by an additional care in shielding planning of the rooms that will house them. In cases where space is restricted, it is common to find primary barriers made of concrete and metal. The drawback of this type of barrier is the photoneutron emission when high energy photons (e.g. 15 and 18 MV spectra) interact with the metallic material of the barrier. The emission of these particles constitutes a problem of radiation protection inside and outside of radiotherapy rooms, which should be properly assessed. A recent work has shown that the current model underestimate the dose of neutrons outside the treatment rooms. In this work, a computational model for the aforementioned problem was created from Monte Carlo Simulations and Artificial Intelligence. The developed model was composed by three neural networks, each being formed of a pair of material and spectrum: Pb18, Pb15 and Fe18. In a direct comparison with the McGinley method, the Pb18 network exhibited the best responses for approximately 78% of the cases tested; the Pb15 network showed better results for 100% of the tested cases, while the Fe18 network produced better answers to 94% of the tested cases. Thus, the computational model composed by the three networks has shown more consistent results than McGinley method. (author)
International Nuclear Information System (INIS)
He, Shuxiang; Zhang, Han; Wang, Mengqi; Zang, Qiyong; Zhang, Jingyu; Chen, Yixue
2017-01-01
Point kernel integration (PKI) method is widely used in the visualization of radiation field in engineering applications because of the features of quickly dealing with large-scale complicated geometry space problems. But the traditional PKI programs have a lot of restrictions, such as complicated modeling, complicated source setting, 3D fine mesh results statistics and large-scale computing efficiency. To break the traditional restrictions for visualization of radiation field, ARShield was developed successfully. The results show that ARShield can deal with complicated plant radiation shielding problems for visualization of radiation field. Compared with SuperMC and QAD, it can be seen that the program is reliable and efficient. Also, ARShield can meet the demands of calculation speediness and interactive operations of modeling and displaying 3D geometries on a graphical user interface, avoiding error modeling in calculation and visualization. (authors)
International Nuclear Information System (INIS)
Blanchet, D.
2006-01-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*σ) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO 2 ). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
Subsequent childbirth after a previous traumatic birth.
Beck, Cheryl Tatano; Watson, Sue
2010-01-01
Nine percent of new mothers in the United States who participated in the Listening to Mothers II Postpartum Survey screened positive for meeting the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for posttraumatic stress disorder after childbirth. Women who have had a traumatic birth experience report fewer subsequent children and a longer length of time before their second baby. Childbirth-related posttraumatic stress disorder impacts couples' physical relationship, communication, conflict, emotions, and bonding with their children. The purpose of this study was to describe the meaning of women's experiences of a subsequent childbirth after a previous traumatic birth. Phenomenology was the research design used. An international sample of 35 women participated in this Internet study. Women were asked, "Please describe in as much detail as you can remember your subsequent pregnancy, labor, and delivery following your previous traumatic birth." Colaizzi's phenomenological data analysis approach was used to analyze the stories of the 35 women. Data analysis yielded four themes: (a) riding the turbulent wave of panic during pregnancy; (b) strategizing: attempts to reclaim their body and complete the journey to motherhood; (c) bringing reverence to the birthing process and empowering women; and (d) still elusive: the longed-for healing birth experience. Subsequent childbirth after a previous birth trauma has the potential to either heal or retraumatize women. During pregnancy, women need permission and encouragement to grieve their prior traumatic births to help remove the burden of their invisible pain.
International Nuclear Information System (INIS)
Govoni, Marco; Argonne National Lab., Argonne, IL; Galli, Giulia; Argonne National Lab., Argonne, IL
2015-01-01
We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons
Source and replica calculations
International Nuclear Information System (INIS)
Whalen, P.P.
1994-01-01
The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem
Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin
2008-04-01
Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.
International Nuclear Information System (INIS)
Bennewitz, F.; Mueller, A.; Wagner, M.R.
1977-11-01
Based on the nodal collision probability method a multi-dimensional reactor burn-up program MEDIUM has been developed, which is written for 2 neutron energy groups. It is characterized by high computing speed, considerable generality and flexibility, a number of useful program options and good accuracy. The three-dimensional flux calculation model is described, the formulation and method of solution of the nuclear depletion equations and further details of the program structure. The results of a number of comparisons with experimental data and with independent computer programs are presented. (orig.) [de
Faught, Austin M; Davidson, Scott E; Popple, Richard; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S
2017-09-01
The Imaging and Radiation Oncology Core-Houston (IROC-H) Quality Assurance Center (formerly the Radiological Physics Center) has reported varying levels of compliance from their anthropomorphic phantom auditing program. IROC-H studies have suggested that one source of disagreement between institution submitted calculated doses and measurement is the accuracy of the institution's treatment planning system dose calculations and heterogeneity corrections used. In order to audit this step of the radiation therapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Varian flattening filter free (FFF) 6 MV and FFF 10 MV therapeutic x-ray beams were commissioned based on central axis depth dose data from a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open-field measurements in a water tank for field sizes ranging from 3 × 3 cm 2 to 40 × 40 cm 2 . The models were then benchmarked against IROC-H's anthropomorphic head and neck phantom and lung phantom measurements. Validation results, assessed with a ±2%/2 mm gamma criterion, showed average agreement of 99.9% and 99.0% for central axis depth dose data for FFF 6 MV and FFF 10 MV models, respectively. Dose profile agreement using the same evaluation technique averaged 97.8% and 97.9% for the respective models. Phantom benchmarking comparisons were evaluated with a ±3%/2 mm gamma criterion, and agreement averaged 90.1% and 90.8% for the respective models. Multiple source models for Varian FFF 6 MV and FFF 10 MV beams have been developed, validated, and benchmarked for inclusion in an independent dose calculation quality assurance tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.
Probability calculations for three-part mineral resource assessments
Ellefsen, Karl J.
2017-06-27
Three-part mineral resource assessment is a methodology for predicting, in a specified geographic region, both the number of undiscovered mineral deposits and the amount of mineral resources in those deposits. These predictions are based on probability calculations that are performed with computer software that is newly implemented. Compared to the previous implementation, the new implementation includes new features for the probability calculations themselves and for checks of those calculations. The development of the new implementation lead to a new understanding of the probability calculations, namely the assumptions inherent in the probability calculations. Several assumptions strongly affect the mineral resource predictions, so it is crucial that they are checked during an assessment. The evaluation of the new implementation leads to new findings about the probability calculations,namely findings regarding the precision of the computations,the computation time, and the sensitivity of the calculation results to the input.
Smalley, A. J.; Tessarzik, J. M.
1975-01-01
Effects of temperature, dissipation level and geometry on the dynamic behavior of elastomer elements were investigated. Force displacement relationships in elastomer elements and the effects of frequency, geometry and temperature upon these relationships are reviewed. Based on this review, methods of reducing stiffness and damping data for shear and compression test elements to material properties (storage and loss moduli) and empirical geometric factors are developed and tested using previously generated experimental data. A prediction method which accounts for large amplitudes of deformation is developed on the assumption that their effect is to increase temperature through the elastomers, thereby modifying the local material properties. Various simple methods of predicting the radial stiffness of ring cartridge elements are developed and compared. Material properties were determined from the shear specimen tests as a function of frequency and temperature. Using these material properties, numerical predictions of stiffness and damping for cartridge and compression specimens were made and compared with corresponding measurements at different temperatures, with encouraging results.
Energy Technology Data Exchange (ETDEWEB)
Martin, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1966-10-01
The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [French] L'appareil etudie est un ensemble de calcul digital permettant d'elaborer et d'afficher numeriquement la periode et la puissance, d'un reacteur nucleaire lors de son fonctionnement depuis le demarrage jusqu'a la puissance nominale. Il traite en temps reel, de facon continue, les impulsions en provenance d'une chambre de fission. Grace a l'utilisation systematique d'une technique de calcul, la determination d'un logarithme a base 2 par approximation lineaire, un nombre reduit d'elements est utilise. La precision obtenue sur la periode est de l'ordre de 14 pour cent, le temps de reponse de l'ordre de la valeur de la periode calculee. Un ordre de grandeur de la puissance (30 pour cent) est donne a chaque cycle de calcul ainsi que des seuils de puissance necessaires au controle. (auteur)
Miksys, N; Xu, C; Beaulieu, L; Thomson, R M
2015-08-07
This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose
Energy Technology Data Exchange (ETDEWEB)
Nabi, R
1979-08-15
In this report the neutron- and reactor physical aspects of the high temperature pebble bed reactor are studied. For this purpose appropriate HTR-nuclear data sets are generated and applied in a calculation model, which is developed on the basis of neutron transport and diffusion theory. This model includes the complete reactor calculation for determination of neutron flux, reactivity and reaction rates. This reactor calculation is based on following: evaluation of resonance absorption in double heterogeneity, cell calculation in spherical geometry, zone spectral calculation and subsequent 2-dimensional diffusion calculation. All calculations are performed in the modular program system RSYST, which accommodates simplified treatment of reactor physics problems through its data transfer and treatment techniques and through its calculations control features. In this report the neutron- and reactor physical aspects of the high temperature pebble bed reactor are studied. For this purpose appropriate HTR-nuclear data sets are generated and applied in a calculation model, which is developed on the basis of neutron transport and diffusion theory. This model includes the complete reactor calculation for determination of neutron flux, reactivity and reaction rates. This reactor calculation is based on following: evaluation of resonance absorption in double heterogeneity, cell calculation in spherical geometry, zone spectral calculation and subsequent 2-dimensional diffusion calculation. All calculations are performed in the modular program system RSYST, which accommodates simplified treatment of reactor physics problems through its data transfer and treatment techniques and through its calculations control features. The results of the calculations are compared with measured values of different core configurations of the critical facility for the high temperature pebble bed reactor (KAHTER). This comparison shows how a critical facility is used to verify and to adjust
Energy Technology Data Exchange (ETDEWEB)
1999-09-01
The fundamental objective of the project is the elaboration of a user friendly computer programme which allows to mining technicians an easy application of the empirical calculation methods of mining subsidence. As is well known these methods use, together with a suitable theoretical support, the experimental data obtained during a long period of mining activities in areas of different geological and geomechanical nature. Thus they can incorporate to the calculus the local parameters that hardly could be taken into account by using pure theoretical methods. In general, as basic calculation method, it has been followed the procedure development by the VNIMI Institute of Leningrad, a particularly suitable method for application to the most various conditions that may occur in the mining of flat or steep seams. The computer programme has been worked out on the basis of MicroStation System (5.0 version) of INTERGRAPH which allows the development of new applications related to the basic aims of the project. An important feature, of the programme that may be quoted is the easy adaptation to local conditions by adjustment of the geomechanical or mining parameters according to the values obtained from the own working experience. (Author)
Books average previous decade of economic misery.
Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
Books Average Previous Decade of Economic Misery
Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159
International Nuclear Information System (INIS)
Manturov, G.; Semenov, M.; Seregin, A.; Lykova, L.
2004-01-01
The BFS-62 critical experiments are currently used as 'benchmark' for verification of IPPE codes and nuclear data, which have been used in the study of loading a significant amount of Pu in fast reactors. The BFS-62 experiments have been performed at BFS-2 critical facility of IPPE (Obninsk). The experimental program has been arranged in such a way that the effect of replacement of uranium dioxied blanket by the steel reflector as well as the effect of replacing UOX by MOX on the main characteristics of the reactor model was studied. Wide experimental program, including measurements of the criticality-keff, spectral indices, radial and axial fission rate distributions, control rod mock-up worth, sodium void reactivity effect SVRE and some other important nuclear physics parameters, was fulfilled in the core. Series of 4 BFS-62 critical assemblies have been designed for studying the changes in BN-600 reactor physics from existing state to hybrid core. All the assemblies are modeling the reactor state prior to refueling, i.e. with all control rod mock-ups withdrawn from the core. The following items are chosen for the analysis in this report: Description of the critical assembly BFS-62-3A as the 3rd assembly in a series of 4 BFS critical assemblies studying BN-600 reactor with MOX-UOX hybrid zone and steel reflector; Development of a 3D homogeneous calculation model for the BFS-62-3A critical experiment as the mock-up of BN-600 reactor with hybrid zone and steel reflector; Evaluation of measured nuclear physics parameters keff and SVRE (sodium void reactivity effect); Preparation of adjusted equivalent measured values for keff and SVRE. Main series of calculations are performed using 3D HEX-Z diffusion code TRIGEX in 26 groups, with the ABBN-93 cross-section set. In addition, precise calculations are made, in 299 groups and Ps-approximation in scattering, by Monte-Carlo code MMKKENO and discrete ordinate code TWODANT. All calculations are based on the common system
MCNP HPGe detector benchmark with previously validated Cyltran model.
Hau, I D; Russ, W R; Bronson, F
2009-05-01
An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.
International Nuclear Information System (INIS)
White, Morgan C.
2000-01-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to
Energy Technology Data Exchange (ETDEWEB)
White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second
Underestimation of Severity of Previous Whiplash Injuries
Naqui, SZH; Lovell, SJ; Lovell, ME
2008-01-01
INTRODUCTION We noted a report that more significant symptoms may be expressed after second whiplash injuries by a suggested cumulative effect, including degeneration. We wondered if patients were underestimating the severity of their earlier injury. PATIENTS AND METHODS We studied recent medicolegal reports, to assess subjects with a second whiplash injury. They had been asked whether their earlier injury was worse, the same or lesser in severity. RESULTS From the study cohort, 101 patients (87%) felt that they had fully recovered from their first injury and 15 (13%) had not. Seventy-six subjects considered their first injury of lesser severity, 24 worse and 16 the same. Of the 24 that felt the violence of their first accident was worse, only 8 had worse symptoms, and 16 felt their symptoms were mainly the same or less than their symptoms from their second injury. Statistical analysis of the data revealed that the proportion of those claiming a difference who said the previous injury was lesser was 76% (95% CI 66–84%). The observed proportion with a lesser injury was considerably higher than the 50% anticipated. CONCLUSIONS We feel that subjects may underestimate the severity of an earlier injury and associated symptoms. Reasons for this may include secondary gain rather than any proposed cumulative effect. PMID:18201501
[Electronic cigarettes - effects on health. Previous reports].
Napierała, Marta; Kulza, Maksymilian; Wachowiak, Anna; Jabłecka, Katarzyna; Florek, Ewa
2014-01-01
Currently very popular in the market of tobacco products have gained electronic cigarettes (ang. E-cigarettes). These products are considered to be potentially less harmful in compared to traditional tobacco products. However, current reports indicate that the statements of the producers regarding to the composition of the e- liquids not always are sufficient, and consumers often do not have reliable information on the quality of the product used by them. This paper contain a review of previous reports on the composition of e-cigarettes and their impact on health. Most of the observed health effects was related to symptoms of the respiratory tract, mouth, throat, neurological complications and sensory organs. Particularly hazardous effects of the e-cigarettes were: pneumonia, congestive heart failure, confusion, convulsions, hypotension, aspiration pneumonia, face second-degree burns, blindness, chest pain and rapid heartbeat. In the literature there is no information relating to passive exposure by the aerosols released during e-cigarette smoking. Furthermore, the information regarding to the use of these products in the long term are not also available.
Directory of Open Access Journals (Sweden)
Evelyn Grünheid
2011-01-01
Full Text Available This article tackles the question of how, on the one hand, the high life expectancy and, on the other, the increasing age of mothers at childbirth will impact the joint lifetime of three and four generations and will develop in future. To this end, indicators are derived from the official data on mortality and fertility for the mean joint lifetimes of three- and four-generation families. Because of the complicated data available, the investigation will be restricted to the female succession of generations, and here to an observation of the first-born child in each case. The indicators act as model calculations, which is why they serve above all to indicate (future developments in mean joint lifetimes. The indicators are calculated for the average jointly-spent lifetime of three-generation families for the period from 1990 to 2060, and of four-generation families for the period from 2010 to 2060. The result of the calculations for Western Germany show an increase in the jointly-spent lifetime of three generations of up to roughly 35 years in 2000, after which that the figure falls continually to a value of roughly 30 years. A similarly developing trend emerges for four generations, but this is delayed by roughly 30 years towards the future, and reaches the highest value around 2030 to 2040, at roughly seven to ten years. For Eastern Germany, with its even younger age of women at childbirth in both the past and in the present, the maximum jointly-spent life years of three generations at the beginning of the observation period (roughly around 1990 is almost 40 years, after which this indicator falls continuously. The indicator of the average jointly-spent years of four-generation families, by contrast, probably reaches a maximum around 2020, with a value of 12 to 14 years. Also after this, one may anticipate a reduction in the joint lifetimes of four-generation families in Eastern Germany. All in all, the trends of the indicators denote that one
International Nuclear Information System (INIS)
Delisle, G.
1980-01-01
The concept of nuclear waste disposal of th of the Federal Republic of Germany calls for the burial of the wastes within a salt formation. A small portion of the wastes will generate heat after the disposal procedure. A temperature rise within the salt formation, in space and time limited, will be the consequence. The temperature change at any point in the near or far field of the disporal area can be calculated with the aid of numerical models. The thermal parameters representative for the bulk material of the Zechstein formation in NW-Germany, on which the calculations are based, will be discussed in detail. The interrelation between the concentration of heat producing wastes in the disposal field and the maximum average temperature in the salt formation will be treated. By defining numerical models, which are based on assumed shapes of a salt dome and a disposal area, the temperature development in the near and far field of a nuclear repository are shown. (orig.) [de
Kimura, Koji; Sawa, Akihiro; Akagi, Shinji; Kihira, Kenji
2007-06-01
We have developed an original system to conduct surgical site infection (SSI) surveillance. This system accumulates SSI surveillance information based on the National Nosocomial Infections Surveillance (NNIS) System and the Japanese Nosocomial Infections Surveillance (JNIS) System. The features of this system are as follows: easy input of data, high generality, data accuracy, SSI rate by operative procedure and risk index category (RIC) can be promptly calculated and compared with the current NNIS SSI rate, and the SSI rates and accumulated data can be exported electronically. Using this system, we monitored 798 patients in 24 operative procedure categories in the Digestive Organs Surgery Department of Mazda Hospital, Mazda Motor Corporation, from January 2004 through December 2005. The total number and rate of SSI were 47 and 5.89%, respectively. The SSI rates of 777 patients were calculated based on 15 operative procedure categories and Risk Index Categories (RIC). The highest SSI rate was observed in the rectum surgery of RIC 1 (30%), followed by the colon surgery of RIC3 (28.57%). About 30% of the isolated infecting bacteria were Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Using quantification theory type 2, the American Society of Anesthesiology score (4.531), volume of hemorrhage under operation (3.075), wound classification (1.76), operation time (1.352), and history of diabetes (0.989) increased to higher ranks as factors for SSI. Therefore, we evaluated this system as a useful tool in safety control for operative procedures.
International Nuclear Information System (INIS)
Horn, M.
1984-01-01
On the basis of existing experimental data on dry and wet depositions and of the computational method used in the assessment of concentrations in plants, the author makes a valuation to determine whether the calculations with given data are sufficiently conservative. To find the required mean depositing speeds in view of the size range of emitted particles from nuclear power plants, a theoretical model was developed enabling the assessment of the depositing speed for different vegetations as a function of particle diameter, wind speed and particle density in good conformity with the experimental data. Taking into consideration the activity distribution within the range of particle sizes, mean depositing speeds were determined for a BWR-type reactor and for a PWR-type reactor. (orig./HP) [de
24 CFR 1710.552 - Previously accepted state filings.
2010-04-01
... of Substantially Equivalent State Law § 1710.552 Previously accepted state filings. (a) Materials... and contracts or agreements contain notice of purchaser's revocation rights. In addition see § 1715.15..., unless the developer is obligated to do so in the contract. (b) If any such filing becomes inactive or...
International Nuclear Information System (INIS)
Ludwig, Maximilian Uwe; Toprani, Vipul; Witte, Frank
2014-01-01
The enactment of the Law Giving Priority to Renewable Energies (EEG) in 2000 laid the cornerstone for the transformation of the German electricity supply. Since then the proportion of renewable energy in electricity production has grown dramatically, confronting the German network infrastructure, which was initially designed for a centralised supply system, with new problems and challenges. In order to achieve optimal coordination between volatile energy infeeds, electricity storage plants and consumers it is necessary to bring all components involved together in a smart grid. A small-scale grid of this description is currently being operated and investigated on the EUREF Campus in Berlin Schoeneberg. The task of achieving optimal allocation of energy flows and getting the micro smart grid to run accordingly, i.e. at a profit, poses new challenges to all involved. To be able to determine the economic efficiency of smart grids a calculation model was developed which simulates the operation of production and storage plants and takes the behaviour of real consumers into account. The model rates the profitability of investments made in terms of their capital value. In its current version the model still disregards the legal regulations for the remuneration of electricity produced from a mix of renewable resources. These cannot be considered as physically separate in a smart grid. In the present study a module based on EEG provisions was developed which calculates remuneration rates as a function of production and demand at a given moment. This is one of several factors which influence the economic efficiency of smart grids. The study undertakes to identify these factors and describe their influence on the profitability of the total investment.
International Nuclear Information System (INIS)
Shi Chengyu; Xu, X. George
2004-01-01
Assessment of radiation dose and risk to a pregnant woman and her fetus is an important task in radiation protection. Although tomographic models for male and female patients of different ages have been developed using medical images, such models for pregnant women had not been developed to date. This paper reports the construction of a partial-body model of a pregnant woman from a set of computed tomography (CT) images. The patient was 30 weeks into pregnancy, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices. The thickness for each slice is 7 mm, and the image resolution is 512x512 pixels in a 48 cmx48 cm field; thus, the voxel size is 6.15 mm 3 . The images were segmented to identify 34 major internal organs and tissues considered sensitive to radiation. Even though the masses are noticeably different from other models, the three-dimensional visualization verified the segmentation and its suitability for Monte Carlo calculations. The model has been implemented into a Monte Carlo code, EGS4-VLSI (very large segmented images), for the calculations of radiation dose to a pregnant woman. The specific absorbed fraction (SAF) results for internal photons were compared with those from a stylized model. Small and large differences were found, and the differences can be explained by mass differences and by the relative geometry differences between the source and the target organs. The research provides the radiation dosimetry community with the first voxelized tomographic model of a pregnant woman, opening the door to future dosimetry studies
CALCULATION OF LASER CUTTING COSTS
Bogdan Nedic; Milan Eric; Marijana Aleksijevic
2016-01-01
The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, compar...
Energy Technology Data Exchange (ETDEWEB)
Perez V, Jesus B; Robles G, Saul; Villa M, Hector A; Cabanillas L, Rafael E [Universidad de Sonora, Hermosillo, Sonora (Mexico)
2000-07-01
In this work the development of an interactive software, visible over the World Wide Web, is presented to support the basic calculation required to control the solar gain inside buildings and houses. The site has two main parts: one part describes in a very required parameters to design devices for the control of the illumination inside the buildings, like overhangs and wingwalls for shading. The other part has the routines and procedures to calculate the sun position for any date and position over the earth, and the horizontal and vertical protection angles. The part to implement the calculations has been developed as a Java applet which can run on any platform and let the users, in an interactive way, to get the results. This software makes possible that any Internet user can run the application from his/her own computer without having to compile of use sophisticated procedures as it happens with traditional languages. With this web site it is intended to cover the necessity of having simple and reliable means for architects and civil engineers to support the use of solar energy and the saving of energy in bioclimatic design of buildings. [Spanish] En este trabajo se presenta el desarrollo de un sitio interactivo visible en el World Wide Web (WWW) que pretende servir de apoyo para los calculos basicos de control de asoleamiento en viviendas y edificios. El sitio esta conformado por dos partes principales: una parte cubre el aspecto informativo, donde en forma sencilla y clara, se explican los conceptos y parametros necesarios para disenar los dispositivos de control, alerones y parteluces. La otra parte contiene los procedimientos y las rutinas de calculo para la determinacion de la posicion solar para cualquier fecha del ano desde cualquier punto sobre la tierra, asi como los angulos de sombreado vertical y horizontal. Para la realizacion de los calculos se ha construido un applet de Java, el cual puede ejecutarse desde cualquier plataforma de computacion y
International Nuclear Information System (INIS)
Ihara, Hitoshi; Nishimura, Hideo; Ikawa, Koji; Ido, Masaru.
1986-11-01
In order to improve the applicability of near-real-time materials accountancy (N.R.T.MA) to a reprocessing plant, it is necessary to develop an estimation method for the nuclear material inventory at a solvent extraction system under operation. For designing the solvent extraction system, such computer codes as SEPHIS, SOLVEX and TRANSIENTS had been used. Accuracy of these codes in tracing operations and predicting inventories in the extraction system had been discussed. Then, much better codes, e.g., SEPHIS Mod4 and PUBG, were developed. Unfortunately, SEPHIS Mod4 was not available in countries other than the USA and PUBG was not suitable for use with a mini-computer which would be practical as a field computer because of quite a lot of computing time needed. The authors investigated an inventory estimation model compatible with PUBG in functions and developed the corresponding computer programme, SEPHIS-J, based on the SEPHIS Mod3 code, resulting in a third of computing time compared with PUBG. They also validated the programme by calculating a static state as well as a dynamic one of the solvent extraction process and by comparing them among the programme, SEPHIS Mod3 and PUBG. Using the programme, it was shown that the inventory changes due to changes of feed flow and concentration were not so small that they might be neglected although the changes of feed flow and concentration were within measurement errors. (author)
Lattice cell burnup calculation
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1977-01-01
Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics
MONRATE, a descriptive tool for calculation and prediction of re ...
African Journals Online (AJOL)
The objective of the study was to develop an interactive and systematic descriptive tool, MONRATE for calculating and predicting reinfection rates and time of Ascaris lumbricoides following mass chemotherapy using levamisole. Each pupil previously treated was retreated 6 or 7 months after the initial treatment in Ogun ...
Uncertainty calculations made easier
International Nuclear Information System (INIS)
Hogenbirk, A.
1994-07-01
The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)
Previous Experience a Model of Practice UNAE
Directory of Open Access Journals (Sweden)
Ormary Barberi Ruiz
2017-02-01
Full Text Available The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP of the National University of Education (UNAE of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials, pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subject nature of the pre professional practice and the demand of socio educational contexts where the practices have been emerging to resize them. By relating these elements allowed conceiving the modeling of the processes of the pre-professional practices for the development of professional skills of future teachers through four components: contextual projective, implementation (tutoring, accompaniment (teaching couple and monitoring (meetings at the beginning, during and end of practice. The initial training of teachers is inherent to teaching (academic and professional training, research and links with the community, these are fundamental pillars of Ecuadorian higher education.
Local recurrence risk after previous salvage mastectomy.
Tanabe, M; Iwase, T; Okumura, Y; Yoshida, A; Masuda, N; Nakatsukasa, K; Shien, T; Tanaka, S; Komoike, Y; Taguchi, T; Arima, N; Nishimura, R; Inaji, H; Ishitobi, M
2016-07-01
Breast-conserving surgery is a standard treatment for early breast cancer. For ipsilateral breast tumor recurrence (IBTR) after breast-conserving surgery, salvage mastectomy is the current standard surgical procedure. However, it is not rare for patients with IBTR who have received salvage mastectomy to develop local recurrence. In this study, we examined the risk factors of local recurrence after salvage mastectomy for IBTR. A total of 118 consecutive patients who had histologically confirmed IBTR without distant metastases and underwent salvage mastectomy without irradiation for IBTR between 1989 and 2008 were included from eight institutions in Japan. The risk factors of local recurrence were assessed. The median follow-up period from salvage mastectomy for IBTR was 4.6 years. Patients with pN2 or higher on diagnosis of the primary tumor showed significantly poorer local recurrence-free survival than those with pN0 or pN1 at primary tumor (p mastectomy for IBTR. Further research and validation studies are needed. (UMIN-CTR number UMIN000008136). Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Endres, Janis; Eberhardt, Holger
2017-10-15
Within the scope of work package 5 of this project 3614R03343, basic approaches of calculations for activity limits related to transport regulations have been developed fur- ther. Firstly, the calculation tool BerQATrans has been upgraded. This tool has been developed in order to calculate Q- and A-values according to the current Q-system. Secondly, an international working group has been supported that is currently reviewing the current Q-system on the basis of new nuclear data from ICRP 107 and conversion coefficients from ICRP 116. Furthermore, the calculation method is under review regarding state of the art Monte-Carlo simulation tools. Hence, GRS started the development of a code for calculating Q- and A{sub 1}-values based on this new basis. First preliminary results as well as discussions are presented in this report.
Erlotinib-induced rash spares previously irradiated skin
International Nuclear Information System (INIS)
Lips, Irene M.; Vonk, Ernest J.A.; Koster, Mariska E.Y.; Houwing, Ronald H.
2011-01-01
Erlotinib is an epidermal growth factor receptor inhibitor prescribed to patients with locally advanced or metastasized non-small cell lung carcinoma after failure of at least one earlier chemotherapy treatment. Approximately 75% of the patients treated with erlotinib develop acneiform skin rashes. A patient treated with erlotinib 3 months after finishing concomitant treatment with chemotherapy and radiotherapy for non-small cell lung cancer is presented. Unexpectedly, the part of the skin that had been included in his previously radiotherapy field was completely spared from the erlotinib-induced acneiform skin rash. The exact mechanism of erlotinib-induced rash sparing in previously irradiated skin is unclear. The underlying mechanism of this phenomenon needs to be explored further, because the number of patients being treated with a combination of both therapeutic modalities is increasing. The therapeutic effect of erlotinib in the area of the previously irradiated lesion should be assessed. (orig.)
Reasoning with Previous Decisions: Beyond the Doctrine of Precedent
DEFF Research Database (Denmark)
Komárek, Jan
2013-01-01
in different jurisdictions use previous judicial decisions in their argument, we need to move beyond the concept of precedent to a wider notion, which would embrace practices and theories in legal systems outside the Common law tradition. This article presents the concept of ‘reasoning with previous decisions...... law method’, but they are no less rational and intellectually sophisticated. The reason for the rather conceited attitude of some comparatists is in the dominance of the common law paradigm of precedent and the accompanying ‘case law method’. If we want to understand how courts and lawyers......’ as such an alternative and develops its basic models. The article first points out several shortcomings inherent in limiting the inquiry into reasoning with previous decisions by the common law paradigm (1). On the basis of numerous examples provided in section (1), I will present two basic models of reasoning...
International Nuclear Information System (INIS)
Cierjacks, S.W.; Oblozinsky, P.; Kelzenberg, S.; Rzehorz, B.
1993-01-01
A new algorithm and three major nuclear data libraries were developed for the kinematically complete treatment of sequential (x,n) reactions in fusion material activation calculations. The new libraries include data for virtually all isotopes with Z ≤ 84 (A ≤ 210) and half-lives exceeding 1 day; primary neutron energies E n 3 He, and α with energies E x < 24 MeV. While production cross sections of charged particles for primary (n,x) reactions can be deduced from the European activation file, the KFKSPEC data file was created for the corresponding normalized charged-particle spectra. The second data file, KFKXN, contains cross sections for secondary (x,n) reactions. The third data file, KFKSTOP, has a complete set of differential ranges for all five aforementioned light charged particles and all elements from hydrogen to uranium. The KFKSPEC and KFKXN libraries are based essentially on nuclear model calculations using the statistical evaporation model superimposed with the pre-equilibrium contribution as implemented in the Lawrence Livermore National Laboratory ALICE code. The KFKSPEC library includes 633 isotopes, of which 55 are in their isomeric states, and contains 63,300 spectra of the (n,x) type with almost 1.5 million data points. The KFKXN library also includes 633 isotopes and contains all (x,n) and partly (x,2n) cross sections for 4431 reactions with ∼ 106,000 data points. The KFKSTOP library is considered complete and has 11,040 data points. 42 refs., 2 figs., 4 tabs
International Nuclear Information System (INIS)
Kasuya, K.; Funatsu, M.; Saitoh, S.
2001-01-01
The first subject was the development of future ion beam driver with medium-mass ion specie. This may enable us to develop a compromised driver from the point of view of the micro-divergence angle and the cost. We produced nitrogen ion beams, and measured the micro-divergence angle on the anode surface. The measured value was 5-6mrad for the above beam with 300-400keV energy, 300A peak current and 50ns duration. This value was enough small and tolerable for the future energy driver. The corresponding value for the proton beam with higher peak current was 20-30mrad, which was too large. So that, the scale-up experiment with the above kind of medium-mass ion beam must be realized urgently to clarify the beam characteristics in more details. The reactor wall ablation with the implosion X-ray was also calculated as the second subject in this paper. (author)
Suo, Bingbing; Lei, Yibo; Han, Huixian; Wang, Yubin
2018-04-01
This mini-review introduces our works on the Xi'an-CI (configuration interaction) package using graphical unitary group approach (GUGA). Taking advantage of the hole-particle symmetry in GUGA, the Galfand states used to span the CI space are classified into CI subspaces according to the number of holes and particles, and the coupling coefficients used to calculate Hamiltonian matrix elements could be factorised into the segment factors in the hole, active and external spaces. An efficient multi-reference CI with single and double excitations (MRCISD) algorithm is thus developed that reduces the storage requirement and increases the number of correlated electrons significantly. The hole-particle symmetry also gives rise to a doubly contracted MRCISD approach. Moreover, the internally contracted Gelfand states are defined within the CI subspace arising from the hole-particle symmetry, which makes the implementation of internally contracted MRCISD in the framework of GUGA possible. In addition to MRCISD, the development of multi-reference second-order perturbation theory (MRPT2) also benefits from the hole-particle symmetry. A configuration-based MRPT2 algorithm is proposed and extended to the multi-state n-electron valence-state second-order perturbation theory.
SCALE Sensitivity Calculations Using Contributon Theory
International Nuclear Information System (INIS)
Rearden, Bradley T.; Perfetti, Chris; Williams, Mark L.; Petrie, Lester M. Jr.
2010-01-01
The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case k-eff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.
Contribution to a neutronic calculation scheme for pressurized water reactors
International Nuclear Information System (INIS)
Martin Del Campo, C.
1987-01-01
This research thesis aims at developing and validating the set of data and codes which build up the neutron computation scheme of pressurized water reactors. More precisely, it focuses on the improvement of the precision of calculation of command clusters (absorbing components which can be inserted into the core to control the reactivity), and on the modelling of reflector representation (material placed around the core and reflecting back the escaping neutrons). For the first case, a precise calculation is performed, based on the transport theory. For the second case, diffusion constants obtained in the previous case and simplified equations are used to reduce the calculation cost
Performance assessment calculational exercises
International Nuclear Information System (INIS)
Barnard, R.W.; Dockery, H.A.
1990-01-01
The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ''expected'' and also ''disturbed'' conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs
Energy Technology Data Exchange (ETDEWEB)
Jones, R.M.; Poston, J.W.; Hwang, J.L.; Jones, T.D.; Warner, G.G.
1976-06-01
The existence of a phantom based on anatomical data for the average fifteen-year-old provides for a proficient means of obtaining estimates of absorbed dose for children of that age. Dimensions representative of an average fifteen-year-old human, obtained from various biological and medical research, were transformed into a mathematical construct of idealized shapes of the exterior, skeletal system, and internal organs of a human. The idealization for an average adult presently in use by the International Commission on Radiological Protection was used as a basis for design. The mathematical equations describing the phantom were developed to be readily adaptable to present-day methods of dose estimation. Typical exposure situations in nuclear medicine have previously been modeled for existing phantoms. With no further development of the exposure model necessary, adaptation to the fifteen-year-old phantom demonstrated the utility of the design. Estimates of absorbed dose were obtained for the administration of two radiopharmaceuticals, /sup 99m/Tc-sulfur colloid and /sup 99m/Tc-DMSA. (auth)
[Fatal amnioinfusion with previous choriocarcinoma in a parturient woman].
Hrgović, Z; Bukovic, D; Mrcela, M; Hrgović, I; Siebzehnrübl, E; Karelovic, D
2004-04-01
The case of 36-year-old tercipare is described who developed choriocharcinoma in a previous pregnancy. During the first term labour the patient developed cardiac arrest, so reanimation and sectio cesarea was performed. A male new-born was delivered in good condition, but even after intensive therapy and reanimation occurred death of parturient woman with picture of disseminate intravascular coagulopathia (DIK). On autopsy and on histology there was no sign of malignant disease, so it was not possible to connect previous choricarcinoma with amniotic fluid embolism. Maybe was place of choriocarcinoma "locus minoris resistentiae" which later resulted with failure in placentation what was hard to prove. On autopsy we found embolia of lung with a microthrombosis of terminal circulation with punctiformis bleeding in mucous, what stands for DIK.
Energy Technology Data Exchange (ETDEWEB)
Boeck, Sixten
2009-09-03
which we developed in this work. In order to demonstrate the power of the this approach the full-featured plane-wave framework S/PHI/nX has been developed based on the new meta-language. The S/PHI/nX source code is remarkably short and transparent which simplifies code maintenance and the introduction of new sophisticated algorithms. Various benchmarks which have been conducted in this study compare S/PHI/nX with other state-of-the-art plane-wave packages with respect to runtime performance and accuracy. Based on these calculations we verified the general trends of phonon spectra, the location and amplitudes of the thermal anomalies of these systems. (orig.)
Calculational Tool for Skin Contamination Dose Assessment
Hill, R L
2002-01-01
Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.
Effective action calculation in lattice QCD
International Nuclear Information System (INIS)
Hoek, J.
1983-01-01
A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Pepper, D.W.
1980-07-01
A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Atomics International Nuclear Material Development Facility at Santa Susana, California. Plutonium particles less than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 50 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm.
International Nuclear Information System (INIS)
Pepper, D.W.
1980-07-01
A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Atomics International Nuclear Material Development Facility at Santa Susana, California. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 50 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm
Energy Technology Data Exchange (ETDEWEB)
Yang, Y M; Bush, K; Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)
2016-06-15
Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high
International Nuclear Information System (INIS)
Yang, Y M; Bush, K; Han, B; Xing, L
2016-01-01
Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high
Energy Technology Data Exchange (ETDEWEB)
Vasquez, V.R., E-mail: vrvasquez@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Curren, J., E-mail: janecurren@yahoo.com [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Lau, S.-L., E-mail: simlin@ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Stenstrom, M.K., E-mail: stenstro@seas.ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Suffet, I.H., E-mail: msuffet@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States)
2011-09-01
Echo Park Lake is a small lake in Los Angeles, CA listed on the USA Clean Water Act Section 303(d) list of impaired water bodies for elevated levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in fish tissue. A lake water and sediment sampling program was completed to support the development of total maximum daily loads (TMDL) to address the lake impairment. The field data indicated quantifiable levels of OCPs and PCBs in the sediments, but lake water data were all below detection levels. The field sediment data obtained may explain the contaminant levels in fish tissue using appropriate sediment-water partitioning coefficients and bioaccumulation factors. A partition-equilibrium fugacity model of the whole lake system was used to interpret the field data and indicated that half of the total mass of the pollutants in the system are in the sediments and the other half is in soil; therefore, soil erosion could be a significant pollutant transport mode into the lake. Modeling also indicated that developing and quantifying the TMDL depends significantly on the analytical detection level for the pollutants in field samples and on the choice of octanol-water partitioning coefficient and bioaccumulation factors for the model. - Research highlights: {yields} Fugacity model using new OCP and PCB field data supports lake TMDL calculations. {yields} OCP and PCB levels in lake sediment were found above levels for impairment. {yields} Relationship between sediment data and available fish tissue data evaluated. {yields} Model provides approximation of contaminant sources and sinks for a lake system. {yields} Model results were sensitive to analytical detection and quantification levels.
Energy Technology Data Exchange (ETDEWEB)
Brockway, D.; Soran, P.; Whalen, P.
1985-01-01
A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.
Faas, S.; Snijders, Jaap; van Lenthe, J.H.; HernandezLaguna, A; Maruani, J; McWeeny, R; Wilson, S
2000-01-01
In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in
Weldon Spring dose calculations
International Nuclear Information System (INIS)
Dickson, H.W.; Hill, G.S.; Perdue, P.T.
1978-09-01
In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case
International Nuclear Information System (INIS)
Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog
2005-03-01
Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog
2005-03-15
Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too.
International Nuclear Information System (INIS)
Schmid, J.
1985-11-01
A package of updated computer codes for velocity and temperature field calculations for a fast reactor fuel subassembly (or its part) by the finite element method is described. Isoparametric triangular elements of the second degree are used. (author)
Energy Technology Data Exchange (ETDEWEB)
Rhee, I. H.; Cho, D.; Youn, S. H.; Kim, H. S.; Lee, S. J.; Ahn, H. K. [Soonchunhyang University, Ahsan (Korea)
2002-04-01
This research is to develop a standard methodology for determining the input parameters that impose a substantial impact on radiation doses of residential individuals in the vicinity of four nuclear power plants in Korea. We have selected critical nuclei, pathways and organs related to the human exposure via simulated estimation with K-DOSE 60 based on the updated ICRP-60 and sensitivity analyses. From the results, we found that 1) the critical nuclides were found to be {sup 3}H, {sup 133}Xe, {sup 60}Co for Kori plants and {sup 14}C, {sup 41}Ar for Wolsong plants. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs, and 2) sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 102 factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approximated to 1.0, except for food intake in Wolsong power plant (partial correlation coefficient (PCC)=0.877). Consequently, we suggest that a prediction model or scenarios for food intake reflecting the current living trend and a formal publications including details of chemical components in the critical nuclei from each plant are needed. Also, standardized domestic values of the parameters used in the calculation must replace the values of the existed or default-set imported factors via properly designed experiments and/or modelling such as transport of liquid discharge in waters nearby the plants, exposure tests on corps and plants so on. 4 figs., 576 tabs. (Author)
International Nuclear Information System (INIS)
Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.
1998-01-01
The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard
International Nuclear Information System (INIS)
Kamha, E.
1981-05-01
The aim of this study is the definition, from the NEPTUNE code system, of a neutron calculation scheme for the follow-up of pressurized water power reactors and its application to the Fessenheim-2 follow-up. First, a description of the Fessenheim reactor core and of the fission chamber which have been used for the measurements of activity in the instrumented assemblies is given, and some theoretical points on the codes and calculation methods are recalled. Then, one presents a sensitivity analysis for the choice of a calculation scheme and the calculation of an activity map of the new core without evolution. The results needed to analyze the first cycle are given. These results are obtained after the calculation of evolution using the evolutive variation-data collections, which allow to take into account feedback (Doppler effect, due to the fuel temperature variation, and effect due to the moderator temperature variation). Finally, the calculation results of the beginning of the second cycle are given [fr
CALCULATION OF LASER CUTTING COSTS
Directory of Open Access Journals (Sweden)
Bogdan Nedic
2016-09-01
Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.
Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno
2018-01-01
CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
Energy Technology Data Exchange (ETDEWEB)
Bosq, J Ch
1998-11-09
This thesis concerns the definition and the validation of the ERANOS neutronic calculation system for steel reflected fast reactors. The calculation system uses JEF2.2 evaluated nuclear data, the ECCO cell code and the BISTRO and VARIANT transport codes. After a description of the physical phenomena induced by the existence of the these sub-critical media, an inventory of the past studies related to steel reflectors is reported. A calculational scheme taking into account the important physical phenomena (strong neutronic slowing-down, presence of broad resonances of the structural materials and spatial variation of the spectrum in the reflector) is defined. This method is validated with the TRIPOLI4 reference Monte-Carlo code. The use of this upgraded calculation method for the analysis of the part of the CIRANO experimental program devoted to the study of steel reflected configurations leads to discrepancies between the calculated and measured values. These remaining discrepancies obtained for the reactivity and the fission rate traverses are due to inaccurate nuclear data for the structural materials. The adjustment of these nuclear data in order to reduce these discrepancies id demonstrated. The additional uncertainty associated to the integral parameters of interest for a nuclear reactor (reactivity and power distribution) induced by the replacement of a fertile blanket by a steel reflector is determined for the Superphenix reactor and is proved to be small. (author) 86 refs.
Directory of Open Access Journals (Sweden)
Clamens Olivier
2018-01-01
Full Text Available CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
Invert Effective Thermal Conductivity Calculation
International Nuclear Information System (INIS)
M.J. Anderson; H.M. Wade; T.L. Mitchell
2000-01-01
The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
DEFF Research Database (Denmark)
Sørensen, Steen; Momsen, Günther; Sundberg, Karin
2011-01-01
Reliable individual risk calculation for trisomy (T) 13, 18, and 21 in first-trimester screening depends on good estimates of the medians for fetal nuchal translucency thickness (NT), free β-subunit of human chorionic gonadotropin (hCGβ), and pregnancy-associated plasma protein-A (PAPP-A) in mate......Reliable individual risk calculation for trisomy (T) 13, 18, and 21 in first-trimester screening depends on good estimates of the medians for fetal nuchal translucency thickness (NT), free β-subunit of human chorionic gonadotropin (hCGβ), and pregnancy-associated plasma protein-A (PAPP...
International Nuclear Information System (INIS)
Krakowiak, C.
1989-11-01
A simplified model for the elastic-plastic calculations of thin and flexible tubes submitted to thermal stresses is presented. The method is based on beam models and provides satisfactory results concerning the displacement of the whole tube system. These results can be justified by the fact that the modifications of the tube cross sections (from circular to elliptical), the flexibility of the elbow joints and the radial temperature profile are included in the calculations. The thermoplasticity analysis is performed by defining independent and general flow directions and determining the corresponding behavior laws. The model is limited to proportional monotonous charging, however the obtained results are promissing [fr
Alaska Village Electric Load Calculator
Energy Technology Data Exchange (ETDEWEB)
Devine, M.; Baring-Gould, E. I.
2004-10-01
As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.
Energy Technology Data Exchange (ETDEWEB)
Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L., E-mail: deise_dy@hotmail.com, E-mail: diogosb@outlook.com, E-mail: raoniwa@yahoo.com.br, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2014-07-01
This paper is prepared in order to address calculations of shielding to minimize the interaction of patients with ionizing radiation and / or personnel. The work includes the use of protection report Radiation in Dental Medicine (NCRP-145 or Radiation Protection in Dentistry), which establishes calculations and standards to be adopted to ensure safety to those who may be exposed to ionizing radiation in dental facilities, according to the dose limits established by CNEN-NN-3.1 standard published in September / 2011. The methodology comprises the use of computer language for processing data provided by that report, and a commercial application used for creating residential projects and decoration. The FORTRAN language was adopted as a method for application to a real case. The result is a programming capable of returning data related to the thickness of material, such as steel, lead, wood, glass, plaster, acrylic, acrylic and leaded glass, which can be used for effective shielding against single or continuous pulse beams. Several variables are used to calculate the thickness of the shield, as: number of films used in the week, film load, use factor, occupational factor, distance between the wall and the source, transmission factor, workload, area definition, beam intensity, intraoral and panoramic exam. Before the application of the methodology is made a validation of results with examples provided by NCRP-145. The calculations redone from the examples provide answers consistent with the report.
Shielding calculations for NET
International Nuclear Information System (INIS)
Verschuur, K.A.; Hogenbirk, A.
1991-05-01
In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab
Calculated NWIS signatures for enriched uranium metal
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.; Koehler, P.E.
1995-01-01
Nuclear Weapons Identification System (NWIS) signatures have been calculated using a Monte Carlo transport code for measurement configurations of a 252 Cf source, detectors, and a uranium metal casting. NWIS signatures consist of a wide variety of time-and frequency-analysis signatures such as the time distribution of neutrons after californium fission, the time distribution of counts in a detector after a previous count, the number of times n pulses occur in a time interval, and various frequency-analysis signatures, such as auto-power and cross-power spectral densities, coherences, and a ratio of spectral densities. This ratio is independent of detection efficiency. The analysis presented here, using the MCNP-DSP code, evaluates the applicability of this method for measurement of the 235 U content of 19-kg castings of depleted uranium and uranium with enrichments of 20, 40, 60, 80, 90, and 93.2 wt % 235 U. The dependence of the wide variety of NWIS signatures on 235 U content and possible configurations of a measurement system are presented. These preliminary calculations indicate short measurement times. Additional calculations are being performed to optimize the source-detector-moderator-casting configuration for the shortest measurement time. Although the NWIS method was developed for nuclear weapons identification, the development of a small processor now allows it to be also applied in a practical way to subcriticality measurements, nuclear fuel process monitoring and qualitative nondestructive assay of special nuclear material
Energy Technology Data Exchange (ETDEWEB)
Shad, A. Haghighi; Allaf, M. Athari [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering; Masti, D. [Azad Univ., Boushehr (Iran, Islamic Republic of). Research and Developement in BNPP-1; Sepanloo, K. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Feghhi, S.A.H. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering; Khodadadi, R. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch
2018-02-15
A domestic user friendly dynamic radiological dose and model has been developed to estimate radiation doses and stochastic risks due to atmospheric and liquid discharges of radionuclides in the case of a nuclear reactor accident and normal operation. In addition to individual doses from different pathways for different age groups, collective doses and stochastic risks can be calculated by the developed domestic user friendly KIANA Advance Computational Computer Code and model. The current Code can be coupled to any long-range atmospheric dispersion/short term model which can calculate radionuclide concentrations in air and on the ground and in the water surfaces predetermined time intervals or measurement data.
International Nuclear Information System (INIS)
Shad, A. Haghighi; Allaf, M. Athari; Masti, D.; Sepanloo, K.; Feghhi, S.A.H.; Khodadadi, R.
2018-01-01
A domestic user friendly dynamic radiological dose and model has been developed to estimate radiation doses and stochastic risks due to atmospheric and liquid discharges of radionuclides in the case of a nuclear reactor accident and normal operation. In addition to individual doses from different pathways for different age groups, collective doses and stochastic risks can be calculated by the developed domestic user friendly KIANA Advance Computational Computer Code and model. The current Code can be coupled to any long-range atmospheric dispersion/short term model which can calculate radionuclide concentrations in air and on the ground and in the water surfaces predetermined time intervals or measurement data.
International Nuclear Information System (INIS)
Carossi, Jean-Claude
1969-02-01
A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented
One-loop calculations in QED in axial gauge
International Nuclear Information System (INIS)
Boos, E.E.; Kurannoy, S.S.
1983-01-01
The present paper pursued the aim to test at the simple example of the calculation of the anomalous magnetic moment in quantum electrodynamics the methods of calculating one-loop integrals in the axial gauge, using the dimensional regularization, and to investigate the independence of the results on the choice of the recipe of how to treat the poles in the denominators (k eta) -1 . It is shown that the techniques developed in another paper, as well as in the present paper, can be successfully applied in such calculations, in spite of the peculiarities of the axial gauge that have been discussed previously. The results of the two different ways of treating singularities (k eta) -1 (the principal value and 't Hooft's prescription) turn out to be equal. At the same time it was verified that the Green functions obtained by these calculations near the mass shell in the one-loop approximation satisfy the ward identity
Energy Technology Data Exchange (ETDEWEB)
Luebbe, D.
1987-07-01
The innovative US calculation method for natural gas real gas factors is applicable to great pressure and temperature ranges and does not involve any restrictions as to the quality of natural gas. The results obtained for natural gas coming from Northern Germany or for imported natural gas are well consistent with actual measuring results. The model can therefore be applied as a rule for computing in a new technical recommendation and determine real gas factors whenever they are relevant to trading. The respective calculations must be preceded by a complete analysis characterizing the quality of gases. However, the new method allows for the alternative calculation of real gas factors on the basis of a small number of easily measurable factors (for example H/sub 0/, d, CO/sub 2/). This quality seams to be all the more attractive as it allows for an automatic translation of parametric sets at changing gas qualities which for the first time can manage without an expensive online gas chromatography or density translators, respectively.
Accurate quantum chemical calculations
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Shielding calculational system for plutonium
International Nuclear Information System (INIS)
Zimmerman, M.G.; Thomsen, D.H.
1975-08-01
A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)
CALCULATIONS OF DOUBLE IMPURITY DIFFUSION IN INTEGRATED CIRCUIT PRODUCTION
Directory of Open Access Journals (Sweden)
V. A. Bondarev
2005-01-01
Full Text Available Analytical formulae for calculating simultaneous diffusion of two impurities in silicon are presented. The formulae are based on analytical solutions of diffusion equations that have been obtained for the first time by the author while using some special mathematical functions. In contrast to usual formal mathematical approaches, new functions are determined in the process of investigation of real physical models. Algorithms involve some important relations from thermodynamics of irreversible processes and also variational thermodynamic functionals that were previously obtained by the author for transfer processes. Calculations considerably reduce the time required for development of new integrated circuits.
Calculation of magnetic hyperfine constants
International Nuclear Information System (INIS)
Bufaical, R.F.; Maffeo, B.; Brandi, H.S.
1975-01-01
The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used
Energy Technology Data Exchange (ETDEWEB)
Esteve Sanchez, S.; Martinez Albaladejo, M.; Garcia Fuentes, J. D.; Bejar Navarro, M. J.; Capuz Suarez, B.; Moris de Pablos, R.; Colmenares Fernandez, R.
2015-07-01
We assessed the reliability of the program with 80 patients in the usual points of prescription of each pathology. The average error of the calculation points is less than 0.3% in 95% of cases, finding the major differences in the axes of the applicators (maximum error -0.798%). The program has proved effective previously testing him with erroneous dosimetry. Thanks to the implementation of this program is achieved by the calculation of the dose and part of the process of quality assurance program in a few minutes, highlighting the case of HDR prostate due to having a limited time. Having separate data sheet allows each institution to its protocols modify parameters. (Author)
Calculation of relativistic model stars using Regge calculus
International Nuclear Information System (INIS)
Porter, J.
1987-01-01
A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)
Repeat immigration: A previously unobserved source of heterogeneity?
Aradhya, Siddartha; Scott, Kirk; Smith, Christopher D
2017-07-01
Register data allow for nuanced analyses of heterogeneities between sub-groups which are not observable in other data sources. One heterogeneity for which register data is particularly useful is in identifying unique migration histories of immigrant populations, a group of interest across disciplines. Years since migration is a commonly used measure of integration in studies seeking to understand the outcomes of immigrants. This study constructs detailed migration histories to test whether misclassified migrations may mask important heterogeneities. In doing so, we identify a previously understudied group of migrants called repeat immigrants, and show that they differ systematically from permanent immigrants. In addition, we quantify the degree to which migration information is misreported in the registers. The analysis is carried out in two steps. First, we estimate income trajectories for repeat immigrants and permanent immigrants to understand the degree to which they differ. Second, we test data validity by cross-referencing migration information with changes in income to determine whether there are inconsistencies indicating misreporting. From the first part of the analysis, the results indicate that repeat immigrants systematically differ from permanent immigrants in terms of income trajectories. Furthermore, income trajectories differ based on the way in which years since migration is calculated. The second part of the analysis suggests that misreported migration events, while present, are negligible. Repeat immigrants differ in terms of income trajectories, and may differ in terms of other outcomes as well. Furthermore, this study underlines that Swedish registers provide a reliable data source to analyze groups which are unidentifiable in other data sources.
Energy Technology Data Exchange (ETDEWEB)
Bruessermann, K; Eschhaus, M; Kreymborg, A; Muenster, M; Schommer, N
1980-01-01
Three FORTRAN-IV program systems have been developed and applied for calculating the radiation exposure due to the release of radioactive products through exhaust air and waste water. The documentation contains the materials from the regional data base, from the methods data base, as well as ecological background data.
International Nuclear Information System (INIS)
Kovscek, S.E.; Martin, S.E.
1982-10-01
ROBOT3 is a FORTRAN computer program which is used in conjunction with the CYGRO5 computer program to calculate the time-dependent inelastic bowing of a fuel rod using an incremental finite element method. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the CYGRO5 axisymmetric model. Fuel rod supports are modeled as displacement, force, or spring-type nodal boundary conditions. The program input is described and a sample problem is given
High-Grade Leiomyosarcoma Arising in a Previously Replanted Limb
Directory of Open Access Journals (Sweden)
Tiffany J. Pan
2015-01-01
Full Text Available Sarcoma development has been associated with genetics, irradiation, viral infections, and immunodeficiency. Reports of sarcomas arising in the setting of prior trauma, as in burn scars or fracture sites, are rare. We report a case of a leiomyosarcoma arising in an arm that had previously been replanted at the level of the elbow joint following traumatic amputation when the patient was eight years old. He presented twenty-four years later with a 10.8 cm mass in the replanted arm located on the volar forearm. The tumor was completely resected and pathology examination showed a high-grade, subfascial spindle cell sarcoma diagnosed as a grade 3 leiomyosarcoma with stage pT2bNxMx. The patient underwent treatment with brachytherapy, reconstruction with a free flap, and subsequently chemotherapy. To the best of our knowledge, this is the first case report of leiomyosarcoma developing in a replanted extremity. Development of leiomyosarcoma in this case could be related to revascularization, scar formation, or chronic injury after replantation. The patient remains healthy without signs of recurrence at three-year follow-up.
Pressure algorithm for elliptic flow calculations with the PDF method
Anand, M. S.; Pope, S. B.; Mongia, H. C.
1991-01-01
An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.
Impact of previously disadvantaged land-users on sustainable ...
African Journals Online (AJOL)
Impact of previously disadvantaged land-users on sustainable agricultural ... about previously disadvantaged land users involved in communal farming systems ... of input, capital, marketing, information and land use planning, with effect on ...
Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.
El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H
2008-09-01
Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.
International Nuclear Information System (INIS)
Dong Cunku; Li Xin; Guo Zechong; Qi Jingyao
2009-01-01
A new rational approach for the preparation of molecularly imprinted polymer (MIP) based on the combination of molecular dynamics (MD) simulations and quantum mechanics (QM) calculations is described in this work. Before performing molecular modeling, a virtual library of functional monomers was created containing forty frequently used monomers. The MD simulations were first conducted to screen the top three monomers from virtual library in each porogen-acetonitrile, chloroform and carbon tetrachloride. QM simulations were then performed with an aim to select the optimum monomer and progen solvent in which the QM simulations were carried out; the monomers giving the highest binding energies were chosen as the candidate to prepare MIP in its corresponding solvent. The acetochlor, a widely used herbicide, was chosen as the target analyte. According to the theoretical calculation results, the MIP with acetochlor as template was prepared by emulsion polymerization method using N,N-methylene bisacrylamide (MBAAM) as functional monomer and divinylbenzene (DVB) as cross-linker in chloroform. The synthesized MIP was then tested by equilibrium-adsorption method, and the MIP demonstrated high removal efficiency to the acetochlor. Mulliken charge distribution and 1 H NMR spectroscopy of the synthesized MIP provided insight on the nature of recognition during the imprinting process probing the governing interactions for selective binding site formation at a molecular level. We think the computer simulation method first proposed in this paper is a novel and reliable method for the design and synthesis of MIP.
22 CFR 40.91 - Certain aliens previously removed.
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certain aliens previously removed. 40.91... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Aliens Previously Removed § 40.91 Certain aliens previously removed. (a) 5-year bar. An alien who has been found inadmissible, whether as a result...
Energy Technology Data Exchange (ETDEWEB)
Bertole, Hector; Aguero, Carlos A.; Prado, Pedro O.; Suarez, Juan A. [Universidad Nacional de Mar del Plata, Buenos Aires (Argentina). Facultad de Ingenieria
1997-12-31
This development is a group of tools of calculations and analysis thought to be used in the technical area of an electric power company. It allows the realization of calculations of voltage drop in the networks of half tension and the determination of the break points. It is possible to analyze the readiness of power in the distribution centers and the state of load of the conductors. (author) 8 refs., 7 figs.; e-mail: hbertole at fi.mdp.edu.ar; poprado at fi.mdp.edu.ar
Closure and Sealing Design Calculation
International Nuclear Information System (INIS)
T. Lahnalampi; J. Case
2005-01-01
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not
Determining root correspondence between previously and newly detected objects
Paglieroni, David W.; Beer, N Reginald
2014-06-17
A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.
Weir-McCall, Jonathan R; Brown, Liam; Summersgill, Jennifer; Talarczyk, Piotr; Bonnici-Mallia, Michael; Chin, Sook C; Khan, Faisel; Struthers, Allan D; Sullivan, Frank; Colhoun, Helen M; Shore, Angela C; Aizawa, Kunihiko; Groop, Leif; Nilsson, Jan; Cockcroft, John R; McEniery, Carmel M; Wilkinson, Ian B; Ben-Shlomo, Yoav; Houston, J Graeme
2018-05-01
Current distance measurement techniques for pulse wave velocity (PWV) calculation are susceptible to intercenter variability. The aim of this study was to derive and validate a formula for this distance measurement. Based on carotid femoral distance in 1183 whole-body magnetic resonance angiograms, a formula was derived for calculating distance. This was compared with distance measurements in 128 whole-body magnetic resonance angiograms from a second study. The effects of recalculation of PWV using the new formula on association with risk factors, disease discrimination, and prediction of major adverse cardiovascular events were examined within 1242 participants from the multicenter SUMMIT study (Surrogate Markers of Micro- and Macrovascular Hard End-Points for Innovative Diabetes Tools) and 825 participants from the Caerphilly Prospective Study. The distance formula yielded a mean error of 7.8 mm (limits of agreement =-41.1 to 56.7 mm; P measurement, the distance formula did not change associations between PWV and age, blood pressure, or creatinine ( P accounting for differences in age, sex, and mean arterial pressure, intercenter differences in PWV persisted using the external distance measurement ( F =4.6; P =0.004), whereas there was a loss of between center difference using the distance formula ( F =1.4; P =0.24). PWV odds ratios for cardiovascular mortality remained the same using both the external distance measurement (1.14; 95% confidence interval, 1.06-1.24; P =0.001) and the distance formula (1.17; 95% confidence interval, 1.08-1.28; P measurement variability without impacting the diagnostic utility of carotid-femoral PWV. © 2018 The Authors.
Kuppusamy, Vijayalakshmi; Nagarajan, Vivekanandan; Jeevanandam, Prakash; Murugan, Lavanya
2016-02-01
The study was aimed to compare two different monitor unit (MU) or dose verification software in volumetric modulated arc therapy (VMAT) using modified Clarkson's integration technique for 6 MV photons beams. In-house Excel Spreadsheet based monitor unit verification calculation (MUVC) program and PTW's DIAMOND secondary check software (SCS), version-6 were used as a secondary check to verify the monitor unit (MU) or dose calculated by treatment planning system (TPS). In this study 180 patients were grouped into 61 head and neck, 39 thorax and 80 pelvic sites. Verification plans are created using PTW OCTAVIUS-4D phantom and also measured using 729 detector chamber and array with isocentre as the suitable point of measurement for each field. In the analysis of 154 clinically approved VMAT plans with isocentre at a region above -350 HU, using heterogeneity corrections, In-house Spreadsheet based MUVC program and Diamond SCS showed good agreement TPS. The overall percentage average deviations for all sites were (-0.93% + 1.59%) and (1.37% + 2.72%) for In-house Excel Spreadsheet based MUVC program and Diamond SCS respectively. For 26 clinically approved VMAT plans with isocentre at a region below -350 HU showed higher variations for both In-house Spreadsheet based MUVC program and Diamond SCS. It can be concluded that for patient specific quality assurance (QA), the In-house Excel Spreadsheet based MUVC program and Diamond SCS can be used as a simple and fast accompanying to measurement based verification for plans with isocentre at a region above -350 HU. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Calculation of ex-core detector responses
Energy Technology Data Exchange (ETDEWEB)
Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)
2005-07-01
The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)
Relative Hazard Calculation Methodology
International Nuclear Information System (INIS)
DL Strenge; MK White; RD Stenner; WB Andrews
1999-01-01
The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)
International Nuclear Information System (INIS)
Slopsema, R. L.; Flampouri, S.; Yeung, D.; Li, Z.; Lin, L.; McDonough, J. E.; Palta, J.
2014-01-01
Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of
Energy Technology Data Exchange (ETDEWEB)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.; Li, Z. [University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205 (United States); Lin, L.; McDonough, J. E. [Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Boulevard, 2326W TRC, PCAM, Philadelphia, Pennsylvania 19104 (United States); Palta, J. [VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298 (United States)
2014-09-15
Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Takaku, Yoshikazu; Ohnuma, Ikuo; Kainuma, Ryosuke; Yamada, Yasushi; Yagi, Yuji; Nishibe, Yuji; Ishida, Kiyohito
2006-11-01
Bismuth and its alloys are candidates for Pb-free high-temperature solders that can be substituted for conventional Pb-rich Pb-Sn solders (melting point (mp) = 573 583 K). However, inferior properties such as brittleness and weak bonding strength should be improved for practical use. To that end, BiCu-X (X=Sb, Sn, and Zn) Pb-free high-temperature solders are proposed. Miscibility gaps in liquid BiCu-X alloys were surveyed using the thermodynamic database ADAMIS (alloy database for micro-solders), and compositions of the BiCu-X solders were designed on the basis of calculation. In-situ composite solders that consist of a Bi-base matrix with fine intermetallic compound (IMC) particles were produced by gas-atomizing and melt-spinning methods. The interfacial reaction between in-situ composite solders and Cu or Ni substrates was investigated. The IMCs at the interface formed a thin, uniform layer, which is an appropriate morphology for a reliable solder joint.
Calculation of resonance integral for fuel cluster
International Nuclear Information System (INIS)
Remsak, S.
1969-01-01
The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO 2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV [sr
Calculation of superalloy phase diagrams. IV
International Nuclear Information System (INIS)
Kaufman, L.; Nesor, H.
1975-01-01
Explicit descriptions of the Fe--Mo, Fe--W, Fe--Nb, W--Cr and Ti--W binary systems have been developed in line with lattice stability, thermochemical and phase diagram data. These descriptions, along with similar results derived previously, have been employed to calculate isothermal sections in the Cr--Al--Fe, Fe--Mo--Cr, Fe--W--Cr, Ni--Al--Co, Nb--Ti--W, Ti--W--Mo, Cr--W--Mo, Ni--Mo--W, and Ni--W--Ti systems for comparison with experimental results. The effects of carbon impurities on miscibility gap formation in the Ti--W, Nb--Ti--W, Ti--W--Mo and Cr--W--Mo systems are discussed
A Paleolatitude Calculator for Paleoclimate Studies.
Directory of Open Access Journals (Sweden)
Douwe J J van Hinsbergen
Full Text Available Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1 restore the relative motions between plates based on (marine magnetic anomalies, and (2 reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km. This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Radar Signature Calculation Facility
Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...
Energy Technology Data Exchange (ETDEWEB)
Blanchet, D
2006-07-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*{sigma}) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO{sub 2}). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
Energy Technology Data Exchange (ETDEWEB)
Blanchet, D
2006-07-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*{sigma}) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO{sub 2}). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
Burnup calculations using Monte Carlo method
International Nuclear Information System (INIS)
Ghosh, Biplab; Degweker, S.B.
2009-01-01
In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code
Directory of Open Access Journals (Sweden)
A. N. Ostrikov
2015-01-01
Full Text Available Consumer properties of food raw material formed during the heat treatment. New physical, flavoring and aromatic properties of the products of plant origin, formed during drying due to substantial changes in the composition of the raw materia l occurring as a result of biochemical reactions. In the production of dried and roasted products is very important to follow the parameters that contribute to the passage of biochemical processes aimed at creating a product with high nutritional qualities, strong aroma and pleasant taste. We studied the basic kinetics of the drying process of food raw material (in terms of artichoke in a dense interspersed layer, which formed the basis for the rational choice of the drying regime with due consideration of changes in the moisture content of the product are studied. The nature of the effect of the dried product movement hydrodynamic conditions on a layer height and intensity of drying is established. As a result of food raw material drying process kinetics analysis (in terms of artichoke multistep drying regimes were chosen. Analysis of the artichoke particles drying by air, air-steam mixture and superheated steam intensity showed the presence of two parts: the horizontal one and gradually diminishing one. Kinetic laws of the artichoke drying process in a dense interspersed layer were the basis of engineering calculation of dryer with a transporting body in the form of a "traveling wave". Application of the dryer with the transporting body in the form of a "traveling wave" for food raw material drying allow to achieve uniform drying of the product due to the use of soft, gentle regimes of oversleeping while preserving to the utmost particles of the product; to improve the quality of the finished product through the use of interspersed layer that reduces clumping of product to be dried.
Energy Technology Data Exchange (ETDEWEB)
Amouyal, A; Bacher, P; Lago, B; Mengin, F L; Parker, E [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1960-07-01
The calculation method presented in this report has been developed for the Mercury-Ferranti computer of the C.E.N.S. This calculation method allows to resolve the diffusion equations and continuity equations of flux and flow with two groups of neutrons and one dimension in spherical, cylindrical and linear geometry. In the cylindrical and linear configurations, we can take the height and extrapolated radius into account. The critical condition can be realised by varying linearly one or more parameters: k{sub {infinity}}, medium frontier, height or extrapolated radius. The calculation method enables also to calculate the flux, adjoint flux and various integrals. In the first part, it explains what is needed to know before using the method: data presentation, method possibilities, results presentation with some information about restrictions, accuracy and calculation time. The complete formulation of the calculation method is given in the second part. (M.P.)
Coronary collateral vessels in patients with previous myocardial infarction
International Nuclear Information System (INIS)
Nakatsuka, M.; Matsuda, Y.; Ozaki, M.
1987-01-01
To assess the degree of collateral vessels after myocardial infarction, coronary angiograms, left ventriculograms, and exercise thallium-201 myocardial scintigrams of 36 patients with previous myocardial infarction were reviewed. All 36 patients had total occlusion of infarct-related coronary artery and no more than 70% stenosis in other coronary arteries. In 19 of 36 patients with transient reduction of thallium-201 uptake in the infarcted area during exercise (Group A), good collaterals were observed in 10 patients, intermediate collaterals in 7 patients, and poor collaterals in 2 patients. In 17 of 36 patients without transient reduction of thallium-201 uptake in the infarcted area during exercise (Group B), good collaterals were seen in 2 patients, intermediate collaterals in 7 patients, and poor collaterals in 8 patients (p less than 0.025). Left ventricular contractions in the infarcted area were normal or hypokinetic in 10 patients and akinetic or dyskinetic in 9 patients in Group A. In Group B, 1 patient had hypokinetic contraction and 16 patients had akinetic or dyskinetic contraction (p less than 0.005). Thus, patients with transient reduction of thallium-201 uptake in the infarcted area during exercise had well developed collaterals and preserved left ventricular contraction, compared to those in patients without transient reduction of thallium-201 uptake in the infarcted area during exercise. These results suggest that the presence of viable myocardium in the infarcted area might be related to the degree of collateral vessels
49 CFR 173.23 - Previously authorized packaging.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Previously authorized packaging. 173.23 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.23 Previously authorized packaging. (a) When the regulations specify a packaging with a specification marking...
28 CFR 10.5 - Incorporation of papers previously filed.
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Incorporation of papers previously filed... CARRYING ON ACTIVITIES WITHIN THE UNITED STATES Registration Statement § 10.5 Incorporation of papers previously filed. Papers and documents already filed with the Attorney General pursuant to the said act and...
75 FR 76056 - FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT:
2010-12-07
... SECURITIES AND EXCHANGE COMMISSION Sunshine Act Meeting FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: STATUS: Closed meeting. PLACE: 100 F Street, NE., Washington, DC. DATE AND TIME OF PREVIOUSLY ANNOUNCED MEETING: Thursday, December 9, 2010 at 2 p.m. CHANGE IN THE MEETING: Time change. The closed...
Faerber, Adrienne E; Horvath, Rebecca; Stillman, Carey; O?Connell, Melissa L; Hamilton, Amy L; Newhall, Karina A; Likosky, Donald S; Goodney, Philip P
2015-01-01
Background Patients with no history of stroke but with stenosis of the carotid arteries can reduce the risk of future stroke with surgery or stenting. At present, a physicians? ability to recommend optimal treatments based on an individual?s risk profile requires estimating the likelihood that a patient will have a poor peri-operative outcomes and the likelihood that the patient will survive long enough to gain benefit from the procedure. We describe the development of the CArotid Risk Assess...
No discrimination against previous mates in a sexually cannibalistic spider
Fromhage, Lutz; Schneider, Jutta M.
2005-09-01
In several animal species, females discriminate against previous mates in subsequent mating decisions, increasing the potential for multiple paternity. In spiders, female choice may take the form of selective sexual cannibalism, which has been shown to bias paternity in favor of particular males. If cannibalistic attacks function to restrict a male's paternity, females may have little interest to remate with males having survived such an attack. We therefore studied the possibility of female discrimination against previous mates in sexually cannibalistic Argiope bruennichi, where females almost always attack their mate at the onset of copulation. We compared mating latency and copulation duration of males having experienced a previous copulation either with the same or with a different female, but found no evidence for discrimination against previous mates. However, males copulated significantly shorter when inserting into a used, compared to a previously unused, genital pore of the female.
Implant breast reconstruction after salvage mastectomy in previously irradiated patients.
Persichetti, Paolo; Cagli, Barbara; Simone, Pierfranco; Cogliandro, Annalisa; Fortunato, Lucio; Altomare, Vittorio; Trodella, Lucio
2009-04-01
The most common surgical approach in case of local tumor recurrence after quadrantectomy and radiotherapy is salvage mastectomy. Breast reconstruction is the subsequent phase of the treatment and the plastic surgeon has to operate on previously irradiated and manipulated tissues. The medical literature highlights that breast reconstruction with tissue expanders is not a pursuable option, considering previous radiotherapy a contraindication. The purpose of this retrospective study is to evaluate the influence of previous radiotherapy on 2-stage breast reconstruction (tissue expander/implant). Only patients with analogous timing of radiation therapy and the same demolitive and reconstructive procedures were recruited. The results of this study prove that, after salvage mastectomy in previously irradiated patients, implant reconstruction is still possible. Further comparative studies are, of course, advisable to draw any conclusion on the possibility to perform implant reconstruction in previously irradiated patients.
International Nuclear Information System (INIS)
Trkov, A.; Ravnik, M.; Zeleznik, N.
1992-01-01
Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl
Uneconomical top calculation method
International Nuclear Information System (INIS)
De Noord, M.; Vanm Sambeek, E.J.W.
2003-08-01
The methodology used to calculate the financial gap of renewable electricity sources and technologies is described. This methodology is used for calculating the production subsidy levels (MEP subsidies) for new renewable electricity projects in 2004 and 2005 in the Netherlands [nl
Mordred: a molecular descriptor calculator.
Moriwaki, Hirotomo; Tian, Yu-Shi; Kawashita, Norihito; Takagi, Tatsuya
2018-02-06
Molecular descriptors are widely employed to present molecular characteristics in cheminformatics. Various molecular-descriptor-calculation software programs have been developed. However, users of those programs must contend with several issues, including software bugs, insufficient update frequencies, and software licensing constraints. To address these issues, we propose Mordred, a developed descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors. It is freely available via GitHub. Mordred can be easily installed and used in the command line interface, as a web application, or as a high-flexibility Python package on all major platforms (Windows, Linux, and macOS). Performance benchmark results show that Mordred is at least twice as fast as the well-known PaDEL-Descriptor and it can calculate descriptors for large molecules, which cannot be accomplished by other software. Owing to its good performance, convenience, number of descriptors, and a lax licensing constraint, Mordred is a promising choice of molecular descriptor calculation software that can be utilized for cheminformatics studies, such as those on quantitative structure-property relationships.
Energy Technology Data Exchange (ETDEWEB)
Oei, Pao-Yu; Sander, Aram; Hankel, Lisa; Laurisch, Lilian; Lorenz, Casimir [Technische Univ. Berlin (Germany); Schroeder, Andreas [Deutsches Institut fuer Wirtschaftsforschung, Berlin (Germany)
2012-09-15
The grid development plan presented in June 2012 by the German Federal Network Agency envisages a large number of new AC and DC transmission lines for Germany. The purpose of these transmission lines is to facilitate the point-to-point transport of electricity produced from renewable resources to load centres. The authors present a model-assisted analysis of the impact of these transmission lines on the structure of electricity production. They also investigate to what extent an increase in storage capacity and the steering of demand can serve as alternatives to grid expansion.
Transfer Area Mechanical Handling Calculation
International Nuclear Information System (INIS)
Dianda, B.
2004-01-01
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their
Annular tautomerism: experimental observations and quantum mechanics calculations
Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.
2010-06-01
The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.
Nuclear calculation methods for light water moderated reactors
International Nuclear Information System (INIS)
Hicks, D.
1961-02-01
This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)
Dose calculation for electrons
International Nuclear Information System (INIS)
Hirayama, Hideo
1995-01-01
The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)
Automatic calculations of electroweak processes
International Nuclear Information System (INIS)
Ishikawa, T.; Kawabata, S.; Kurihara, Y.; Shimizu, Y.; Kaneko, T.; Kato, K.; Tanaka, H.
1996-01-01
GRACE system is an excellent tool for calculating the cross section and for generating event of the elementary process automatically. However it is not always easy for beginners to use. An interactive version of GRACE is being developed so as to be a user friendly system. Since it works exactly in the same environment as PAW, all functions of PAW are available for handling any histogram information produced by GRACE. As its application the cross sections of all elementary processes with up to 5-body final states induced by e + e - interaction are going to be calculated and to be summarized as a catalogue. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, M.
1997-07-01
The treatment for some thyroid carcinomas involves surgically removing the thyroid gland and administering the radiopharmaceutical Sodium iodide-{sup 131}I (NaI). A diagnostic dose of NaI is given to the patient to determine if remnant tissue from the gland remains or larger doses are administered in order to treat the malignant tissue. Past research regarding NaI uptake and retention in euthyroid individuals (normal functioning thyroid) reveal that radioiodine concentrates mainly in the thyroid tissue and the remaining material is excreted from the body. The majority of radioiodine in athyroid (without thyroid) individuals is also eliminated from the body; however, there has been recent evidence of a long-term retention phase for individuals with no radioiodine concentrating tissue. The general purpose of this study was to develop a kinetic model and estimate the absorbed dose to athyroid individuals regarding the distribution and retention of NaI.
International Nuclear Information System (INIS)
Jahnen, T.
1990-01-01
The SAPHIR-detector is built up at the continuous photon beam of the Electron Stretcher and Accelerator ELSA in Bonn. The equipment is designed for investigations of reactions with more then two particles in the final state and for photon energies up to 3.5 GeV. A tagging-system determines the energy of the Bremsstrahlung-photons and a set-up of five large driftchambers measures the tracks of the charged particles. This work describes a program which was used to develop the best design of the tagging-hodoscope. In a second part the tests of the planar side-chambers and their evaluation is described. These measurements were carried out to fix the gasfilling and the parameters of the best working point. It is shown, that the chambers can reach a resolution of σ≤200 μm. (orig.) [de
Cho, M; Lee, D-H; Doh, E J; Kim, Y; Chung, J H; Kim, H C; Kim, S
2017-08-01
Erythema is the most common presenting sign in patients with skin diseases, and various methods to treat erythema symptoms have become common. To evaluate changes in erythema, a reliable device that can support objective diagnosis is required. We developed a novel photography-based system for erythema diagnosis that provides a high-resolution three-view photograph taken in a consistent photography environment with a curved surface light source and can be integrated with optimized image processing algorithms. A new diagnostic algorithm was applied to photographs from 32 patients to determine areas of erythema automatically. To assess the performance in comparison to dermatologists' evaluations, five dermatologists independently evaluate the areas of erythema, and we defined an area called the clinical consensus area of erythema (CCAE), which is based on the majority opinion of dermatologists during evaluation. The CCAE values obtained were compared with the erythema areas determined by the system's diagnostic algorithm. Forty-one photographs with areas of erythema were evaluated by the proposed system and by dermatologists. The results obtained with the proposed system had a mean accuracy of 93.18% with a standard deviation of 3.52% when compared with the CCAE results. The results also showed that the proposed system could detect erythema areas without any pigmentation. In contrast to assessments by individual dermatologists, use of the CCAE reduced the amount of error that occurred owing to bias or subjectivity. A new erythema evaluation system was developed and validated through CCAE, suggesting that the system can support dermatologists' objective diagnoses of erythema. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Radioactive cloud dose calculations
International Nuclear Information System (INIS)
Healy, J.W.
1984-01-01
Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available
Payload specialist Reinhard Furrer show evidence of previous blood sampling
1985-01-01
Payload specialist Reinhard Furrer shows evidence of previous blood sampling while Wubbo J. Ockels, Dutch payload specialist (only partially visible), extends his right arm after a sample has been taken. Both men show bruises on their arms.
Choice of contraception after previous operative delivery at a family ...
African Journals Online (AJOL)
Choice of contraception after previous operative delivery at a family planning clinic in Northern Nigeria. Amina Mohammed‑Durosinlorun, Joel Adze, Stephen Bature, Caleb Mohammed, Matthew Taingson, Amina Abubakar, Austin Ojabo, Lydia Airede ...
Previous utilization of service does not improve timely booking in ...
African Journals Online (AJOL)
Previous utilization of service does not improve timely booking in antenatal care: Cross sectional study ... Journal Home > Vol 24, No 3 (2010) > ... Results: Past experience on antenatal care service utilization did not come out as a predictor for ...
Grant, Stuart W; Sperrin, Matthew; Carlson, Eric; Chinai, Natasha; Ntais, Dionysios; Hamilton, Matthew; Dunn, Graham; Buchan, Iain; Davies, Linda; McCollum, Charles N
2015-04-01
Abdominal aortic aneurysm (AAA) repair aims to prevent premature death from AAA rupture. Elective repair is currently recommended when AAA diameter reaches 5.5 cm (men) and 5.0 cm (women). Applying population-based indications may not be appropriate for individual patient decisions, as the optimal indication is likely to differ between patients based on age and comorbidities. To develop an Aneurysm Repair Decision Aid (ARDA) to indicate when elective AAA repair optimises survival for individual patients and to assess the cost-effectiveness and associated uncertainty of elective repair at the aneurysm diameter recommended by the ARDA compared with current practice. The UK Vascular Governance North West and National Vascular Database provided individual patient data to develop predictive models for perioperative mortality and survival. Data from published literature were used to model AAA growth and risk of rupture. The cost-effectiveness analysis used data from published literature and from local and national databases. A combination of systematic review methods and clinical registries were used to provide data to populate models and inform the structure of the ARDA. Discrete event simulation (DES) was used to model the patient journey from diagnosis to death and synthesised data were used to estimate patient outcomes and costs for elective repair at alternative aneurysm diameters. Eight patient clinical scenarios (vignettes) were used as exemplars. The DES structure was validated by clinical and statistical experts. The economic evaluation estimated costs, quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICERs) from the NHS, social care provider and patient perspective over a lifetime horizon. Cost-effectiveness acceptability analyses and probabilistic sensitivity analyses explored uncertainty in the data and the value for money of ARDA-based decisions. The ARDA outcome measures include perioperative mortality risk, annual risk of
A previous hamstring injury affects kicking mechanics in soccer players.
Navandar, Archit; Veiga, Santiago; Torres, Gonzalo; Chorro, David; Navarro, Enrique
2018-01-10
Although the kicking skill is influenced by limb dominance and sex, how a previous hamstring injury affects kicking has not been studied in detail. Thus, the objective of this study was to evaluate the effect of sex and limb dominance on kicking in limbs with and without a previous hamstring injury. 45 professional players (males: n=19, previously injured players=4, age=21.16 ± 2.00 years; females: n=19, previously injured players=10, age=22.15 ± 4.50 years) performed 5 kicks each with their preferred and non-preferred limb at a target 7m away, which were recorded with a three-dimensional motion capture system. Kinematic and kinetic variables were extracted for the backswing, leg cocking, leg acceleration and follow through phases. A shorter backswing (20.20 ± 3.49% vs 25.64 ± 4.57%), and differences in knee flexion angle (58 ± 10o vs 72 ± 14o) and hip flexion velocity (8 ± 0rad/s vs 10 ± 2rad/s) were observed in previously injured, non-preferred limb kicks for females. A lower peak hip linear velocity (3.50 ± 0.84m/s vs 4.10 ± 0.45m/s) was observed in previously injured, preferred limb kicks of females. These differences occurred in the backswing and leg-cocking phases where the hamstring muscles were the most active. A variation in the functioning of the hamstring muscles and that of the gluteus maximus and iliopsoas in the case of a previous injury could account for the differences observed in the kicking pattern. Therefore, the effects of a previous hamstring injury must be considered while designing rehabilitation programs to re-educate kicking movement.
International Nuclear Information System (INIS)
Jorda, Michel.
1976-01-01
The dissolution of a solid in an aqueous phase is studied, the solid consisting of dispersed particles. A continuous colorimetric analysis method is developed to study the dissolution process and a two-parameter optimization method is established to investigate the kinetic curves obtained. This method is based on the differential equation dx/dt=K(1-x)sup(n). (n being the decrease in the dissolution velocity when the dissolved part increases and K a velocity parameter). The dissolution of SO 4 Cu and MnO 4 K in water and UO 3 in SO 4 H 2 is discussed. It is shown that the dissolution velocity of UO 3 is proportional to the concentration of the H + ions in the solution as far as this one is not higher than 0.25N. The study of the temperature dependence of the UO 3 dissolution reaction shows that a transition phase takes place from 25 to 65 0 C between a phase in which the dissolution is controlled by the diffusion of the H + ions and the chemical reaction at the interface and a phase in which the kinetics is only controlled by the diffusion [fr
Hydrogen risk and associated calculations
International Nuclear Information System (INIS)
Forestier, A.; Lecomte, M.; Studer, M.
1993-01-01
Hydrogen risk is one aspect that can't be neglected by nuclear safety. On the other side, experimental data are very difficult to simulate the real conditions of an accident. So the numerical way can be an aid to the comprehension and the modelling of the risk. PLEXUS code, with its previous developments seems a good candidate to simulate this problem